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Abstract

The detection of a millisecond pulsar (MSP) in a short, relativistic orbit
around a massive astrophysical black hole - such as those found in the Galac-
tic centre or in the centre of Globular clusters - would allow for precision
tests of fundamental physics and astrophysics in the gravitational strong-field
regime.

The radio timing signals from these systems are subject to a slew of non-linear,
relativistic and astrophysical effects. Therefore, in order to both detect these
systems, and use them as a natural, precision apparatus for scientific tests, it
is essential to be able to model the theoretical signal in a way that is applicable
to the strong-field regimes that these systems inhabit. The development of
such a relativistic timing framework is the primary focus of this thesis. This
formulation can then self-consistently and accurately calculate the timing
signal in the gravitational strong-field from an MSP in a general orbit around
a supermassive or intermediate mass black hole.

In the latter part of the thesis I explore the prospects for detecting gravi-
tational wave signals from these MSP Extreme Mass Ratio Systems. The
observation of gravitational radiation in conjunction with the electromagnetic
pulsar radio signal would enable multimessenger astronomy of the gravita-
tional strong-field. Finally I explore the signature of beyond-GR effects in the
pulsar timing signal via a modification of the black hole quadrupole moment.
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Impact Statement

The impact of the research presented in this thesis falls into 3 broad categories:

1. Impact on the detection of astrophysical pulsars and search
methods
Whilst the detection of pulsars in the Galactic centre or the centre of
globular clusters is a major scientific goal, despite many previous searches
we have not yet detected any pulsars from these central regions. This re-
search establishes that whilst increased sensitivity of the next generation
of radio facilities is key, higher-order relativistic effects will mean that
current search algorithms (e.g. Fourier search) may not be sufficiently
sophisticated to detect the signals from these systems. By providing the
ability to construct accurate, strong-field synthetic data, this work lays
the foundation for the development of more advanced search algorithms
and an accurate assessment of current search methods.

2. Impact on the use of MSP systems for tests of strong-field fun-
damental physics
It is essential to be able to model the expected theoretical signal from a
strong-field MSP Extreme Mass Ratio System accurately, both to enable
accurate estimates of the utility of MSPs as a precision probe of funda-
mental physics and in order to provide an accurate basis for comparison
with observation. Typically, analysis of strong-field fundamental physics
with MSP systems is undertaken via the post-Keplerian framework. This
work highlights that for MSPs in Extreme Mass Ratio Systems, these
approximate modelling methods may not be appropriate for strong field
regimes, given the range of relativistic effects that can influence the sig-
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nal. In turn, this enables the the construction of sufficiently advanced
timing models that can be applied to real strong-field astrophysical data
and the exploration of beyond-GR effects.

3. Impact on precision multimessenger astrophysics in the strong-
field regime
Astronomical observations of the strong gravitational-field are very diffi-
cult. Despite the potential for compounded scientific return, there have
been few strong-field systems with which one would expect to be able to
make multimessenger observations; BH-NS mergers as detected by LIGO
being the notable exception. This work raises another potential avenue
for multimessenger astronomy via the simultaneous observations of both
radio electromagnetic and gravitational radiation from an MSP during
its orbit around a massive black hole. Given the precision with which
measurements can be made with pulsar timing, this is a unique route for
precision multimessenger astronomy to probe general relativity in the
non-linear regime.
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Chapter 1

Introduction

1.1 Overview
In this work I develop a general relativistic pulsar (PSR) timing model and
apply it to investigate the theoretical time-frequency signal from a pulsar in
orbit around a massive (> 103M⊙) black hole (BH). A PSR-BH system would
be a unique laboratory for testing both astrophysics and fundamental physics
in an extreme parameter space; consequently they are prime targets for the
next generation of radio instrumentation. The intense strong-field curvature
of these systems means that weak-field approximations that are typically
employed no longer hold and so this work is carried out in a fully covariant
general relativistic framework.

I use a general relativistic ray tracing method to determine the trajectory of
light around a spinning black hole. The formulation is covariant and so nat-
urally accounts for all relativistic and gravitational features (e.g. relativistic
Doppler/frequency shift, gravitational lensing, gravitational redshift etc.) I
further include the effects of an astrophysical plasma on the light ray geodesic,
such that the ray path becomes chromatic. I describe the spin-orbital dynam-
ics of a spinning PSR on a background curved spacetime going beyond the
geodesic approximation and accounting for the dynamical influence of the
PSR spin on the background spacetime (‘spin-curvature coupling’). Such an
approach then consistently describes the dynamical and spin evolution of the
PSR, including relativistic precession and nutation of the PSR spin axis.

1
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The core focus of this thesis is the development of a pulsar time-frequency
(t− ν) framework applicable to the gravitational strong-field. With the PSR
orbital dynamics and the light ray trajectory specified, I develop an algorith-
mic pipeline to combine these two ingredients so as to generate fully relativistic
and frequency-dependent photon time of arrivals (ToAs). The orbital dynam-
ics effectively provide time-varying boundary conditions for the PSR light
ray, accounting for the PSR beamed emission, beam phase and relativistic
aberration. This formulation can then self-consistently and accurately calcu-
late the t − ν signal from a pulsar, in an arbitrary orbit in the gravitational
strong-field around an astrophysical BH, accounting for both relativistic and
astrophysical effects.

With this timing framework in hand I go on to explore explicitly the influence
of relativistic and astrophysical effects on the timing signal (ToA, pulse pro-
file, intensity, Fourier spectrum) from a strong-field radio PSR. This includes
the effects related to relativistic spin-orbital dynamics of a spinning pulsar
around a spinning BH, e.g. spin coupling, curvature coupling, and time di-
lations (gravitomagnetic, relativistic, gravitational), spin axis precession and
nutation, gravitational lensing, gravitational and relativistic time dilation and
dispersions in both time and space.

I compare the relativistic timing model with the commonly used post-
Keplerian model when applied to PSR in gravitational strong field environ-
ments such as the Galactic Centre and the centre of stellar clusters. I further
extend the description of the spin-orbital dynamics for a spinning BH with an
arbitrary mass quadrupole and determine the strong-field relativistic signa-
tures. Finally, I use a numerical kludge approach to calculate the gravitational
burst waveforms from PSR-BH systems in the Galactic centre or the centre of
globular clusters and explore the prospects for multimessenger observations of
these systems.
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1.2 Pulsars

When a main-sequence star exhausts its energy supply and is unable to power
nuclear fusion, it undergoes a core collapse. For stars of intermediate mass
(8 − 20M⊙), the collapse is halted by the neutron degeneracy pressure. The
result is a compact object (radius ∼10 km) with a stellar mass, composed
entirely of neutrons; a neutron star (NS). Main-sequence stars have dipolar
magnetic fields, due to the motion of conducting plasma acting like a dynamo.
During the collapse, the magnetic flux is conserved due to Gauss’ Law. Con-
sequently, since the stellar radius decreases from ∼ R⊙ → O(10 km), NSs
have typically have strong magnetic fields, on the order of 108 − 1013 G (Lyne
& Graham-Smith 2012). Some NSs, known as magnetars, have exceptionally
strong fields strengths of the order ∼ 1014 − 1015 G, likely due to dynamo
amplification during the core collapse (Raynaud et al. 2020). The magnetic
dipole axis is typically misaligned with respect to the spin axis resulting in
rotating beams of radiation which are seen as ‘pulses’ in the radio band of the
electromagnetic spectrum whenever the beam intersects with the observer’s
line of sight. Neutron stars for which these rotating radiation beams are ob-
served are therefore known as (radio) pulsars. The NSs emission is not limited
to the radio band; thanks to multiwavelength observations, nowadays a vast
zoo of NSs are observed at different energy bands, from optical, through X-ray
to gamma ray. The various classes include rotation-powered pulsars (RPP),
magnetars, X-ray dim isolated NS, accretion-powered NS (including the X-ray
burster sub-class) and central compact objects (Harding 2013; Kaspi 2018).
For the purposes of this work, we will be concerned only with the RPP class,
which we will simply refer to as pulsars.

Whilst the conservation of magnetic flux ensures that pulsars have strong mag-
netic fields, the conservation of angular momentum during the collapse means
that pulsars spin exceptionally quickly, with spin periods on the order of a few
seconds or less. Their rapid spin, stellar mass and compact radius all conspire
to make pulsars gyroscopically stable rotators. Although pulsars are excep-
tionally stable, their spin period, Ps, is not entirely constant owing to the loss
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of energy due to electromagnetic radiation from the magnetic dipole. The rate
of period change, Ṗs, is typically small, of order 10−15, and the measurement
of this period derivative allows us to make an approximate estimate of the
‘characteristic age’ of the pulsar

τc =
Ps

2Ṗs

, (1.1)

under the assumption that Ṗ is constant over over the star’s lifetime. The
surface magnetic field strength is related to the spin period and the spin-down
rate as

B =

(
3c3I

8π2R6

)√
PsṖs

[s]
, (1.2)

and so in c.g.s units, for a canonical pulsar with moment of inertia I =

1045g cm and radius R = 106cm,

B

[G]
= 3.2× 1019

√
PsṖs

[s]
. (1.3)

We can distinguish two populations of pulsars, determined explicitly by their
periods and period derivatives and implicitly by their evolutionary histories
(see Fig 1.1). Canonical pulsars (CP) have periods on the order of a few sec-
onds (the longest period NS radio pulsar is PSR J0250+5854, with Ps ∼ 23.5

s, Tan et al. 2018) whilst those pulsars with shorter spin periods, on the or-
der of milliseconds are correspondingly known as millisecond pulsars (MSP);
the fastest recorded MSP is PSR J1748-2446 with a spin frequency of 714 Hz
(Hessels et al. 2006). CP are the younger of the two populations with τc ∼ 104

years and are directly formed via the stellar collapse mechanism. Consistent
with this origin they are typically found to lie close to the Galactic plane and
are associated with supernova remnants. Due to the decay of the spin period,
eventually the NS is not spinning fast enough to power the radiation mecha-
nism; CP typically ‘go dark’ at τc ∼ 106 years (Manchester 2015). However,
CPs go on to ultimately serve as the progenitors for MSPs; old dead CP can
be ‘spun up’ through the accretion of matter and angular momentum from
a binary companion. This resurrection process results in much greater spin
frequencies. Consistent with this conception, MSPs are commonly found as
members of a binary system in regions of high stellar density.
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Fig. 1.1: The distribution of radio pulsars in the Ps − Ṗs space. PSRs with binary com-

panions are labelled with a green circle around them, those in globular clusters with a blue

circle, whilst those with supernovae association are shown by the red star. There is a clear

bimodality in the pulsar population; those with spin periods of ∼ 1 s and those with mil-

lisecond periods. This figure made use of the psrqpy package (Pitkin 2018) and the ANTF

pulsar catalogue (Manchester et al. 2005).
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1.3 Black Holes

For sufficiently massive stars (≳ 20M⊙) the neutron degeneracy pressure is
insufficient to halt the stellar collapse. The infall continues to form a mas-
sive, compact and dark object: an astrophysical black hole (BH). BHs which
directly result from this stellar collapse mechanism typically have masses in
the range 3 − 100M⊙ and form a distinct class known as stellar-mass black
holes. Evidence for the existence of these astrophysical objects is available
via both both electromagnetic and gravitational observations. On the elec-
tromagnetic side, observations of X-ray binaries suggest accretion onto some
compact object with a mass beyond that allowed for a NS (see e.g. Remillard
& McClintock 2006; Tomsick et al. 2015). In addition, the detection of grav-
itational radiation from ground based interferometers (e.g. LIGO/VIRGO),
evidences the existence of inspiralling binary BHs (e.g. Abbott et al. 2016,
2017b; The LIGO Scientific Collaboration et al. 2020).

In addition to the stellar-mass class, there also exists a population of super-
massive BHs, with typical masses ≳ 106M⊙, up to the maximum detected
mass of 4 × 1010M⊙ (Mehrgan et al. 2019). These beasts lurk in the centre
of galaxies, including our own Milky Way. Observations of the population of
S-stars in Galactic centre - in particular the relativistic S2 star - indicate that
there lies a central dark object with mass ∼ 4×106M⊙ (Gravity Collaboration
et al. 2018a,b). This massive object is coincident with the Sgr A* radio source,
the origin of which is thought to be due to accretion onto the central BH.
Radio observations confine this source to be exceptionally compact (Doeleman
et al. 2008) whilst the VLBI observations of Sgr A* flaring events are also
consistent with the hypothesis of a supermassive BH (Gravity Collaboration
et al. 2018b). The existence of extragalactic supermassive black holes at the
centre of galaxies is established via observations of AGN (which are thought
to be powered by accretion onto a central black hole, see Lu et al. 2019,
for a recent review and references therein), radio observations of megamaser
disks (Greene et al. 2010; van den Bosch et al. 2016), dynamical evidence
(Filippenko & Ho 2003), tidal disruption flaring events (Burrows et al. 2011)
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and reverberation mapping (Campitiello et al. 2019). The formation of super-
massive BHs remains an open question, but they are expected to be formed
hierarchically from smaller ‘seed’ BHs in relation to the evolution of their
host galaxy (Volonteri 2010). As a result of this coevolution of supermassive
BHs and their host environments, there is an empirical relation between the
central BH mass and the velocity dispersion of stars in that galaxy, the so
called ‘M − σ relation’ (Gültekin et al. 2009).

Given the theoretical mechanism of hierarchical formation of supermassive
BHs from smaller seed BHs, it seems natural that there should exists BHs of
intermediate mass ∼ 102−105M⊙ that bridge the gap between the stellar and
supermassive classes. However, only very recently has the first and only inter-
mediate mass BHs (IMBH) been definitively detected (The LIGO Scientific
Collaboration et al. 2020). Observations of X-ray emission from globular clus-
ters led to the first suggestion that globular clusters could host central BHs of
intermediate mass (Silk & Arons 1975; Colbert & Miller 2006; Lin et al. 2018),
whilst extrapolation to the low-mass end of the ‘M -σ relation’ (Ferrarese &
Merritt 2000; Gebhardt et al. 2000) also suggests that that stellar clusters such
as globular clusters or dwarf galaxies should host IMBHs (Sadoun & Colin
2012; Graham & Soria 2019). Consilient, suggestive yet tentative evidence for
IMBHs is put forth via observational radiative accretion signatures (Ulvestad
et al. 2007, e.g.), stellar kinematics (e.g. Gebhardt et al. 2002; van der Marel
& Anderson 2010; Feldmeier et al. 2013), integral field spectroscopy (Lützgen-
dorf et al. 2013) and pulsar timing observations (Perera et al. 2017; Kızıltan
et al. 2017a). However some evidence for IMBH is contested (e.g. Miller-Jones
et al. 2012; Baumgardt 2017; Freire et al. 2017) and definitive ‘smoking-gun’
evidence for IMBH at the centre of stellar clusters is still lacking. See Mezcua
(2017) for a full review of the observational evidence for IMBHs.

The existence of astrophysical BHs, that is, the existence of massive, compact
dark physical objects is then well established. However it remains an open
and deep question as to whether these astrophysical BHs are also mathemat-
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ical BHs, that is a BH which is a solution to the Einstein field equations.
Whether astrophysical BHs are described by Einsteinian General Relativity
is an essential question in the foundations of astrophysics and fundamental
physics and one to which we will return at the end of this chapter.

1.4 Pulsar - Black Hole Systems

The environments surrounding supermassive or intermediate mass BHs have
exceptionally high stellar densities; within the central parsec of the Milky
Way there are expected to be ∼ 107 − 108 stars, whilst the centres of globular
clusters have core number densities ∼ 104 pc−3. As a consequence, the effects
of dynamical friction and mass segregation cause heavy objects, like pulsars,
to sink towards more central radii. Within these central regions, two-body
scattering drives these compact objects onto eccentric orbits. Pulsars can ob-
tain compact, relativistic orbits around the central BH without being tidally
disrupted on account of their high densities. Such systems in which an approx-
imately stellar mass PSR, (mass m) orbits a much more massive BH (mass
M) are known as Extreme/Intermediate Mass Ratio Binaries (E/IMRBs) and
will be the main focus of this thesis. EMRBs refer to systems with a mass
ratio q =M/m ≳ 106, whilst IMRBs have q ∼ 103 − 105.

On account of the high stellar densities, large molecular complexes and the
known population of young massive stars and stellar remnants, there is ex-
pected to be a large population of neutron stars in the Galactic Centre (Gen-
zel et al. 2010; Fragione et al. 2018; Kim & Davies 2018). However, despite
extensive surveys (Johnston et al. 2006; Macquart et al. 2010; Bates et al.
2011), until 2013 no pulsar had been detected within ∼ 25 parsecs of Sgr A*.
Both Sgr A* and OH/IR Galactic centre stars exhibit extreme angular broad-
ening (Frail et al. 1994; Sjouwerman et al. 2002) indicating that the Galactic
centre must be a region of high radio scattering (Lazio & Cordes 1998). The
dearth of pulsar detections was then attributed to this extreme scattering in
the Galactic centre. To avoid radio pulsar observations being hindered by
scattering requires observations at higher radio frequencies, ν, since scattering
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causes a smearing of the pulsar pulse profile on a timescale τs ∝ ν−4, where the
exponent can be derived by taking the interstellar medium as a homogeneous
Kolmogorov spectrum or measured empirically. However, pulsars have steep
radio spectra making detections at high frequencies similarly challenging. The
situation changed in 2013 with the detection of the magnetar, PSR J1745-29
at a projected distance from Sgr A* of ∼ 0.1 pc (Kennea et al. 2013; Mori et al.
2013). Surprisingly, measurements of this magnetar indicate that scattering
towards the Galactic centre is in-fact relatively benign and previous surveys
should have been able to detect pulsars from this region. Moreover, since the
(radio-emitting) magnetar itself is a rare astrophysical object it further sug-
gests that there should be a large NS population. This paradox - ‘the missing
pulsar problem’ - led to suggestions that there are few pulsars in the Galactic
centre (Chennamangalam & Lorimer 2014) along with conjectures that that
magnetars are preferentially formed (Dexter & O’Leary 2014) or that NSs are
destroyed by dark matter (Bramante & Linden 2014). Whilst these solutions
remain possibilities, perhaps simpler explanations exist; it was subsequently
noted that if the Galactic centre population was composed primarily of MSPs,
then previous surveys would be insensitive to this population (Macquart &
Kanekar 2015; Rajwade et al. 2017). The Galactic Centre is a region of high
stellar density, enabling spin-up of old dead CPs to MSPs via frequent close
interactions. Indeed, in dense globular clusters - where radio observations are
less hampered by scattering - MSPs comprise a significant fraction of the glob-
ular cluster pulsar population (Camilo & Rasio 2005; Ransom 2008). Some
notable clusters are Terzan 5 with 37 MSPs (Cadelano et al. 2018a) and 47
Tucanae which is known to host 25 pulsars, all of which have spin periods
less than 8ms (Freire et al. 2017). More broadly, of the 145 currently known
pulsars in globular clusters, 136 have P<50 ms (∼ 94% of the population,
Manchester et al. 2005; Pitkin 2018). This suggests that in regions of high
stellar density with frequent two-body interactions the pulsar spin period dis-
tribution can be significantly modified, and the Galactic centre is known to be
orders of magnitude more dense than the Globular clusters in which the large
MSP populations are observed. As noted in Macquart & Kanekar (2015), the
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formation rate of Low Mass X-ray Binaries (LMXBs), which act as the spin-up
progenitors of MSPs, is approximately proportional to the square of the stellar
density. Consequently many more LMXBs (and hence binary pulsars) would
be expected in the Galactic center compared to globular clusters. Indeed, the
the Galactic Centre is observed to host an overabundance of X-ray transients
which are attributed to LMXBs (Muno et al. 2005; Hailey & Mori 2017; Gen-
erozov et al. 2018). In addition the leading explanation for the Fermi γ-ray
excess at the Galactic centre (Ackermann et al. 2017) is a point source MSP
population (Fragione et al. 2018). Consequently, it seems reasonable, if not
likely, that the NS population at the Galactic centre is dominated by MSPs.
In addition to the Galactic centre, if the centre of globular clusters do host
IMBHs then these regions would be expected to form MSP-IMBH binaries.

1.5 Scientific potential

The gyroscopic stability of pulsars allows them to be used as precision, free-
falling celestial clocks. Indeed, the precision with which pulsar periods can
be measured rivals that of the best atomic clocks e.g. PSR J1748-2446ad
is measured to have a spin period Ps = 5.757451924362137 (Verbiest et al.
2008), i.e. a measurement to a precision of 1 part in 1016. The basis of
pulsar timing is the measurement of the frequency-dependent pulse time of
arrival (ToA). Given this t− ν signal, a model is constructed which maps the
emission time in the pulsar frame to the ToA in the observer’s frame. The
difference between the observed timing signal and the theoretical modelled
signal is described by the timing residuals. Errors in the timing model lead
to systematic variability in the residuals. In this way radio pulsar timing
observations allow high-precision measurements to be made of the intrinsic
properties of the pulsar and host system (e.g. Liu et al. 2011; Desvignes et al.
2016; Lazarus et al. 2016; Liu et al. 2018).

Whilst the first detection of an MSP-E/IMRB system would be an important
discovery in and of itself, such a system would also provide a powerful and
unique laboratory - accessible via radio timing - with which to investigate
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key questions in astrophysics and fundamental physics. Indeed, for this rea-
son the detection of a pulsar-BH system has been dubbed the ‘holy grail’
of astrophysics (Faucher-Giguère & Loeb 2011). From the perspective of
fundamental physics, MSP-E/IMRBs would enable precision tests of general
relativity (GR) in the gravitational strong-field (see e.g. Liu et al. 2012; Psaltis
et al. 2016). GR has already passed a long series of experimental tests (Will
2014). In the modern era, these include measurements of the gravitational
frequency shift as measured by Cassini (Bertotti et al. 2003), geodetic and
Lense-Thirring precession of Gravity Probe B in Earth-orbit (Everitt et al.
2015), orbital decay of the Hulse-Taylor binary due to gravitational wave
emission (Weisberg et al. 1981), precision tests of the equivalence principle to
1 part in 1014 (Nobili & Anselmi 2018), gravitational lensing measurements
with Hipparcos (Froeschle et al. 1997) and Gaia (Krone-Martins et al. 2018),
tests in binary pulsar systems (Lorimer 2008), gravitational redshift of stars
at the Galactic centre (Gravity Collaboration et al. 2018a; GRAVITY Collab-
oration et al. 2020) and the direct detection of gravitational radiation from
coalescing binary BH-BH and NS-NS systems (Abbott et al. 2016, 2017a,b).
GR has passed all of these tests with flying colours.

Despite this success there remain open questions in GR: the existence of singu-
larities in matter densities and spacetime curvature at the centre of BHs and at
the origin of the universe (Pachner 1970), the non-uniqueness of the Einstein-
Hilbert action (Psaltis 2008), as well as the spacetime dynamics of spinning
objects (Obukhov et al. 2009; d’Ambrosi et al. 2015; Plyatsko & Fenyk 2016).
In particular all existing electromagnetic observations have occurred in a re-
gion where the gravitational field strength is relatively weak. The strength of
the gravitational field is quantified by the parameter ϵ,

ϵ =
GM

rc2
, (1.4)

for mass M and separation r. Whilst this parameter has an intuitive interpre-
tation, being proportional to the classical Newtonian gravitational potential,
geometric theories of gravity such as GR deal not with potentials but curva-
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tures. The spacetime curvature is defined via the parameter ξ

ξ =
GM

r3c2
. (1.5)

Together these two parameters define a 2-space over which to quantify the
strength of the gravitational field. As can be seen from Fig. 1.2, the bulk
of existing tests of GR have primarily probed the weak-field regime, where
ϵ ≲ 10−6, ξc ≲ 10−28. In contrast, for a MSP in a 0.1 year orbit around
the Galactic centre, with eccentricity e = 0.9, as it passes through periapsis
it will probe a potential ϵ ∼ 0.01 and be traveling at an orbital velocity
of ∼ 0.15c. The unique nature of radio pulsar timing would then allow for
system parameters to be determined with a remarkable precision: for a pulsar
in a 0.3 year period orbit around Sgr A∗, measuring the set of post-Keplerian
parameters allows the mass and spin to be determined to a precision of 10−5

and 10−3, respectively, assuming a modest timing precision of 100 µs (Liu
et al. 2012). At shorter orbital radii or increased timing precisions relativistic
effects would become more pronounced, potentially allowing for more precise
tests and probing deeper into the strong-field regime.

Tests of fundamental physics with MSP-E/IMRBs are directly complemen-
tary with alternative methods. Stellar optical interferometric astrometry of
the Galactic centre population of S-stars, in particular the 16-year orbit S2,
has been used to measure the gravitational and relativistic redshift and shown
to be inconsistent with Newtonian mechanics (Gravity Collaboration et al.
2018a,b). Whilst the development of more advanced instruments with in-
creased sensitivities may allow the detection of fainter stars on more relativis-
tic orbits, there is no evidence that such stars exist and it seems likely that
they would be tidally disrupted. In contrast pulsars as compact objects can
attain highly relativistic orbits without tidal disruption and so probe stronger
gravitational fields. Moreover, as noted in Bower et al. (2019), milli-arsecond
astrometry of the Galactic centre has a lengthscale precision of,

Lastrometry ∼ 8.33 dθ[kpc] ∼ 8AU (1.6)
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Fig. 1.2: The gravitational field strength parameter space in terms of the gravitational

potential ϵ = GM/rc2 and the spacetime curvature ξ = GM/r3c2. The parameter space

probed by different GR tests is shown. ‘LEO’ refers to the experiments in Low Earth Orbit,

e.g. Gravity Probe B and MICROSCOPE. The EMRB system is taken to be a P = 0.1 year,

e = 0.9 system in the Galactic centre. The mass of the Sgr A* BH is taken to be 4×106M⊙,

whilst we set the ‘BH’ to have mass 10M⊙ and take the ‘NS’ to have mass 1.4M⊙, radius 10

km. The curvatures and potentials are calculated assuming point sources and at periapsis

separation. The red region denotes the below horizon regime and the dashed orange lines

show the relevant lengthscales. The potential and curvature strengths for dark matter and

dark energy are too small to be shown on this chart.
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whilst pulsar timing with timing precision ∼ µs has,

Lpulsar ∼ cdt ∼ 2× 10−9AU (1.7)

and so MSP timing ultimately offers more precise tests of GR.

Very long baseline interferometry (VLBI) with the Event Horizon Telescope
(EHT) enables radio imaging on the scale of the supermassive BH event
horizon (Ricarte & Dexter 2015). For a BH surrounded by some emission
region such as an accretion disk, observations of the ‘shadow’ that result from
gravitational lensing and photon capture then allow for parameter estimation
of the central BH. This method has been applied to the supermassive BH at
the centre of the elliptical galaxy M87 and was able to determine the mass
to a precision of ∼ 10% (Event Horizon Telescope Collaboration et al. 2019).
Determination of further parameters such as the spin have not yet been possi-
ble, nor have observations of the Galactic centre due to scattering, but these
challenges may be over come in the future as the instrumentation is further
developed. EHT observations are a complementary method to PSR timing for
strong field tests, with their own set of systematics, since the measurements
made by EHT require a sufficiently advanced modelling and understanding of
the accretion flow and jet behaviour.

Moving beyond the electromagnetic messenger channel, gravitational wave
astronomy is now a routine practice following the first BH-BH detections in
2016 (Abbott et al. 2016). Ground based detectors such as LIGO/Virgo are
able to determine the constituent BH masses to a precision O(10%) in the
dynamical strong field and offer definitive proof of the existence of astrophys-
ical BHs. However, in their current inception it is difficult to do precision
parameter estimation. Again this situation may be improved with the devel-
opment of advanced versions (aLIGO, aVirgo, KAGRA) and 3rd generation
ground based detectors (Einstein Telescope). Ground based detectors are
noise limited to frequencies greater than ∼ 1 − 10 Hz (Chaibi et al. 2016).
The future generation of space-based detectors such as LISA (Baker et al.
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2019) will open up the mHz gravitational wave regime and new population
of sources. Directly related to MSP-E/IMRBs are the Extreme Mass Ratio
Inspirals, the descendants of general EMRBs. Via gravitational wave observa-
tions one can expect to measure the redshifted mass to a precision 10−6−10−3

and spin to 10−5 − 10−3 and the quadrupole moment to ∼ 10−3 (Barack &
Cutler 2007). However waveform modelling issues in EMRIs do remain (e.g.
Barack & Pound 2019), whilst to determine the intrinsic BH mass - rather
than the luminosity mass - requires accurate measurements of the source
distance. Moreover, since gravitational wave observations naturally probe the
dynamical spacetime pulsars would be more sensitive to modifications of GR
which affect only the stationary part of the spacetime, since they would not
be subject to the same confusion noise. Whilst MSPs are primarily expected
to be detected in the radio, as they pass through periapsis they may emit
a burst of gravitational radiation. This in turn would allow for strong-field
multimessneger astronomy. The detection of this coincident gravitational
radiation is a question we will return to in Chapter 6.

The essential goal of MSP-E/IMRB timing from the perspective of fundamen-
tal physics is precision measurements of the key parameters of the central BH:
the mass M , spin S, and the quadrupole moment Q. If these parameters can
be determined to sufficient precision it would open a vast array of opportuni-
ties and questions in fundamental physics. The Cosmic Censorship Conjecture
(Penrose 1979) requires that all singularities are hidden behind event horizons.
Since the event horizon radius for a spinning BH is

r±h = 1±
√
1− a2 , (1.8)

the Cosmic Censorship Conjecture imposes a requirement on the BH spin
parameter that,

a ≡ c

G

S

M2
≤ 1 . (1.9)

A measurement of a of a BH is then a direct challenge to GR, with a > 1

testing our understanding of the nature of spacetime and gravity. The No
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Hair Theorem (Israel 1967) states that uncharged astrophysical black holes
are completely characterized by their lowest order multipole moments (M,S),
and all higher order moments (e.g. Q) can be expressed as a function of the
lower moments. The quadrupole moment of an astrophysical BH must then
satisfy,

c4

G2

Q

M3
= −a2 . (1.10)

By measuring the mass, spin and quadrupole of an astrophysical BH these
foundational issues in GR can then be definitively answered. Via PSR timing
at the Galactic centre, the Cosmic Censorship Conjecture and the No Hair
Theorem can then be possibly tested to ≤ 1% precision (see e.g. Kramer et al.
2004; Liu et al. 2012; Liu et al. 2014; Wex & Kopeikin 1999; Eatough et al.
2015). By extension, the nature of the central massive compact object can
also be investigated, i.e. whether the Kerr solution is a true astrophysical
solution (the ‘Kerr Hypothesis’ Bambi 2011) or if parametrized deviations
from the Kerr solution exist (so called ‘bumpy’ black holes, Yagi & Stein
2016), or even whether the massive central compact object is some more exotic
object like a boson star (Kleihaus et al. 2012). Pulsar timing of EMRBs
can also be used to test alternative theories of gravity such as scalar-tensor
theories (Liu et al. 2014), search for quantum gravitational effects (Yagi &
Stein 2016; Estes et al. 2017) and constrain the cosmological constant (Iorio
2018). From an astrophysical perspective, radio timing of MSP-E/IMRBs
can be used to precisely determining the mass of black holes at the centre of
Local Group galaxies and globular clusters in order to constrain the low end
of the M − σ relation (Ferrarese & Merritt 2000), establishing the existence
or otherwise of otherwise of intermediate mass black holes (Singh et al. 2014),
solve the Fermi GeV excess (Ackermann et al. 2017), explore the properties
of ultra-dense matter (Fonseca et al. 2019), the nature of dark matter (Siegel
et al. 2007) as well as properties of the interstellar medium and the nature
of magnetic fields and the stellar formation hisotry at the centre of stellar
clusters. Moreover, E/IMRBs in turn serve as progenitors of the extreme-
mass-ratio-inspiral (EMRI) gravitational-wave sources, a major class of targets
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for the future LISA observations (Gair et al. 2010, 2017; Babak et al. 2017).
Evidently there is then a huge scientific return from the disovery and timing
of a strong-field MSP-E/IMRB

1.5.1 Challenges

Precision astronomy in strong-field environments remains a hugely challenging
enterprise. In order realise the scientific potential of MSP-E/IMRBs, it is
essential to be able to model the expected t − ν radio timing signal. The
requirements for such a model are twofold. Firstly, being able to accurately
model the theoretical signal is vital to inform the detection of these systems.
As discussed the lack of pulsar detections in the centre of stellar clusters is
likely due to insufficient sensitivity of current instrumentation to detect a
MSP population. The current timing precision for slow pulsars is limited by
irregularities of the pulsar’s spin (e.g. Lyne et al. 2010), which is difficult to be
improved by an increase in telescope sensitivity. However, the timing residuals
for most MSPs are still dominated by system white noise (e.g. Verbiest et al.
2009), which can be greatly decreased by the increased instantaneous gain of
the future telescopes. Even with the increased facilities and instrumentation
performance, the detection of relativistic timing signals remains a non-trivial
task. It is known for example that highly accelerated pulsars must be search
for using computationally expensive ‘acceleration searches’, in order to correct
the received signal for the motion of the pulsar (Adámek et al. 2019). As we
move into the strong-field regime of the Galactic centre and consider relativistic
systems, one must also consider a further series of effects which will influence
the received pulsar signal, which fall into two broad classes:

1. Effects which influence the geodesic followed by a radio pulsar light ray
while traveling through a curved space–time. This includes gravitational
light bending, gravitational and relativistic time dilation, relativistic
Doppler frequency shift, velocity-induced intensity boost, and dispersion
induced by the interaction of the radio signal with line-of-sight material.

2. Effects related to the relativistic orbital dynamics and spin precession
of a spinning pulsar around a spinning BH, e.g. spin couplings, cur-
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vature couplings, associated time dilation (gravitomagnetic, relativistic,
gravitational) and relativistic aberration.

It remains an open question whether current pulsar search algorithms are
sufficiently sophisticated when applied to these strong-field signals.

The second requirement for a strong-field pulsar timing model is in order to use
MSP-BH binaries as precision astrophysical laboratories. As discussed, with
these systems we can make precision measurements in an extreme parameter
space. However typically in pulsar system the intrinsic system parameters are
inferred by fitting a set of ‘post-Keplerian’ parameters to the timing signal.
The framework is derived only for weak gravitational fields and its applica-
bility to strong-field regimes remains unclear. In order to use MSP-E/IMRBs
as a precision fundamental physics laboratory a proper theoretical framework
- applicable to strong field regimes and allowing unambiguous predictions to
be made and compared with observations - is paramount.

Throughout this work we adopt the natural units, with c = G = ℏ = 1, and a
(−,+,+,+) metric signature. Unless otherwise stated, a c.g.s. gaussian unit
system is used in the expressions for electromagnetic properties of matter.
With these units, the gravitational radius of the black hole rg is simply = M

and the corresponding Schwarzschild radius rs is 2M , where M is the black-
hole mass. We will adopt a normalization that the black-hole mass is unity. A
comma denotes partial derivative (e.g.xν ,µ = ∂µx

ν), and a semicolon denotes
covariant derivative (e.g.xν ;µ = Dxν/dµ = ∂µx

ν + Γν
µγx

γ).



Chapter 2

Propagation of Electromagnetic

Radiation in Curved Spacetime

The first step in constructing a relativistic pulsar timing solution is being
able to determine the geodesic motion of the emitted photons as they travel
between the pulsar and the observer. In the strong gravitational field these
spacetime trajectories are generally non-trivial, and are determined by both
the mass and spin of the central BH. Moreover, the line of sight between the
observer and a pulsar is in reality not a vacuum. Instead photons will gener-
ally propagate through a plasma due to the contribution from the interstellar
medium (ISM), stellar winds, accretion disks etc. The combination of vacuum
gravitational effects and chromatic line of sight effects will have a marked
influence on the pulsar timing signal.

This Chapter introduces the mathematical techniques for computing the prop-
agation of light in the strong gravitational field of a rotating (Kerr) black hole.
I first introduce the properties of the Kerr spacetime and then derive the vac-
uum equations of motion via a Hamiltonian formalism. I then go on to modify
the vacuum equations to account for the presence of astrophysical plasma. The
set of differential equations defining the propagation of light can then be solved
numerically.

19
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2.1 Kerr Spacetime
BHs form from a gravitational collapse. Since astrophysical objects invariably
posses some degree of angular momentum, and this momentum is conserved
during the collapse, astrophysical BHs are expected to be rotating. Conversely,
whilst it is theoretically possible for BHs to have electric charge, in astrophys-
ical scenarios it is expected that any charge would be rapidly neutralised by
the surrounding medium. The solution to the Einstein Field Equations for a
rotating, uncharged BH is given by the Kerr solution (Kerr 1963) where in
Boyer-Lindquist coordinates (t, r, θ, ϕ) the metric interval is

ds2 = gttdt
2 + 2gtϕdtdϕ+ grrdr

2 + gθθdθ
2 + gϕϕdϕ

2 , (2.1)

where the covariant terms are

gtt = −
(
1− 2r

Σ

)
, (2.2)

grr =
Σ

∆
, (2.3)

gθθ = Σ , (2.4)

gϕϕ =
sin2 θ

Σ

[(
r2 + a2

)2 −∆a2 sin2 θ
]
, (2.5)

gtϕ = −2ar sin2 θ

Σ
, (2.6)

with Σ(r, θ) = r2 + a2 cos2 θ, ∆(r) = r2 − 2r + a2, and the spin parameter
a = S/M2 for BH spin S and mass M . The contravariant terms are defined
via, gµνgνγ = δµγ such that,

gtt =
−gϕϕ

∆sin2 θ
, (2.7)

grr =
1

grr
, (2.8)

gθθ =
1

gθθ
, (2.9)
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gϕϕ =
−gtt

∆sin2 θ
, (2.10)

gtϕ =
gtϕ

∆sin2 θ
. (2.11)

The Boyer-Lindquist coordinates are oblate spheroidal coordinates; the radial
coordinate r can be understood as a spin-modified analogue of the standard
spherical polar radius, whilst θ, ϕ are the polar and azimuthal coordinates re-
spectively. In the zero mass limit the metric reduces to flat Minkowski space
and the relation between the Boyer Lindquist and the usual Cartesian/rect-
angular coordinates is made explicit:

x = m sin θ cosϕ , (2.12)

y = m sin θ sinϕ , (2.13)

z = r cos θ , (2.14)

where m =
√
r2 + a2, and the inverse transform is simply defined algebraically

as,

r =

√
w +

√
w2 + 4a2z2

2
, (2.15)

θ = arccos
(z
r

)
, (2.16)

ϕ = arctan 2(y, x) , (2.17)

where w = x2 + y2 + z2 − a2. The Kerr metric has two singular regions when
working in Boyer-Lindquist coordinates. The first occurs when ∆(r) = 0. This
condition in turn describes two singular horizons,

r± = 1±
√
1− a2 . (2.18)

The positive solution r+ describes the BH event horizon; the past causal
boundary of future null infinity. More physically this can be thought of as
the region within which the escape velocity is greater than the speed of light.
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The negative solution r− is the Cauchy Horizon; whilst the radial tangent
vector becomes timelike for r < r+ after passing the Cauchy Horizon it again
becomes spacelike. In the zero spin limit, r+ = 2 - the Schwarzschild radius -
and r− = 0 - the BH singularity. The relevant geometry is presented in Fig.
2.1. The second singular region occurs when Σ(r, θ) = 0 which corresponds
to a equatorial circular ring of radius a. Evidently in the zero-spin limit this
reduces to the BH singularity. It is important to note that this ring singularity
is a true curvature singularity, a property of the spacetime itself. This can be
seen since the Kretschman curvature scalar is defined as,

K ≡ RµναβRµναβ

=
48M2 (2r2 − Σ) (Σ2 − 16r2a2 cos2 θ)

Σ6
, (2.19)

which is clearly singular at Σ = 0. Conversely, the ∆ = 0 singularities are
only coordinate singularities and can be removed by an appropriate change
of coordinates, for example to Kerr-Schlid ‘Horizon penetrating coordinates’
(Debney et al. 1969)
The Kerr spacetime possesses two Killing vectors ξt, ξϕ, related to temporal
and axial diffeomorphisms of the vacuum metric. A general Killing vector ξµ

satisfies Killing’s equation:

ξ(µ;ν) = 0 . (2.20)

The inner product of a Killing tensor ξµ with a tangent vector pµ is conserved
along a geodesic, i.e. ifK = ξµpµ then K̇ = 0, where “·” denotes differentiation
with respect to an affine parameter. The temporal Killing vector is associated
with the conservation of energy, whilst the azimuthal Killing vector is related
to the components of the angular momentum along the black hole spin axis:

E = −ξtpt , (2.21)

Lz = ξϕpϕ . (2.22)

In addition, the Kerr spacetime admits a rank-2 Killing tensor

Kµν = 2Σl(µnν) + r2gµν , (2.23)
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Fig. 2.1: Event horizon geometry in the x− z plane. The dashed orange line is the event

horizon on the zero spin (a=0) limit. The solid blue and green lines denote the outer and

inner (r±) horizons for a spinning BH with a = 0.9. As the spin parameter is turned down

from a = 0.9 to a = 0, the outer radius (r+) tends towards the dashed orange line, whilst

the inner radius (r−) collapses to the central singularity.
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where lµ, nν are the principal null vectors of the metric

lµ =

(
r2 + a2

∆
, 1, 0,

a

∆

)
, (2.24)

nν =

(
r2 + a2

2Σ
,− ∆

2Σ
, 0,

a

2Σ

)
, (2.25)

and a Killing tensor obeys the higher order generalisation of Eq. 2.20

∇(γKµν) = 0 . (2.26)

This Killing tensor is related to a further conserved quantity - the Carter
Constant (QC) (Carter 1968). Unlike the energy and angular momentum,
the exact physical understanding of the Carter constant remains unclear (De
Felice & Preti 1999; Rosquist et al. 2009).

2.2 Propagation in vacuum
Electromagnetic phenomena are generally described by Maxwell’s equations,
which have the covariant form in vacuum

∇µF
µν = 4πJν , (2.27)

∇µF̃
µν = 0 , (2.28)

where Jµ is the divergence free 4-current density and F µν is the electromag-
netic (Faraday) field tensor, defined with respect to the potential as,

F µν = 2∇[µAν] , (2.29)

whilst the dual to this tensor is

F̃ µν ≡ ϵµναβFαβ/2 , (2.30)

and ϵµναβ is the Levi-Cevita psuedo-tensor. By taking the covariant derivative
of Eq. 2.27 in conjunction with the Bianchi identity Eq. 2.28, one can arrive
at a general wave equation

□Fµν + 2RµανβF
αβ +Rα

µFνα −Rα
νFµα = 0 , (2.31)
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where Rµανβ is the Riemann curvature tensor, Rµν = Rα
µαν and we have set

Jν = 0 i.e. charge-free space. This wave equation generally describes how
electromagnetic waves behave in a gravitational field, i.e. general relativistic
optics. Since the gravitational lengthscale is much longer than the wavelength
we can employ the geometrical optics (eikonal) approximation and take the
field tensor to have a slowly varying amplitude and a rapidly varying phase
(e.g. Dolan 2018):

Fµν = AfµνeiωΦ , (2.32)

where A is the wave amplitude, fµν the polarization bivector, Φ the phase and
ω an order parameter which can be understood as the frequency. If we define
the wavevector as a gradient,

kµ = ∇µΦ , (2.33)

then

−ω2kckcfab + iω
[(
2kcA;c + kc;cA

)
fab +Akcfab;c

]
+O

(
ω0

)
= 0 . (2.34)

By comparing terms of equivalent order in ω it can be seen that

kµkµ = 0 , (2.35)

i.e. the wavevector is null. This implies that the wavevector satisfies the
geodesic equation

d2xµ

ds2
+ Γµ

αβ

dxα

ds

dxβ

ds
= 0 (2.36)

The problem for the evolution of the light wave is then reduced to the evolu-
tion of a particle, i.e. a photon, along rays, where rays are curves which are
orthogonal to surfaces of constant phase.

Rather than directly integrating the geodesic equation, it is more elegant and
straightforward to determine the light ray propagation via a Hamiltonian for-
mulation. The covariant form of the Hamiltonian is

H(xµ, pν) =
1

2
gµνpµp

ν , (2.37)
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where xµ are the coordinate variables and pν the conjugate 4-momenta. The
corresponding equations of motion, Hamilton’s equations, are then

ẋµ =
∂H

∂pµ
, ṗµ = − ∂H

∂xµ
. (2.38)

As discussed, ṗt and ṗϕ are constant related to symmetries of the spacetime.
For the Kerr metric, the remaining equations are:

ṫ = E +
2r(r2 + a2)E − 2arLz

Σ∆
; (2.39)

ṙ =
pr∆

Σ
; (2.40)

θ̇ =
pθ
Σ

; (2.41)

ϕ̇ =
2arE + (Σ− 2r)Lz csc

2 θ

Σ∆
; (2.42)

ṗθ =
1

2Σ

[
−2a2E2 sin θ cos θ + 2L2

z cot θ csc
2 θ

]
; (2.43)

ṗr =
1

Σ∆

[
− κ(r − 1) + 2r(r2 + a2)E2 − 2aELz

]
(2.44)

− 2p2r(r − 1)

Σ
; (2.45)

where

κ = p2θ + E2a2 sin2 θ + L2
z csc

2 θ , (2.46)

is an effective recasting of the Carter constant:

κ = QC + L2
z + a2E2 . (2.47)

2.2.1 Initial Conditions

In order to solve the above set of differential equations numerically it is neces-
sary to specify the initial conditions of the photon ray (i.e. the initial xµ, pµ)
and the associated constants of the motion. One can choose to integrate ei-
ther ‘forwards’ (i.e. from pulsar to observer) or ‘backwards’ (from observer
to pulsar) in time, since the metric is explicitly time independent. We now
examine each of these approaches.

Forward Ray Tracing

Forwards ray tracing is the intuitive interpretation of firing a photon ray from
source to observer. In this case the spacetime coordinates, the origin of the
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ray xµ, can be freely chosen to coincide with the location of the source. The
initial variable momenta terms pr, pθ ultimately specify the initial direction of
the ray. We want to be able describe this initial ray orientation in terms of
a polar angle with respect to the BH spin axis, θray and and azimuthal angle
with respect to the BH x-axis, ϕray. To achieve this, we can first write the
Cartesian components of the ray velocity as,

V i = ẋi =


ẋ

ẏ

ż

 =


sin θray cosϕray

sin θray sinϕray

cos θray

 . (2.48)

We can then transform into Boyer-Lindquist coordinates by the transformation
of a general contravariant vector,

V µ =
∂xµ

∂xν
V ν , (2.49)

such that explicitly:

ṙ =
m

Σ

(
r sin θ cosϕ sin θray cosϕray + r sin θ sinϕ sin θray sinϕray

+m cos θ cos θray

)
, (2.50)

θ̇ =
m

Σ

(
cos θ cosϕ sin θray cosϕray + cos θ sinϕ sin θray sinϕray

− r

m
sin θ cos θray

)
, (2.51)

ϕ̇ =
1

m sin θ

(
− sinϕ sin θray cosϕray + cosϕ sin θray sinϕray

)
. (2.52)

By rearranging Eqs. 2.40,2.41, this specifies pθ, pr in terms of θray, ϕray. The
constants E and Lz (−pt, pϕ) can be expressed in terms of the xi, ẋi components
by rearranging the Hamiltonian and equations of motion as:

E2 = (Σ− 2r)

(
ṙ2

∆
+ θ̇2Σ

)
+∆ϕ̇2 sin2 θ ; (2.53)

Lz =
(Σ∆ϕ̇− 2arE) sin2 θ

Σ− 2r
. (2.54)
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Backward Ray Tracing

For backwards ray tracing we integrate from the observer towards the BH.
The observer has a coordinate system x′ where the z′ axis is aligned with the
BH singularity. The coordinates of the observer image plane are then x′, y′.
The centre of this image plane is at robs, θobs defined with respect to the BH
coordinate system. Since the Kerr metric is axisymmetric, generally we can
set ϕobs = 0. The observer distance robs is chosen so as to be sufficiently large
such that the observer’s grid can be considered as a Euclidean grid with zero
curvature, and all rays are perpendicularly incident on this grid. Throughout
this work we set the observer grid at robs = 104 rg. We can approximate the
deviation from Minkowski spacetime via the Kretschman scalar (Eq. 2.19),
which in the limit of large r (= robs),

K ∼ 48

r6
∼ 10−24 , (2.55)

which is much smaller than typical numerical precision and so we are well-
justified as taking the observer plane as Euclidean.

Given the coordinates of the ray on the observer’s image plane, we can trans-
form to the BH coordinate system (x′ → x) as follows: (Pu et al. 2016)

1. Rotate clockwise by (π − θobs) about the x′-axis (Rx′)

2. Rotate clockwise by (2π − ϕobs) about the z′-axis (Rz′).

3. Reflect in the plane y′ = x′ (Ay′=x′).

4. Translate x′ so that the origins of both coordinate systems coincide
(Tx′→x)

The net transformation is then

x = Ay′=x′Rz′Rx′x′ + Tx′→x (2.56)

=


D(y′, z′) cosϕobs − x′ sinϕobs

D(y′, z′) sinϕobs + x′ cosϕobs

(robs − z′) cos θobs + y′ sin θobs

 (2.57)

x = Λx′ (2.58)
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where D = (
√
r2obs + a2 − z′) sin θobs − y′ cos θobs. Subsequently transforming

from Cartesian to Boyer-Lindquist coordinates completely defines the initial
xµ. Since each ray arrives perpendicular to the image plane, ẋ′ = (0, 0, 1) and
so the velocity components in the black hole frame (the backwards ray tracing
equivalent of Eq. 2.48) is

ẋ = Λ̇x′ + Λẋ′ =


− sin θobs cosϕobs

− sin θobs sinϕobs

− cos θobs

 . (2.59)

Converting to Boyer-Lindquist coordinates gives expressions for (ṙ, θ̇, ϕ̇) in the
black hole frame:

ṙ = −−rR sin θ sin θobs cosΦ +R2 cos θ cos θobs
Σ

, (2.60)

θ̇ =
r sin θ cos θobs −R cos θ sin θobs cosΦ

Σ
, (2.61)

ϕ̇ =
sin θobs sinΦ

R sin θ
, (2.62)

where R =
√
r2 + a2 and Φ = ϕ − ϕobs. Specifying pr, pθ, E, Lz then pro-

ceeds as in the forward ray tracing case. An example backwards ray tracing
integration for a spinning BH is presented in Fig. 2.2.

2.3 Propagation in a plasma
The previous discussion applied to a vacuum spacetime. However, for astro-
physical applications we are typically operating not in a vacuum, but in some
kind of plasma, whether this is due to the interstellar medium, stellar winds or
accretion disks. We consider a cold, unmagnetized plasma. The geometrical
derivation of light propagation in a dispersive medium was first outlined by
Synge (1960) who showed that the phase velocity of a wave, relative to an
observe with 4-velocity uµ is,

v2p =
pµu

µ

pνuν +
pαpα

pβuβ

. (2.63)
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Fig. 2.2: Backwards ray tracing in the equatorial plane around a Kerr BH with spin

parameter a = 0.9. The rays originate in the distant positive x direction. The gravitational

lensing of photon geodesics and the frame dragging due to the BH spin is clearly visible.
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Since the refractive index of a medium n is the reciprocal of the phase speed
then,

n2 = 1 +
pµp

µ

(pνuν)2
. (2.64)

It follows that the Hamiltonian is then,

H(xµ, pµ) =
1

2

[
gµνpµpν − (n2 − 1)(pαu

β)2
]
. (2.65)

Now, since the scalar product of the momentum is related to the plasma
frequency

pµp
µ = −ω2

p , (2.66)

it follows that the Hamiltonian can be written in a neat form as,

H(xµ, pµ) =
1

2

[
gµνpµpν + ω2

p(x
µ)
]
= 0 . (2.67)

Rather than a macroscopic, geometrical approach, the same result can also be
derived via a microscopic electromagnetic method (e.g. Broderick & Blandford
2003). From Eq. 2.67 it can be seen that all of the plasma interactions are
contained in the plasma frequency term, where

ω2
p(x

µ) =
4πq2e
me

ne(x
µ) , (2.68)

and qe is the charge on the electron, me the electron mass and ne(x
µ) the

number density profile of the plasma. If the number density does not evolve
in time and is independent of ϕ (axisymmetric) then ω2

p = ω2
p(r, θ), then the

Hamiltonian remains axisymmetric and stationary and the associated con-
served quantities E,Lz remain constant. Naturally the photon rest mass re-
mains null (H = 0). However we have lost the Carter constant, which depends
explicitly on the separability of the Hamiltonian into its coordinate variables.
To illustrate, consider the explicit form of Eq. 2.67 for the Kerr metric:

−E
2

∆

[
(r2 + a2)2 −∆a2 sin2 θ

]
+
4arELz

∆
+ p2r∆+ p2θ +

L2
z

sin2 θ

(
1− a2 sin2 θ

∆

)
+ r2ω2

p(r, θ) + a2 cos2 θ ω2
p(r, θ) = 0 , (2.69)

Evidently it is impossible to separate this expression into r, θ terms, due to
the cross terms introduced by ω2

p. Conversely when ωp = 0 (the vacuum case)
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this expression can be separated, the Carter constant defined and the previous
equations derived. The underlying physics can be elucidated by comparing the
‘plasmic-Hamiltonian’, Eq. 2.67, with the Hamiltonian of a massive particle
(mass m) travelling through a vacuum.

H = gµνpµpν +m2 . (2.70)

The plasma frequency effectively plays the role of a particle mass in a vacuum
spacetime. For a uniform plasma distribution, ωp is a constant and hence the
Hamiltonian is separable. Otherwise, the photon essentially acquires an effec-
tive mass which varies during its propagation in the plasma. To proceed we
define a specific form of ω2

p such that the Hamiltonian recovers its separability:

ω2
p =

4πe2

me

f(r) + g(θ)

Σ
. (2.71)

This form describes a stationary and axisymmetric plasma distribution with
independent radial and polar dependence through the additive contribution
by the two terms f(r) and g(θ). Although this particular form restricts the
description of general density distributions, it retains certain desirable prop-
erties from the perspective of astrophysical modelling, as with an appropriate
choices of f(r) and g(θ) we may describe the key features of an axisymmetric
plasma, such as inverse radial dependence, dominance of radial terms at large
radii, maximal value in equatorial plane, etc. Going forward, we adopt this
particular functional form of ωp in our demonstrative calculations.

The properties of astrophysical plasma near the Sgr A* BH has been probed by
the polarisation of the emission (Agol 2000; Quataert & Gruzinov 2000), the
spectra at millimeter - centimeter wavelengths (Narayan et al. 1995; Falcke
et al. 1998; Marrone et al. 2007) and the size of the emission region (Özel
et al. 2000; Doeleman et al. 2008). Based on these observations it is possible
to construct a semi-analytical model for the plasma at the Galactic centre as
(Broderick & Loeb 2005; Broderick et al. 2009):

ne = n0
e

(
rc2

GM

)−1.1

, (2.72)



2.3. Propagation in a plasma 33

where the best fit normalisation parameter to the model is n0
e = 3.5×107cm−3

(Broderick et al. 2011). Similar models and normalisations are commonly
used in the literature (Mościbrodzka et al. 2009; Psaltis 2012). Such a density
profile can then be described by our separable form by setting f(r) = r0.9,
g(θ) = 0.

Adopting the form of ω2
p as given by Eq. 2.71 the Hamiltonian regains its

separability and we can proceed analogously to the vacuum case to derive the
equations of motion. The coupled set of differential equations 2.39 - 2.45 is
modified from the vacuum case as,

ṫ = E +
2r(r2 + a2)E − 2arLz

Σ∆
; (2.73)

ṙ =
pr∆

Σ
; (2.74)

θ̇ =
pθ
Σ

; (2.75)

ϕ̇ =
2arE + (Σ− 2r)Lz csc

2 θ

Σ∆
; (2.76)

ṗθ =
1

2Σ

[
−Cg(θ),θ − 2a2E2 sin θ cos θ + 2L2

z cot θ csc
2 θ

]
; (2.77)

ṗr =
1

Σ∆

[
− κω(r − 1) + 2r(r2 + a2)E2 − 2aELz (2.78)

− Cf(r),r∆

2
− C(r − 1)f(r)

]
(2.79)

− 2p2r(r − 1)

Σ
; (2.80)

where C = 4πq2e/me and we reproduce the full set for completeness. Now, κω
is the plasma equivalent of κ and is defined,

κω = p2θ + E2a2 sin2 θ + L2
z csc

2 θ + a2ω2
p cos

2 θ . (2.81)

This is effectively a new Carter constant applicable to plasmic - Kerr space-
times. The angular momentum is unchanged from the vacuum case, whilst
the energy is now given by,

E2 = (Σ− 2r)

(
ṙ2

∆
+ θ̇2Σ +

ω2
p

Σ

)
+∆ϕ̇2 sin2 θ . (2.82)

Ray tracing in a vacuum is frequency independent. Conversely, when ray
tracing through a plasma we must specify the frequency of the ray. In GR,
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frequency is observer dependent:

ν = pαu
α , (2.83)

gives the frequency of a ray with 4 momenta pµ as measured by an observer
moving with 4-velocity uα. For the purposes of observational astronomy, we
want to be able to specify the observation frequency i.e. the frequency mea-
sured by a distant observer νobs, which is related to the energy at infinity as
E = 2πνobs. For a given initial position (r, θ, ϕ), E is determined by the ray
velocity components ṙ, θ̇, ϕ̇ via Eq. 2.82. The problem then becomes how to
set the initial ṙ, θ̇, ϕ̇ such that we can specify the observation frequency of the
ray. In the vacuum case the ray geodesic is independent of the value of E and
we set the ray velocity to have unit magnitude for simplicity. Conversely in
the plasma case we want to be able to set the magnitude of the ray velocity
E ′,

V i = E ′xi , (2.84)

such that the energy at infinity E is related to a specific observation frequency.
By rearranging Eq. 2.82 it can be shown that E ′ can be specified relative to
the observed ray energy (frequency) as,

(E ′)2 =
E2 − ω2

p + 2rω2
p/Σ

(Σ− 2r)
[
ṙ2/∆+ θ̇2

]
+∆sin2 θϕ̇2

, (2.85)

where ṙ, θ̇, ϕ̇ are the components of the unit vector of the ray velocity as
specified by Eqs. 2.60 - 2.62 and Eqs. 2.50 - 2.52.

The introduction of the plasma frequency term means that our ray tracing is
now chromatic and the rays are subject to dispersion in both time and space.
In classical electromagnetism the group velocity of an electromagnetic wave
with angular frequency ω and wavenumber k propagating through a plasma
is,

vg =
∂ω

∂k
=

√
1−

ω2
p

ω2
(2.86)
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It follows that the time taken, ∆t, for this EM wave to propagate a distance
D along a path ds is

∆t =

∫ D

0

ds

vg
=

1

c

∫ D

0

(
1−

ω2
p

ω2

)−0.5

ds . (2.87)

Performing a Taylor expansion to first order and using the definition of ω2
p

(Eq. 2.68) then gives,

∆t =
D

c
+

2πq2e
mecω

∫ D

0

n(s)ds , (2.88)

where n(s) is the plasma number density profile along the path. We can then
see that generally EM waves are delayed with respect to the vacuum case
(D/c) by a frequency-dependent time delay. The plasmic Hamiltonian nat-
urally describes the general relativistic analogue of this effect. In addition
to a dispersion in time, the combination of high spacetime curvature and a
dispersive plasma also induces a dispersion in space whereby rays of different
frequencies follow different spatial paths (Fig. 2.3). This can be considered as
a relativistic equivalent of a dispersive prism; in the classical case the rays are
bent according to Snell’s Law as the refractive index of the medium changes at
the boundary of the prism. In the relativistic astrophysical case, the index of
refraction is changing continuously as it tracks the plasma density distribution
whilst the strong-field curvature causes gravitational lensing of the light rays
which in turn acts as an effective refraction. The consequence of the intro-
duction of a plasma into the vacuum spacetime is that is that rays of different
frequencies will not follow the same spacetime trajectory; the light geodesics
are now chromatic. The implications for pulsar timing in the gravitational
strong field will be discussed in later chapters.
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Fig. 2.3: Spatial dispersion induced in the rays propagating through a plasma on a Kerr

background geometry with a maximal BH spin parameter a = 0.998. The rays have radio

frequencies as measured by the observer between 0.18 and 6 GHz, where the less strongly

lensed purple line represents the lowest frequency. We use the plasma density model as

given by Eq. 2.72 and set the normalisation parameter to n0e = 3.5 × 107 cm−3. All rays

start on the observers image plane with (x′, y′) = (−7, 0), and the observer is at θobs = π/2

such that the rays propagate in the equatorial plane.



Chapter 3

Relativistic Spin Orbital Dynamics

The most basic approximation in GR is that of a test particle which has no
spin, no internal structure and is not subject to self-force effects. Such a par-
ticle then directly follows a geodesic of the spacetime metric. However, real
astrophysical objects are not in actuality test particles and to obtain an ac-
curate description of their dynamics, higher-order effects must be considered.
This is particularly important for modelling fast spinning pulsars in the grav-
itational strong field; the spin of the pulsar itself will modify the background
spacetime and so generally such objects will not follow geodesics of the Kerr
metric. In addition to an accurate description of the dynamical behaviour (i.e.
position, velocity, momenta) for pulsars it is equally important to establish
the spin evolution; since pulsar emission is not isotropic but beamed at some
angle from the spin axis, the evolution of the spin axis will directly imprint
on the observed signal. In this Chapter we establish how a spinning particle
behaves in a gravitational field. The determination of the equations of motion
will then allow us to describe the spin-orbital dynamics of a millisecond pulsar
orbiting a massive spinning black hole. We follow the methods outlined by
Mathisson (Mathisson 1937), Papetrou (Papapetrou 1951) and Dixon (Dixon
1974), commonly referred to as the MPD framework.

3.1 Constructing the gravitational skeleton
Given a pulsar with some energy momentum tensor T µν , the spin-orbital dy-
namics are completely specified by Einstein’s Field Equations. However, such
a solution is computationally intractable and the problem then becomes how to

37
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approximate this behaviour such that it becomes tractable, whilst still retain-
ing the astrophysical complexity, subtlety and nuance that we are interested
in. The energy momentum tensor can be expressed as an infinite sum of mul-
tipole moments - the gravitational skeleton - with respect to some reference
worldline zµ(τ), as measured by an observer with 4-velocity uµ (Dixon 1974)∫

Σ(z,u)

T µνδxα1 . . . δxαn
√
−gdΣν , (3.1)

where δxα = xα − zα (i.e. deviation from the worldline) for a system of
Riemann normal coordinates xα. The integration takes place over a spacelike
hypersurface Σ(z, u) which is generated by all geodesics at the point zα which
are orthogonal to uµ. It follows that dΣ is the 3-volume element of the hyper-
surface and dΣγ = −nγdΣ where nγ is the unit normal to Σ(z, u).

The equations of motion of the pulsar are defined by

T µν
;ν = 0 . (3.2)

The two lowest order moments are the 0th mass moment, encoded in the
4-momentum pµ and the 1st dipole moment, given by the spin tensor sµν :

pα ≡
∫
Σ(z,u)

TαβdΣβ , (3.3)

Sαβ ≡ 2

∫
Σ(z,u)

x[αT β]µdΣγ . (3.4)

It follows from the conservation law that,

Dpµ

dτ
= −1

2
Rµ

ναβu
νsαβ + Fµ , (3.5)

Dsµν

dτ
= pµuν − pνuµ + T µν , (3.6)

where the Dixon force Fµ and the Dixon torque T µν are determined by mo-
ments higher than the dipole and D/dτ denotes a covariant derivative with
respect to the proper time along the PSR worldline.
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3.2 Spin Supplementary Condition
The system of equations specified by Eqs. 3.5, 3.6 is not determinate, since
there exist more unknowns than equations. This is related to the uncertainty
in choosing a reference world line for the multipole expansion of T µν . A natural
choice of a representative point of the bulk motion of the body is the centre of
mass. However in GR the centre of mass of a spinning body is not invariant. It
is therefore necessary to specify a spin supplementary condition (SSC) which
renders the system of equations determinate. This is equivalent to choosing
an observer with respect to which the centre of mass (centroid) is defined. For
this work we adopt the Tulczyjew-Dixon (TD) condition,

sµνpν = 0 , (3.7)

(Tulczyjew 1959; Dixon 1964). This is equivalent to choosing the centre of
mass as measured in the zero 3-momentum frame. In this case, by contracting
Eq. 3.6 with uµ the momentum can be written as

pα =
1

m

(
M2uα + SαβDpβ

dτ

)
, (3.8)

where we have neglected terms greater than the dipole. From this we can see
that the momentum and velocity are not generally parallel due to the pres-
ence of the orthogonal component Sαβpβ;τ . This term is known as the ‘hidden
momentum’ (Filipe Costa & Natário 2014). The nomenclature references the
fact that in our frame the 3-momentum is zero, yet the particle centroid is
not as rest; there exists some additional momentum hidden in the particle.
This hidden momentum term is defined by the SSC and can be considered as
a choice of gauge. Other SSC choices do exist, e.g. Frenkel-Mathisson-Pirani
condition, sαβuβ = 0 (Frenkel 1926; Mathisson 1937; Pirani 1956), which
specifies the centroid measured by a comoving observer. The question then
naturally arises as to how the choice of SSC affects the spin-orbital dynamics?
Different choices of SSC correspond to different choices of the body worldline.
The set of all potential worldlines forms a worldtube. In the extreme mass
ratio limit, the minimal worldtube is always contained within the convex hull
of the worldtube of the body (Filipe Costa & Natário 2014). Consequently
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different choices of SSC describe different but equivalent motions. The choice
of the TD condition is advantageous since it specifies a unique worldline; i.e.
for a given T µν there is only one zα(τ) such that the SSC holds. This contrasts
with e.g. the FMP condition; there are infinitely many worldlines such that
sαβuβ = 0.

In the limit of extreme mass ratio m ≪ M and since the pulsar radius
rPSR ≪ gravitational lengthscale rg, the lowest order moments dominate over
the higher order moments and so we can neglect all terms greater than the
dipole (Fµ = 0, T µν = 0). When combined with the TD condition this leads
to intuitive conserved quantities; firstly the dynamical mass

m2 = −pµpµ , (3.9)

is conserved:

dm

dτ
=

1

mpµuµ
Dpν
dτ

pµ
DSµν

dτ
= 0 . (3.10)

Secondly, by contracting the spin tensor to obtain the spin vector,

sµ = − 1

2m
ϵµναβp

νsαβ , (3.11)

sµν =
1

m
ϵµναβpαsβ , (3.12)

we can define a spin scalar s:

s2 = sµsµ . (3.13)

This quantity is also conserved via the TD condition:

ds2

dτ
= 2sµνp

[µuν] = 0 . (3.14)

3.3 Equations of motion
As discussed, all the possible wordlines, contingent on choice of SSC, exist
within the minimal worldtube. The radius of this worldtube (the radius of the
disk of all possible centroids) is the Moller Radius (Möller 1949)

RM =
s

m
. (3.15)
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Now, since m ≪ M and the RM ≪ rPSR the pole-dipole terms are much
stronger than the dipole-dipole terms,(

pµ

m
− uµ

)
∼ MR2

M

r3
∝ 1 (3.16)

(Chicone et al. 2005). Therefore, to first order the 4-velocity and 4 momentum
are parallel, i.e. pµ ≈ muµ. The equations of motion then become,

Duµ

dτ
= − 1

2m
Rµ

ναβu
νsαβ , (3.17)

Dsµν

dτ
≈ 0 , (3.18)

(Chicone et al. 2005; Mashhoon & Singh 2006). The complete set of coupled
differential equations for the evolution of the momentum, spin and position
vectors is then (Singh 2005; Mashhoon & Singh 2006; Singh et al. 2014)

dpα

dτ
= −Γα

µνp
µuν + λ

(
1

2m
Rα

βρσϵ
ρσ

µνs
µpνuβ

)
, (3.19)

dsα

dτ
= −Γα

µνs
µuν + λ

(
1

2m3
Rγβρσϵ

ρσ
µνs

µpνsγuβ
)
pα , (3.20)

dxα

dτ
= −p

δuδ
m2

[
pα +

1

2

λ(sαβRβγµνp
γsµν)

m2 + λ(Rµνρσsµνsβσ/4)

]
. (3.21)

Here we have set the affine parameter to be the proper time such that uµuµ =

−1 and those terms which arise due to the dynamics interaction of the pulsar
spin with the background curvature (‘spin-curvature coupling’) are tagged via
the λ parameter. Spin-curvature coupling is included when λ = 1 and excluded
when λ = 0.

3.3.1 Initial Conditions

The equations of motion are written in a covariant form and so are appli-
cable to a general metric gµν . For our purposes we will specialise to the
Kerr metric, since we want to describe the dynamics of a spinning pulsar
around a spinning black hole. To complete the set up and solve these equa-
tions the initial values of each of the 4-vectors xµ, pµ, sµ must first be specified.
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The initial spacetime coordinates xµ are fairly inconsequential and can be
almost freely chosen. Since the spacetime is stationary and axisymmetric we
generally set t(τ = 0) = ϕ(τ = 0) = 0. The initial r and θ coordinates can
be set subject to the constraints imposed by the orbital configuration. The
initial spin 4-vector is determined by the polar and azimuthal spin angles θspin,
ϕspin. The spin angles are in turn defined locally in the particle tetrad frame
such that the background is Minkowskian and Cartesian coordinate basis can
be used. In the coordinate basis, the spin angles are related to the spatial
components of the spin 4-vector si = (s1, s2, s3) as,

s1 = S sin θspin cosϕspin , (3.22)

s2 = −S cos θspin
r

, (3.23)

s3 = −S sin θspin sinϕspin

r sin θ
, (3.24)

where S is the magnitude of the spin spatial vector:

S = 2π
I
Ps

, (3.25)

and I is the moment of inertia of the spinning body. The temporal s0 term is
then simply calculated by noting that the SSC can be expressed as,

pµsµ = 0 . (3.26)

In order to determine the initial conditions of the momenta pµ, the massless
geodesic equations Eq. 2.39 - 2.45 can be recast to an equivalent form for
massive particles (pµpµ = −1) such that,

pt =
m

Σ

[
r2 + a2

∆
P − a

(
aE sin2 θ − Lz

)]
, (3.27)

pr = ±m
Σ

√
R , (3.28)

pθ = ±m
Σ

√
Θ , (3.29)

pϕ =
m

Σ

[
a

∆
P − aE +

Lz

sin2 θ

]
, (3.30)
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Fig. 3.1: The coordinate system and orbital elements used to define the MSP motion. The

orbital plane is inclined by an angle ι with respect to the BH equatorial plane - i.e. the

θ = π/2 plane about the BH spin axis. The inclination of the orbit with respect to the

observer’s line of sight is given by i and the longitude of the ascending node as Ω, where we

have set the positive x−axis as the reference direction.

where

R =
[(
r2 + a2

)
E − aLz

]2 −∆
[
r2 + (Lz − aE)2 +Q

]
, (3.31)

Θ = Q−
[(
1− E2

)
a2 +

L2
z

sin2 θ

]
cos2 θ , (3.32)

Q = P − E
(
r2 + a2

)
− aLz . (3.33)

As discussed, in Kerr geometry E,Lz and Q are conserved quantities. For
astronomical purposes it is useful to map these constants to classical orbital
parameters. In this way we can specify the sort of Keplerian orbit that we want
to describe. In particular, the E,Lz, Q can be mapped to the orbital elements
P , e, ι, the semi-latus rectum, eccentricity and inclination respectively. The
semi-latus rectum and the eccentricity are effectively a reparameterization in
turn of the apsidal approaches (periapsis distance, rp, and apoapsis, ra),

rp =
P

1 + e
; ra =

P
1− e

, (3.34)
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whilst the inclination angle ι is defined,

cos ι =
Lz√
Q+ Lz

. (3.35)

We also define i - as distinct from ι- as the inclination of the orbit with respect
to the observer, i.e.

cos i = L̂z · Ô (3.36)

and Ô is the line of sight unit vector between the observer and the BH. The ob-
server is at some distant radius with polar and azimuthal coordinates θobs, ϕobs

respectively. The relevant geometry is described in Fig 3.1. It will also prove
useful to define θmin as the minimum polar angle acquired by the orbiting
body (= π/2 − ι). The mapping between conserved quantities and orbital
parameters can be derived by requiring that at r = ra, rp,

ṙ = 0 =⇒ R(r) = 0 , (3.37)

whilst at θ = θmin

θ̇ = 0 =⇒ Θ(θ) = 0 . (3.38)

Solving these equations to find the roots allows the mapping to be defined
(Schmidt 2002; Barausse et al. 2007) as

E =

√
κρ+ 2ϵσ − 2D

√
σ (σϵ2 + ρϵκ− ηκ2)

ρ2 + 4ησ
, (3.39)

Lz = −g1E
h1

+
D

h1

√
g21E

2 + (f1E2 − d1)h1 , (3.40)

Q = z−

[
a2

(
1− E2

)
+

L2
z

1− z−

]
, (3.41)

where

z− = sin2 ι (3.42)

and D = ±1 denotes prograde and retrograde orbits. In turn, the functions
are defined as,

f(r) ≡ r4 + a2 [r(r + 2) + z−∆] , (3.43)
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g(r) ≡ 2ar , (3.44)

h(r) ≡ r(r − 2) +
∆z−
1− z−

, (3.45)

d(r) ≡ ∆
(
r2 + a2z−

)
, (3.46)

and for the eccentric orbits considered in this work,

(f1, g1, h1, d1) = f(rp), g(rp), h(rp), d(rp) , (3.47)

(f2, g2, h2, d2) = f(ra), g(ra), h(ra), d(ra) , (3.48)

and

κ ≡ d1h2 − d2h1 , (3.49)

ε ≡ d1g2 − d2g1 , (3.50)

ρ ≡ f1h2 − f2h1 , (3.51)

η ≡ f1g2 − f2g1 , (3.52)

σ ≡ g1h2 − g2h1 . (3.53)

This mapping between conserved quantities and orbital elements is exactly
accurate for geodesic motion. However, as mentioned the spin couplings ensure
that the motion of a spinning particle in a gravitational field is non-geodesic.
However, these corrections to the orbital elements are typically small and we
take this mapping as a decent approximation to model the sort of orbits we
are interested in. An MSP with particular orbital parameters P , e will have
a corresponding semi-major axis A = P/(1 − e2). As a shorthand we will
sometimes refer not to the system semi-major axis, but instead to the orbital
period P where the two are related via Kepler’s 3rd law, P 2 ∝ A3. We use
this only as a convenient re-parameterization with the understanding that this
relation only hold exactly in the weak-field, zero-spin limit and that generally
the orbital period will be different due to contributions from BH spin.
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Fig. 3.2: The spin-orbital dynamics of a MSP with semi-major axis 20rg and eccentricity

e = 0.8 over 30 orbits, around a BH with a maximal spin parameter a = 0.998. The pulsar

is initialised in the orbital plane with ι = 0, θspin = ϕspin = π/4. Due to the presence of

spin-curvature coupling, the MSP does does not remain in the plane z = 0 but exhibits

additional vertical motions.
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Fig. 3.3: As Fig. 3.2 but with ι = 35deg and plotted in 3 dimensions. The initial

momentum is orientated pr cos η, pϕ sin η where η = π/4. The lengthscale is O(10)rg.



Chapter 4

Strong Field Pulsar Timing

We now have the two ‘ingredients’ of a relativistic timing model; we can ac-
curately describe the dynamical and spin evolution of a spinning MSP around
a spinning BH and also determine the behaviour of a light ray as it travels
on a curved spacetime through an astrophysical plasma between the pulsar
and observer. The problem then becomes how to combine these two effects
so as to create a consistent model for the MSP t − ν signal. There are two
obvious ways to do this. The first way is perhaps the most intuitive: we use
the MSP orbital dynamics as an initial condition for the pulsar light beams
and integrate the ray forwards in time. Whilst this method is an option it is
computationally wasteful since it involves integrating many geodesics that do
not hit the observer’s image plane. Instead we will use here a backwards-in-
time approach and integrate rays from the observer to the pulsar. We then
go on to explore the influence of a variety of relativistic effects on the timing
signal.

4.1 Constructing the timing signal
The characteristic observational feature of a pulsar compared to a normal star
is the beamed, anisotropic radiation. We describe this radiation beam, B̄,
by a rotating vector model where the radiation beam rotates about the spin
axis S̄. The radiation beam is at some polar angle ψ and azimuthal angle
(i.e. the beam phase) χ with respect to the spin axis. The MPD orbital
dynamics equations describe the evolution of the MSP centre of mass, the
spatial components of which we label xi. To take account of the beamed

48
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emission, we want to transform from the centre of mass to the ‘radiation
point’, xiB, which lies in the direction B̄ at a radius RPSR. The spin axis
orientation is described by the polar and azimuthal angles θspin, ϕspin. These
angles are defined as,

θspin = arctan(
√
(Sx)2 + (Sy)2, Sz) , (4.1)

ϕspin = arctan(Sy, Sx) , (4.2)

the Cartesian components of which are related to the spin vector coordinate
components (Eqs. 3.22 - 3.24) as

Sx = s1 sin θ cosϕ+ s2r cos θ cosϕ− s3r sin θ sinϕ , (4.3)

Sy = s1 sin θ sinϕ+ s2r cos θ sinϕ+ s3r sin θ cosϕ , (4.4)

Sz = s1 cos θ − s2r sin θ . (4.5)

It follows that we can transform xi → xiB as

xiB = Rz(ϕspin)Ry(θspin)RPSR


sin(ψ) cos(χ)

sin(ψ) sin(χ)

cos(ψ)

+ xi , (4.6)

where Rz and Ry are 3-dimensional rotation matrices about the coordinate z
and y axes respectively:

Rz(ϕspin) =


cosϕspin − sinϕspin 0

sinϕspin cosϕspin 0

0 0 1

 (4.7)

Ry(θspin) =


cos θspin 0 sin θspin

0 1 0

− sin θspin 0 cos θspin

 (4.8)

Typically, ψ is set to be some constant angle corresponding to the case where
the latitude of the radiation beam does not evolve with respect to the spin
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axis. The beam phase χ = 2πτ/Ps, for pulsar spin period Ps and proper
time τ . The spin angles are naturally time dependent i.e. θspin = θspin(τ),
ϕspin = ϕspin(τ) and are related to the precession and nutation of the spin axis
with their evolution described by the MPD formalism.

4.1.1 Ray Tracing as a Boundary Value Problem

For each integration timestep on the PSR orbit, we want to find the ray which
intersects with xiB. The problem of finding an intersection is a two point
boundary value problem; we know the desired final boundary value, i.e. the
radiation point xiB, and we want to find the initial boundary value, i.e. the
values of the image plane coordinates x′, y′. The ray then traces between these
two limits. We solve this problem numerically using a shooting method (Press
et al. 1992). The ray tracing is effectively a black box function f(x′, y′, xiB)

which takes some initial coordinates (x′, y′) and a target point xiB and re-
turns the minimal distance along the ray from the target value, ds. We want
to minimize ds = f(x′, y′, xiB), to within some tolerance by varying the initial
conditions x′, y′. There are multiple methods by which to optimize a black box
(or derivative free) function, including Nelder–Mead simplex methods (Nelder
& Mead 1965), Generalized Pattern Search (Torczon 1997) and Mesh Adaptive
Direct Search Algorithms (Audet & Dennis 2006). See Rios & Sahinidis (2009)
for a full review of blackbox optimisation methods. Multiple algorithms were
trialled and their performance assessed; it was soon discovered that despite
the computational overhead of calculating gradients numerically, the addi-
tional information and improvement in performance outweighed the expense,
allowing gradient based methods were to outperform the derivative-free meth-
ods for our particular problem. The adjustment of x′, y′ therefore proceeds via
a non-linear conjugate gradient descent algorithm (Fletcher & Reeves 1964;
Press et al. 1992), where the descent direction at each step is conjugate to the
previously computed directions. The conjugate direction vector hj, is updated
at each iteration step j as,

hj+1 = gj+1 + γjhj , (4.9)
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Fig. 4.1: The rotating vector model describing the pulsar’s radiation point (xiB, orange

dashed line) relative to the motion of the centre of mass of the pulsar (blue solid line) over

10 spin periods. Whilst the pulsar centre of mass follows a straight line over this orbital

segment, the radiation point rotates about this line segment. The MSP spin axis is aligned

with the coordinate z direction and ψ = π/2. The orbital segment is at r ∼ semi-major

axis of an equatorial P = 0.1 year Galactic centre orbit
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where gj = −∇f(x′j, y′j) and

γj =
gj+1 · gj+1

gj · gj

, (4.10)

(Fletcher & Reeves 1964; Press et al. 1992). Now, since the analytical form of
ds = f(x′, y′, xiB) is unknown, the gradients necessary for the optimization,gj,
are evaluated numerically via the difference quotient. The variables x′, y′ are
then updated at each iteration as,

xj+1 = xj + δjhj , (4.11)

for vector x′
j = (x′, y′) and where δj is the variable stepsize. The choice of

stepsize is determined via an inexact line search, where δj is required to satisfy
the Wolfe conditions (Wolfe 1971):

f(xj + δjhj) ≤ f(xj) + c1δjh
T
j ∇f(xj) (4.12)

−hT
j ∇f(xj + δjhj) ≤ −c2hT

j ∇f(xj) (4.13)

where 0 < c1 < c2 < 1. Following Nocedal & Wright (2006), we take c1 = 10−4

and c2 = 0.1. Together these two conditions provide upper and lower bounds
on permissible values of the stepsize, ensuring that f (via the first condition)
and the slope (via the second) both decrease sufficiently.

The use of non linear conjugate gradient over a more vanilla optimization
approach such as a basic gradient descent algorithm is advantageous since for
particular values of xiB the distance function f(x′, y′, xiB) takes the form of
an ill-conditioned narrow valley. In such an environment, gradient steepest
descent becomes inordinately slow, since the direction of steepest descent is
not, in general, in the direction of the minimum and the algorithm instead
follows a ‘criss-cross’ pattern, oscillating between the sides of the valley. By
moving in directions which are conjugate to the previous directions this issue
is avoided. The algorithm exhibits dependable and fast convergence and for
this work we set the tolerance such that the function has been minimized
and an intersection is declared when ds < 0.3 m which corresponds to a light
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travel time of 1 ns. In natural units, for a BH of mass 4 × 106M⊙ this is a
lengthscale of ∼ 5× 10−11rg.

4.1.2 Pitch angle and transformation to the comoving frame

Once an intersection with the radiation point is found, in order to determine
if the beam is seen by a distant observer it is necessary to calculate the pitch
angle ω̃, i.e. the angle of the photon ray relative to the normal to the stellar
surface, ni, at the point xiB. All the calculations for the orbital dynamics and
the ray tracing take place in the global coordinate frame and so the pitch
angle is also that measured in the coordinate frame. However the physical
angle that determines whether the beam will be visible to an observer is the
angle as measured in the orthonormal tetrad frame comoving (with 4-velocity
uµ) with the star, ω̂. Due to relativistic aberration these two angles are not
the same, ω̃ ̸= ω̂. In order to calculate the pitch angle we must first transform
to the comoving tetrad basis e(ν). The transformation for general covariant
(vµ) and contravariant (vµ) vectors is

v(µ) = eν(µ)vν ; v(µ) = e(µ)ν vν (4.14)

and indices with braces denote the comoving basis, which is locally flat such
that v(µ) = η(µ)(ν)v(ν). In the tetrad frame the 4-velocity is simply e(t). The
three remaining tetrads can then be constructed via a Gram Schmidt orthonor-
malistaion procedure (e.g. Krolik et al. 2005; Kulkarni et al. 2011; Shcherbakov
& Huang 2011; Dexter 2016) such that the complete set is given by:

eµ(t) = uµ , (4.15)

eµ(r) =
1

Nr

(
uru

t,−utut − uϕu
ϕ, 0, uru

ϕ
)
, (4.16)

eµ(θ) =
1

Nθ

(
uθu

t, uθu
r, 1 + uθu

θ, uθu
ϕ
)
, (4.17)

eµ(ϕ) =
1

Nϕ

(uϕ, 0, 0,−ut) , (4.18)

where,

N2
r = −grr(utut + uϕu

ϕ)(1 + uθu
θ) , (4.19)
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N2
θ = −gθθ(1 + uθu

θ) , (4.20)

N2
ϕ = −(utu

t + uϕu
ϕ)∆ sin2 θ , (4.21)

and the inverse terms can be determined via the orthonormality condition
eα(β)e

(γ)
α = δ

(γ)
(β) such that:

e(t)µ = −uµ , (4.22)

e(r)µ =
1

Nr

(
urut,−grr

(
utu

t + uϕu
ϕ
)
, 0, uruϕ

)
, (4.23)

e(θ)µ =
1

Nθ

(
uθut, uθur, gθθ

(
1 + uθu

θ
)
, uθuϕ

)
, (4.24)

e(ϕ)µ =
−∆sin2 θ

Nϕ

(
uϕ, 0, 0,−ut

)
. (4.25)

The pitch angle in the comoving frame is then

ω̂ = arccos

(
n(i)k(i)
|n||k|

)
. (4.26)

Once ω̂ has been determined, we declare an observation if ω̂ < ωc where ωc

is some critical angle, e.g. the pulsar jet opening angle. The variation in the
pitch angle over 3 rotations of a millisecond pulsar is illustrated in Fig. 4.2,
for pitch angle calculated in both the global (ω̃) and comoving (ω̂) frames.
The observer is at Θ = π/4, Φ = 0 and the beam latitude angle is χ = π/4.
The pulsar is in the equatorial plane at r = semi-major axis of a ∼ 0.1 year
orbit of the Galactic centre. Initially the MSP spin axis is aligned with the BH
(vertical z) spin axis such that θspin = ϕspin = 0. In this case the pitch angle in
the global frame oscillates between ω̃ = 0, π/2, whilst in the comoving frame
the periodicity of the oscillations is the same, but ω̂ is shifted in both time
and amplitude with respect to ω̃. If the pulsar spin axis is inclined by an angle
θspin = π/12, the same general behaviour is exhibited, but the amplitude of
the oscillations in ω̃ is reduced since the radiation beam is shifted away from
the observer’s line of sight.



4.1. Constructing the timing signal 55

Fig. 4.2: The evolution of the pitch angle for a MSP in both the coordinate (ω̃, solid

lines) and comoving (ω̂, dashed) frames. The MSP is at r = 800rg(= semi-major axis) of

an e = 0.8, equatorial orbit about a BH with MBH = 4×106M⊙, a = +0.9. The orientation

of the spin axis is set at θspin = 0 (blue) and θspin = π/12 (orange). The distant observer is

at Θ = π/4, Φ = 0 and the latitude of the radiation beam with respect to the pulsar spin

axis is χ = π/4. For θspin = 0, the pitch angle oscillates between 0 and π/2, and is shifted

vertically and horizontally (time/amplitude) upon transformation to the comoving frame.

Inclination of the spin orientation to θspin = π/12 reduces the amplitude of the oscillations

since the observer’s line of sight is now permanently shifted away from the beam direction.
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4.2 Application: Relativistic effects
We have established the framework for determining the pulsar ray path and
orbital dynamics, along with the algorithm to find the intersection of the ray
and calculate the pitch angle. We can now apply this framework to investigate
the impact of the convolution of relativistic and astrophysical effects on the
signal from a PSR in an E/IMRB, in particular the photon time of arrival
and time-frequency profile.

Investigating the strong field timing signal necessitates specifying the BH mass
and spin parameters - i.e. setting the background spacetime. Regarding the
BH mass, we will consider two representative cases; a supermassive BH and
an IMBH. In the supermassive case, the BH mass will be set at 4.31× 106M⊙,
in keeping with the estimated mass of the Galactic centre BH (Gillessen et al.
2009). For IMBH, we set M = 2.2 × 103M⊙, which is the purported mass
of the IMBH at the centre of the globular cluster 47 Tucanae (Perera et al.
2017). If the next generation of radio telescopes allow for the detection of
extragalactic E/IMRBs then there may be systems with BH masses inter-
mediary or greater than these values (Wrobel et al. 2018). Nevertheless, we
take these two mass values as representative of the sorts of systems we are
interested in. Indeed, the Galactic centre and the centre of globular clusters
remain the prime hunting grounds for MSP-E/IMRBs and this is where we
focus out attention. There remains considerable uncertainty in the spin pa-
rameter of astrophysical BHs. Astrophysical measurements of the nearest BH
candidate, Sgr A*, range from 0.44 − 0.996 (Aschenbach 2010; Kato et al.
2010; Dokuchaev 2014). The determination of the spin of BHs other than Sgr
A* have been possible via continuum fitting and iron lines measurements, and
again cover a wide range from −0.2 < a < 0.98 (see Table 1 of Bambi et al.
2016). Going forward we set a = +0.6 as our canonical value, and explore the
wider parameter range where relevant.

4.2.1 Relativistic spin orbital dynamics

Treating the pulsar as a rigid spinning object and accounting for the associ-
ated spin couplings causes substantial variation in the pulsar orbital dynamics



4.2. Application: Relativistic effects 57

compared to the Newtonian or even geodesic case. In addition to the spin-
orbit (gravitomagnetic) and spin-spin couplings, the interaction of the pulsar
spin with the background spacetime (spin-curvature coupling) causes an ad-
ditional acceleration in the pulsar dynamics. This effects is most clear when
considering a pulsar initialised in the equatorial plane of the BH (θ = π/2),
with initial conditions chosen such that, in the geodesic or Newtonian cases,
it would continue to orbit in this plane, i.e. ι = 0. When spin curvature cou-
pling is ‘switched off’, λ = 0, the motion is geodesic and the pulsar remains
in the plane. Conversely, when λ = 1 there is a marked vertical motion; these
dynamical effects will naturally influence the pulse ToA. This is illustrated in
Fig 4.3 for a MSP with semi-major axis = 100 rg, e = 0.2, ι = 0 around a
supermassive black hole (M = 4 × 106M⊙, a = 0.6). The spin orientation is
initially set to θspin = π/4, ϕspin = 0. The observer is at Θ = π/4, and we
integrate for 60 orbits. By turning on spin curvature coupling an additional
time delay is observed on the order of 10µs. The vertical motions and hence
the time delay are observed to be independent of the BH mass, for a system
with the same orbital radius in corresponding natural units. This suggests,
as also noted in Singh et al. (2014), that this effect will be more apparent
for systems with lower mass black holes since the vertical motion becomes a
greater fraction of the gravitational lengthscale. Naturally this effect will also
be increased for fast spinning pulsars and high inclination observers. There is
also a strong dependence on the orbital velocity. Take the same MSP-EMRB
system as in Fig 4.3, but modify the semi major axis to 825rg and the eccen-
tricity to e = 0.9. In this case then the periapsis approach is approximately
the same as before, ∼ 80rg. The orbital velocity can be approximated via the
Keplerian expression:

v2 ∝
(
2

r
− 1

a

)
(4.27)

It follows that at periapsis this pulsar with a longer orbital period is moving
much faster. As a consequence, the magnitude of the vertical displacement
is enhanced and the time delay is on the order 100µs (see Fig. 4.4). Timing
variations of this size are readily detectable with pulsar timing techniques
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with the next generation of radio telescopes; 10 minute integrations of mil-
lisecond pulsars at GHz frequencies should achieve a ToA precision of the
order 10 − 100 ns with both SKA and FAST (Liu et al. 2011; Hobbs et al.
2014; Stappers et al. 2018). Furthermore, any variation in the light travel
time due to the orbital dynamics will be further compounded by the impact
of additional factors (e.g. time dispersion, time dilation, spin axis precession
etc., see subsequent sections).

An accurate description of the MSP orbital dynamics is essential, since the
apparent or observed pulse frequency is related to the intrinsic frequency as,

νobs =
pαu

α|observed
pαuα|intrinsic

νintrinsic . (4.28)

In order to determine the Doppler shift accurately, one must therefore have
an appropriate description of the PSR velocity (see Sec. 4.2.4). The com-
plex orbital dynamics of a spinning pulsar around a spinning black hole will
also naturally influence both the acceleration and the change in acceleration
(i.e. jerk) of the pulsar, depending on the orbital and observer configuration.
Highly accelerated systems - the most scientifically interesting systems from
the perspectives of testing GR - are difficult to search for when the integra-
tion time is comparable to the orbital period since the line of sight velocity
is not constant over an integration period. Assuming the acceleration to be
constant, the changing velocity of the pulsar causes the signal to drift into
multiple frequency bins, with the number of bins drifted,

Ndrift ∝ a0T
2 , (4.29)

for constant line-of-sight acceleration a0 and integration time T . Search algo-
rithms can correct for this effect (‘acceleration searches’), but the correction
is typically computationally intensive. Spin-curvature coupling can cause ad-
ditional acceleration as measured by the observer, depending on the line of
sight, and will influence the number of frequency bins drifted. Furthermore,
in the presence of spin-curvature dynamics the assumption of constant acceler-
ation may need modification, since in highly relativistic regimes the jerk may
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Fig. 4.3: The modulation in the photon arrival time (right panel) between the λ = 0 and

λ = 1 spin curvature couplings, along with the associated orbital dynamics (left panels).

We consider a Galactic centre system with semi major axis = 100rg and e = 0.2 over 60

orbits. The observer is at Θ = π/4 and the initial spin axis angle is θspin = π/4. Timing

variations on the order of a few 10’s of µs are observed.

be non-negligible. In this case the number of frequency bins drifted becomes
time dependent,

Ndrift ∝ (a0 + j0t)T
2 , (4.30)

at time t with jerk j0, which may introduce additional complications in search-
ing for highly relativistic systems.

4.2.2 Spin precession and nutation

Generally the MSP spin axis is not aligned with the orbital angular momen-
tum axis. As a consequence, the spin vector sµ evolves with time and the spin
axis exhibits precession (∂τϕspin) and nutation (∂τθspin). In a Newtonian de-
scription, given a binary system with masses m1,m2, the spin vector s1 evolves
as (Kidder 1995),

ṡ1 =
1

r3

[
(L× s1)

(
2 +

3

2

m1

m2

)
− s1 × s2 + 3 (n̂ · s2) (n̂× s1)

]
, (4.31)

where n̂ is the unit vector between the two bodies and L is the usual orbital
angular momentum. The first term (L× s1) describes the spin-orbit coupling
and the other terms describe the spin-spin couplings. In a relativistic context,
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Fig. 4.4: As Fig. 4.3 but for semi major axis = 825rg and e = 0.9. The increased orbital

velocity at periastron leads to a greater degree of vertical motion. The photon timing

modulations are increased accordingly to O(0.1) ms.

the effect of a vector carried by an orbiting body in a curved spacetime is due
to a combination of geodetic (de Sitter) and Lense-Thirring precession (i.e.
gravitomagentic frame dragging). This dynamical evolution of the spin, along
with the effects due to the coupling of the MSP spin itself are all naturally
described by the MPD framework (see e.g. Fig 4.5).

The evolution of the MSP spin axis influences the observed timing signal in two
key ways. The first is via the coupling between the pulsar spin vector and the
dynamical motion of the pulsar i.e. the orbital motion and spin evolution are
interdependent. This is the effect we studied in the previous section, 4.2.1. The
second is via the relation between the spin axis orientation and the pulsar beam
direction as measured by the distant observer. It is this point we will explore in
this subsection. The orientation of the spin axis as described by the precession
and nutation angles, in conjunction with relativistic aberration induced by the
transform to the comoving frame, work to influence the observability of the
pulsar signal, the pulse profile (e.g. Rafikov & Lai 2006) and the pulse arrival
time. The precession and nutation of the spin axis causes the radio beam
direction B̄ to shift relative to the observer’s line of sight, i.e. the pitch angle
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Fig. 4.5: The Sx, Sy projection (Eqs. 4.3,4.4) of the spin axis orientation for a MSP with

semi major axis = 100rg, ι = 0 orbiting an IMBH with a = +0.6 over 100 orbits. The

left panel is for e = 0.1, the right panel for e = 0.9. The initial orientation is θspin = π/4,

ϕspin = 0. The values of Sx,y have been normalised with respect to their initial values. The

precession of the spin axis and the smaller nutation perturbations about this precession are

clearly visible with greater magnitude oscillations for more eccentric orbits which are more

relativistic and probe an increasingly curved spacetime.
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ω̂ is modified. The time centre of the pulse profile naturally occurs when the
pitch angle is at a minimum, ∂τ ω̂(θspin, ϕspin, ψ, χ) = 0. This time centre is
analogous to the photon ToA, subject to a ray tracing mapping. We therefore
have the condition that the pulse arrival time occurs when then beam phase
χ(τ) obtains some critical value χc, at which ∂τω = 0. Generally, we can find
the minimum of ω̃ via a full numerical solution as outlined in the previous
subsections (see e.g. Fig. 4.2). To illustrate the influence of spin precession
on the timing solution more broadly we here employ an approximate semi-
analytical solution to calculate ∂τ ω̃ (i.e. neglecting relativistic aberration).
We label the observer direction by the vector Ō. This vector can be considered
as the vector which is tangent to the asymptote that converges at the observer
in a flat spacetime. The pitch angle between the pulsar radiation beam vector
and the observer vector is then defined via,

cos ω̃ = B̄ · Ō (4.32)

for normalised unit vectors B̄, Ō. Since the pulsar spin timescale (∼ 1 ms)
is much shorter than the precession and nutation timescales of the spin axis,
we can employ a two timescale approximation and neglect the evolution of
θspin, ϕspin over the MSP rotation period. Solving ∂τ ω̃(χc) = 0 generally is
conceptually straightforward to calculate, but exceptionally algebraically com-
plicated and so we do not reproduce it here. Taking the specific case with polar
angle of the radiation beam with respect to the spin axis is ψ = π/4, and the
observer is at Θ = π/4,Φ = 0 then then the critical phase angle is:

χc = arccos

[
cosϕspin cos θspin − sin θspin

Nχ

]
(4.33)

where

Nχ =
√

cos2 ϕspin cos2 θspin + sin2 ϕspin + sin2 θspin − cosϕspin sin 2θspin .(4.34)

From this equation we can see that both the precession (ϕspin) and the nutation
(θspin) contribute to the critical phase angle. The extra phase angle than must
be traversed in order to reach the centre of the pulse profile, δχc, will directly
influence the observed pulse frequency. In this way, variations in the spin axis
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can directly imprint on the pulsar timing solution. A difference in the critical
phase value is related to a timing delay as,

∆t =
Ps

2π
δχc (4.35)

for MSP spin period Ps. The pulse timing delay due to the time evolution of
the pulsar spin axis is shown in Figure 4.6 for an eccentric MSP-IMRB with
semi-major axis = 200rg. The timing delay due to the shift in the centre of the
pulse profile is of the order 100 µs, with rapid variations as the pulsar passes
through periapsis, and with greater magnitude shifts for more eccentric orbits.
After ∼ 5 orbital phases the time delay for a MSP with e = 0.9 accumulates
to ∼ 300µs. When passing through periapsis, in addition to a rapid shift in
∆t, there is also a small oscillatory feature (inset plot of Fig. 4.6) due to the
rapid change in both θspin and ϕspin.

In addition to the orientation of the spin axis causing a timing shift, it will
also influence the shape of the pulse profile. Whilst the dominant contribution
to the ∆t is due to the spin precession, the nutation of the spin axis will also
cause a shift in the observed pulse width. If the pulsar beam has half opening
angle γ, then the edges of the emission cone as seen by the observer occur when
ω = ±γ, at beam phase χ1, χ2, with the two roots corresponding to where the
observer’s vector enters and leaves the pulse cross section. The angular beam
width is simply,

w = χ1 − χ2 (4.36)

Since the precession does not meaningfully affect the beam width, we can set
ϕspin, ϕ̇spin and solve explicitly for the beam width:

w = 2 cos−1

(
1.41 cos γ cscψ − cos θspin cotψ − sin θspin cotψ

cos θspin − sin θspin

)
(4.37)

where we have specified the observer to be at Θ = π/4 (again, a general
solution is computationally straightforward to calculate, but algebraically
complicated and so we do not reproduce it in full here). The evolution of the
pulse width is shown in Fig 4.7 for the same MSP-IMRB considered above
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Fig. 4.6: Timing delay due to the shift in the arrival time of the centroid of the pulse profile

as a result of the precession and nutation of the MSP spin axis. The MSP has spin period

Ps = 1 ms, semi-major axis = 200rg and eccentricities e = 0.6, 0.7, 0.8, 0.9 (blue, green,

orange, red lines respectively). The BH has an intermediate mass of M = 2.2× 103M⊙ and

spin parameter a = 0.6. The observer is located at Θ = π/4,Φ = 0 and the pulsar beam is

at a polar angle of π/4 with respect to the spin axis. Initially, θspin = π/6 and ϕspin = 0.

The inset plot shows an enhanced view of the small oscillatory feature due to the rapid

change in the precession and nutation angles.
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Fig. 4.7: Modulation of the observed pulsar beam width for a MSP-IMRB with the same

system parameters as Fig. 4.6. For high eccentricities (e = 0.9) the pulse width changes by

up to ∼ 4%, whilst for more mild eccentricities the changes is reduced: when e = 0.6, w/w0

is of order 1 %.

(i.e. Fig. 4.6). The beam width varies on the order of a few %, with rapid
variations close to periapsis. Those systems with greater eccentricities again
experience a greater shift in the observed pulse width due to the increased
strength of relativistic effects. Rather than a longer timescale, semi-analytical
approach, we can also examine the pulse profile and the impact of the nuta-
tion angle using the full numerical solution on shorter timescales. Figure 4.8
illustrates the change in the pitch angle evolution ω̃ for a MSP with different
initial values of θspin. We arbitrarily define the angular beam width as the
phase subtended when ω̃ varies from 20 deg, through the minimum and back



4.2. Application: Relativistic effects 66

to 20 deg. Since the orientation of the spin axis affects the effective latitude
on the radiation cone with which the line of sight intersects, the pulse width
exhibits a clear variation with the orientation of the spin axis. The pulse
width can be considered as a proxy for the observed pulse duration, and so
nutation of the spin axis over the course of the pulsar’s orbit will directly
influence the time over which a pulse is observable. Again, as the nutation
angle increases, the amplitude of ω̂ is also reduced since the radiation beam is
shifted further from the observer’s line of sight. In addition, the centre of the
pulse profile - the time at which ω̂ is at its minimum - is shifted on account
of relativistic aberration. If we consider ω̃ instead of ω̂ the minima occur at
the same time, with no variation based on θspin. Analogous to the time delay
induced by the precession, the shift in the minima of ω̃ due to aberration
also causes a shift in the pulse arrival time. For this system and observer
parameters, the pulse arrival time is delayed by ∼ 30µs when the polar spin
angle is shifted from θspin = π/6 to θspin = π/12. Evidently then, whilst the
centroid shift is primarily due to the precession angle evolution, the change
in nutation angle in conjunction with relativistic aberration can also cause a
shift in the timing solution. Notably, for variations of sufficient magnitude the
spin axis variation would be so severe that the minimum of ω would be greater
than the beam opening angle. This corresponds in Fig. 4.8 to a ω̃ − t profile
which does not cross the horizontal grey dashed line. Consequently for some
orbital configurations, this oscillation will leave the pulsar beam invisible at
certain times (e.g. Istomin 1991). The pulsar signal would consequently be
intermittent, leading to additional complications in search observations and
any consistent timing model.

In addition to the MSP spin vector evolution influencing the pulse shape and
arrival times, it can also influence the pulse intensity. Approximating the
pulsar beam as a Lambertian surface, precession of the spin axis will cause
variations in the pulse intensity dI as,

dI ∝ sin(ω̂)dω̂. (4.38)
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Fig. 4.8: Top panel: Change in the pitch angle as the pulsar beam rotates, at nutation

angles θspin = π(1/12, 1/10, 1/8, 1/6). The observer is at Θ = π/4, and the beam angle

with respect to the spin axis is ψ = π/6. As θspin changes, the minimum of ω̃ increases,

and the beam width decreases since the line of sight now intersects more sharply with the

beam. The centroid of the pulse is shifted on account of relativistic aberration. Bottom

panel: Time at which the pitch angle crosses the grey dashed line, defining the beam width.
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Consequently, the precession of the spin axis can directly affect the observed
intensity. Clearly this is an oversimple approximation and to correctly de-
termine the pulse intensity also accounting for scattering, absorption and
Doppler boosting would require covariant general relativistic radiative trans-
fer (e.g. Younsi et al. 2012) along the geodesics determined via the framework
presented in this work. However, the Lambertian approximation serves as
a adequate first order estimate to inspect the influence of spin precession
on the pulse intensity. Considering the system described in Fig. 4.8, the
minimum of ω̃ is ∼ 5 deg when θspin = π/12 and ∼ 18 deg when θspin = π/6,
which corresponds to a relative intensity shift of ∼ 5% under the Lambertian
approximation.

In summary, in addition to the orbital dynamics, spin precession can then
also affect the pulse width (and hence duration), the pulse ToA due to the
relativistic centroid shift and the observed pulse intensity. The precision that
can be achieved with pulsar timing is a function of both the pulse intensity
and the sharpness of the pulse profile, and so an accurate description of these
quantities is key for realistic assessment of the prospects of the detection of a
PSR-EMRB. Variations in the pulse profile width may provide a method to
determine the PSR spin behaviour (e.g. Rafikov & Lai 2006) or even test the
Cosmic censorship Conjecture (Kocherlakota et al. 2019). For very compact
orbits or periastron passages, the timescale of spin orientation variation can
severely shorten, causing rapid changes in the pulse profile (width, intensity,
ToA). Corrections for this change in the overall pulse profile shape will be
necessary for both long term timing and - if the timescale of spin axis oscillation
is comparable to the observation integration time - initial detection.

4.2.3 Gravitational Lensing

The notion of a geodesic, i.e. a straight line in curved spacetime, means that
the spatial path of a light ray propagating in the gravitational strong field
can be bent due to the spacetime curvature. Gravitational lensing by Sgr
A* has been considered for emission for S-stars close to the Galactic centre
(Bozza & Mancini 2009; Bin-Nun 2010; Bozza & Mancini 2012) as observed by
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Very Large Telescope optical interferometer instrumentation (e.g. GRAVITY,
Gravity Collaboration et al. 2017). The magnitude of the astrometric shift
that results from gravitational bending is naturally dependent on the config-
uration of the system (i.e. relative alignment of source, lens, observer. See
e.g. Bozza & Mancini 2012, for a description of the relevant angles and geom-
etry). For the S-stars, at alignment angles of ∼ 35◦, the expected astrometric
shift is of order 30µas, whilst the contribution of post-Newtonian and spin
corrections to gravitational bending are expected to appear at ∼ 5µas, below
current interferometric instrumental sensitivity (Bozza & Mancini 2012).

The light ray from a MSP-E/IMRB can also be lensed due to the gravitational
field of the central massive BH. This was considered in the analytical case for
a Schwarzschild black hole in Wang et al. (2009a,b). Gravitational lensing in
a Kerr spacetime is naturally included in the ray tracing set up described in
Sec. 2 which accounts for contributions from both the BH mass and spin.
Gravitational lensing directly influences the MSP timing signal in a number of
ways. Firstly, since the spatial trajectory of the ray is modified compared to
the radial path of a flat Minkowski spacetime, this will induce additional tim-
ing variations. These variations in turn are modulated over the course of the
MSP orbit since the degree of gravitational lensing is strongly correlated with
how close the light beam passes to the BH; changes in the relative observer -
BH - PSR orientation over the course of the orbital then directly change the
degree of gravitational lensing (see e.g. Fig. 4.9) and hence the relative time
delay (Fig. 4.10). Furthermore, gravitational lensing allows the observer to
receive multiple pulses; in addition to the primary pulse that undergoes little
or no lensing, as the MSP continues to rotate it is possible that the beam is
lensed in such a way that the observer receives a secondary highly bent ray
(Fig. 4.9). ‘Higher order’ pulses (i.e. those which circle the central BH more
than once) are possible (see e.g. Wang et al. 2009b) but for the purposes of this
work we only consider the primary and secondary pulses, since the intensity of
higher order pulses is naturally low. Clearly these strong bending effects are
most prominent when the pulsar is on the far side of the black hole, but due
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to the BH spin the ray can undergo lensing even for near side emission. For
certain orbital configurations, the pulsar ‘primary’ pulses may be invisible,
and instead the pulsar is only visible via the strongly bent ‘secondary’ pulses.
Whether strong bending of pulsar rays will occur astrophysically is highly
dependent on both the system orbital configuration and the observer viewing
angle, with the maximal bending occurring when the pulsar lies close to the
central black hole and on the far side with respect to the observer. Anal-
ysis from Stovall et al. (2012) suggests that with current radio observation
facilities, the probability of detecting strong bent pulsar beams is small but
non-negligible, whilst future radio facilities such as SKA, should be able to
detect strongly bent beams from multiple pulsars, despite secondary pulses
expected to be fainter compared to their primary counterparts. Moreover, this
analysis is focused towards the Galactic centre where there are complications
due to scattering which decreases the detection probability. Observations of
MSP-IMRBs in globular clusters where scattering is less problematic further
increases the chances of observing strongly bent beams. Furthermore, in esti-
mating a probability Stovall et al. (2012) take as a prototypical model a pulsar
at r = 104rg. Taking this as the semi-major axis, this gives a Keplerian period
of ∼ 4 years. At such radii, the degree of strong deflection is rather small.
Consequently if an observer receives the primary beam it will also receive the
secondary beams. However, for pulsars with shorter orbital periods or at more
compact orbital radii (e.g. at periapsis of some eccentric orbit) the probability
of observing a strongly deflected beam would be increased. Extending the
considered pulsar population to include not just pulsars of the Milky Way,
but also nearby globular clusters would also increase this rate. Moreover, the
large baselines offered by future radio interferometers like SKA will enable
∼ µas astrometry (Fomalont & Reid 2004; Smits et al. 2011). This provides
a complementary pathway to timing for identifying secondary rays.

Our relativistic timing framework is naturally able to account for both these
primary and secondary rays on the final timing signal. Gravitational lensing
of both the primary and secondary rays will influence the signal not only due
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to a difference and modulated spatial path, but also due to the different grav-
itational and relativistic time dilation, relativistic energy shift (see Sec. 4.2.4)
and subject to different to temporal and spatial dispersion (Sec. 4.2.5). More-
over, the period of the primary and secondary rays is not generally the same,
introducing an additional Fourier frequency, whilst the time delay between the
primary and secondary pulses is also modulated over the course of the orbit
(Fig. 4.10).

4.2.4 Gravitational and relativistic time dilation

For a pulsar in a strong-field environment, one must account for general rel-
ativistic effects influencing the rate at which the pulsar clock is observed to
tick. There are two effects to consider here. The first is gravitational time
dilation; clocks run slower in potential wells. The second is the relativistic
Doppler shift induced by the motion of the pulsar. Both these effects will
influence the observer radio signal; an apparent modulation in the observed
pulsar period where the intrinsic pulsar rotation frequency is different to that
recorded by some distant observer. This effect can be quantified as,

γ =
νintrinsic
νobserved

=
pαu

α|emitted

pαuα|observed
. (4.39)

Note that this quantity is frame-invariant - for simplicity and we choose to
evaluate it in the global coordinate frame. The magnitude of γ varies period-
ically over the course of a pulsar’s orbit as the 4-velocity uα changes due to
the pulsar’s motion and the ray 4-momentum pα changes due to gravitational
redshift (e.g. Fig. 4.11). Consequently the modulation will be greatest for
eccentric orbits where the orbital velocity is changing most severely and more
compact orbits which probe stronger gravitational fields. As we have seen, due
to gravitational lensing it it possible for an observer to receive both primary
and secondary rays. Since these secondary rays traverse a different spacetime
path to the primary rays, the evolution of γ over the course of the orbit is
flattened compared to the primary rays. Therefore not only will secondary
rays arrive at a different time from the primary rays, but the modulation in
the ticks as recorded by the secondary rays will differ from the primary rays.
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Fig. 4.9: Gravitational lensing of light rays in a vacuum by a BH with a = +0.6. The dark

grey crosses show the emission points, i.e. the pulsar. For each emission point there are

two rays which reach the distant observer (at Θobs = π/2, Φobs = 0); a primary ray which

is subject to a lesser degree of gravitational lensing and a secondary ray which undergoes

significant lensing. The time delay between the primary and secondary rays is modulated

over the course of the orbit. Each different colored line represents a ray with different

coordinates on the observer’s image plane.
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Fig. 4.10: (Top panel:) Primary and secondary rays subject to gravitational lensing for a

segment of pulsar orbit on the far side of the BH. (Bottom panel:) Corresponding photon

propagation times for the primary and secondary rays. Evidently the propagation times for

the primary and secondary rays differ due to both the different spatial path and the degree

of gravitational time delay. Equivalently, the received time profile will be different for the

primary and secondary rays. We have set the BH spin to a = +0.6.
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The modulation of γ means that the apparent pulsar spin frequency changes
over the course of the orbit. The implications for this must be considered on
both short and long timescales. For the former, the variation in the observed
rotation frequency causes the signal in the Fourier domain to be ‘smeared’
across frequency bins consequently reducing the signal to noise ratio. Indeed,
the detection of compact pulsar binaries is known to be very difficult due to
this Doppler smearing effect (e.g. Jouteux et al. 2002). To detect such systems
computationally expensive acceleration searches e.g. (e.g. Faulkner et al.
2004) which assume some constant value of the pulsar acceleration over the
observation period, or higher order jerk searches (e.g. Andersen & Ransom
2018) are required. The magnitude of γ and the rate of change would be
especially pronounced in the detection and timing of pulsars close to periastron
and may be further complicated by the existence of secondary rays. Correcting
for this effect is then essential to be able to first detect MSP-E/IMRBs. Over
longer timescales, once the MSP is detected is is then necessary to account for
the change is the pulse frequency over the orbital period timescale, especially
if we want long timescale observations of these systems to perform tests of
relativity and astrophysics. Taking into account these relativistic effects on
the apparent pulsar rotation period is essential to accurately model the signal
from a pulsar in an extreme gravity environment. The dependence of the net
time dilation on the motion of the emitter also emphasizes the necessity to
have an accurate description of the pulsar orbital dynamics - accounting for
all general relativistic effects e.g. spin-curvature coupling - in modelling the
pulsar signal.

4.2.5 Time-frequency signal

Typically, radio pulsar signals are dispersed in time due to the interstellar
medium (ISM) and any signal needs correcting to account for this dispersion
(e.g. Cordes et al. 2016). The time delay induced by the presence of plasma
along the line of sight,

∆t ∝ DMν−2 , (4.40)
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Fig. 4.11: The modulation of γ for a MSP orbiting a BH with M = 4.31 × 106M⊙ and

a = +0.6, and semi-major axis = 200 rg at eccentricities e = 0.1, 0.5, 0.9 (left, middle,right

columns respectively). More eccentric orbits exhibit larger magnitude modulations due to

the increased orbital velocity of the MSP. The γ-shift due to secondary rays exhibits a

different profile to that of the primary rays.
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for frequency ν and dispersion measure,

DM =

∫
ne(l)dl , (4.41)

where ne is the free electron number density. Therefore in order to detect the
pulsar signal by searching for periodicities in the Fourier domain, one must
first correct for the chromatic time delay. During pulsar searches, attempts
are made to de-disperse the signal at a number of trial DMs, since the true
DM is unknown.

Dispersive effects in the gravitational strong field due to the presence of astro-
physical plasma along the ray path are fully accounted for within our frame-
work. All dispersive electromagnetic effects are fundamentally included within
the ω2

p term of the Hamiltonian (Eq. 2.67). Both the primary and secondary
rays from the pulsar will be subject to a temporal dispersion. Due to gravita-
tional lensing, the apparent position of the pulsar - the position which lies on
the asymptote of the tangent line to the ray that converges at the observer -
is distinct from the true pulsar position. Put another way, the observer’s line
of sight in Minkowski spacetime is distinct from the true light ray path. As a
result the apparent region of the plasma that is being probed by the light ray
is not the true region. Consequently to properly account for the time delay
due to dispersion of the pulsar signal requires correcting for the gravitational
bending of the ray path. The primary and secondary rays received from the
pulsar will each follow a different spatial path and so be subject to a differ-
ent dispersive time delay. This is in addition to the time shift induced due
to other effects, such as the diverging path length, gravitation and relativis-
tic time dilation, spin and orbital effects etc. This raises the possibility of a
confusion problem and additional complexities for both pulsar searches and
precision timing.

In addition to temporal dispersion, the combination of strong-field curvature
and electron plasma induces a spatial dispersion such that the trajectory fol-
lowed by the ray after being deflected by the black hole is frequency dependent
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Fig. 4.12: Temporal dispersion at radio frequencies for rays on the far side of a BH

mass M = 4.31 × 106M⊙, a = 0.6 surrounded by a plasma with profile n = n0r
−1.1 and

n0 = 3.5 × 107 cm−3 (Psaltis 2012). In the top left panels the times of the primary and

secondary rays have been normalised such that the different t − ν profile is evident. This

is on account of the different spacetime and plasma traversed. The right panel shows the

relative delay of the secondary ray bundle with respect to the primary ray.
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(see e.g. Fig 2.3). This further complicates the previous discussion on tempo-
ral dispersions and has several implications for rays which are gravitationally
bent. Firstly, some rays may no longer be visible in specific frequency bins
since if the spatial dispersion is sufficiently severe the ray path is bent such
that is does not hit the observer’s image plane. Moreover, each ray which does
reach the observer has followed a different spatial trajectory, a different space-
time geodesic, and encountered a different plasma path integral, analogous to
the case for primary/secondary rays. The effect is to further smear the pulse,
rendering the pulse undetectable if the smearing is of sufficient magnitude.
Any corrections for gravitational light bending are frequency dependent; the
apparent position of the pulsar can be related to multiple true positions, de-
pending on the ray frequency, each necessitating a different DM correction
to be applied in each frequency bin. The total received signal is then not
some function that varies smoothly with the pulsar orbital phase, but instead
the convolution of different energy rays emitted at different orbital phases
and consequently subject to differing relativistic and line-of-sight effects. This
may, depending on the orbital configuration, result in additional difficulties in
detecting signals from PSR-EMRB systems.

4.3 Discussion

We have presented the principles and framework for calculating the radio signal
from a PSR in an E/IMRB. We restrict our study to extreme/intermediate
mass ratio systems and so do not consider PSRs in stellar-mass black hole
binaries with finite mass ratios (e.g. Liu et al. 2014). We account for both rel-
ativistic and astrophysical effects and the convolution between the two. This
includes gravitational and relativistic time dilation and energy shift, gravi-
tational light bending, complex orbital dynamics induced by spin couplings,
temporal variation and distortion of the pulse profile due to spin axis preces-
sion and relativistic aberration, 2nd order pulses due to gravitational bending,
and dispersions (temporal and spatial) induced by the material along the line
of sight. We have demonstrated that within our framework we are able to
determine the time-frequency behaviour accounting for all these effects. The



4.3. Discussion 79

framework also applies for any orbital configuration, e.g. we are not restricted
to orbital motion or beaming in the equatorial plane. The methods used
are entirely covariant and general relativistic, rather than working under any
post-Newtonian approximation and so are inherently more accurate. Indeed,
the post-Newtonian method is an explicitly weak-field method, and the valid-
ity of its application to strong-field dynamical regimes is unclear (Will 2011).
Whilst working explicitly in the Kerr metric means that we are unable to
independently probe either alternative gravitational theories or extensions to
Kerr (e.g. bumpy black holes e.g. Vigeland & Hughes 2010), our framework
provides the basis for a theoretical timing model which can then be compared
with observations for tests of strong field GR. We approximate the PSR body
as a perfect sphere. However due to the spin of the PSR the true shape is
more oblate. This will ultimately influence the pitch angle of the ray with the
neutron star surface. This effect is considered to be minor, but the method
could easily be extended to account for this oblateness (see Nättilä & Pihajoki
2018). We neglect the effects of hydrodynamic drag due to the plasma that
surrounds that black hole, since at compact radii ( ≲ 104rg) the gravitational
and relativistic effects dominate (Psaltis 2012). We also do not take account of
any potential Newtonian perturbations on the motion of the pulsar (e.g. Mer-
ritt et al. 2011) due to the presence of other masses (e.g. stars, other compact
objects etc.) since these factors are likely negligible for the orbital periods
considered in this work (≲ 0.3 years, Liu et al. 2012). Indeed, the poten-
tial for external perturbations to hamper tests of strong-field GR necessitates
that an ideal PSR-EMRB systems should have orbital periods on the order of
0.1 years (or better), or else observations should be taken close to periapsis
(see discussion in Psaltis et al. 2016). These are precisely the regions where
the spacetime curvature and orbital acceleration is greatest, further stressing
the importance of a strong-field timing model. We also neglect any influence
of gravitational radiation on the orbit or the ray trajectory. The neglect of
gravitational radiation is justified since in the extreme mass ratio limit, the
timescale for orbital decay due to gravitational wave emission is (Misner et al.
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1973),

τGW ∼ 5r4

96mM(m+M)
f(e)−1 , (4.42)

for whereM is the mass of the black hole, m the pulsar mass and r the orbital
separation. The eccentricity function is,

f(e) = (1− e2)−7/2

(
1 +

73

24
e2 +

37

96
e4
)
. (4.43)

If we take the PSR orbital period P to be Keplerian, then for a pulsar with
mass 1.4M⊙ on an eccentric (e = 0.8), P = 0.1 year orbit around a BH with
mass 4.3× 106M⊙ ,

τGW

P
∼ 109 >> 1 , (4.44)

and so the effects of gravitational radiation can be neglected. Even for smaller
radii and more eccentric orbits the spacetime is well approximated as sta-
tionary (e.g. τGW/P ∼ 105 for e = 0.9, r = 100M ). Whilst the effects of
gravitational radiation are then not important for a single orbit, for observa-
tions over longer periods of time the effect of gravitational emission on the
orbit and hence the timing solution will need to be considered. The PSR may
also emit a gravitational wave burst during passage through periastron (Berry
& Gair 2013b). The influence of this gravitational radiation on both the PSR
trajectory and the photon ToA is not considered here.

In this work we do not address the task of how to use our calculations to
perform mock data analysis and extract orbital parameters from simulated
PSR-EMRB timing data. This is achievable, for instance, by using a software
package such as TEMPO (Hobbs et al. 2006) to determine the parameters of
the timing model from the simulated data (e.g. Liu et al. 2014), or/and by
performing a Markov Chain Monte Carlo fitting to investigate constraints on
the orbital parameters (e.g. Zhang & Saha 2017). In principle, the method
outlined in this work can be used to generate time-frequency data which could
then be analysed by the aforementioned methods, but this is beyond the scope
of this work. Similarly, it may prove possible to fit a relativistic model like one
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presented here to astrophysical data in order to extract system parameters,
analogous to the matched filtering approach commonly used in gravitational
wave astronomy, but again we do not consider that here. We also caveat
that, due to the high stellar density of the Galactic centre, timing data can be
influenced by external Newtonian perturbations (from e.g. stars, stellar mass
compact objects Merritt et al. 2011). Any consistent timing solution should
therefore provide a method to correct for these gravitational foreground dis-
turbances (e.g. Angélil & Saha 2014; Zhang & Saha 2017). The handling of
such perturbations is not explicitly considered in this work, but we restrict
our analysis to pulsars on orbits of P ≲ 0.1 years where such perturbations
are more likely to be negligible (Liu et al. 2012). The analysis of timing
data taken from orbital systems with longer periods would need a method to
remove these effects (another possibility is to analyse only data taken close to
periapsis, where the magnitude of these perturbations is expected to be less
severe).

Whilst we have started the theoretical basis for timing observations of a
strong-field PSR, there are a number of further potential developments of this
work. With the ray tracing solution, we can then perform general relativistic
radiative transfer along the rays (e.g. Fuerst & Wu 2004, 2007; Younsi et al.
2012) so as to determine the effects of line-of-sight material on the beam
intensity. Understanding the received intensity and consequent S/N ratio
is essential for accurately exploring the prospect of using PSR as probes of
strong-field GR. As mentioned, it would also be of interest to investigate how
well the weak-field post-Keplerian parameterization can describe strong-field
effects (see the following chapter). This is important both for determining
the types of PSR we require to test GR and for creating an accurate model
to then compare with observations. A coherent t − ν model which accounts
for all relativistic and line of sight effects could then also be potentially used
to inform detections; e.g. are acceleration searches necessary for the detection
of MSP close to the Galactic centre? As noted by Faucher-Giguère & Loeb
(2011), the high stellar density in the Galactic Centre may allow for the cre-
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ation of some rare binaries (e.g. triple systems). The subsequent dynamics
(e.g. Remmen & Wu 2013) and impact on the PSR signal would be another
interesting pursuit.

To summarize, accurately modelling the time-frequency behaviour from a radio
PSR in the strong-field regime leads to a number of higher-order effects which
will influence the photon ToA. These include:

• Consideration of spin curvature coupling can lead to variations of order
±10µs in the photon ToA compared to when spin-curvature coupling is
neglected. Lower order estimates to the orbital motion (e.g. pure Keple-
rian dynamics) will further exacerbate the discrepancy, whilst accurate
determination of the orbital motion (i.e. including spin-spin, spin-orbit,
spin-curvature couplings) is essential for accurately modelling the fre-
quency modulation.

• Precession of the spin axis in conjunction with relativistic aberration
influences both the pulse profile, pulse duration, the pulse arrival time
and the pulse intensity. Aperiodicity in the spin precession may intro-
duce additional complications in the detection of pulsars, whilst severe
precession could leave the pulsar signal intermittent.

• Gravitational bending causes deviation from a simple Minkowski geodesic
which naturally influences the photon ToA. Strong gravitational bending
can cause multiple (primary/secondary) pulses to be received by the ob-
server, emitted from a pulsar at approximately the same location. Each
ray follows a distinct spacetime path and so suffers different transfer
effects, both gravitational (e.g. time dilation) and those due to interac-
tion with material along the line of sight (i.e. temporal dispersion with
the DM different for the primary and secondary rays). The interplay of
gravitational bending with spatial dispersion further compounds these
effects.

• Gravitational and relativistic time dilation causes substantial shift in the
observed pulse frequency over the orbit. The magnitude of the dilation
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varies over the orbit and is more pronounced for more eccentric orbits.
Secondary, highly bent rays traverse a different curvature of spacetime
and so the frequency modulation is different from that of the primary
rays.

• The presence of material along the ray path causes a temporal dispersion
in the photon ToA, whilst a coupling with the strong spacetime curvature
causes a spatial dispersion of the rays. Since each ray of a given frequency
follows a different path - and so is subject to different gravitational and
line of sight effects - the ToA will vary.

To conclude, in order to undertake precision tests of GR it is necessary to have
a coherent, accurate theoretical model with which to compare observations. In
this work we present a framework for calculating the time-frequency behaviour
from a pulsar signal in an entirely general relativistic context, including the
effects of spin axis precession and nutation, relativistic aberration, relativistic
and gravitational time shift, relativistic energy shifts, spatial and temporal
dispersion and gravitational light bending. The convolution of these effects
will all ultimately influence the photon arrival time. Such a framework is the
first step toward the creation of an accurate timing model of a PSR signal in
the strong-field regime.



Chapter 5

Post Keplerian methods in the

Strong-field

5.1 Introduction
A pulsar timing model is fundamentally a map between the time at which
the pulse was received in the observers frame t to the time at which the pulse
was emitted in the ‘clock frame’ τ (i.e. the frame comoving with the pulsar).
With a sufficiently accurate timing model it is then possible to infer precision
information about the intrinsic system parameters. For the majority of pul-
sars it is sufficient to take the inertial reference frame of the pulsar as being
equivalent to the solar system barycentre. The model is then describe in terms
of the usual Keplerian parameters (eccentricity, orbital period, etc.). However
the presence of relativistic effects introduce additional ‘Post-Keplerian’ timing
delays. For pulsars in binary systems there are 3 primary relativistic delays

t = τ +∆R +∆S +∆E , (5.1)

where ∆R is the Romer delay due to orbital motion of the pulsar, ∆S is the
Shapiro delay due to gravitational time dilation and ∆E is the Einstein delay,
the relativistic time dilation (see Lorimer & Kramer 2012, for further details).
The relationship between the timing delays (∆R,∆S,∆E) and the system
parameters is based on the ‘Post-Keplerian’ (PK) approximation (Blandford
& Teukolsky 1976; Damour & Deruelle 1986). These binary systems in which
the relativistic effects need to be accounted for in the timing model are the
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most interesting from the perspective of testing fundamental physics and as-
trophysics; the decay of the orbital period of the Hulse-Taylor binary provided
the first evidence for gravitational waves (Weisberg et al. 1981) whilst observa-
tions of the remarkable double pulsar system PSR J0737-3039 (Burgay et al.
2003) and the associated relativistic effects have enabled stringent tests of GR.

The PK approximation is derived under the assumption that the gravitational
field is weak. GR is subsequently treated perturbatively as an expansion
about Newtonian gravity. Whilst this considerably simplifies the previously
non-linear equations, such an approximation may not be appropriate for rel-
ativistic orbits close to massive black holes. Tests of GR in the solar system
which employ the PK framework are undertaken in an environment where
typically ϵ ∼ 10−8. In binary pulsar systems ϵ ≲ 10−6. Conversely, for a
pulsar at periapsis on a P = 0.1 year eccentric (e = 0.9) orbit around Sgr
A∗, ϵ = 0.01. Due to external perturbations on the PSR orbit (Merritt et al.
2010), the cleanest information on the BH parameters will be obtained from
the PSR at periapsis, in precisely the region of strongest gravity. Photons
propagating from the pulsar to an observer may pass sufficiently close to the
BH so as to traverse a spacetime where ϵ approaches unity (see e.g. discussion
on the use of pulsars to probe quantum effects and the BH event horizon
Estes et al. 2017). It therefore seems reasonable to question the validity of
the weak-field approximation in a region where the gravitational potential is
≳ 104 times stronger than the environments in which it is typically applied.

Pulsar timing delays given by the PK approximation in strong-field regimes
was partly addressed in Hackmann & Dhani (2018) who investigate the prop-
agation delays (Roemer and Shapiro) from circular orbits in a Schwarzschild
spacetime. The influence of the central black hole spin on the measurement
of pulsar orbital parameters was investigated in Zhang & Saha (2017), whilst
Li et al. (2019) explored the impact of relativistic spin dynamics on the PSR
emission. In this work, we further develop these previous studies by deploying
our consistent, relativistic framework that we have outlined previously to ac-
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curately calculate the pulse ToA from a spinning pulsar orbiting a Kerr BH.
We can then compare this ‘true’ GR solution with the ‘approximate’ PK so-
lution and so determine the validity of the PK approach for BH parameter
estimation at the Galactic centre and the centre of globular clusters.

5.2 Comparison with Post-Keplerian approximation
The core focus here is to compare the fully general relativistic solution using
the methods outlined in the previous chapters with the timing delays given by
the PK approximation. For a given quantity X we can determine 4 ‘levels’ of
solution

1. XPK,i - solution given by the i-th order PK approximation

2. XGEO,a=0 - GR solution for zero BH spin (a = 0) and zero MSP spin (i.e.
Schwarzchild geodesic)

3. XGEO,a̸=0 - GR solution for non-zero BH spin and zero MSP spin (i.e.
Kerr geodesic)

4. XMPD - GR solution for spinning BH and spinning MSP (i.e. full MPD
solution)

We will investigate the difference between each of these levels of solution,
defining the respective differences as,

δα,i(X) = XGEO,a=0 −XPK,i (5.2)

δβ(X) = XGEO,a ̸=0 −XGEO,a=0 (5.3)

δγ(X) = XMPD −XGEO,a̸=0 (5.4)

It is worth taking a moment to consider how we compare different quantities
in different spacetimes. For δβX and δγX, the comparison is straightfor-
ward; in all cases we are working in Boyer-Lindquist coordinates, with the
Schwarzschild coordinates of the Schwarzschild metric simple being a special
(a = 0) case. However, solutions derived within the post-Keplerian framework
are derived from the PK metric which typically uses a different coordinate
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system. In particular, by writing the Schwarzschild metric in harmonic coor-
dinates (such that gµνΓα

µν = 0) where the radial harmonic coordinates rh is
related to the Boyer Lindquist coordinate as,

r = rh + 1 , (5.5)

and by taking the weak field (large rh) limit, the metric components become,

g00 = −1 + 2/rh −
1

2
(2/rh)

2 + · · · (5.6)

gjk = (1 + 2/rh) δjk +
1
4
(2/rh)

2 (δjk + njnk) + · · · (5.7)

where nj = xj/rh and nj = δjkn
k (Poisson & Will 2014). At first order the

metric interval is then

ds2 = −
(
1− 2

rh

)
dt2 +

(
1 +

2

rh

)
(dρ̄)2 , (5.8)

where (dρ̄)2 = dx2+ dy2+ dz2.This is the first order PK metric and is the one
typically used (e.g. Blandford & Teukolsky 1976) for calculating the pulsar
timing delays. Explicitly, the second order metric solution is:

ds2 = −
(
1− 2

rh
+

2

r2h

)
dt2 +

(
1 +

2

rh
+

1

r2h

)
(dρ̄)2 (5.9)

+
1

r2h
njnkdx

jdxk . (5.10)

The primary search area for MSP-E/IMRBs is the Galactic centre. Although
no MSPs have yet been detected in this region previous surveys can be shown
to be insensitive to the population (Rajwade et al. 2017) and so the devel-
opment of advanced radio facilities with increased sensitivities e.g. SKA or
dedicated search methods e.g. NASA DSN - along with the development of
appropriate relativistic search algorithms -should render this population de-
tectable. Subsequently, to use a MSP in the Galactic centre as a precision
probe of strong-field GR (e.g. Liu et al. 2012; Psaltis et al. 2016) it is impor-
tant to time a pulsar that is solely affected by the gravitational field of the
central BH. However there do exist astrophysical perturbations to the pul-
sar orbit e.g. gravitational perturbations due to the presence of other masses
(Merritt et al. 2010). For orbits with periods ≲ 0.3 year external perturbations
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are expected to be negligible (Liu et al. 2012). Observations close to periapsis
of some longer, sufficiently eccentric orbits may also be viable. Consequently
in this work we will consider eccentric systems with appropriately short or-
bital periods ≲ 0.3 year. We take the mass of the Galactic centre BH to be
M ∼ 4.3× 106M⊙ (Gillessen et al. 2009). The PK timing delays that we will
investigate are,

1. Einstein delay, ∆E - due to gravitational and relativistic time dilation of
the MSP.

2. Roemer delay, ∆R - due to the orbital motion of the MSP

3. Shapiro delay, ∆S - due to the gravitational time dilation of light

We will now explore each of these pulsar timing delays in turn

5.2.1 Einstein Delay, ∆E

The Einstein delay describes the Doppler shift and gravitational time delay
(redshift), or the difference between the MSP proper time and the time mea-
sured by a distant observer,

∆E = t− τ . (5.11)

Determining the Einstein delay from the numerical relativistic solutions is
straightforward, since at each integration time step we have the MSP proper
time and the observer coordinate time by solving Eq. 3.21. Within the PK
approximation, one can derive an analytical expression for the Einstein delay
(Blandford & Teukolsky 1976; Zhang & Saha 2017) as,

∆E =
Pe

πa∗
(sinE ′ − sinE ′

0) +
3

2

t

a∗
, (5.12)

where a∗ is the semi major axis (as distinct from spin parameter a defined in
earlier chapters) and E ′ the eccentric anomaly, an angular parameter given by

cosE ′(t) =
1

e

(
1− rh(t)

a∗

)
. (5.13)

Evidentially the Einstein delay is then composed of an oscillatory part, of
magnitude γ = Pe/πa∗ and a linear term. Rather than computing the ana-
lytical evolution of ∆E by e.g. solving the Kepler equation for E ′, we employ
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a different approach. From Eq. 5.8 it follows that,

(
dt

dτ

)2

=
1 +

(
1 + 2

rh

)
v2

1− 2
rh

, (5.14)

where v2 = |d2ρ̄/dτ 2|. At second order,

(
dt

dτ

)2

=
1 + 1

r2h
njnk

dxj

dτ
dxk

dτ
+
(
1 + 2

rh
+ 1

r2h

)
v2

1− 2
rh

+ 2
r2h

. (5.15)

We can express the squared velocity magnitude in terms of BL coordinates
by the straightforward coordinate transformation of a general contravariant
vector,

Y a =
∂xa

∂xb
Y b . (5.16)

Explicitly, in conjunction with Eq. 5.5, the fact that drh/dr = 1 and the
transformation between (spherical polar) harmonic and Cartesian coordinates
then,

v2 = v2x + v2y + v2z (5.17)

=(sin θ cosϕur + rh cos θ cosϕu
θ − rh sin θ sinϕu

ϕ)2

+ (sin θ sinϕur + rh cos θ sinϕu
θ − rh sin θ cosϕu

ϕ)2

+ (cos θ ur − rh sin θ u
θ)2 (5.18)

where the uα terms are the components of the MSP 4-velocity as given by
Eq. 3.21. Together this gives us a differential equation for t as determined by
the PK metric at first and second order. It is equivalent to the 0-th term of
the relativistic solution described by Eq. 3.21. As we integrate the complete
relativistic solution numerically, we can then at each integration timestep also
compute v and rh and solve Eq. 5.14. This then gives us t (and hence ∆E) as
given by the PK solution for an MSP which has the same spatial orbital tra-
jectory as described by the full relativistic solution. The Einstein delay given
by the respective solutions for a Galactic centre MSP with orbital period
P = 0.1 years, in the equatorial plane is presented in Fig. 5.1 at eccentricities
e = 0, 7, 0.8, 0.9. The evolution of the Einstein delay for all the orbits consid-
ered has general oscillatory contribution, illustrated by the first term of Eq.
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Fig. 5.1: Top panel: The Einstein delay given by the 5 solutions (2 PK + 3 GR) from

a MSP orbiting the Galactic centre BH in the equatorial plane at a range of difference

eccentricities. The BH mass is set as 4.31× 106M⊙, with spin parameter a+0.6. The delay

accumulates up to 2 hrs after one orbital period, with rapid variations as the pulsar goes

through periapsis. Bottom panel: The differences between the respective solutions δα,1(∆E)

(blue),δα,2(∆E) (red), δβ(∆E) (green), δγ(∆E) (orange) at eccentricities e = 0.9, 0.8, 0.7

(solid, dashed, dotted lines respectively)
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5.12 and an additional linear term. Rapid variations are observed as the MSP
passes through periapsis and is moving at its fastest. After a single orbital
period the Einstein delay has accumulated to ∼ 2 hrs for all the solutions and
all the eccentricities. Variations in the Einstein delay induced by relativistic
effects are seen to occur at smaller scales: at the first level, δα,1(∆E) is of
the order 101 seconds, whilst δα,2(∆E) ∼ 10−2 − 10−1 seconds, with greater
magnitude errors for more eccentric orbits which move faster at periapsis and
probe a stronger gravitational field. The variations induced by the BH spin
for a = +0.6 , δβ(∆E) introduce additional variations in the timing delay on
the order of 0.1−1 seconds, again with more eccentric orbits exhibiting larger
magnitude variations. The influence of ‘switching on’ the MSP spin and the
associated couplings is particularly interesting. Although subdominant to the
δα,β variations, the MSP spin introduces periodic contributions to the Ein-
stein delay. As before, these corrections peak in magnitude at periapsis and
for e = 0.9, δγ(∆E) ∼ 1 ms, whilst for e = 0.7 the maximal variations are
of magnitude ∼ 30 µs. Radio facilities such as FAST or SKA are able to de-
termine pulse ToA to precisions < 100 ns (Hobbs et al. 2014; Stappers et al.
2018), especially for stable MSPs which are free of glitches. Consequently,
small variations in the timing residuals O (µs - ms) will be both detectable
and important for a consistent, long-term timing solution.

5.2.2 Propagation Delays: Shapiro and Roemer, ∆S , ∆R

In PK timing models for pulsar binaries, the photon propagation time between
observer and source is the sum of the Roemer delay (∆R, i.e. time delay due
to the finite speed of light propagating in a flat spacetime) and the Shapiro
delay (∆S, time delay due to first order curvature corrections). This can be
seen by decomposing the spacetime geodesic in terms of a Minkowskian (0th
order) background plus a higher-order curvature perturbation (see e.g. Carroll
2003) i.e.

xµ(λ) = x(0)µ(λ) + x(1)µ(λ) + x(2)µ(λ) . (5.19)

The background and perturbation tangent vectors are,

kµ ≡ dx(0)µ

dλ
; lµ ≡ dx(1)µ

dλ
; qµ ≡ dx(2)µ

dλ
. (5.20)
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Similarly, we can decompose the metric up to second order as,

gµν = ηµν + ϵh(1)µν + ϵ2h(2)µν , (5.21)

with contravariant form,

gµν = ηµν − ϵhµν(1) + ϵ2Hµν
(2) , (5.22)

where Hµν
(2) =

(
2h(1)

ν
α
hµα(1) − hµν(2)

)
. Since the perturbations are defined as ten-

sors on the background spacetime, their indices can be raised and lowered via
the background metric i.e.

hµν(1) = ηµαηνβh
(1)
αβ , (5.23)

h(1)
ν
α
= ηνβh

(1)
βα , (5.24)

Generally the Christoffel symbols for a metric connection are given by,

Γµ
ρσ =

1

2
gµλ (∂ρgσλ + ∂σgλρ − ∂λgρσ) . (5.25)

Taking Eqs. 5.21, 5.22, the Christoffel connection can also be decomposed
into terms of order i which we write as (i)Γ

µ
ρσ. Explicitly:

(0)Γ
µ
ρσ = 0 , (5.26)

(1)Γ
µ
ρσ =

1

2
ηµλ

(
∂ρhσλ

(1) + ∂σhλρ
(1) − ∂λhρσ

(1)
)
, (5.27)

(2)Γ
µ
ρσ =

1

2
ηµλ

(
∂ρhσλ

(2) + ∂σhλρ
(2) − ∂λhρσ

(2)
)

− 1

2
hµλ(1)

(
∂ρhσλ

(1) + ∂σhλρ
(1) − ∂λhρσ

(1)
)
. (5.28)

The perturbed geodesic equation can then be written as,

− d

dλ
(kµ + lµ + qµ) = ((1)Γ

µ
ρσ + (2)Γ

µ
ρσ) (k

ρ + lρ + qρ) (kσ + lσ + qσ) .(5.29)

By collecting terms at each order:

d

dλ
kµ = 0 , (5.30)

d

dλ
lµ = − (1)Γ

µ
ρσk

ρkσ , (5.31)
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d

dλ
qµ = − (2)Γ

µ
ρσk

ρkσ − (1)Γ
µ
ρσ(k

ρlσ + kσlρ) , (5.32)

Now, the photon propagation time between observer and source is,

∆prop =

∫
dx0

dλ
dλ

=

∫
k0dλ+

∫
l0dλ+

∫
q0dλ

= ∆R +∆S +∆
(2)
S (5.33)

where ∆
(2)
S labels the higher (second) order curvature time delay. Within the

PK framework, one can derive analytical expressions for the evolution of ∆R,
∆S in terms of the system orbital parameters as (Shapiro 1964; Blandford &
Teukolsky 1976; Damour & Deruelle 1986; Zhang & Saha 2017),

∆R = α̃ (cosE ′ − e) + β̃ sinE ′ , (5.34)

∆S = 2 ln

[
1 + e cos f

1− sin i sin (ω + f)

]
, (5.35)

where i is the inclination with respect to the observer, defined via Eq. 3.36,
ω is the angle of periapsis and f the true anomaly, with

α̃ = a⋆ sin i sinω , (5.36)

β̃ =
(
1− e2

)1/2
a⋆ sin i cosω . (5.37)

Similar to deriving the Einstein delay in the previous section, we do not use
these expressions explicitly but instead proceed via an equivalent route to
express the time delays in terms of coordinates rather than orbital parameters.
To do this, we first need expressions for l0, q0 (k0 is trivially = 0). Explicitly
each of the tensors relevant for our calculations are:

ηµν = ηµν = diag(−1, 1, 1, 1) (5.38)

hµν = diag(−2Φ,−2Φ,−2Φ,−2Φ) (5.39)

h(2)µν =


−2Φ2 0 0 0

0 Φ2(1 + n1n1) Φ2n1n2 Φ2n1n3

0 Φ2n1n2 Φ2(1 + n2n2) Φ2n2n3

0 Φ2n1n3 Φ2n2n3 Φ2(1 + n3n3)

 (5.40)
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where Φ = −1/rh and nj = δjkn
k, nj = xj/rh.

Now for these metric perturbations the temporal term of the Christoffel con-
nection at first order from Eq. 5.27 is:

(1)Γ
0
ρσ =

1

2
η0λ

(
∂ρhσλ

(1) + ∂σhλρ
(1) − ∂λhρσ

(1)
)

(5.41)

=
1

2
η00

(
∂ρhσ0

(1) + ∂σh0ρ
(1) − ∂0hρσ

(1)
)
, (5.42)

whilst at second order from Eq. 5.28:

(2)Γ
0
ρσ =

1

2
η0λ

(
∂ρhσλ

(2) + ∂σhλρ
(2) − ∂λhρσ

(2)
)

(5.43)

− 1

2
h0λ(1)

(
∂ρhσλ

(1) + ∂σhλρ
(1) − ∂λhρσ

(1)
)
. (5.44)

Now, both η0λ and h0λ are only non-zero for λ = 0. Therefore we can write

(2)Γ
0
ρσ =

1

2
η00

(
∂ρhσ0

(2) + ∂σh0ρ
(2) − ∂0hρσ

(2)
)

− 1

2
h00(1)

(
∂ρhσ0

(1) + ∂σh0ρ
(1) − ∂0hρσ

(1)
)
.

Now, the ∂0 terms are always = 0 since everything we are dealing with here is
stationary (i.e. time independent). Therefore

(2)Γ
0
ρσ =

1

2
η00

(
∂ρhσ0

(2) + ∂σh0ρ
(2)
)

− 1

2
h00(1)

(
∂ρhσ0

(1) + ∂σh0ρ
(1)
)
.

It is then immediately obvious by comparing with Eqs. 5.39, 5.40 that

(2)Γ
0
ρσ = 0 . (5.45)

It follows that the derivatives of the tangent vectors as defined by Eq, 5.32
5.31 are then,

d

dλ
l0 = − (1)Γ

0
ρσk

ρkσ (5.46)

= −2k(k̄ · ∇̄Φ) , (5.47)

d

dλ
q0 = − (1)Γ

0
ρσ(k

ρlσ + kσlρ) (5.48)

= −2
(
l0(k̄ · ∇̄Φ) + k0(l̄ · ∇̄Φ)

)
(5.49)

= −2
(
−2kΦ(k̄ · ∇̄Φ) + k(l̄ · ∇̄Φ)

)
(5.50)

= −2k
(
−2Φ(k̄ · ∇̄Φ) + (l̄ · ∇̄Φ)

)
. (5.51)
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We can then integrate each of these over the background path,

l0 = −2k

∫
(k̄ · ∇̄Φ)dλ (5.52)

= −2k

∫ (
dx̄

dλ
· ∇̄Φ

)
dλ (5.53)

= −2k

∫ (
∇̄Φ · dx̄

)
(5.54)

= −2k

∫
(dΦ) (5.55)

= −2kΦ (5.56)

q0 = −2k

∫
−2Φ(k̄ · ∇̄Φ)dλ (5.57)

= 4k

∫
Φ

(
dx̄

dλ
· ∇̄Φ

)
dλ (5.58)

= 4k

∫
Φ
(
∇̄Φ · dx̄

)
(5.59)

= 4k

∫
Φ (dΦ) (5.60)

= 2kΦ2 (5.61)

where we can set the constant of integration easily since we require q0 = 0

when Φ = 0. With expressions for l0, q0 established, we can then write the
propagation time between two points r1, r2 from 5.33 as,

∆prop =

∫
ds− 2

∫
Φds+ 2

∫
Φ2ds

= |r2 − r1|+ 2

∫
1

|r|
ds+ 2

∫
1

|r|2
ds (5.62)

where ds denotes the unperturbed background path. Considering the second
integral term (i.e. the Shapiro delay, ∆S), we can parameterize in terms of t
such that,

r = r1 + ût , (5.63)

where û is the unit vector,

û =
r2 − r1
|r2 − r1|

, (5.64)
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and t ∈ [0, |r2 − r1|]. With this parameterization, ds = |û|dt and so,

∆S =

∫
1

|r1 + ût|
dt

=

∫
1√

|r1|2 + t2 + 2tr1 · û
dt . (5.65)

Performing the integral gives,

∆S = [ln (t+ r1 · û+ |r1 + ût|)]t=|r2−r1|
t=0 , (5.66)

and so,

∆S = ln

(
|r2 − r1|+ r1 · û+ |r2|

r1 · û+ |r1|

)
. (5.67)

Using the same parametrization for the quadratic term, it follows that

∆
(2)
S =

[
1

ζ
arctan

(
t+ r1 · û

ζ

)]t=|r2−r1|

t=0

(5.68)

=
1

ζ
arctan

(
|r2 − r1|+ r1 · û

ζ

)
− 1

ζ
arctan

(
r1 · û
ζ

)
(5.69)

with ζ =
√
|r1|2 − (r1 · û)2 Completely, the propagation time along a straight

line between two points in the PK framework at second order is then,

∆prop = |r⃗2 − r⃗1|+ 2 ln

(
|r⃗2 − r⃗1|+ r⃗1 · û+ |r⃗2|

r⃗1 · û+ |r⃗1|

)
(5.70)

=
1

ζ
arctan

(
|r2 − r1|+ r1 · û

ζ

)
− 1

ζ
arctan

(
r1 · û
ζ

)
, (5.71)

where the first term corresponds to the Roemer delay and the second and third
terms to the Shapiro delay at first and second order respectively. A linear
decomposition of the propagation time in this way is not generally possible for
the relativistic solutions, instead being found by solving Eq. 2.39. Therefore
going forward, we will consider the Roemer and Shapiro terms together in
terms of the general propagation delay ∆prop.

To explore the propagation delay according to the PK and relativistic solu-
tions we take a discrete sample of position points of an eccentric orbit. The
orbit is calculated by solving the Kerr orbital geodesic equations numerically.
The propagation delay between each sample point (i.e. the pulsar emitter)
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Fig. 5.2: (Left panel:) Orbital trajectories of a Galactic centre MSP with a∗ = 825rg, i =

76◦, ω = Ω = π/4 and eccentricities e = 0.7, 0.8, 0.9 (blue, green, orange lines respectively).

The scatter points are included as a reference for the right panels and label the initial, final,

middle and superior conjunction sample points (turquoise, purple, brown, red respectively)

The black cross labels the BH singularity. (Right panels:) The propagation timing delay for

each of the eccentric orbits, along with the errors between the PK and relativistic solutions

(δα,i(∆prop),δβ(∆prop)).For the middle two panels the dashed lines show the residual when

the PK lensing correction is included (see also Fig. 5.4 ). Significant timing residuals are

present between both δα,i(∆prop),δβ(∆prop) relative to typical radio pulsar timing precision.



5.2. Comparison with Post-Keplerian approximation 98

and the image plane of a distant observer (with Boyer Lindquist coordinates
R = 104,Θ = π/2,Φ = 0) can be calculated via the PK solution ( Eq. 5.71)
and the relativistic solutions (Eq. 2.39.) Obviously, since the MSP spin
does not influence the photon propagation, δγ(∆prop) = 0 (however, the MSP
spin does generally influence the orbital evolution of the pulsar which in turn
will influence the evolution of ∆R. We will return to this point later.) We
consider the orbit of a Galactic centre MSP with semi-major axis a∗ = 825rg,
ω = Ω = π/4 and ι = 20◦ at eccentricities e = 0.7, 0.8, 0.9. The spin parame-
ter is a = +0.6. Since the observers image plane is in the positive x-direction,
this corresponds to an inclination with respect to the observer of i = 76◦.
The propagation delay, along with the associated orbital trajectory, for this
system is shown in Fig. 5.2. Since generally pulsar timing can only detect
variations in the light travel time, rather than the absolute travel time itself,
we normalise ∆prop with respect to its initial value. The propagation delay
evolves on the scale of hours over the course of the orbit, with more eccentric
orbits having a slightly greater magnitude of variation. The error in the PK
solutions at first and second order compared to the Schwarzschild relativistic
solutions, δα,i(∆prop) evolve over the orbit and reaches an extrema when the
pulsar is on the far side of the BH. In this case the photon tray traverses a more
strongly curved spacetime and is subject to a greater degree of strong-field
time dilation and gravitational lensing, both of which drive the PK solutions
away from the relativistic solution. For this orientation, more eccentric orbits
have greater extrema than less eccentric orbits since their far side points are
at shorter orbital radii. The additional propagation delays induced by the BH
spin, δβ(∆prop), follow a similar general evolution to δα(∆prop), with greatest
variations found for eccentric orbits on the far side of the BH. Variations here
are of the order ∼ 0.1 s. Whilst for both δα(∆prop) and δβ(∆prop) are greatest
for far side sample points, the error remains significant over the entire orbit,
especially given the high timing precision of pulsar timing (10− 100 ns).

Clearly the exact propagation time is going to depend upon the ray path. To
first order in the PK solution rays travel in straight lines. Such an approxima-
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tion may be appropriate for longer orbits and emission on the near side of the
BH, but for more compact orbits where the pulsar is on the far side of the BH
it is also important to account for the gravitational lensing which is naturally
included by the relativistic solution. Lensing introduces two additional timing
delays with the PK framework. The first is a geometrical delay ∆geo due to
the different spatial path traversed given by Rafikov & Lai (2006),

∆geo = 2

(
∆R±

RE

)
, (5.72)

where RE is the Einstein radius and ∆R± = |R± −Rs| for image position R±

and ‘flat space position’ Rs (see Rafikov & Lai 2006, for a further explana-
tion of these terms). The second delay is due to a correction to the Shapiro
delay since the lensed ray traverses a different gravitational potential than the
unlensed ray. Indeed, for edge on orbits Eq. 5.35 diverges when f = π/2

since this ray path involves going directly through the BH singularity, which
is evidently unphysical. At first order within the PK framework, the Shapiro
delay is modified due to lensing as (Rafikov & Lai 2006),

∆S,L = 2 ln

 a∗(1− e2)√
r2|| +R2

± − r||

 , (5.73)

where r|| is the orbital separation projected along the line of sight. The net
propagation delay then becomes

∆prop = ∆R +∆S,L +∆geo . (5.74)

The linear weak field description of lensing involves decomposing the ray tra-
jectory into two parts. The first is the radial ray which travels from the image
plane to the lensing plane. Upon reaching the lensing plane the ray is deflected
and travels again in a straight line towards the emitter (see Fig. 5.3). The
total propagation time is then the sum of the propagation time along these
two linear trajectories. We can therefore the describe the PK time propagation
delay taking in account lensing by evaluating Eq. 5.71 along the two relevant
trajectories and taking the sum. The effect of the inclusion of PK lensing cor-
rections on δα,i(∆prop)is shown in Figs. 5.2 and 5.4. The inclusion of lensing
corrections significantly improves the PK solution, with the peak magnitude
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x = 0 +x−x

Fig. 5.3: Schematic of weak-field, linear gravitational lensing.

of δα(∆prop) reducing to O(0.1) for both the first and second order solutions,
with the second order solution generally exhibiting lower magnitudes than the
first. However, this error is still far in excess of the timing precisions that can
be achieved via pulsar timing. It is also worth noting that whilst lensing is
most prominent for points on the far side of the BH with respect to the ob-
server, due to the BH spin the rays are deflected from their Minkowski straight
line geodesics even on the near side, if sufficiently close to the BH.
As mentioned previously, the MSP spin will generally couple to the back-
ground spacetime and so influence the orbital evolution, driving it away from
geodesic motion. These positional variations will in turn influence the evolu-
tion of the Roemer delay. The Roemer delay is generally given as,

∆R(τ) = Ô · x(τ) (5.75)

where Ô is the position unit vector of the observer and x(τ) the location of
the orbiting pulsar. In this way positional variations will imprint on the pulsar
timing residuals. The difference in the Roemer delay between a non-spinning
and a spinning pulsar, i.e. δγ(∆R), is presented in Fig. 5.5. Generally the
MSP spin-curvature coupling manifests in two ways: an additional component
perpendicular to the orbital plane (e.g. Singh et al. 2014) and also a contri-
bution to the precession of periastron (which is itself a PK parameter. See
also e.g. Li et al. 2019). We consider the same eccentric systems and observer
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Fig. 5.4: Enhanced view of the two middle right panels of Fig. 5.2. Error between the PK

and Schwarzschild propagation delays δα,i(∆prop), for each of the eccentric systems when

lensing corrections are included (dashed lines) and without. Lensing significantly improves

the solution, but marked residuals remain. The typical magnitude of δα,2(∆prop) are less

than δα,1(∆prop), but even in the case where we consider the second order solution with

lensing, significant timing discrepancies are present.
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orientation as used previously (a∗ = 825rg, i = 76◦ etc.). For these orbital
parameters, δγ(∆R) varies periodically, with rapid, large magnitude variations
as the pulsar goes through periapsis. For the most eccentric systems (e = 0.9)
the extrema of δγ(∆R) are of magnitude a few µs, whilst for less eccentric sys-
tems the magnitude of these variations drops markedly (e.g. |δγ(∆R)| ∼ 0.1µs
for e = 0.8.) This is on account of more eccentric orbits probing a stronger
gravitational field as they pass through periapsis and so the curvature cou-
pling with the MSP spin becomes more significant. Whilst the magnitude
of these spin-induced variations are much smaller than the lower order (δα,β)
differences there are a few points to consider. Firstly, for the most eccentric
orbits these variations are within the timing precision of the next generation
of radio facilities. Consequently, in order to use these systems for precision
parameter estimation of the central BH such small variation may need to be
included in the residuals timing solution. Moreover, whilst we have focused
on systems with P ∼ 0.1 years, for more compact orbits or different observer
orientations this spin induced variation will be more pronounced. For stronger
gravitational fields - precisely the region in which we wish to test GR - such ef-
fects will be more significant. Since the error between the two solutions grows
with time upon repeated periapsis passages, systems which are observed over
longer timescales may also need to correct for this effect.

5.3 Discussion

Estimates based on PK frameworks suggest that via pulsar timing the pa-
rameters such as the mass and spin of the BH at the Galactic centre can be
determined to a precision ∼ 10−5 − 10−3 (Liu et al. 2012; Psaltis et al. 2016).
Some authors consider consistent timing campaigns (Liu et al. 2012) whilst
others (Psaltis et al. 2016) consider instead dense observations close to peri-
apsis. Both approaches have merit, however observations close to periapsis
seems highly desirable for the purposes of minimizing external perturbations
(Merritt et al. 2010) and maximizing the value of the gravitational potential
ϵ which can be investigated.
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Fig. 5.5: Error in the Roemer delay between the MPD and Kerr solutions. We consider

a Galactic centre MSP with a∗ = 825rg, i = 76◦, ω = Ω = π/4 and eccentricities e =

0.7, 0.8, 0.9 (blue, green, orange lines respectively). Rapid, large magnitude variations are

observed as the pulsar goes through periapsis, with the most significant discrepancies -

O(µs) - for the most eccentric systems which probe the strongest gravitational fields.
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However, our results highlight that these regions that are most scientifically
attractive (c.f. tests of astrophysics and fundamental physics) are precisely
the regions where the accuracy and appropriateness of the PK framework is
lacking. Any pulsar timing model is fundamentally a mapping between the
proper time of the pulsar and the time recorded by the observer, τ → t. In
these regions of high spacetime curvature, the convolution of spin, relativistic
and gravitational effects become more prominent and the naive PK framework
fails to account for these higher-order effects and the τ → t mapping does not
hold. In particular:

• For a P = 0.1 year orbit at the Galactic centre, the error in the Einstein
delay according to the PK framework is of the order ∼ 10s of seconds
compared to the relativistic (Schwarzschild) solution. This error grows
with time; after 5 orbits with eccentricity e = 0.9, δα(∆E) = 55s. Higher
order corrections in the time delay due to the BH spin and the pulsar
spin are of the order 10−1 and 10−4 seconds respectively (see Fig. 5.1).
The most severe errors are seen at periapsis when the pulsar is moving
fastest and the gravitational potential is strongest.

• The propagation delay for a similar eccentric Galactic centre system,
inclined with respect to the observer at i = 76◦ varies on the order of
hours over the course of a single orbit. The error in the PK solution
is δα(∆prop) ∼ O(s) whilst effects due to the BH spin introduce errors
δα(∆prop) ∼ O(0.1s) (Fig. 5.2). For this particular orbital configuration,
these errors are most drastic for the more eccentric orbits and the largest
magnitude variations are seen when the pulsar is on the far side of the
BH; in this case the photon ray must traverse the most strongly curved
spacetime.

• The introduction of first order linear lensing corrections which account
for the geometrical time delay ∆geo and the modified Shapiro delay ∆S,L

dramatically improves the PK propagation solution, reducing δα(∆prop)

to∼ O(0.1s) (see Fig. 5.4) . However, this error is still much greater than
typical timing precisions enjoyed by pulsar radio timing. Consequently
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higher order corrections will be needed for strong field systems if viewed
from a sufficiently ‘edge on’ angle. Even for emission on the near side of
the BH, the BH spin will cause an additional lensing effect.

• The coupling of the pulsar spin to the background spacetime will cause
the orbital dynamics to divert from that of pure geodesic motion. Such
a variation on the coordinate variables will manifest in a change in the
evolution of the Roemer delay. This effect is small, with δγ(∆R) ∼ 1µs
for a system with P = 0.1 years and e = 0.9, observer at i = 76◦, but
may still be significant over longer timescales, for more compact systems,
or dense observations close to periapsis.

Evidently in the gravitational strong-field there is significant discrepancy be-
tween the PK and GR solutions across all of the parameters considered in this
work. The timing delay according to the PK solution disagrees with the GR
solution by at least a few µs in all parameters, up to discrepancies as larges
as a few s and naturally this error is more severe as relativistic effects become
more prominent; i.e. for highly spinning BHs, measurements near periapsis or
rays which traverse a spacetime which is highly curved. Consequently, whilst
the quoted precisions with which the BH parameters can be determined via
pulsar timing (e.g. BH mass to precision 10−5) may be achievable, this work
suggests that in EMRB systems which probe the strong-field, higher-order
relativistic effects should be included in a complete timing model to accu-
rately determine the prospects of using PSRs to test GR. Indeed, the EMRBs
discussed in this work are the progenitors of the key LISA target Extreme
Mass Ratio Inspirals (EMRIs), where weak-field methods are recognized as
being entirely inadequate (Barack & Pound 2019).

The disagreement between the PK and GR solutions in strong-field regimes
motivates the necessity of a consistent, relativistic,frequency-dependent tim-
ing model (e.g. Kimpson et al. 2019a). In developing this work, it would be
highly desirable to use such a strong-field PSR-timing model to generate an
accurate, relativistic, set of mock data. The ToAs generated by this relativis-
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tic model can then be used for a consistent covariance analysis (e.g. Liu et al.
2012), fed into a pulsar timing software package (e.g. TEMPO2, Hobbs et al.
2006), allowing the current pulsar data analysis algorithms to be assessed
in the strong-field (c.f. lack of detections in the Galactic Centre) and allow
for quantitative estimates on the precision to which the BH parameters can
be recovered. We defer this study for future work. In addition, whilst these
results are indicative of the appropriateness or otherwise of a PK timing model
for MSP-E/IMRBs, for a more definitive work it is necessary to consider a
consistent phase-connected solution. We have also not thoroughly explored
the whole parameter space instead just considering some typical example sys-
tem; determining for what sort of set of orbital parameters relativistic effects
start to influence the timing solution would also be a worthwhile enterprise.

Beyond the failure of the PK framework in the strong-field, there also exist
additional corrections that will influence the photon ToA and pulse profile,
such as spatial and temporal dispersion (Kimpson et al. 2019b) precession
of the spin axis and relativistic aberration. Being able to accurately model
the photon t − ν signal in relativistic regimes is essential to maximize the
scientific return of the detection of pulsar systems (including conincident
multimessenger detections, e.g. Kimpson et al. 2020a), realistically estimate
the scientific prospects (e.g. to what precision can we hope to determine the
BH mass?) and compare pulsar timing as a GR probe with complementary
methods (e.g. Event Horizon telescope, stellar orbits, gravitational wave as-
tronomy). It is worth noting however that the strengths of the PK method
lie beyond the timing accuracy; the advantage of PK is their computational
simplicity and the straightforward way in which deviations from GR can be
incorporated. The numerical methods discussed in this work are naturally
much more computationally demanding than the analytical PK solutions,
however it is conceptually straightforward to develop the numerical approach
beyond the GR solution and include beyond GR effects via the use of some
alternative (non-Kerr) metric e.g. the quasi-Kerr metric of Glampedakis &
Babak (2006) and used in e.g. Kimpson et al. (2020b).
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In addition to correctly modelling strong-field PSR-EMRBs, another im-
portant consideration is the best environment to attempt to use PSRs to
undertake precision, strong-field GR tests. Whilst much of the cited literature
focuses on the Sgr A* BH, owing to its high mass-to-distance ratio, obser-
vations of the Galactic centre are made all the more difficult since it is not
a clean environment. Material along the line of sight can cause scattering
which results in temporal smearing of the pulse profile, whilst ionized gas can
decrease the received flux density. Indeed, since the GC pulsar population
is expected to be dominated by MSPs, such environmental effects mean that
previous GC searches have been insensitive to the pulsar population (Mac-
quart & Kanekar 2015; Rajwade et al. 2017). Perhaps unsurprisingly then,
only one pulsar - the magnetar PSR J1745-29 (Kennea et al. 2013) - has been
detected within 10’ of Sgr A*.

Whilst the GC remains an important target, potentially more fruitful hunting
grounds are globular clusters and dwarf elliptical galaxies. These systems
have exceptionally high stellar densities - up to 106 stars per cubic parsec in
the central regions (Freire 2013). Due to the effects of mass segregation and
dynamical friction, heavy objects like neutron stars are expected to sink to
the centre of these stellar clusters. It is observed that per unit mass there are
up to 103 more pulsars in globular clusters than in the Galactic disk (Freire
2013). Millisecond pulsars are thought to evolve from low mass X-ray binaries
and globular clusters are known hosts of abundant LMXB populations. Con-
sequently MSPs comprise a significant fraction of the globular cluster pulsar
population (Camilo & Rasio 2005; Ransom 2008). Some notable clusters
are Terzan 5 with 37 pulsars (Cadelano et al. 2018a) and 47 Tucanae which
is known to host 25 pulsars, all of which have spin periods less than 8ms
(Freire et al. 2017). Observations of X-ray emission from globular clusters
led to the first suggestion that globular clusters could host central BHs of
intermediate mass (103 − 105M⊙ Silk & Arons 1975; Colbert & Miller 2006;
Lin et al. 2018). Moreover, extrapolation to the low-mass end of the “M -σ
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relation” (Ferrarese & Merritt 2000; Gebhardt et al. 2000) also suggests that
globular clusters should host IMBHs (Sadoun & Colin 2012; Graham & Soria
2019). Suggestive evidence for IMBHs is put forth via observational radiative
accretion signatures (Ulvestad et al. 2007, e.g.) and stellar kinematics (e.g.
Gebhardt et al. 2002; van der Marel & Anderson 2010; Feldmeier et al. 2013),
but other studies dispute this as evidence for IMBH (e.g. Miller-Jones et al.
2012; Baumgardt 2017). For a complete review and discussion on the current
observational evidence for IMBH, see Mezcua (2017).

If globular clusters and dwarf galaxies do host IMBH, then the large stellar
densities and expected pulsar population make these ideal, clean environments
to search for PSR-BH systems from the perspectives of testing GR. As dis-
cussed, there is expected to be a large fraction of MSP which are highly de-
sirable from the perspective of precision astronomy, given their enhanced spin
period (i.e. the clock is more precise) and their long term stability (i.e. the
clock is more accurate) owing to the lack of glitches - indeed the canonical
pulsars are dominated by timing noise and rotational instability, whilst MSP
timing models are white noise dominated (Verbiest et al. 2008) and so stand
most to gain from the increased sensitivity of the next generation of radio
telescopes. Moreover, whilst pulsars in globular clusters are more distant and
so more faint, they are also localised in central regions, making it easier for
deep radio observations, whilst the increased sensitivity of the next generation
of radio telescopes will make it easier to detect their flux.

5.4 Conclusion

In summary, we have calculated the Einstein delay and the propagation delays
for a typical MSP-E/IMRB system using a fully general relativistic method
which accounts for both strong-field curvature effects on the photon spacetime
trajectory and the impact of extended spinning body dynamics on the pulsar
orbital motion. We have then compared this with the the linear, weak-field
PK solution which is typically used in pulsar studies. We have shown that
there exists a significant discrepancy between the post-Keplerian timing delays
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and the fully general relativistic solutions in strong-field regimes of gravity.
Accounting for this discrepancy is essential for both detecting MSP-E/IMRB
systems and using them as probes of strong-field GR.



Chapter 6

Gravitational Radiation from Pulsar

Systems

We have seen how there is a huge scientific return from electromagnetic radio
observations of an MSP-E/IMRB. An alternative avenue for investigating
these systems is through gravitational radiation. The measurement of this
radiation provides a complementary channel for precision tests of GR and
astrophysics. Due to the time variation of the mass quadrupole moment of
the gravitational field, a compact object in an elliptical orbit around a mas-
sive BH will emit gravitational radiation, which in turn causes the orbit to
slowly decay and circularize (Peters 1964). These systems which continuously
emit gravitational radiation and have an associated inspiral motion are know
as Extreme Mass Ratio Inspirals (EMRIs, Babak et al. 2017; Berry et al.
2019). EMRIs are a major class of target for the future observations by the
next generation of space-based gravitational wave detectors such as the Laser
Interferometer Space Antenna (LISA, Amaro-Seoane et al. 2007). EMRIs are
particularly prized scientific targets for the same reasons as MSP-EMRBs;
precision measurements in the strong-field regime, although in addition EM-
RIs inhabit a highly dynamical spacetime.

The typical orbital periods considered for MSP-EMRBs (∼ 0.1 years) are not
sufficiently short to continuously radiate gravitational radiation in the LISA
frequency band (∼ mHz). Moreover, whilst there is a large degree of uncer-
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tainty in the expected EMRI rate - with a variance over 3 orders of magnitude
from a few per year up to many 1000s (Babak et al. 2017) - EMRIs which are
detected by LISA are expected to primarily consist of systems in which the
smaller compact object is a BH rather than a neutron star. This is simply due
to BHs typically having larger masses than NSs, which leads to both stronger
GW signals and an increased effectiveness of mass segregation during EMRI
formation, although the expected rate of NS in EMRIS can be significantly
increased should they form in situ, close to the central massive black hole
(Aharon & Perets 2016). Consequently whilst a coincident, multimessenger,
electromagnetic and gravitational detection of an ‘MSP-EMRI’ is possible, it
remains unlikely. However, a MSP in an E/IMRB will emit a burst of radia-
tion as it passes through periapsis (Rubbo et al. 2006; Yunes et al. 2008; Berry
& Gair 2013b). The coincident observation of the continuous electromagnetic
MSP timing signal and the burst gravitational radiation from a MSP-EMRB
offers a unique apparatus for multimessenger astronomy in strong-field envi-
ronments. In addition, the continuous pulsar electromagnetic signal may aid
in the detection of the accompanying gravitational radiation. Moreover, the
burst gravitational radiation may in turn influence the received radio timing
signal. Whilst burst waveforms are typically considered less informative than
continuous EMRI waveforms, a multimessenger observation of a pulsar and
GW burst may compound the potential scientific return.

In this work we explore the potential for the detection of burst gravita-
tional radiation from typical MSP-EMRBs, of the sort typically considered for
precision tests of strong-field GR (e.g. Liu et al. 2012). We calculate the gravi-
tational burst waveforms and signal-to-noise ratio (SNR) of a MSP-EMRB for
generic orbits (i.e not restricted to e.g. equatorial plane, circular motion, spin-
alignment). Firstly the waveforms are constructed via the semi-relativistic
numerical kludge (NK) approach (Babak et al. 2007; Berry & Gair 2013b)
where we account for the relevant spin-spin, spin-orbit and spin-curvature
couplings on the orbit via the described MPD framework. With the time-
domain waveforms determined, it is then possible to calculate the burst SNR
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via Fourier methods from a MSP-EMRB, and explore the prospects for their
detection and the synergy between electromagnetic and gravitational wave
observations. In addition, the GW emission might have an impact on the
pulsar timing signal and so we explore the implications for the detection and
modelling of MSP-EMRBs.

This chapter is organized as follows.In Section 6.1 we then review the methods
for mapping the orbital motion to the gravitational waveforms and determine
the waveforms for typical MSP-EMRBs that are used as radio timing GR
probes. In Section 6.2 we go on calculate the burst SNR of these systems for
the most recent LISA configuration and noise model. Discussion and conclud-
ing remarks are made in Section 6.3.

6.1 Constructing the Waveforms

The generation of sufficiently accurate waveforms from compact objects around
a massive BH companion is currently a major enterprise in order to realise
the scientific potential of LISA-EMRIs (e.g. Chua & Gair 2015; van de Meent
2017; Pound 2017a; Barack & Pound 2019). Via perturbation theory in the
extreme mass ratio limit, waveforms accurate to first-order can be calculated
accounting for the self-force or back-reaction effects of the GW radiation on
the orbit. In order to accurately track the orbit over the large number of
cycles that are expected to be observable with ERMIs (∼ 104), calculations
accurate to second order are required and work in this area is ongoing (Pound
2017b; Moxon & Flanagan 2018). Given both the theoretical complexity and
computational cost of calculating consistent waveforms in this way, alternative
‘fast- yet-accurate’ models have been developed by a number of authors (e.g.
Barack & Cutler 2004; Babak et al. 2007; Chua et al. 2017). For our purposes,
we adopt the Numerical Kludge (NK) approach of Babak et al. (2007). The
GW ‘recipe’ within the NK framework has two primary ingredients. First the
orbital trajectory of the object is specified. Typically the motion is described
as that of a test body following a geodesic on a Kerr background spacetime.
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However, as discussed this neglects the extended nature of real astrophysical
pulsars and the associated spin couplings. For this work we go beyond the
point-particle geodesic approximation and consider generic orbits of extended
objects around a Kerr BH, specifying the orbital trajectory via the MPD
equations outlined in the preceding section which properly account for the
dynamical spin effects. Once the orbital motion has been specified, the Boyer-
Lindquist coordinates of the background curved spacetime are mapped to
flat-space spherical polar coordinates. The waveform can then be constructed
from the well-known expressions for gravitational waves from flat-space tra-
jectories (e.g. Misner et al. 1973).

Naturally the NK approach is not self-consistent; the gravitational radiation
is generated assuming a flat background spacetime whilst the orbital motion
instead assumes a curved Kerr geometry (with, in our case, associated rela-
tivistic spin couplings). However it does exhibit a remarkable agreement with
the more computationally expensive perturbative methods. Specifically, the
overlap between the NK and the more intensive, accurate waveforms is > 95%

across most of the parameter space. Babak et al. (2007) offer the rule of thumb
that NK waveforms are appropriate as long as the periapsis distance is greater
than ∼ 5rg. Since we are concerned with pulsars on typical orbits that will be
used for radio timing tests of GR, we will exclusively deal with orbits rp > 5rg.
However, it is worth noting that this rule of thumb was considered for orbits
which continually emit in the LISA frequency range and so need to be tracked
over a large number of cycles. For single bursting passages it seems reasonable
that the NK approach could be pushed below this limit.The numerical kludge
approach is also applied to eccentric orbits in Berry & Gair (2013b).

6.1.1 Time domain waveforms

Within the NK framework, gravitational waves are described as a perturbation
(hµν) on a background flat (Minkowski, ηµν) spacetime,

gµν = ηµν + hµν (6.1)
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The trace-reversed metric perturbation is in turn given by,

h̄µν ≡ hµν − 1

2
ηµνηµνhµν . (6.2)

Within the Lorentz or Hilbert gauge (h̄µα,α = 0) we then have the Einsteinian
wave-equation,

□h̄µν = −16πT µν , (6.3)

with 3-space solution,

h̄jk(t,x) = 4

∫
T jk(t− |x− x′|,x′)

|x− x′|
d3x′ , (6.4)

where (t,x) is the location of the observer and x′ an integration variable (Mis-
ner et al. 1973). It can be shown that to octupole order that (Bekenstein 1973;
Press 1977)

h̄jk =
2

r

[
Ïjk − 2niS̈

ijk + ni

...
M

ijk
]
, (6.5)

where ni is the radial unit vector pointing to the observer and Ijk, Sijk, M ijk

are the mass quadrupole, current quadrupole and mass octupole respectively,
given in the flat-spacetime approximation as

Ijk = µx′jp x
′k
p , (6.6)

Sijk = viIjk , (6.7)

M ijk = x′ipI
jk , (6.8)

where (tp,xp) is the location of the orbiting body and vi ≡ dx′i/dt′p. In or-
der to calculate the second and third derivatives of the multipole moments
necessary for calculating Eq. 6.5 we use a numerical finite difference scheme
(Fornberg 1988).

If we take the transverse traceless (TT) gauge (hµ0 = 0, hij,j = 0, hkk = 0)
then the waveform received by the observer is given as,

hjkTT =
1

2


0 0 0

0 h+ h×

0 h× −h+

 (6.9)
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where h+ and h× are the ‘plus’ and ‘cross’ polarisations where,

h+ = hΘΘ − hΦΦ , (6.10)

h× = 2hΘΦ , (6.11)

and,

hΘΘ = cos2Θ
[
hxx cos2Φhxy sin 2Φ + hyy sin2Φ

]
+ hzz sin2Θ

− sin 2Θ [hxz cosΦ + hyz sinΦ]

hΦΘ = cosΘ

[
−1

2
hxx sin 2Φ + hxy cos 2Φ +

1

2
hyy sin 2Φ

]
+ sinΘ [hxz sinΦ− hyz cosΦ]

hΦΦ = hxx sin2Φ− hxy sin 2Φ + hyy cos2Φ .

Example burst time-domain waveforms from a pulsar going through periapsis
at the Galactic centre are presented in Figure 6.1. Variations in the orbital pa-
rameters naturally influence the resultant waveform; e.g. more eccentric orbits
have a more localised burst with greater amplitudes whilst for more circular
orbits the waveform is more extended. This will have implications for the SNR
and detectability of GW bursts from MSP-EMRBs. The target pulsars have
typical orbital periods of ∼ 0.1 year and so over a year of observation there
will be multiple GW bursts as the PSR repeatedly passes through periapsis,
as presented in Fig. 6.2. As the observer angle changes, so too does the wave
amplitude, particularly for the h× mode.

Before proceeding further, as a sanity check it is desirable to compare our
numerical kludge waveforms with some accurate, analytical template. For the
specific case of circular and equatorial orbits, in the distant limit, it is possible
to derive exact analytical expressions for the h+,× waveforms as,

h+(t, r, θ, ϕ) = 2
µ

r

M

r0
(1 + cos2 θ) cos[2ω0(t− r∗) + 2(ϕ0 − ϕ)] , (6.12)

h×(t, r, θ, ϕ) = 4
µ

r

M

r0
cos θ sin[2ω0(t− r∗) + 2(ϕ0 − ϕ)] , (6.13)
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Fig. 6.1: Top panel: An example gravitational burst waveform from a 1.4M⊙ mass object

with orbital parameters a = 0.6, e = 0.9, P = 0.1 years, ι = 15 degrees, Ω = 0 radians and

the observer is situated at Θ = Φ = 0. The BH has mass 4.3× 106M⊙ and spin parameter

a = 0.6. Both the + (blue) and × (orange) polarisations are presented. Bottom panel: As

top panel but for a = 0.85, e = 0.8, ι = 25, Ω = 3π/4. The observer angles and orbital

period are unchanged from the first case. The waveform is more extended compared to the

more eccentric case, and the amplitude is reduced.
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(a) (b)

Fig. 6.2: Orbital system of a 1.4 M⊙ mass MSP with orbital parameters a = 0.6, e = 0.9,

P = 0.1 years, ι = 15 degrees, Ω = 0 radians (i.e. as in Fig. 6.1), observed over over

10 orbits (i.e. 1 year observation) (a) Orbital trajectory in the x − y plane (solid blue

line) a around a spinning black hole. Precession of apsis is clearly visible. (b) Waveforms

for Θ = 0, π/4, π/2 (top,middle,bottom panels respectively). The waveforms amplitude

decreases with increasing Θ. Again, both the + (blue) and × (orange) polarisations are

presented.
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for tortoise coordinate r∗, orbital angular velocity ω0 and orbital radius r0.
(Gourgoulhon et al. 2019). Turning ‘off’ the relativistic spin couplings of
the MPD formalism, we can then also describe a circular, equatorial or-
bital geodesic numerically and generated the associated waveforms. Following
Babak et al. (2007); Chua et al. (2017),we define the overlap between two
waveforms as,

O = (â|b̂) (6.14)

where â denotes a normalized unit vector such that

(â|â) = (b̂|b̂) = 1 (6.15)

and (â|b̂) denotes an inner product. The inner product is defined with respect
to the noise power spectral density Pn(f), which are both described in the
next section. Identical waveforms have O = 1 whilst for completely anti-
correlated signals O = −1 and O = 0 for orthogonal signals. To check the
accuracy of our MPD + NK approach, we take the circular, equatorial orbit
with r = 6rg and Θ = 0 (c.f. Fig 3 of Gourgoulhon et al. 2019) around a non-
spinning (a = 0) BH and generate the gravitational waveform numerically.
The trajectory and waveform are presented in Figure 6.3. To the eye the
numerical and analytical waveforms are completely overlaid and cannot be
resolved. More quantitatively, in double precision O = 1− 3× 10−16, i.e. the
waveforms are identical to machine precision. This is especially encouraging
since the r = 6 rg regime around the BH is explicitly the strong field regime.

6.2 Signal to Noise ratio
In order to establish whether the burst gravitational radiation from MSP-
EMRB system is detectable, it is necessary to calculate the burst signal to
noise ratio (SNR), ρ. The general inner product is defined,

(a|b) = 2

∫ ∞

0

ã∗(f)b̃(f) + b̃∗(f)ã(f)

Pn(f)
df , (6.16)

where f is the frequency and Pn(f) is the noise power spectral density (PSD,
Cutler & Flanagan 1994). The gravitational wave signal recorded by the de-
tector is a linear combination of the two polarisation modes, corrected for the
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Fig. 6.3: The gravitational waveforms in the time domain from equatorial circular orbital

motion (r = 6rg and Θ = 0) around a non-spinning (a = 0, Schwarzchild) BH. Both the

NK and analytical solutions are presented, but cannot be resolved due to the high degree

of overlap, O = 0.9999999999999997.
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the response functions F+,× of the LISA instrument,

h̃(f) = F+(Θ,Φ,Ψ, f)h̃+(f) + F×(Θ,Φ,Ψ, f)h̃×(f) , (6.17)

where Ψ is the polarisation angle. Denoting the sky and polarisation average
as ⟨⟩, the averaged GW signal is given by

⟨h̃(f)h̃∗(f)⟩ = R(f)
(
|h̃+(f)|2 + h̃×(f)|2

)
, (6.18)

where R is the instrument response function averaged over the sky (Θ,Φ) and
polarization angle (Ψ):

R(f) = ⟨F+(f)F
∗
+(f)⟩ = ⟨F×(f)F

∗
×(f)⟩ , (6.19)

see Robson et al. (2019) for details. Consequently, the effective SNR used in
this work is given by,

ρ2 = 4

∫ ∞

0

|h̃+(f)|2 + |h̃×(f)|2

Sn(f)
df , (6.20)

where

Sn(f) =
Pn(f)

R(f)
. (6.21)

This definition is also used for the study of GW from Galactic Centre objects
in Gourgoulhon et al. (2019).

6.2.1 LISA Noise Model

The instrument response function does not have a closed form expression, but
can be well fit as (Robson et al. 2019),

R(f) =
3

10

1

1 + 0.6(f/f∗)2
, (6.22)

and f∗ is the LISA transfer frequency. However, instead of this form we use
the exact response function as given by Robson et al. (2018). The LISA noise
PSD is given by

Pn(f) =
POMS

L2
+ 2(1 + cos2(f/f∗))

Pacc

(2πf)4L2
, (6.23)

for LISA arm length L. The optical metrology noise,

POMS = (1.5× 1011 m)2

[
1 +

(
2 mHz
f

)4
]

Hz−1 , (6.24)



6.2. Signal to Noise ratio 121

Parameter Value

α 0.171

β 292

γ 1680

κ 1020

fk 2.15 mHz

A 1.8× 1044/N

L 2.5 Gm

f∗ 19.09 mHz

Table 6.1: LISA instrumental specifications used in this work. The parameters describing

the Galactic confusion noise Sc(f) are taken from Robson et al. (2019) for a 1 year timescale.

We set the number of channels to be N = 2 and the transfer frequency is defined f∗ =

c/(2πL).

and the acceleration noise is,

Pacc = (3× 10−15 m s−2)2

[
1 +

(
0.4 mHz

f

)2
]

[
1 +

(
f

0.4 mHz

)4
]

Hz−1 . (6.25)

In addition to the instrumental noise, there is also an additional non-stationary
noise contribution from the population of compact galactic binaries. This noise
can be well described by the parametric function (Cornish & Robson 2017)

Sc(f) = Af−7/3e−fα+βf sinh(κf) [1 + tanh(γ(fk − f))]Hz−1 (6.26)

For our bursting sources we use with fit parameters relevant for observation
times less than 6 months, given in Robson et al. (2019) The characteristic
strain is defined,

h2c = f(Sn(f) + Sc(f)) (6.27)

The fundamental LISA instrumental specifications used in this work, along
with the relevant fit parameters are summarised in Table 6.1



6.2. Signal to Noise ratio 122

6.2.2 Windowing

In transforming the GW signal from the time domain to the frequency do-
main we are necessarily performing a Fourier transform on a finite signal.
As a consequence the signal in the frequency space exhibits spectral leakage;
extra components in the frequency regime, due to the fact that the time series
is not exactly zero valued at the edges of the time interval T over which the
Fourier transform takes place.

To counter the effects of spectral leakage we first multiply our GW time series
with a window function which tapers the signal to zero outside of the interval
T . For this work we adopt the Nuttal window with continuous first derivative
(Nuttall 1981):

w[n] = a0 − a1 cos

(
2πn

N

)
+ a2 cos

(
4πn

N

)
− a3 cos

(
6πn

N

)
, (6.28)

where N is the window length, 0 ≤ n ≤ N and (a0, a1, a2, a3) =

(0.355768, 0.487396, 0.144232, 0.012604). Whilst other choices of window func-
tion are available, the Nuttal window is both computationally inexpensive to
evaluate and exhibits good performance for the parameter space explored in
this work (see e.g. Appendix A of Berry & Gair 2013b). The effects of the
Nuttal window on the frequency spectra of a particular MSP-BH system are
presented in Fig. 6.4

6.2.3 SNR of a Astrophysical MSP-EMRB

We are now in a position to calculate the GW SNR from a typical radio
MSP-EMRB. We are concerned here with MSP-EMRB systems which have
orbital parameters which render them useful from the perspective of testing
strong-field GR via radio PSR timing (e.g. Liu et al. 2012; Psaltis et al. 2016).
Typically the principal search area discussed for these systems is the Galactic
centre. Whilst this region is an important target, globular clusters and dwarf
spheroidal galaxies provide alternative, cleaner search grounds, without the
typical problems of the Galactic centre c.f. scattering and dispersion (e.g.
Rajwade et al. 2017). With the exception of the Small and Large Magellanic
clouds, no extragalactic pulsars have currently been detected (Noori et al.
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Fig. 6.4: Left panel, top: The time domain gravitational waveform from a MSP orbiting

the Galactic Centre BH with orbital period P = 0.01 years, e = 0.9, ι = 30deg, Ω = π/2,

a = 0.6, Θ = Φ = 0. The ‘+’ (blue) and ‘×’ (orange) polarisations are shown, with no

window (coloured, dashed) and after being windowed by the Nuttal function (coloured,

solid). The vertical grey dashed lines indicate the width of the Nuttal window. Left panel,

bottom: The Nuttal window in the time domain. Right panel: The LISA noise curve

(green)
√
Sn(f) (not the characteristic strain hc, Eq. 6.27) as described by Eq. 6.21. The

oscillations at higher frequencies result from the confusion noise due to unresolved Galactic

binaries. The red lines are the waveform in the frequency domain
√
h̃+(f)2 + h̃×(f)2 both

with windowing (solid) and without (dashed).
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2017), nor have we detected MSPs sufficiently close to Sgr A* for appropriate
tests of GR. However, with the advanced sensitivity of the next generation of
radio telescopes (e.g. FAST/SKA), and the development of more sophisticated
search algorithms - appropriate for the strong-field, relativistic environments
that these systems inhabit - there is a real possibility to detect and time MSPs
both in the Galactic centre and in external regions (e.g. globular clusters).
Indeed, it is expected that SKA will be able to detect PSRs of the Local
Group (Keane et al. 2015). Moreover, long integrations of a specific target -
in contrast to wide field search sky imaging - may also allow these systems
to be detected. It is therefore prudent to consider not just the GC, but also
nearby globular clusters and dwarf spheroidal galaxies. We now explore the
GW SNR from MSP-EMRBs in each of these environments in turn.

Galactic Centre

Typically studies looking at using MSP-EMRBs to test GR have focused on
systems at the Galactic centre. Due to the proximity of the central massive
BH this target is highly appealing, but for strong-field GR tests there are
some requirements on the sort of orbit, as we have discussed in the previous
chapters. To avoid external Newtonian perturbations (Merritt et al. 2011)
contaminating a ‘clean’ GR test, it is necessary for consistent timing cam-
paigns to observe orbits with P < 0.1 years (Liu et al. 2012). Alternatively,
dense timing campaigns close to periapsis (Psaltis et al. 2016) of some longer,
eccentric orbit may also mitigate these external perturbations. MSP-EMRBs
are expected to retain significant eccentricities since during their formation
they are scattered by two body interactions (see e.g. Amaro-Seoane & Preto
2011; Amaro-Seoane 2018, for a comprehensive review of the formation mech-
anisms of extreme mass ratio binaries) or else supernova kicks (e.g. Bortolas
& Mapelli 2019) on to eccentric orbits, and have not had sufficient time to
circularize due to GW emission. Eccentric orbits are highly appealing since
the periapsis approach scales with the eccentricity as

rp ∝
1

1 + e
, (6.29)



6.2. Signal to Noise ratio 125

and so more eccentric orbits will probe stronger gravitational fields, as well as
being less susceptible to external Newtonian perturbations. Eccentric orbits
are similarly useful for GW bursts, since the GW burst strength scales with
the periapsis approach (Berry & Gair 2013b).

For MSP-BH systems at the Galactic centre we set the Galactic centre BH
mass to be 4.31×106M⊙ and at a distance 8.33 kpc (Gillessen et al. 2009), with
spin parameter a = 0.6. The spectra of 3 Galactic centre MSP-EMRB systems
with orbital periods P = 0.01, 0.05, 0.1 years and e = 0.9 are presented in Fig.
6.5. The MSP mass is set to be 1.4M⊙, whilst we have set ι = 30 deg, and the
longitude of the ascending node to be Ω = π/2, with the observer located in the
Galactic plane at Θ = π/2,Φ = 0, assuming the spin axis of the central black
hole is perpendicular to the Galactic plane (see Fig. 3.1). It is immediately
evident, as expected, that those systems with shorter orbital periods and hence
closer periapsis passages will exhibit stronger signals. Decreasing the orbital
period from P = 0.1 years to P = 0.01 causes a corresponding shift in the
frequency spectra to the region where LISA has greatest sensitivity (towards
∼ mHz). The SNR from each of these systems is ρ = 22, 0.25, 0.03 for P =

0.01, 0.05, 0.1 years respectively. The SNR will be influenced not only by
the orbital period, but also secondary factors such as the eccentricity, system
orientation with respect to the BH and the observer (ι,Θ) and the BH spin.
The exploration of this parameter space is shown in Fig. 6.6. It can be
seen that the major factors which influence the SNR are the orbital period
and the eccentricity, with the influence of secondary factors such as system
orientation or BH spin causing smaller deviations. As expected, short period,
highly eccentric systems corresponds to the greatest SNR values. Typically in
GW data analysis, for a system to be detectable, it requires that the SNR is
greater than ∼ 10. For this limit, only those systems at the Galactic centre
with orbital periods less than ∼ 0.02 years and eccentricities e ∼ 0.9 might
emit gravitational burst radiation which is detectable. The exact physical
interpretation of SNR here warrants further exploration. The output of a GW
detector like LIGO or LISA consists of a superposition of the detector noise



6.2. Signal to Noise ratio 126

Fig. 6.5: The frequency spectra of 3 MSP-EMRB systems at the Galactic centre with

eccentricity e = 0.9 and orbital periods P = 0.01, 0.05, 0.1 (red, orange, blue respectively).

The inclination angle is ι = 30deg and we have set the MSP mass to be 1.4M⊙. The SNR

of each of these systems is ρ = 22, 0.25, 0.03 respectively.
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Fig. 6.6: The signal to noise ratio of Galactic centre MSP-BH systems at e = 0.9, 0.8, 0.7

(blue, orange, green respectively) at inclinations ι = 0, 30, 60, 80 deg. More eccentric orbits

with shorter orbital periods have greater values of ρ, whilst the SNR is also weakly dependent

on how face on the orbit is to the observer. The grey horizontal line denotes ρ = 10, a typical

cutoff for the minimal detection SNR in GW astronomy. However, given the presence of an

accompanying EM beacon, the detection could be pushed below this threshold.
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n(t) and the gravitational wave signal h(t),

s(t) = h(t) + n(t) (6.30)

The aim of GW data analysis is then to try and extract h(t). In standard,
blind GW astronomy (i.e. no continuous EM counterpart) for continuously
radiative sources (e.g. LIGO/Virgo BH-BH mergers, LISA EMRIs) high val-
ues of ρ are desirable since this governs both the probability of detection and
the precision with which the system parameters can ultimately be determined.
In order to maximise the SNR and to combat the weak instantaneous GW
signal, typical GW sources are observed for a large number of cycles to al-
low the signal to build up above the noise. LISA EMRIs in particular are
expected to spend a large number of cycles radiating in the LISA frequency
band; 1 year of observation would be required to detect a 1M⊙ object in a
circular orbit at r = 50 around a Schwarzschild BH at the Galactic centre
(Fig. 7, Gourgoulhon et al. 2019). Typical bursting sources with large am-
plitudes such as cosmic strings (e.g. Aasi et al. 2014) are searched for by
simply looking for an excess of power, which shows above the instrument
noise. Eccentric compact objects orbiting the Galactic centre typically do not
have a continuous inspiral emission, but are instead bursting sources. Conse-
quently, these systems are only detectable if the bursting GW amplitude is
sufficiently large, requiring a large mass compact object with a close periapsis
passage. As a result, BHs with masses of 10s of M⊙ at 10s of rg are typically
considered as the primary sources, whilst the detection of signals from lower
mass (∼ 1M⊙) pulsars or white dwarfs with longer orbital periods is less likely.

However, MSPs acting as a BH companion and a GW source provide a unique
advantage over other types compact objects (white dwarfs, BHs) in that they
have a continuous electromagnetic beacon. As a consequence, if a pulsar is
observed via radio timing around the Galactic centre, it would be possible
to derive a precision prediction of the expected gravitational waveform and
the expected time at which this waveform would be received by an observer.
Electromagnetically dark bursting waveforms are typically poorly modelled
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and not amenable to matched filtering methods, whilst GW burst from MSP
sources would have exceptionally well modelled waveforms. With this infor-
mation known apriori it would be possible to detect GW signals via matched
filtering methods which is usually not possible for dark bursting sources. As a
consequence, whilst the SNR as given by Eq. 6.20 are a useful standard metric
for quantifying the strength of the GW signal, since the expected signal is
well-known apriori it may prove possible to detect bursting signals at SNRs
that are typically though of as being undetectable. Once the waveform has
been detected using a EM-informed template, one could then further refine the
waveform model to match the observations for parameter estimation. Clearly
there will be some lower limit at which point the noise is completely dominant
over the signal and no GW can be detected, even when the expected signal is
known. However, for the Galactic centre pulsars that are typically considered
for radio timing tests of GR these signals should be detectable via matched
filtering, even for longer orbits.

Stellar Clusters

In addition to the Galactic centre, there exist other potential hunting grounds
for MSP-EMRBs which can be used via radio timing for strong-field tests of
GR. As discussed, consilient strands of evidence suggest that IMBH could
reside in globular clusters (Mezcua 2017), although some of this evidence
is disputed and definitive ‘smoking-gun’ evidence for IMBH is still lacking.
Nevertheless, if the centre of globular clusters do host IMBH, then these re-
gions would be ideal places to search for MSP-EMRBs without the additional
complications raised due to scattering of the MSP radio pulse, as is expected
for observations of the Galactic centre. As discussed, the centre of globular
clusters have remarkably high stellar densities (∼ 106 stars per cubic parsec,
Freire 2013) and indeed the number of pulsars per unit mass is a factor of
103 greater than in the Galactic disk on account of these high stellar densities
allowing dynamical effects like mass segregation to be more efficient. Since
MSPs are thought to evolve from low mass X-ray binaries (LMXBs) and glob-
ular clusters are known hosts of abundant LMXB populations, MSPs make
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up a significant fraction of the globular cluster pulsar population (Camilo &
Rasio 2005; Ransom 2008). For example, the globular cluster of the MW
bulge, Terzan 5 is known to host at least 37 MSPs (Cadelano et al. 2018b),
whilst M28 has ∼ 8 MSPs out of a total PSR population of 12.

For the purposes of this work investigating the gravitational waveforms from
astrophysical MSP-EMRBs, we take 47 Tucane (‘47 Tuc’) as our example
globular cluster. Indeed, 47 Tuc is known to host a substantial pulsar pop-
ulation (25 pulsars, all of which have spin periods less than 8ms, Pan et al.
2016) and it has been suggested -based on dynamical pulsar signatures- that
at the core of 47 Tuc there also exists an intermediate mass black hole of
mass ∼ 2.2× 103M⊙ (Kızıltan et al. 2017b,c) although this interpretation has
been disputed (Mann et al. 2019). The existence or otherwise of a IMBH in
the centre of 47-Tuc is not an issue here - we just take 47 Tuc as a repre-
sentative example of the sorts of globular clusters that could host MSP-EMRB.

Since the expected mass of the central BH is ‘intermediate’ (∼ 103M⊙), in
order to probe the gravitational strong field, the orbital periods of MSP in
globular clusters systems are required to be shorter than those for the Galactic
centre. An MSP in 47 Tuc with a 0.01 day orbital period and an eccentricity
e = 0.9 around a central IMBH of mass ∼ 2.2×103M⊙ would probe a gravita-
tional potential of strength ϵ ∼ 0.02 as it passes through periapsis. Whilst no
MSP-IMRB with an appropriately short orbital period has yet been detected,
there remain real questions about whether our current PSR search algorithms
are sophisticated enough to detect these weak signals from such relativistic
systems in strong-field environments, when the signal is subject to a slew of
general relativistic effects (Psaltis et al. 2016). Similar to MSP-EMRB in the
Galactic centre, the lack of MSP-IMRB detections in globular clusters is then
likely due to inappropriate and insufficient observational methods. Going
forward we set the BH mass as ∼ 2.2 × 103M⊙ and leave the spin parameter
unchanged from the Galactic centre case, a = 0.6. An advantage of 47 Tuc
is that it is closer than the Galactic centre; we set the observer to be at a
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Fig. 6.7: Waveforms in the time (left-side) and frequency (right-side) domain for a MSP-

IMRB going through periapsis in 47 Tuc. The orbital period is P = 0.01 days with e = 0.9,

ι = 0deg and Ω = π/2. The BH parameters are MBH = 2.2 × 103M⊙, a = 0.6. The

observer is at robs = 4 kpc, Φ = 0, with latitude Θ = 0, (top left time waveform, red

line frequency waveform) and Θ = π/2 (bottom left time waveform, purple line frequency

waveform). again for the time waveforms the blue and orange lines denote the h+, h× GW

polarisations respectively. In the frequency spectra the green line is the LISA noise curve√
Sn(f) (not the characteristic strain hc, Eq. 6.27) as described by Eq. 6.21.

distance of 4.0 kpc.

The time and frequency spectra of a MSP on an P = 0.01 day, e = 0.9 orbit
in this 47-Tuc system is shown in Fig. 6.7. Since the orientation of the BH
spin axis with respect to the observer is unknown astrophysically, we consider
the two limiting cases; one where the observer location is the in the equatorial
plane with respect to the BH spin axis, i.e. Θ = π/2 and the other where the
observer lies along the BH axis such that Θ = 0. We set the MSP to orbit in
the equatorial plane (ι = 0). In the Θ = 0 case, ρ = 396, whilst when Θ = π/2

the SNR is reduced to ρ = 144. These SNRs are markedly higher than those
calculated for the Galactic centre, even before exploring the full parameter
space. This is on account of the fact that the systems are much closer and
the signal occupies a different frequency regime on account of the different
central BH masses and orbital periods. Whilst MSPs on sufficiently short
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orbits in globular clusters have not yet been discovered, less the existence of
IMBH, this suggests that if these systems do exist they offer fertile grounds
for multimessenger strong field astronomy, without the complications of radio
scattering and with increased SNRs due to their proximity and waveform
frequencies. We can also explore the parameter space analogous to how we
did in the Galactic centre case. The results are presented in Fig. 6.8. We
can see that the SNR is strongest for more eccentric systems; all systems with
e = 0.9 and P < 0.1 days have ρ > 100. For these high eccentricities, ρ
starts to drop off as P becomes very short due to the shift of the signal to
a different part of the frequency spectrum where LISA is less sensitive. The
SNR depends much more strongly on the system orientation than for Galactic
centre systems, with greater values of ρ for face-on systems.

Given that we have considered a nearby system, it is also interesting to inves-
tigate the detection prospects for a more distant, extragalactic system. Dwarf
spheroidal galaxies are old clusters and also have exceptionally high densities
in their central regions. For example M32, a satellite of Andromeda, has an
remarkable measured stellar density in the central parsec of 3 × 107M⊙pc−3

(Lauer et al. 1992). M32 is also thought to harbour a massive BH at its core
of mass ∼ 3× 106M⊙ (van der Marel et al. 1997; Bender et al. 1996; Verolme
et al. 2002; van den Bosch & de Zeeuw 2010). This combination of a massive
BH in an old, dense stellar environment suggests that MSP-EMRBs should
also be present in these systems. If the radio emission could be detected
then these systems could also potentially be used for strong-field GR tests via
radio timing. Whilst additional difficulties arise due to the distance of these
sources (M32 is at a distance of 763 kpc) and the commensurate faintness of
the radio signal, there are compensatory advantages due to an expected lack
of scattering. Again, target searches looking specifically for these systems
with specialist search techniques for relativistic systems may prove fruitful.
Indeed, whilst searches of nearby M32 did not definitely detect any pulsars,
several single pulse events were detected which could be attributed to pulsar
emission (Rubio-Herrera et al. 2013).
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Fig. 6.8: The signal to noise ratio of MSP-BH systems in 47-Tuc at e = 0.9, 0.8, 0.7 (blue,

orange,green respectively) at inclinations ι = 0, 30, 60, 80 deg. Typically, shorter period

orbits have greater SNRs, though this trend is less strong for more eccentric systems. The

influence of the system orientation with respect to the observer is much stronger than for the

Galactic centre systems, with face on observations corresponding to greater signal strengths.
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For this work we take as M32 as our archetypal dwarf galaxy. Similar to when
we were considering globular clusters and 47 Tuc, the orientation of the BH
spin axis with respect to the observer is uncertain and so we again consider
the two extremal cases where Θ = 0, π/2. The BH mass is set as 3 × 106M⊙

and the observer at a distance of 763 kpc. For an orbital period of P = 0.01

years, e = 0.9, and a favorable system orientation (ι = 0, Θ = 0) the SNR is
only ρ = 0.3. Naturally, those systems which are less favorably aligned have
even lower SNRs. This low SNR of the GW is due to the same reason that
radio pulsars are difficult to detect for these systems; they are simply very
distant. In order to detect burst gravitational radiation would require orbital
periods shorter than what we have considered here. For instance, if we take
the same system but shorten the orbital period to P = 0.001 years ρ = 14.
However such systems pass through periapsis at only ∼ 5rg and their existence
is unlikely, although not impossible. Alternatively, since these are regions of
high stellar density it is possible that exotic systems could forms such as a
neutron star binary orbiting the massive central black hole i.e a extreme mass
ratio hierarchical triple system (e.g. Remmen & Wu 2013). The increased
mass of the effective orbiter (i.e. 2 vs 1 neutron stars) would increase the
resulting GW signal. Whilst the dynamics and resulting waveforms would
be much more complicated in this triple case, a first order approximation
to the SNR can be obtained since the NS separation is much smaller than
the orbital radius and so we can approximate the the double NS system as
equivalent to a single object of mass 2 × 1.4 = 2.8M⊙. Such a system again
with P = 0.001 would have an SNR of ρ ∼ 30. Again, we grant that the
formation and detection of such a system may be unlikely, however it is not
completely unphysical and the huge scientific returns that could be returned
from a multimessenger observations of a triple system in the gravitational
strong field make the possibility of detecting such a system at least worth
some consideration.
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6.3 Discussion and Conclusions

Through this work we have shown that in addition to MSP-EMRBs being
used as strong-field GR probes through radio timing, with LISA it will be
possible to detect bursting gravitational radiation from these systems as the
MSP passes through periapsis. It is important to note that the gravitational
waveforms have not been calculated in a self-consistent way - we have used
a Numerical Kludge approach rather than a fully perturbative treatment.
However, we are primarily concerned here with showing that GW bursts
from typical MSP-EMRBs are detectable rather than calculating explicitly
consistent waveforms. In addition, the NK approach is known to give strong
agreement in the parameter space we have considered, and indeed we observe
a high degree of overlap (= 1) between our NK waveforms and those for which
exact analytical solutions exist. We are therefore confident that the SNRs
calculated in this work are at least reasonable approximations to the true
burst SNRs.

In order to use MSPs as strong-field probes, it is important to have as ‘clean’
and environment as possible (c.f. complications from hydrodynamic drag,
Psaltis 2012 or Newtonian perturbers, Merritt et al. 2010). Whilst the burst
gravitational radiation is scientifically useful in and of itself, it also has the
danger of acting as a potential noise source from the perspective of MSP radio
timing. The gravitational radiation may influence the timing signal via two
main channels. The first is via the effective perturbation that the gravitational
wave introduces to the background spacetime metric which may in turn affect
the geodesic of the photon ray emitted by the MSP. The second is by the GW
emission influencing the MSP orbital motion. Both these points can be quickly
addressed: GWs are transverse waves and so even for EM and GW radiation
emitted coincidentally at periapsis, the photon ray will not be affected by the
gravitational burst radiation. For the second point, due to the extreme mass
ratio and the orbital periods considered for this work the orbital constants
(e.g. E,L) do not meaningfully evolve over the burst duration and so will
not impact either the PSR radio timing or - indeed - the calculated waveform
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SNRs (see e.g. Eq. 4.44). The lack of influence of the gravitational burst
radiation on either the photon path or the orbital dynamics is advantageous
from the perspective of radio pulsar timing and multimessenger astronomy
since it means that the two messenger signals are entirely separate and will
not influence each other. Therefore when calculating a PSR timing model the
influence of this gravitational radiation will have no influence on the timing
residuals.

From these results, the most attractive target in terms of multimessenger
strong-field astronomy is perhaps not the Galactic centre, but instead the
centre of nearby globular clusters, such as 47 Tuc. MSP-EMRBs in globular
systems would have shorter orbital periods and are also typically less distant
in comparison to e.g. the Galactic centre. As a consequence the SNRs for
the systems considered in this work were typically highest for globular cluster
type systems, uncertainties in the system orientation (c.f BH spin axis, orbital
inclination etc.) notwithstanding. In addition to their higher GW burst SNRs,
MSP-EMRB in globular clusters are also appealing from the perspective of
MSP radio timing; globular clusters are known to host large populations of
MSPs whilst radio observations do not suffer from line of sight effects due
to astrophysical plasma causing scattering (and temporal broadening of the
pulse profile, e.g. Wucknitz 2015) and spatial dispersion. Moreover, since
stars in globular clusters do not have a strong prograde/retrograde rotation
preference, there is an even probability of detecting MSPs on a retrograde
orbit, which would introduce additional interesting dynamical effects and im-
prints on the GW waveforms which we have not considered here. In addition
to Globular clusters hosting sizable NS populations, there also exist numerous
Globular clusters in the Galaxy which naturally increases the expected event
rate. Globular clusters as MSP-EMRB targets do have their own drawbacks
however, most notably that that the existence or otherwise of IMBH in the
cores of these systems is far from well established. However, if a MSP on
an appropriate orbit in a nearby globular cluster could be detected then the
combination of simultaneous EM and GW multimessenger observations could
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firmly establish the existence - or otherwise - of IMBH, as well as probing
other key questions of fundamental physics.

In addition to globular clusters, observations of the Galactic centre remain
a highly attractive target. In contrast to the centre of globular clusters, the
existence of a massive nuclear BH associated with the Sgr A* radio source
is well established (Boehle et al. 2016; Gravity Collaboration et al. 2018a).
To briefly review the discussion of the previous chapters, the Galactic centre
is also a region of high stellar density and is observed to host a collection
of young massive OB stars, indicating a high rate of star formation. This
observational evidence in conjunction with theoretical considerations of the
historical star formation rate and the Galactic initial mass function suggests
that the Galactic centre should host a large population of neutron stars
(Wharton et al. 2012). However despite numerous searches of the Galactic
centre (e.g. Bates et al. 2011) no radio pulsars have been detected. Originally
this dearth of detections was explained as being due to scattering due to
astrophysical plasma along the line of sight causing pulse temporal smearing.
Since PSR typically have steep radio spectra, searches are typically carried
out at low radio frequencies. Unfortunately, at lower frequencies the scatter-
ing becomes more pronounced, hindering detections at the usual frequencies.
However, even deep searches at higher frequencies (e.g. Macquart et al. 2010)
returned no detections. Moreover, the detection in 2013 of the magnetar SGR
J1745-29 in the inner parsec of the Galactic centre (Kennea et al. 2013; Mori
et al. 2013) indicates that the scattering towards the Galactic centre is less
than expected and that previous searches should have detected pulsars in the
Galactic centre. Such a tension has been dubbed the ‘missing PSR problem’
(Dexter & O’Leary 2014). However, it was subsequently demonstrated Mac-
quart & Kanekar (2015); Rajwade et al. (2017) that if the Galactic centre
pulsar population is composed primarily of MSPs then previous surveys were
insensitive to the signals from this population. Moreover, as we have shown
in the preceding sections if these MSP-EMRB inhabit the strong gravitational
field regime, then their dynamics and signals will be subject to strong field
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relativistic effects which current search methods may be not sufficiently so-
phisticated to detect. The hypothesis of a MSP GC population is not proposed
merely as a solution to the missing PSR problem; there exists independent
reasons to think that MSPs exist in this region. Firstly, as noted, the Galactic
centre is a region of high stellar density. Consequently any pulsars would be
subject to multiple close interactions, spinning up their rotation rate. Indeed,
in the Globular cluster 47 Tuc - which is also a region of high density - 90%
of the pulsars have spin periods less than 30 ms. This is in contrast to the
total pulsar population where only ∼ 14% of puslar have such short spin
periods (see also Fig. 1.1). Secondly, the Galactic centre is known to have
an overabundance of X-ray transients (Hailey et al. 2018) which appear to
be LMXB. As in globular clusters, the presence of a LMXB population is
typically correlated with increased MSP numbers, given LMXB as a mecha-
nism for the formation and spin up of MSPs. Finally, the well known Fermi
γ-ray excess is best explained via a population of MSPs (Yuan & Zhang 2014;
Bartels et al. 2016), rather than a signal due to dark matter annihilation. If
MSP-EMRB in the Galactic centre do exist and can be detected and used for
strong field tests of GR (e.g. Liu et al. 2012; Psaltis et al. 2016), then this
work illustrates that GW burst radiation should also be detectable, allowing
another opportunity for strong field multimessenger astronomy.

As opposed to the two Galactic cases we have considered, the detection of
GW burst radiation from extragalactic sources such as M32 is rather unlikely.
This is simply on account of the distance to such sources reducing both the
MSP radio signal and the GW signal. The SNR only becomes appreciable
for more unlikely orbital configurations, for example short orbital periods
in conjunction with some complex hierarchical triple system. Whilst such
an instance may be more unlikely, it is not completely unphysical since the
increased stellar density and associated two body interactions might allow for
the formation of such exotic systems. However we do suggest that observa-
tional efforts are best concentrated on Galactic sources.
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Beyond detecting these bursts, it is also of scientific interest to use them for
parameter estimation of the central BH. Via standard blind GW astronomy,
a GW burst from a 10 M⊙ object at the Galactic centre is expected to be
scientifically informative for appropriately short (⪅ 10rg) orbits, in the best
case providing mass and spin estimations of the central BH to one part in 104

(Berry & Gair 2013b). Due to their increased distance, for bursts from extra-
galactic sources the periapsis approach needs to be correspondingly shorter in
order for these signals to be scientifically useful. Given this constraint these
signals are also expected to be relatively rarer than Galactic ones. In the best
case parameters estimation of the central BH for extragalactic sources (e.g.
M32) is expected to be at the 0.1− 1% level (Berry & Gair 2013a).

These quoted uncertainties in the inferred parameters are derived with an
uninformative prior, since in typical GW astronomy for burst sources there
are few constrains on the source parameters. For a set of inferred parameters
θ̄, the associated uncertainty, in the limit of high SNR, is given by,√

⟨(∆θ̄i)2⟩ =
√
Σ̄ii (6.31)

where for an uninformed prior Σ̄ is the inverse of the Fisher information ma-
trix, Γ̄ (see e.g. Cutler & Flanagan 1994). However, in the presence of an
accompanying, coincident radio signal we would have good estimates via a
timing solution for some of the system parameters. In the case where the pa-
rameter has some Gaussian prior with a variance-covariance matrix Σ̄0 then
the variance-covariance of the posterior is

Σ̄ = (Γ̄+ Σ̄−1
0 )−1 (6.32)

and so apriori information will immediately improve the parameter estima-
tion precision. Moreover, as noted in Cutler & Flanagan (1994), whilst apriori
information can have a significant effect on the parameters to which the priors
apply, it also aids the other parameters due to correlations. Electromagnetic
pulsar timing observations would give constraining priors on a range of sys-
tem parameters. Firstly, the BH mass and spin can be estimated via a pulsar
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timing solution. In the best case, over long timescales, these precisions are
expected to be of the order 10−5 − 10−3 or better (Liu et al. 2012). Natu-
rally even weaker constrains would be useful as a Bayesian prior. In addition
estimates of the quadrupole moment of the central BH can also be made
(Psaltis et al. 2016). For pulsars - which are neutron stars - we immediately
have a constrained estimate of the mass which is further improved as the
timing solution is refined. Given the mass it is then possible to break the
mass-distance degeneracy for bursts, and in any case the source distance will
also be constrained independently through the host environment of the pulsar
(e.g Galactic centre, 47 Tuc etc.). If the pulsar is observed for a sufficiently
long time prior to receiving the GW burst we would also have good estimates
of the coordinates of the orbital trajectory and quantities such as the orbital
energy, angular momentum and Carter constant. Quantitative estimates of
the improvement in the parameter uncertainty by using priors determined by
radio pulsar timing observations require more involved calculations which are
beyond the scope of this paper and we defer them for a future work. Further-
more, whilst the preceding discussion was focused on a single GW burst event,
for bound orbiting systems multiple bursts would be observed on a timescale
set by the orbital period, which would likely further improve the attainable
measurement precision.

An MSP-EMRB would be a unique gravitational wave source, given the pres-
ence of a continuous electromagnetic counterpart. Typical GW detection in-
volves comparing a large number (covering the parameter space) of templates
of the theoretical signal with the real noisy data. Such an approach would be
unable to detect burst radiation from compact objects which are electromag-
netically dark (e.g. BH, WD) over the sorts of orbital periods and timescales
considered in this work. The presence of an EM beacon in the PSR beam is
therefore a powerful tool for detecting gravitational radiation from these sys-
tems. Approaching the system from the other side - i.e. the from the perspec-
tive of EM radio timing rather than GW astronomy - the potential to detect
an accompanying gravitational radiation signal in conjunction with the radio
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MSP timing signal would enable true multimessenger precision astronomy in
these strong-field regimes. The extent to which such observations could be
used as a scientific apparatus c.f. parameter estimation from multimessenger
observations has not been explored in this work but would be an interesting
further development. For instance, given the detection of a MSP-EMRB and
the associated EM and GW emission, to what precision can e.g. the BH spin be
determined? We defer the investigation on the use of MSP-EMRB EM + GW
burst waveforms for parameter estimation for a future work, but simply note
here that the simultaneous electromagnetic and gravitational signals would
provide a unique astronomical probe of strong-field black hole spacetimes. It
is also worth noting here that we have not explored the full orbital parame-
ter space and the influence on the SNR, but instead just considered 3 major
representative cases and briefly inspected the influence of system orientation.
A full exploration of the parameter space we again defer for a future work.
For the typical orbital periods considered in this work P ∼ 0.1 year we have
shown that radiation reaction self force effects can be neglected. As discussed
this is advantageous from the perspective of MSP radio timing as a strong-
GR probe since it means that the system remains ‘clean’ and the gravitational
radiation does not act as a noise source in the MSP timing residuals. How-
ever for shorter orbital periods with smaller periapsis distances the self-force
backreaction will start to influence the orbital dynamics and burst waveform.
Consistent modelling of Extreme Mass Ratio Inspirals (EMRIs) accounting for
self force effects to second order is currently a major theoretical challenge (see
discussion in Barack & Pound 2019). The resolution of this problem is key if
EMRIs are to be detected with LISA and realise their scientific potential as
precision strong-field probes.



Chapter 7

Beyond - GR signatures

The analysis within this thesis so far has taken place assuming that GR is the
correct description of reality, and so the background spacetime is described by
a solution to the Einstein field equations i.e. a Kerr BH. However, as discussed,
definitive proof of the ‘Kerr Hypothesis’ - that astrophysical BHs are indeed
described by the Kerr solution - is still lacking. Within GR, it is possible for
astrophysical BHs to be some horizonless object (a ‘naked singularity’, e.g.
Harada et al. 2002), or else some exotic dark compact object such as a boson
star (Ruffini & Bonazzola 1969; Liebling & Palenzuela 2012) or a gravastar
(Mazur & Mottola 2001). In addition, should gravity in the strong-field regime
be fundamentally described by some theory beyond classical GR (e.g. Psaltis
et al. 2008), then the Kerr Hypothesis naturally fails. An important further
consideration of this work, therefore, is the observational signatures from a
strong-field MSP-BH system when the background spacetime deviates from
the Kerr solution.

An axisymmetric curved spacetime can be described by a multipole expansion,
where the multipole moments are given as a series of scalars, the mass moment
Ml and the current moment Sl. A key feature of Kerr BHs in GR is the
satisfaction of the No Hair Theorem (NHT, Israel 1967, 1968; Carter 1971);
higher order multipole moments of the spacetime (l ≥ 2) are determined by
the two lowest order moments the BH mass (M =M0) and the spin (J = S1)
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as,

Ml + iSl =M(ia)l , (7.1)

recalling that a = J/M . Since the spacetime is completely determined by
the lowest order moments, once the mass and spin of the BH are determined,
an independent measurement of the next order moment, the quadrupole mo-
ment (M2) would then provide a direct challenge to the NHT and the Kerr
Hypothesis. Whilst its validity would provide another success for GR and
rule out alternative theories for which the NHT does not hold, its violation
would point to errors in the foundations of relativity, immediately refute the
Kerr Hypothesis and may guide the way to alternative theories of gravity.
Consequently, being able to accurately determine the observational signature
of a non-Kerr quadrupole moment is an essential enterprise.

The relativistic spin-orbital dynamics of a MSP around a massive Kerr BH
have been investigated by a variety of authors (Singh et al. 2014; Saxton et al.
2016; Li et al. 2019) - in addition to the work undertaken in the preceding
chapters of this thesis - taking GR to be the correct description of the un-
derlying astrophysics. In this Chapter we build on previous investigations to
investigate the relativistic orbital spin dynamics of a pulsar around a massive
black hole with an arbitrary mass quadrupole moment. In the extreme mass
ratio limit, the MSP mass can be neglected and the orbital and spin dynamics
of the MSP are determined by the background spacetime and the interaction
of the MSP spin dipole moment with this background metric via the MPD
equations (Chapter 3). In turn, the spacetime is described by the quasi-Kerr
metric of Glampedakis & Babak (2006), which describes a stationary, axisym-
metric spacetime with a quadrupole moment that deviates slightly from the
Kerr value. We determine the effect on the astrophysical observables and dis-
cuss the implications for PSR timing in an E/IMRB system and the results
for both astrophysics and fundamental physics.
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7.1 Equations of motion
7.1.1 Quasi-Kerr Metric

The spacetime of a spinning BH with an arbitrary mass quadrupole moment
can be described by the quasi-Kerr metric of Glampedakis & Babak (2006).
Within this metric, the quadrupole moment Q(=M2) is given by,

Q = −M(a2 + ϵM2) (7.2)

where ϵ is some parameter which quantifies the deviation from the Kerr
quadrupole moment (QK = −J2/M). The use of the quasi-Kerr metric,
rather than a more general multipolar expansion of an axisymmetric vacuum
spacetime, is motivated by the prior that that astrophysical BHs are in fact
most likely Kerr BHs. This enables one to effectively perform a null hypothesis
test of the question ‘Are astrophysical BHs described by the Kerr solution?’
(i.e. the Kerr hypothesis) whilst remaining agnostic on the source of the
metric perturbation itself. The quasi-Kerr metric retains axisymmetry and
stationarity and is Ricci flat up to quadrupole order (i.e. it is a solution to
the Einstein Field equations). In the ϵ → 0 limit it also smoothly reduces to
the pure Kerr solution.

The perturbed metric can be written in a covariant form as,

gµν = gKµν + ϵhµν , (7.3)

for Kerr metric gKµν (see Eqs. 2.2 - 2.6) and perturbation hµν . To linear order
in ϵ, the contravariant form is simply,

gµν = gK
µν − ϵhµν . (7.4)

Only the diagonal components of the perturbation are non-zero. The con-
travariant components in Boyer-Lindquist coordinates are,

htt =
(1− 3 cos2 θ)F1(r)

1− 2/r
, (7.5)

hrr =

(
1− 2

r

)
(1− 3 cos2 θ)F1(r) , (7.6)
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hθθ = −(1− 3 cos2 θ)F2(r)

r2
, (7.7)

hϕϕ = −(1− 3 cos2 θ)F2(r)

r2 sin2 θ
, (7.8)

where

F1(r) = − 5(r − 1)

8r(r − 2)

(
2 + 6r − 3r2

)
− 15r(r − 2)

16
ln

(
r

r − 2

)
, (7.9)

F2(r) =
5

8r

(
2− 3r − 3r2

)
+

15

16

(
r2 − 2

)
ln

(
r

r − 2

)
. (7.10)

With the relevant metric established, the equations of motion are specified
via the covariant MPD equations, Eq. 3.19 - 3.21.

It is worth pausing to consider the regime of validity of the quasi-Kerr met-
ric. Since any multipole expansion degenerates for r → 0, it is important
to consider how the metric breaks down on horizon scales. In Johannsen &
Psaltis (2010) this limit is considered via the definition of a critical radius rc
below which the metric is no longer valid. This critical radius is a function of
both the BH spin a and the perturbation parameter ϵ and defines the radius
at which higher order terms (ϵ2, ϵa) can no longer be neglected compared to
the first order ϵ terms. Whilst these terms cannot be calculated explicitly in
the quasi-Kerr metric, by comparing the quadrupole correction terms, order
ϵ in the quasi-Kerr metric to the respective elements in the Kerr metric to
quadrupole order, a regime of validity can be established. The cut-off rc is
subsequently defined as the radius at which the quadrupole correction reaches
50 % of the diagonal -r element, grr, which is the element most affected by the
linear correction. In the case where |ϵ| = 1 and a = 1, rc ∼ 3rg (Johannsen
& Psaltis 2010). Whilst this regime is important for horizon ray tracing (e.g.
Psaltis 2012) or GW inspirals (e.g. Carson & Yagi 2020), for our purposes we
will be dealing exclusively with regions > rc and so the metric remains valid
throughout the region in which we apply it.
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7.1.2 MPD Formalism with arbitrary quadrupole

The MPD formalism described in Chapter 3 is explicitly covariant. Whilst
previously the numerical determination of the spin-orbit evolution of the pul-
sar was calculated using the Kerr metric gKµν , the same procedure can be
followed where the background metric is the quasi-Kerr metric of Eq. 7.3,
albeit with increased algebraic complexity. Further complications exist since
the perturbed spacetime is no longer Petrov type D (Berti et al. 2005) and in
general the perturbative quadrupole terms render the Hamiltonian inseparable
in the coordinate variables. As a consequence a constant of integration - the
Carter Constant (Carter 1968) - is lost. Only for the special case of equatorial
orbits does the Hamiltonian for the quasi-Kerr metric regain separability and
an equivalent Carter constant be defined. To proceed, we therefore restrict
our analysis to the equatorial plane. The mapping described in Chapter 3
between constants of motion (i.e. specifying the initial conditions) and orbital
parameters was particular to the case of a Kerr metric. This mapping needs to
be updated for the general case of an arbitrary quadrupole moment in order
to allow a correct description of the sorts of orbits we want to model. For
equatorial orbits, the Hamilton-Jacobi equation for the quasi-Kerr metric is
trivially separable and it follows that the radial 4-velocity is given as,

(ur)2 = V (r) =
[
(r2 + a2)E − aL

]2 −∆
[
r2 + (L− aE)

]
−ϵr4

(
1− 2

r

)(
(F3 −H3)

L2

r2
+ F3

)
where

F3 = −5(r − 1) (2 + 6r − 3r2)

8r(r − 2)
− 15r(r − 2)

16
ln

(
r

r − 2

)
(7.11)

H3 =
5 (2− 3r − 3r2)

8r
+

15 (r2 − 2)

16
ln

(
r

r − 2

)
. (7.12)

Collecting terms is is evident that we can write,

V (r) = f(r)E2 − 2g(r)EL− h(r)L2 − d(r) , (7.13)

where

f(r) = r4 + a2r(r + 2) (7.14)
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g(r) = 2ar (7.15)

h(r) = r(r − 2)− ϵ
[
2F3r − 2H3r −F3r

2 +H3r
2
]

(7.16)

d(r) = r2∆− ϵ
[
2F3r

3 −F3r
4
]

(7.17)

Eq 7.13 is of the same form as the base construction in Schmidt (2002) and
so we can proceed in an analogous way to Chapter 3 and defining the energy
and angular momentum as,

E =

√
κρ+ 2ϵσ − 2D

√
σ (σϵ2 + ρϵκ− ηκ2)

ρ2 + 4ησ
(7.18)

Lz = −g1E
h1

+
D

h1

√
g21E

2 + (f1E2 − d1)h1 (7.19)

where, as before,

κ ≡ d1h2 − d2h1 (7.20)

ε ≡ d1g2 − d2g1 (7.21)

ρ ≡ f1h2 − f2h1 (7.22)

η ≡ f1g2 − f2g1 (7.23)

σ ≡ g1h2 − g2h1 (7.24)

and

(fn, gn, hn, dn) ≡ (f(rn), g(rn), h(rn), d(rn)) (7.25)

with D = ±1 to denote prograde and retrograde orbits and r1 denotes the
periapsis radius and r2 the apoapsis. With the orbital constants specified, the
initialization of pµ is given by pµ = muµ where Glampedakis & Babak (2006),

ut =
1

r2

(
(r2 + a2)

P
∆

− a(aE − L)

)
− ϵ

(
1− 2

r

)−1

F3E (7.26)
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(ur)2 =
1

r4

(
P2 −∆(r2 + (L− aE)2)

− ϵr4
(
1− 2

r

)
((F3 −H3)

L2

r2
+ F3)

)

uθ = 0 (7.27)

uϕ =
1

r2

(
aP
∆

− aE + L

)
− ϵ

H3L

r2
(7.28)

This framework of mapping the geometric orbital parameters to the initial
conditions on pµ is fundamentally an approximation since it does not include
spin effects of the MSP. As a consequence the orbital parameters are not
constant as they would be for a weak-field Keplerian orbit, but vary in time
(see e.g. Singh et al. 2014). Nevertheless, these variations are typically small
and so this mapping framework provides a decent first-order approximation
to the sorts of orbits that we want to model. It is also worth noting that
even in the case where the underlying metric is separable (e.g. Johannsen
2013) chaotic motion can occur should the orbital motion depart from being
equatorial.

7.2 Spin-Orbit Dynamics of a MSP
We take as our canonical MSP a NS with mass 1.4M⊙ and spin period 1

ms. We will consider BHs of both ‘intermediate’ mass (M = 103M⊙) and
‘supermassive’ (M = 106M⊙). Since the spin of astrophysical BHs is not well
observationally constrained we set the BH spin at an intermediate value of
a = ±0.6. We will consider different orbital parameters, Ξ = (P , e), and
explore the effects induced by the quadrupole moment and the spin couplings.
We define δϵX as the quadrupole-induced difference on a general quantity X
and similarly δλX as the difference the quantity induced by the MSP spin, i.e.

δϵX = X(ϵ,Ξ)−X(0,Ξ) (7.29)

δλX = X(λ,Ξ)−X(0,Ξ) (7.30)
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7.2.1 Orbital Dynamics

The BH quadrupole moment modifies the background spacetime, whilst the
MSP spin couplings alter the interaction of the MSP spin with this back-
ground field. As a consequence, the orbital trajectory of the MSP exhibits
different behaviour compared to the pure Kerr geodesic case. The influence of
a non-Kerr quadrupole moment (ϵ = 0.1) on the spatial coordinate variables
is presented in Figure 7.1 for a system with a supermassive BH with spin
parameter a = 0.6 orbited by a MSP in the equatorial plane with semi-major
axis = 50 rg, at different eccentricities. The influence of the quadrupole has
two clear types of modification on the orbital trajectory, which are most ap-
parent by examining the behaviour of the ϕ coordinate variable. The first
is a longer timescale secular drift, which causes a precession of the orbital
orientation (the angle of pericentre). In addition to this secular behaviour,
there is also a short timescale, periodic feature as the MSP passes through
periapsis. These periodic features are strongest for more eccentric orbits, since
these systems have shorter periapsis passages. There is a large magnitude in
the quadrupole-induced variation in the r and ϕ coordinate variables, with a
fractional difference of order 1%. In absolute terms, these spatial differences
are of the order 0.1rg. The δϵr and δϵϕ evolution is out of phase by π/4; the
maxima of δϵϕ occur as the MSP passes through periapsis whilst the maxima
of δϵr occurs when δϵϕ is changing most rapidly.

For the same system, we can also examine the spin-induced variation in
the MSP coordinate position working in Cartesian coordinates, rather than
spherical-polar Boyer Lindquist coordinates (Figure 7.2). Recall that the two
coordinate systems are mapped via the standard spherical polar relation as,

x = m sin θ cosϕ (7.31)

y = m sin θ sinϕ (7.32)

z = r cos θ (7.33)
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Fig. 7.1: Variation (δx = xϵ=0.1 − xϵ=0.0) induced in the coordinate variables due to a

non-Kerr quadrupole moment ϵ = 0.1. The BH has M = 4.3 × 106M⊙, a = 0.6 and the

MSP has semi-major axis = 50rg, inclination i = 0 and eccentricities e = 0.2, 0.4, 0.6 (or-

ange, green, blue respectively). More eccentric orbits exhibit greater magnitude deviations

induced by ϵ on account of their closer periapsis passage. The δϵθ changes are smaller than

the corresponding changes in r − ϕ since we are initialised in the orbital plane.
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for m =
√
r2 + a2. Again we observe short timescale periodic features as

the MSP passes through periapsis, with the effect being stronger for more
eccentric orbits. The spin couplings cause a variation not just in the vertical
coordinate z−direction (e.g. Singh et al. 2014), but also variations in the in-
plane x− y motion. Across the considered parameter space, typical variations
are of magnitude O(10) km. Whilst this lengthscale is small compared to
the gravitational lengthscale rg, a 10 km variation is equivalent to a light
travel time of ∼ 30µs which is readily detectable via radio pulsar timing.
The astrophysical implications of these spin couplings will be further explored
later. Whilst we have just considered here the particular case of a BH with
mass ∼ 106M⊙, the magnitude of the spin-curvature coupling is independent
of the BH mass.

In addition to the spatial evolution of the MSP, we can also consider the time
evolution i.e. the ratio of the proper time τ to the coordinate time t. The
nature of MSPs as relativistic precision clocks means that this difference can
be directly measured, and indeed the difference in the rate at which the MSP
‘ticks’ due dynamical redshift is a key component of pulsar timing models
(the ‘Einstein delay’). This ratio is given by the 0-th component of the MSP
4-velocity (u0 = dt/dτ). The evolution of u0 is shown in Figure 7.3, for a
BH with M = 103M⊙, a = 0.6 along with the quadrupole and spin (ϵ − λ)
induced corrections. The ϵ − λ induced variations in u0 exhibit the same
general behaviour as the variations induced in the spatial coordinates; δu0

displays periodic oscillations, with the frequency set by the orbital frequency of
the system (extrema of δu0 at periapsis), and more eccentric orbits displaying
greater magnitude variations. The corrections due to the quadrupole moment,
O(10−4), are greater than those due to the spin couplings, O(10−6).

7.2.2 Spin Dynamics

Since generally the MSP spin axis is not aligned with the orbital angular
momentum axis, the spin vector sµ evolves with time and the spin axis exhibits
precession and nutation. This spin evolution in turn influences the MSP orbital
dynamics (e.g. Eq. 3.19 - Eq. 3.21). In a Newtonian description, the spin



7.2. Spin-Orbit Dynamics of a MSP 152

Fig. 7.2: Difference in the x, y, z coordinate variables (solid, dotted, dashed lines respec-

tively) between a fast-spinning and non-spinning MSP, on a background quasi-Kerr space-

time with ϵ = 0.1. The eccentricities are e = 0.2, 0.4, 0.6 (orange, green, blue respectively),

with semi-major axis = 50rg, inclination i = 0 whilst the BH mass M = 4.3 × 106M⊙,

a = 0.6. Periodic variations are seen as the MSP passes through periapsis, with greater

magnitude variations for more eccentric orbits.
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Fig. 7.3: The 0-th component of the MSP 4-velocity (top panel) for an MSP with orbital

parameters, semi-major axis= 50rg, ι = 0, e = 0.2, 0.4, 0.6 (blue, orange, green respectively)

around a BH of mass M = 103M⊙ and a = 0.6. Middle panel shows the corrections due to

a non-Kerr quadrupole moment of ϵ = 0.1 and the bottom panel shows the corrections due

to the MSP spin couplings on a background quasi-Kerr spacetime.
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3-vector s1 of an object of mass m1 in a binary system with another object of
mass m2, spin vector s2 is given by (Kidder 1995),

ṡ1 =
1

r3

[
(L× s1)

(
2 +

3

2

m1

m2

)
− s1 × s2 + 3 (n̂ · s2) (n̂× s1)

]
(7.34)

where n̂ is the unit vector between the two bodies and L is the usual orbital
angular momentum. The first term (L× s1) describes the spin-orbit coupling
and the other terms describe the spin-spin couplings. In a general relativis-
tic context, the geodetic precession velocity of a gyroscope can be generally
represented as (e.g. O’Connell 1969),

Ω = ΩDS + ΩLT + ΩQ (7.35)

where ΩDS, ΩLT, ΩQ are the de Sitter (precession due to the BH mass), Lense-
Thirring (due to the BH spin) and quadrupole contributions respectively. Via
the MPD formalism on our quasi-Kerr spacetime we can consistently describe
both the geodesic and spin coupling effects simultaneously.

Recall from Chapter 4 that the orientation of the spin axis can be described
by the two Euler angles, θspin, which relates to the nutation and ϕspin which
describes the precession. These angles are given in the laboratory frame as,

θspin = atan2
(√

S2
x + S2

y , Sz

)
(7.36)

ϕspin = atan2 (Sy, Sx) (7.37)

where Sx,y,z are the Cartesian components of the spin vector, related to sµ as
(see e.g. Eq.3.20, Eq. 3.11),

Sx = s1 sin(θ) cos(ϕ) + s2r cos(θ) cos(ϕ)− s3r sin(θ) sin(ϕ) (7.38)

Sy = s1 sin(θ) sin(ϕ) + s2r cos(θ) sin(ϕ) + s3r sin(θ) cos(ϕ) (7.39)

Sz = s1 cos(θ)− s2r sin(θ) (7.40)

The spin evolution in time of an MSP orbiting (equatorial, semi-major axis
= 50rg) an IMBH (M = 103M⊙ , a = +0.6) are illustrated in Figs. 7.4, 7.5,
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over 5 orbits, along with corrections induced by spin couplings and the BH
quadrupole moment, where initially θspin = ϕspin = π/4. For an MSP on a
Kerr geodesic, θspin is described by Eq. 7.35 i.e. the nutation is governed solely
by geodesic effects determined by the background spacetime. In this case θspin
exhibits rapid, periodic variations as the MSP passes through periapsis. More
eccentric orbits display greater magnitude variations in θspin, whilst also being
more constrained in time. The introduction of a BH quadrupole with ϵ = 0.1

induces additional contributions, with δϵθspin ∼ O(10−4). These contributions
are periodic, with the periodicity set by the MSP orbital frequency. Since
the strength of the quadrupole interactions is governed by the distance of
the MSP from the central BH, more eccentric orbits (with closer periapsis
distances) exhibit the largest magnitude variations. These large magnitude
oscillations decay more rapidly than oscillations from less eccentric orbits
and as a consequence δϵθspin can be greater at certain orbital phases for less
eccentric systems. The spin-induced variations in θspin follow the same gen-
eral pattern with rapid, periodic perturbations as the MSP passes through
periapsis, albeit with a different time profile. In addition the λ-perturbations
display a secular, long timescale behaviour due to the drastic change in θspin
as the MSP comes out of periapsis. This is unlike the ϵ perturbations whereby
δϵθspin →∼ 0 after the MSP has gone through periapsis. These spin-induced
variations for the systems considered here are typically an order of magnitude
smaller than those due to the quadrupole moment.

The precession of the spin axis ϕspin(τ), follows the same general behaviour
as θspin with rapid, large amplitude, periodic variations as the MSP goes
through periapsis. However, there is also an additional secular contribution
that causes ϕspin to generally increase with time. Moreover, the rapid change
in ϕspin at periapsis is not oscillatory in the same way that θspin is, but can
instead be seen to be a rapid ‘jump’. The ϵ−λ induced variations also display
the same general behaviour as in the θspin case, with δϵϕspin ∼ O(10−3) and
δλϕspin ∼ O(10−5). However, this time the ϵ-corrections exhibit an additional
secular contribution, whilst the λ-corrections are periodic.
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For the same system in a retrograde orbit (a = −0.6), the evolution of the
time component of the spin vector, s0, is displayed in Fig. 7.6, along with
the variations induced by the quadrupole moment of the BH. This variation
in s0 is a strong-field relativistic phenomenon, since this component would
remain constant in the usual PN formulation (see discussion of this issue in
Li et al. 2019). The exact physical meaning of the temporal component of the
spin vector s0 is not well understood, although it can be shown to have some
relation to the difference in the centre of mass and the centre of momentum.
In addition, from the SSC (Eq. 3.7) it can be shown by dividing by u0 that
the time component of the covariant form of the spin vector is

s0 = −
(
s1
dr

dt
+ s2

dθ

dt
+ s3

dϕ

dt

)
(7.41)

which describes the spatial components of a spin vector (i.e. the 3-vector)
as measured by a static observer. Since u0 is related to the relativistic time
dilation, s0 may also be related to the relativistic aberration of light. From
Fig. 7.6 we can see that for each of the eccentric orbits s0 oscillates with rapid
variations as the MSP goes through periapsis. The presence of the quadrupole
moment induces an additional variation in s0 on the scale of ∼ 1%.

7.3 Astrophysical/Observational Implications
7.3.1 Radio Pulsar Timing

There are expected to be large populations of MSPs at the centre of the Galaxy
(Wharton et al. 2012; Rajwade et al. 2017) whilst Globular clusters are also
known to harbour large numbers of MSPs (Hui et al. 2010; Pan et al. 2016).
The detection of an MSP with a BH companion in the centre of these stel-
lar clusters is a major target for advanced radio facilities such as the SKA
(Combes 2015) or the NASA Deep Space Network (Majid et al. 2019; Pearl-
man et al. 2019). Whilst these systems are scientifically rich, they also inhabit
the gravitational strong field and so radio timing in these regimes encounters
additional challenges not experienced by standard weak-field pulsar observa-
tions (see e.g. Kimpson et al. 2019a). We will now discuss the implications
of the spin-orbital dynamics for strong-field pulsar astronomy.
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Fig. 7.4: Top panel: The nutation of the MSP spin axis due to geodetic and spin coupling

effects for a MSP with spin period 1 ms, semi-major axis 50rg around a BH with M =

103M⊙, a = +0.6, and eccentricities e = (0.6, 0.4, 0.2) (blue, green,orange). Rapid variations

are seen as the MSP passes through periapsis, with larger magnitude oscillations for more

eccentric orbits. Middle panel: Quadrupole induced corrections to the nutation. These are

periodic and maximal when the MSP is closest to the BH. Bottom panel: Spin-induced

corrections to the nutation. These again are periodic and also display a secular behaviour.
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Fig. 7.5: As Fig. 7.4, but for the precession of the MSP spin axis. The precession exhibits

rapid ‘jumps’ as the MSP goes through periapsis which causes a general secular, step-wise

increase in the precession angle. The corrections due to ϵ−λ effects exhibit the same general

behaviour as in the nutation.
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Fig. 7.6: Top panel: Time evolution of s0 due to the breaking of the spacetime rotational

symmetry as a consequence of the MSP spin. Rapid variations in s0 are seen as the MSP

passes through periapsis, with greater amplitude oscillations for more eccentric systems.

Bottom panel: The difference in s0 induced by a quadrupole moment ϵ = 0.1 as compared

to the Kerr (ϵ = 0) case. The quadrupole moment induces a relative error on the order of

1%. The BH has parameter M = 103M⊙, a = −0.6.
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Implications of Orbital Dynamics

The orbital motion of the MSP is determined by the background spacetime,
and the dynamical spin interaction of the MSP with this gravitational field.
Consequently, as we have shown, the quadrupole moment of the central mas-
sive BH and the spin couplings of the MSP will lead to variations in the
coordinate position of the MSP. In turn, the variation in the coordinate vari-
ables of the MSP (e.g. Fig. 7.1) compared to the geodesic case will manifest
observationally in the radio MSP timing solution. Firstly the additional ϵ− λ

contributions will cause pericentre angle ω and the projected semi-major axis
x = a sin i/c to exhibit a secular evolution (see e.g. Wex & Kopeikin 1999).
The magnitude of this effect is sub-dominant to the effect of the BH mass
and spin and so as noted in Wex & Kopeikin (1999) these secular effects
may not be a useful may to actually measure the BH quadrupole. However,
when constructing a complete MSP timing solution over longer time scales
and several orbital periods it will be import to include the contributions of
the spin couplings and the BH quadrupole to the orbital precession rate.

Rather than secular effects, the periodic effects induced by the quadrupole
moment of the MSP have been identified as a more fruitful avenue for mea-
suring the BH quadrupole moment. In particular, the periodic variations in
the MSP coordinate position will manifest in changes in the Roemer delay of
the pulsar. The Roemer delay is given by

∆R =
1

c
K̂ · x (7.42)

where K̂ is the position unit vector of the observer and x the position vector
of the MSP. Variations in the Roemer delay induced by the quadrupole will
manifest in the MSP TOA residuals. The Roemer delay for a MSP-BH system
is shown in Fig 7.7, along with the residuals induced by both the quadrupole
moment and the MSP spin couplings. We consider a Galactic Centre-like
MSP-BH system with BH mass 4.31 × 106M⊙, a = +0.6, and set the MSP
to have eccentricity e = 0.9 and consider 3 orbital periods P = 0.1, 0.05, 0.01

years. We set the observer at an orientation Θ = π/4. For all these systems
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the Romer delay is a periodic function which varies on the scale of ∼ hours.
The presence of a quadrupole moment ϵ = 0.1 leaves the background gravita-
tional field anisotropic and introduces a periodic timing residual. For P = 0.1

years, this quadrupole-induced residual δϵ∆R is of the order 1 seconds, whilst
when P = 0.01 years, δϵ∆R is of the order of tens of seconds. Both of these
residuals are well within the purview of MSP radio timing precision; the SKA
is expected to enjoy timing precision in the range 10-100 ns (Liu et al. 2011;
Stappers et al. 2018). In addition to the quadrupole-induced residuals, the
spin couplings also introduce additional periodic variations. The potential
degeneracy between these two effects will be briefly discussed later in Section
7.3.1. These spin residuals are of the order 100’s µs for P = 0.01 years and
∼ 10µs for P = 0.1 years. Again this is well within typical radio pulsar
timing precision and so for a consistent, accurate, phase connected timing
solution for precision parameter estimation of the system parameters it will
be important to account for these spin effects. We have solely considered here
a quadrupole moment of ϵ = 0.1. If this quadrupole moment is smaller then
naturally the magnitude of δϵ∆R will decrease whilst the magnitude of δλ∆R

will remain unchanged. As a consequence the spin couplings could become a
substantial fraction of the Roemer residuals. This again highlights the impor-
tance of a general covariant timing solution that can be applied to strong field
environments for eccentric MSPs, especially if we want to use these systems
for precision tests of strong-field GR; since the δλ∆R, δϵ∆R follow the same
general time evolution, with periodic signatures as the MSP passes through
periapsis, unmodelled spin effects could imitate a non-Kerr quadrupole leading
to a confusion problem for certain orbital parameters. Further, the influence
of the quadrupole and spin couplings are most pronounced for close periapsis
passages. Since eccentric orbits are the most desirable from the perspective
of testing strong field GR, probing the quadrupole and reducing the influence
of external perturbations, this is an influence that needs to be accounted for.

As noted in Fig. 7.3, due to the motion of the pulsar and the associated
relativistic time dilation, pulsar signals also suffer a timing delay known as the
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Einstein delay, ∆E. This delay quantifies the difference between the coordinate
t and proper τ times of the pulsar, i.e.

∆E = t− τ (7.43)

Given the nature of a pulsar as a highly accurate clock, if the intrinsic rotation
period of the pulsar can be established, the Einstein delay can in turn be
calculated. The Einstein delay is a relativistic effect that is naturally induced
through a geodesic description of the pulsar’s motion. In addition, there are
further contributions that arise from the quadrupole and spin. The Einstein
delay for the Galactic centre systems described above is presented in Fig.
7.8. The Einstein delay accumulates over ∼ 5 orbital phases to ∼ 4.5 hrs
for the system with P = 0.01 years and up to 9 hrs for the system with
P = 0.1 years, with rapid increases as the pulsar passes through periapsis,
and a general secular evolution otherwise. The quadrupole moment induces
an error in the timing solution of the Einstein delay on the order of 0.1 − 1

s, with MSP systems with shorter orbital periods most drastically affected
(δϵ∆E peaks at ∼ 6s for P = 0.01 year). The error introduced due to the
spin couplings is again subdominant to the quadrupole moment, of the order
1 − 10µs. Both the quadrupole and spin residuals follow the same general
profile, with periodic rapid variations as the MSP passes through periapsis.
As noted for the Roemer delay this could introduce additional complications to
consistently model the MSP timing signal accounting for both spin couplings
and the (unknown) quadrupole moment.

Implications of Spin Dynamics

Pulsar emission is not isotropic, but beamed. The misalignment between
the magnetic axis B and the spin axis S is what causes the observed pulsed
emission. The evolution of the spin axis can strongly influence the radio
timing observations. Precession and nutation of the spin axis will directly
influence the photon arrival times in addition to affecting the pulse profile,
intensity and observed pulse frequencies (Li et al. 2019; Kimpson et al. 2019a;
Kocherlakota et al. 2019). The characteristic change in the pulse frequency
due to spin precession has also been suggested as a mechanism for measuring
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Fig. 7.7: Top panel: Romer Delay of an MSP orbiting the Galactic centre Sgr A* BH with

e = 0.9 and orbital period P = 0.1, 0.05, 0.01 years (red, purple, black lines respectively).

The distant observer is located at Θ = π/4. The Roemer delay varies periodically due to

the eccentric orbital motion of the MSP. Middle panel: The quadrupole-induced difference

in the Roemer Delay (i.e. the timing residuals). MSPs with shorter orbital periods have

greater timing residuals due to the quadrupole, but even for the longest period systems

considered here the difference is of order 1s, easily withing pulsar radio timing precisions.

Bottom panel: The timing residuals in the Roemer delay induced by spin couplings. Note

the similar profile with the quadrupole-induced residuals.
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Fig. 7.8: Top panel: Einstein delay of a Galactic Centre MSP with orbital period

P=0.1, 0.05, 0.01 years and eccentricity e = 0.9. The Einstein delay accumulates to ∼ 9

hrs for the longer period system and ∼ 4.5 hrs for the shorter period system. Middle panel:

Residuals in the timing solution to the Einstein delay due to the BH quadrupole moment

with ϵ = 0.1. Bottom panel: Timing residuals in the Einstein delay due to the MSP spin

couplings.
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the spin parameter of the central black hole and establishing the validity or
otherwise of the Cosmic Censorship Conjecture (Kocherlakota et al. 2019).
The influence of the pulsar spin axis orientation on the pulsar timing signal
and the profile shape was described in Section 4.2.2. We now briefly review
the main results and further explore the influence of the BH quadrupole and
the MSP spin couplings.

To explore the impact of the spin dynamics on the MSP radio timing we
consider the evolution of the pulsar radiation axis in terms of a rotating vector
model. If ψ, χ(τ) define the polar and azimuthal angles of the radiation beam
about the pulsar spin axis (we do not consider the time evolution of the polar
angle), then the evolution of the magnetic axis 3-vector is related to the spin
axis as,

B(τ) = Rz(ϕspin(τ))Ry(θspin(τ))


sinψ cosχ(τ)

sinψ sinχ(τ)

cosψ

 (7.44)

whereRz,y are the 3-space rotation matrices about the coordinate z and y axes
respectively. We label the observer direction by the vector O. This vector can
be considered as the vector which is tangent to the asymptote that converges
at the observer in a flat spacetime. Recall from Chapter 4 that the ‘pitch
angle’ ω between the radiation vector and the observer vector is then defined
via,

cosω = B̂ · Ô (7.45)

for unit vectors B̂, Ô. We define the pulse arrival time (i.e. the time centre of
the pulse profile) to occur when the pitch angle is at a minimum, subject to
bounds on the value of the pitch angle (the beam will not be ‘seen’ if the pitch
angle is π/2 for example). For example, if in an orthonormal basis the observer
is in direction Ô = (1, 0, 0), then the pitch angle is minimized and the centre of
the pulse intersects with the observer’s line of sight when the radiation vector
points in the same direction, B̂ = (1, 0, 0). This gives us the condition that
the pulse arrival time occurs when the beam phase χ(τ) obtains some critical
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value χc, at which ∂τω = 0. Now, since the pulsar spin timescale (∼ 1 ms)
is much shorter than the precession and nutation timescales of the spin axis,
we can employ a two timescale approximation and neglect the evolution of
θspin, ϕspin over the MSP rotation period. If we specify that the polar angle of
the radiation beam with respect to the spin axis is ψ = π/4, and the observer
is at Θ = π/4,Φ = 0 then then the critical phase angle is:

χc = arccos

[
cosϕspin cos θspin − sin θspin√

cos2 ϕspin cos2 θspin + sin2 ϕspin + sin2 θspin − cosϕspin sin 2θspin

]
(7.46)

From this equation we can see that both the precession (ϕspin) and the nutation
(θspin) contribute to the critical phase angle. The extra phase angle than must
be traversed in order to reach the centre of the pulse profile (δχc, i.e. the
variation in the value and evolution of χc such that δχc = χc(τ)− χc(0)) will
directly influence the observed pulse frequency. In this way, variations in the
spin axis can directly imprint on the pulsar timing solution. Naturally, for
variations of sufficient magnitude the spin axis variation would be so severe
that the minimum of ω would be greater than the beam width and so no
emission would be observed. A difference in the critical phase value is related
to a timing delay as,

∆t =
Ps

2π
δχc (7.47)

for MSP spin period Ps. The pulse timing delay due to the time evolution of
the pulsar spin axis is shown in Figure 4.6. The BH quadrupole and the MSP
spin couplings can then further imprint on the pulsar timing solution, since
both of these effects influence the precession and nutation of the MSP spin
axis. The additional variation in the timing delay due to these effects is shown
in Fig. 7.9. The presence of a non-Kerr quadrupole induces an additional
timing delay as the MSP passes through periapsis, of the order of ∼ 100′s ns.
Whilst this timing delay is less than those induced by the quadrupole for e.g.
the Roemer or Einstein delays, it is at the limit of MSP timing precision and
the residuals also have a distinctive characteristic profile that may leave them
important for real astrophysical systems. The residuals induced by the spin
for the system considered here are of the order a few ns, which are unlikely to
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be detectable via radio timing. Naturally as the orbital radius decreases and
these systems spend more time in the strong field regime the manifestation
of the spin axis evolution and the contributions from the spin couplings will
become more important, but we restrict ourselves here to more astrophysically
likely orbital configurations.

The preceding discussion dealt with the timing delay due to the shift of the
centroid of the pulse profile. In addition, the nutation of the spin axis will
influence the pulse profile by modifying the observed pulse width. The beam
width can be defined as,

w = χ1 − χ2 (7.48)

where χ1, χ2 correspond to the beam phase at the edges of the emission cone,
where ω = ±γ, for beam half opening angle γ. Taking the observer to be
at Θ = π/4, and under the assumption that the precession angle ϕ does not
significantly influence the beam width, then it follows that:

w = 2 cos−1

(
1.41 cos γ cscψ − cos θ cotψ − sin θ cotψ

cos θ − sin θ

)
(7.49)

The evolution of the pulse width, along with the corrections induced by the
quadrupole moment and the MSP spin couplings are shown in Fig. 7.10, for
a MSP orbiting a 47-Tuc like IMBH, with a = −0.6 and semi major axis
= 200rg. It can be seen that the pulse width varies due to the nutation of the
spin axis on the order of ∼ 4%. The corrections to the pulse width due to the
ϵ−λ effects are smaller, of order 10−4 and 10−5 respectively for ϵ = 0.1. Whilst
these are small absolute numbers, the nature of MSP timing requires stacking
and folding multiple pulse profiles. It is this method which leaves pulse timing
so particularly sensitive; for example the pulsar PSR J0437-4715 has a spin
period measured as Ps = 5.757451924362137 ms (Verbiest et al. 2008), which
is a measurement to a precision ∼ 10−15. Consequently, even small variations
in the pulse profile can prove important.

Additional comments

The timing residuals caused by the BH quadrupole and the MSP spin also
raise the potential for a confusion problem: can an observer distinguish the
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Fig. 7.9: Top panel: The timing residuals induced by the BH quadrupole, ϵ =

0.01, 0.05, 0.1, 0.2 (red, orange, green, blue respectively) for the MSP-IMBH system de-

scribed above, with e = 0.9. The additional precession and nutation induced by the BH

quadrupole leads to timing delays of the order 100’s ns, with a characteristic profile as the

MSP passes through periapsis. Bottom panel: Residuals due to the spin couplings, which

are of the order a few ns, which are likely beyond the timing precision of radio facilities.

Systems with shorter orbital periods will exhibit stronger spin couplings and the associated

timing delays.
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Fig. 7.10: Top panel: Change in the pulsar beam width for a MSP initially with θspin =

π/6, ϕspin = 0, ψ = π/12, semi-major axis = 200rg when in a retrograde orbit about an

IMBH with M = 2.2 × 103M⊙, a = −0.6, eccentricities e = 0.9, 0.8, 0.7, 0.6 (blue, green,

orange, red respectively). For e = 0.9, the pulse width changes by ∼ 4%, for e = 0.6 the

change is ∼ 1%. Middle panel: Variation in w/w0 induced by the BH quadrupole ϵ = 0.1.

Rapid variations with distinctive structure are seen as the MSP passes through periapsis.

Bottom panel: Variations in w/w0 induced by the MSP spin.
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behaviour of e.g. a non-Kerr metric with some set of orbital/pulsar parameters
with the Kerr metric for some different orbital/pulsar parameters? Moreover,
the ϵ−λ residuals exhibit similar profiles (e.g. Figs. 7.7, 7.8, 7.9), with rapid,
periodic variations at periapsis. This introduces a further uncertainty for the
observer: is this variation due to the spin couplings or the BH quadrupole
moment? For the example systems considered in this work with ϵ = 0.1, the
quadrupole variations are typically larger than the spin variations. In this
case the spin couplings introduce an effective uncertainty into the quadrupole
residuals. Self-force effects due to the mass of the MSP itself perturbing the
background spacetime (see Barack & Pound 2019) could also influence the
timing signal, leading to an additional confusion source. From this it is clear
that it is essential to understand and model the effect of spin couplings on
pulsar ToAs in a relativistic setting. Furthermore, we have not fully explored
the astrophysically relevant parameter space - instead considering just typical
example systems - and for different orbital parameters or smaller values of
ϵ the spin effects will become comparable. We have also not explored the
influence of the BH spin parameter on the PSR timing signal (e.g. Zhang &
Saha 2017) or considered systems with a MSP and a stellar mass BH (e.g.
Oscoz et al. 1997). Additionally, exploring the influence of the ϵ − λ on
the gravitational burst waveforms that are expected from these systems (e.g.
Berry & Gair 2013b; Kimpson et al. 2020a) would be an interesting further
development of this work.

Moving from the time to the frequency domain, the ϵ − λ effects are also
generally important since they intrinsic additional frequencies that must be
accounted for in the Fourier analysis, particularly with regards to the evolution
of the spin axis. Whilst a single isolated pulsar would exhibit one characteristic
frequency set by the spin period, a MSP in the gravitational strong field would
have multiple peaks in the frequency spectra. As noted in Kocherlakota et al.
(2019), this multi-peaked frequency spectra may provide a further method to
extract the BH parameters.
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7.3.2 E/IMRI Waveform Modelling

Waveform modelling from ∼stellar mass compact objects inspiraling in to
much more massive BHs (Extreme/intermediate Mass Ratio Inspirals, E/IM-
RIs) is currently an essential research area (van de Meent 2017; Barack &
Pound 2019). The detection of gravitational radiation from these systems
with LISA will allow precision tests of the dynamical strong field. The eccen-
tric systems considered in this work are particularly relevant as LISA E/IMRI
sources; unlike the BH-BH binaries detected by LIGO, E/IMRIs are expected
to retain significant eccentricities upon entering the LISA frequency band
(Amaro-Seoane 2018) and so accounting for this eccentricity is key to both
inform the detection of these systems, and subsequent precision parameter
estimation. In addition to eccentricity, the ϵ − λ effects will also introduce
additional variations that may need to be accounted for for accurate E/IMRI
waveform modelling. E/IMRI systems are expected to be observed for a large
∼ 104 number of cycles at compact radii and so small perturbations can lead
to significant shifts in the waveform, especially as the orbiter goes through
periapsis. Whilst the dominant contributions to the waveform come from the
0th and 1st order moments, higher order effects will prove important for accu-
rate waveform modeling; it is know for example in circular systems that spin
effects leading a to a dephasing of the waveform (Warburton et al. 2017). The
convolution between the eccentricity, spin and quadrupole effects and the sub-
sequent impact on the gravitational waveform would be an interesting further
study, though beyond the scope of this paper.

7.4 Conclusion

In this work we have explored the orbital-spin dynamics of a MSP in an ec-
centric orbit around a massive BH with an arbitrary mass quadrupole via the
MPD framework. The inclusion of the BH quadrupole and the MSP spin cou-
plings lead to perturbations in the orbital and spin evolution of the MSP. For
astrophysical systems such as pulsars at the Galactic centre or the centre of
globular clusters, these effects will imprint on both the pulsar timing solution
(detectable with radio telescopes such as FAST, SKA, DSN) and the gravita-
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tional waveform (detectable with mHz GW detectors such as LISA). Further
development of this work would be interesting, for example constructing a fully
consistent, phase-connected solution to consistently model the pulsar TOAs
via a relativistic pulsar timing model (e.g. Kimpson et al. 2019a) accounting
for not just the pulsar dynamics but also the photon ray geodesic (Shapiro
delay, gravitational lensing, spatial and temporal dispersion etc.) This would
then allow for a much greater understanding of the observational consequences
of the effects described in this work.



Chapter 8

Future Work

The strong-field pulsar timing framework derived in this thesis is numerically
straightforward to implement computationally and highly parallelisable. The
mathematical formulation is also not limited to regimes where the gravita-
tional field is weak, instead being generally applicable. The natural extension
of this work is the development of these methods to simulate the radio time-
frequency signal from an MSP orbiting a massive BH in the gravitational
strong-field. Such an enterprise would provide accurate, self-consistent, rel-
ativistic synthetic timing data from an MSP at the Galactic centre or the
centre of globular clusters. In turn, with this properly calculated synthetic
data in hand, it is possible to thoroughly evaluate current pulsar search tech-
niques when applied to regions like the Galactic centre and develop more
advanced methods as needed. Moreover, the ability to generate relativistic
pulsar timing models across a broad orbital parameter space would permit
direct comparison with observations and the appraisal of current pulsar pa-
rameter estimation pipelines e.g. TEMPO (Hobbs et al. 2006). Whilst this
work has examined the lowest-order modifications to GR and the influence on
the strong-field pulsar timing signal, it would be highly desirable to explore
higher-order variations, the influence of a central exotic compact object (e.g.
a boson star) instead of a BH, and - ideally - the construction of a theory-
independent formulation. As noted by Faucher-Giguère & Loeb (2011), the
high stellar density in the Galactic centre may allow for the creation of some
rare binaries (e.g. triple systems). The subsequent dynamics (e.g. Remmen &
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Wu 2013) and impact on the MSP timing signal would be a further interesting
pursuit. Further extensions include correcting for the non-spherical, oblate
shape of the pulsar (e.g. Nättilä & Pihajoki 2018), which may in turn be used
to inform the neutron star equation of state. Whilst Newtonian perturbations
(e.g. Merritt et al. 2011) for sufficiently short orbital period systems are un-
likely, it may prove prudent to also extend current methods for filtering out
a Newtonian foreground (e.g. Angélil & Saha 2014) to the relativistic regimes
in the Galactic centre. When examining the influence of astrophysical plasma
on the pulsar light ray, we assumed a specific form for the density profile and
took the plasma as being cold. Both of these assumptions could be further
refined to more accurately describe the true astrophysical scenario. Similarly,
we neglected the effects of hydrodynamic drag from the plasma on the pulsar
orbit since it is expected that at compact radii relativistic effect will dominate
(Psaltis 2012); the precision with which pulsar timing measurements can be
made means that the even a small influence of drag could imprint on the
timing solution and so this effect should be explored. Moreover, we have im-
plicitly assumed a conal-like model for the pulsar radio beam - other models
(e.g. a fan-beam model Saha & Dyks 2017) do exist and may influence our
conclusions.

If we also consider burst gravitational radiation from MSP-BH systems, it
would be highly desirable to build upon the work in this thesis by obtaining
quantitative estimates of the improvement in parameter estimation uncer-
tainty by coincident multimessenger GW burst and EM radio observations.
In the case where one measurement is much better than the other one will not
gain much, but in the case where the measurement uncertainties are compa-
rable it may prove possible to split degeneracies and get significant improve-
ments. Moreover, in this work I have considered only single bursting events;
since these pulsars systems are on bound orbits one would expect repeated
bursts which may improve the parameter estimation precision. Analogous to
the exploration of a potential deviation of GR via the No Hair Theorem, it
would also be of interest to investigate the influence of a non-Kerr quadrupole
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moment on the burst gravitational waveform. For waveform modelling of
Extreme Mass Ratio Inspirals, a key factor is the presence of the gravitational
self-force. The influence of the gravitational self-force on the pulsar signal
may also be a fruitful development of this work and potentially provide an
empirical resolution of the current mathematical challenges of constructing
the self-force to sufficiently high (∼ second order) accuracy (see e.g. Barack
& Pound 2019). If we can detect a pulsar in a bound orbit around a massive
black hole, the nature of pulsars as relativistic clocks allows us to map the
worldline of the smaller compact object. With the worldline measured, it may
then be possible to measure the deviation due to the self-force. This in turn
could be used to inform or verify any second order self force model.
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