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Decaying two-dimensional turbulence undergoes statistical heating

J. G. Esler*

Department of Mathematics, University College London, London, England

R. K. Scott
School of Mathematics and Statistics, University of St. Andrews, St. Andrews, Scotland

(Received 8 September 2019; accepted 30 March 2020; published 2 July 2020)

An emergent property of decaying two-dimensional turbulence is shown to be a weak
but persistent statistical heating, or tendency towards clustering of like-signed vortices.
The rate of this heating, which is driven by changes to the vortex population due to vortex
mergers and straining events, provides a strong constraint on both vortex decay laws and
kinetic theories of vortex interactions. A quasi-equilibrium statistical theory determines
the energy spectrum from just the vortex interaction energy and bulk information about
the number density of the vortices. The emergent heating rate is shown to determine the
upscale transfer of energy, and is a powerful constraint on power-law descriptions of the
evolving vortex population.
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I. INTRODUCTION

The basic phenomenology of decaying two-dimensional classical turbulence (2DCT) is well
documented [1–5]. Starting from random initial conditions, a population of vortices becomes
established and evolves, through like-signed mergers and straining out of vortices (“vortex thinning”
[6]), to become ever larger in size and fewer in number. The focus of this work will be the related
question of how exactly the statistical configuration, or temperature in the sense found in Ref. [7],
of the vortex population evolves as this process unfolds. Is the trend towards like-signed clusters of
vortices or opposite-signed dipoles? What processes determine the evolution?

Arguably the simplest measure [8] of the evolution of the configuration is the normalized
vortex interaction energy ε [9]. In both the point vortex system and its finite core extensions, ε

is defined to be the difference between the actual fluid energy of a distribution of vortices, and
the expected energy were those same vortices randomly distributed in the domain, normalized by
the standard deviation of the same random rearrangement process. Strongly positive ε is associated
with like-signed clustering (“negative temperature”) and strongly negative ε with dipole formation
(“positive temperature”). The statistical heating rate will be defined here to be ε̇, i.e., the rate at
which the vortex population is evolving towards a clustered state (if the system is heating ε̇ > 0) or
a dipole state (if the system is cooling, ε̇ < 0). (Note that the apparent contradiction of statistical
heating leading to negative temperatures is resolved if one recalls that negative temperature states
are “hotter” than positive ones, and arise when the the addition of energy to a closed system with a
bounded phase-space causes the statistical temperature [10] to pass from +∞ to −∞.)

In two-dimensional quantum turbulence (2DQT), in which there is no analog of merger events
and opposite-signed vortex dipoles annihilate when their separation becomes small, it is established
that ε̇ > 0 because of “evaporative heating” [11] due to the annihilations. Evaporative heating can be
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understood using “punctuated equilibrium” point vortex models [12,13], which capture the essential
dynamics of 2DQT in the limit where the vortex core (or healing length) is small compared to
the vortex separation. In the conservative dynamics between dipole annihilation events, energy
conservation requires that the formation of a dipole must be compensated by a tendency towards
like-signed clustering elsewhere in the domain. If the dipole is subsequently annihilated then the
remaining, relatively more clustered, vortices will necessarily have higher ε.

In contrast to 2DQT, most simple models of decaying 2DCT, e.g., the authors of Refs. [12–14],
characterized the evolution of the 2DCT vortex field purely in terms of mergers of like-signed
vortices. It is important to note that the numerical results found in Ref. [6], showing that
vortex thinning (an approximate analog of the vortex annihilation of 2DQT) can dominate the
2DCT spectral energy transfer in forced-dissipative simulations, does raise a question mark over
this merger-only approach. Nevertheless, if mergers alone are considered, the same punctuated
equilibrium argument given above leads to the conclusion that ε̇ < 0, i.e., mergers lead to cooling.
However, theoretical arguments based on maximizing mixing entropy [15,16], identify the end
state of 2DCT with negative temperature states (ε � 0), which imply heating has taken place.
If the vortex merger paradigm found in Refs. [12–14] is accepted, these results appear to be in
contradiction, and a key aim of this work is to resolve this apparent paradox.

In Sec. II below, a set of ensembles of high-resolution simulations of 2DCT are analyzed to
measure the emergent heating rate. This heating rate is then shown to provide a powerful constraint
on (i) the evolution of the energy spectrum in 2DCT, (ii) the coefficients in power-law descriptions
of the evolving vortex populations, and (iii) the nature of any kinematic model of mergers and
thinning in 2DCT. In Se. III the implications are discussed and conclusions are drawn.

II. METHOD AND RESULTS

A. 2DCT simulations

To simulate high-Reynolds number 2DCT, the regularized 2D Euler equations,

(∂t + u · ∇ )ω = D, u = ∇⊥(�−1ω), (1)

where ω is the vorticity, are solved on a 2π × 2π doubly periodic domain D, using the CLAM

algorithm [17] on a base grid of 5122 (by some measures equivalent to using a pseudospectral
scheme with grid 81922). The regularizing dissipation D used by CLAM is the systematic removal
of vortex filaments by contour surgery once they reach scales of approximately 1/16 of the base
grid-scale, thereby removing high-wave-number enstrophy from the system. Three ensembles of
ten simulations, which differ in their initial conditions, are executed. The initial conditions ω(x, 0)
consist of a random excitation with a top-hat energy spectrum, in a band of wave numbers centered
on ki = 16, 32, and 64, respectively.

To demonstrate the insensitivity of the main results to the choice of numerical scheme, the
ki = 32 ensemble is repeated using a pseudospectral scheme on a 20482 computational grid,
with three different choices for the dissipation term D. The first is hyperdiffusion D = −μh�

4ω

with μh = 10 · 2−5ωrmsk8
max, the second is a time-varying diffusion D = νv (t )�ω with νv (t ) =

2 · 2−5ωrmsk2
max‖ω‖∞(t )/‖ω‖∞(0), and the third is a standard constant (Navier-Stokes) diffusion

D = νc�ω with νc = 5 · 2−5ωrmsk2
max. Here ωrms is the initial root mean squared vorticity and kmax

is the maximum resolved wave number. The schemes differ in the amount of energy lost during the
simulations. In the spin-up period, in which vortices are formed from the random initial conditions
(0 < t/teddy < 15 where teddy = 4π/ωrms), the energy loss is (CLAM, hyperdiffusion, time-varying
diffusion, constant diffusion) = (3.20, 0.68, 2.45, 4.60)%, and for the main part of the simulations
used for the results below (15 < t/teddy < 280) it is (0.86, 0.02, 3.14, 6.84)%. The significantly
higher-energy loss rate of the constant diffusion simulations might be be expected to influence the
results below, which has motivated consideration of the range of schemes presented.
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DECAYING TWO-DIMENSIONAL TURBULENCE UNDERGOES …

B. Ghost vortex dynamics

A key tool used to analyze the 2DCT simulations above will be the following finite core extension
of the point vortex model, here named ghost vortex dynamics (GVD), which describes the motion
of N axisymmetric vortices with invariant vorticity profiles ωi(r) (i = 1, . . . , N). The evolution of
the vortex centroids xi = (xi, yi )T is governed by Hamilton’s equations

�i
dxi

dt
= −∂H

∂yi
, �i

dyi

dt
= ∂H

∂xi
, (2)

where

H (x1, . . . , xN ) = −1

2

N∑
i=1

N∑
j=1

Gi j (xi, x j )

and �i = 2π
∫ ∞

0 ωi(r)r dr are the vortex circulations. The two-body interaction terms in H are

Gi j (xi, x j ) =
∫
D2

ωi(|x − xi|)G(x, x′)ω j (|x′ − x j |) dx dx′, (3)

with G(x, x′) the usual Green’s function for the Laplacian in D. Point vortex dynamics is recovered
in a singular limit [18].

C. Measurement methodology for ε

To measure ε in the 2DCT simulations, at each instant of time all coherent vortices in D are first
identified using the algorithm found in Ref. [4]. All vortices thus identified are then mapped to the
unique circular Gaussian vortex with the same centroid, circulation and self-enstrophy [19]. These
vortices are then considered in the GVD model, and the exact GVD definition of ε

ε = H − μH

σH
, (4)

is used to calculate ε. Here μH = 〈H〉0 and σH = 〈(H − μH )2〉1/2
0 are the mean and standard

deviation of H over the uniform ensemble 〈·〉0, in which all vortex centroids are randomly positioned
in D. A straightforward calculation (see Appendix 1) gives

μH =
∑

k

′ 1

k2
(k)
and σ 2

H =
∑

k

′ 1

k4
(k)2
, (5)

where the sum is over all independent integer wave numbers, k = |k|, and 
(k)−1 = ∑N
i=1 ω̂i(k)2

with ω̂i(k) = ∫ ∞
0 ωi(r)J0(kr)r dr the Hankel transform of ωi(r).

Notice that the GVD Hamiltonian H is equal to the fluid energy obtained from the filtered
vorticity field ωg(x, t ) = ∑N

i=1 ωi(|x − xi(t )|) generated by the vortex identification algorithm
described above. Evidently H is not equal to the exact 2DCT fluid energy obtained from ω,
but fluctuates randomly according to the goodness of fit of ωg to ω, without a significant trend
H = (0.903 ± 0.034)E (standard deviation given).

D. Main results: Emergent heating rate

Figure 1 shows the evolution of ε(t ) across the three 2DCT simulation ensembles. A persistent
heating is observed in each ensemble member over the full duration of the simulations, during which
the number of vortices decreases by over an order of magnitude. To understand what is driving the
heating, first note that, as discussed above, the total fluid energy E in 2DCT is conserved to an
excellent approximation. To a reasonable approximation, the GVD Hamiltonian H ≈ 0.9E can also
be considered to be conserved. Consequently, changes in ε must be driven primarily by changes in
μH and σH due to 
(k) changing as the vortex population evolves. The evolving population can be

074601-3



J. G. ESLER AND R. K. SCOTT

FIG. 1. Left: Time evolution of the vortex interaction energy ε(t ) in simulations (solid lines: ensemble
average; light curves: individual runs) with narrowband initial conditions centered on ki = 16 (red), ki = 32
(black), and ki = 64 (blue). Insets: Snapshots of vorticity. Upper right: Evolution of fit to max. Vortex size
am(t ) in the three ensembles (dashed line, 1/3 power law). Lower right: Vortex number density c(t ) (dashed
line, −2/3 power law).

largely described by a measure of the maximum vortex area am(t ) and the vortex population density
c(t ), plotted in the right panels, see discussion below for details.

Figure 2 shows the ensemble average evolution of ε(t ) in the ki = 32 simulations when different
numerical schemes are used. It is clear that the heating effect is robust and quantitatively almost
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FIG. 2. Ensemble-average normalized vortex interaction energy ε(t ) in the ki = 32 2DCT simulations,
using different numerical schemes: CLAM (black curve), pseudospectral with hyperdiffusion (red curve),
pseudospectral Navier-Stokes with time-varying viscosity (blue curve), and standard pseudospectral Navier-
Stokes (green curve). See text for details.
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independent of the scheme used, except for a tendency for the more dissipative schemes to spin-up
with slightly higher ε at early times, which persists throughout the simulations. It is interesting, and
perhaps unexpected, to note that the heating effect is almost unchanged despite significant energy
(6.84% over the main part of the simulation) being lost in the constant ν Navier-Stokes simulations.

E. Quasi-equilibrium energy spectrum

Next, the fact that the GVD model has exactly solvable statistics is exploited (see Appendix 1),
following the authors of Refs. [20–22], to calculate an exact ε-dependent quasi-equilibrium energy
spectrum. The new method improves upon that found in Ref [2], in which the energy spectrum E (k)
of a vortical flow is calculated by averaging over the uniform ensemble (random vortex positions),
resulting in a predicted spectrum E0(k) = 2πk−1
(k)−1 (∼k−1 at low wave numbers) which is
independent of ε. However, it is well-established [5] that 2DCT simulations exhibit energy spectra
which can differ significantly from k−1 at low wave numbers, and the authors of Ref. [5] proposed
a hybrid theory based on incorporating the spectral statistical mechanics found in Refs. [23,24], to
account for the discrepancies. The GVD approach taken here dispenses for the need for a such a
hybrid theory by introducing ε-dependence into the theory found in Ref. [2].

The spectrum is calculated by first obtaining the density of states W (ε), which measures the
number of GVD microstates with interaction energy ε, as

W (ε) = 1

2π

∫ ∞

−∞
exp

[
is

(
ε + μH

σH

)
−

∑
k

′
log

(
1 + is

σH k2
(k)

)]
ds. (6)

It turns out that the function W (ε) is relatively insensitive to 
(k) in the regime of the simulations
(see Fig. 5 below), and remains close to its point vortex limit [22,25]. Next, following Ref. [22], the
equilibrium energy in mode k is found to be

〈Ek〉 = 1

k2
(k)

(
1 − 1

W (ε)

∫ ∞

0
W ′(ε − ξ ) e−k2
(k)σH ξ dξ

)
, (7)

where 〈·〉 denotes averages over microstates with fixed ε (the microcanonical ensemble). From
Eq. (7) it is evident that the corresponding equilibrium energy spectrum E (k) = 2πk×(7) is equal
to E0(k) (as found using the approach of the authors of Ref. [2]) plus a ε-dependent correction
term. This correction term determines how the energy surplus or deficit in the system, measured
relative to the randomized spectrum, is distributed across wave numbers. A significant success of
this quasi-equilibrium theory is that it gives a quantitative prediction of the distribution of energy in
the gravest modes of the system, in particular the energy in the k = 1 modes (the Onsager-Kraichnan
condensate [8,11]) at negative temperatures. It follows from Eq. (7) that when ε � 0, the energy in
all modes with k > 1 becomes saturated, with energy 〈Ek〉s = k−2[
(k) − 
(1)]−1. All remaining
energy in the system is then concentrated in the k = 1 condensate modes.

There is a further necessary condition for decaying 2DCT to converge to the quasi-equilibrium
spectrum. The nonequilibrium timescale τne, on which the quasi-equilibrium spectrum E (k) evolves
in time, must be longer than the equilibrium timescale τe on which the system relaxes to the
equilibrium spectrum from random initial conditions (as measured in the GVD model). Since Eq. (7)
is relatively insensitive to changes in 
(k), it follows that τne = ε̇−1. The timescale τe can be
identified with the timescale on which the energy in the gravest modes (i.e., Ek for k = 1) evolves
under the dynamics, which is also the timescale for a typical vortex to cross the domain. The time
for a single vortex to travel a typical vortex separation distance rv is τs = r2

vω
−1
0 a−1

m , where ω0 is
a vorticity scale, and am a (maximum) vortex area scale. Under the assumption that every τs the
vortex is scattered and moves in a new random direction, it will take time τsl2r−2

v to travel an
expected distance l � rv , giving τe ∼ ω−1

0 a−1
m if the domain is to be crossed (i.e., l = 1).
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FIG. 3. Ensemble-average energy spectra from the DNS (points) versus predictions from the equilibrium
statistical theory (lines) at t = 50 teddy (left) and t = 250 teddy (right). The dotted lines show a k−5 high-wave-
number spectrum as predicted by DSMGT. For initial data wave number ki = 32, results from both the CLAM
(circles) and hyperdiffusion (crosses) DNS are given.

F. Energy spectrum: Predictions versus DNS

Figure 3 compares ensemble-averaged energy spectra in the 2DCT DNS (points) with theoretical
predictions (curves), at early and late times in the simulations. The theoretical spectra are calculated
using the Gaussian vortices identified in the DNS (see above) to find a typical vorticity scale ω0(t ),
and to fit to a vortex area distribution [4]

n(a, t ) = c(t )

{
a−1 a < am(t ),
0 otherwise,

(8)

where n(a, t ) is the number density of vortices with area a (see Appendix 3 for details). The function

(k) is then calculated from Eqs. (8), and Eqs. (6) and (7) are then used to obtain E (k), with ε

taken from Fig. 1. The theory matches the DNS with excellent agreement except where the vortex
population is evolving rapidly, as seen in the ki = 64 ensemble at t = 50 teddy, when the equilibrium
assumption τne � τe is not valid.

G. Constraints on vortex evolution laws

Various (semi)empirical laws, reviewed in Ref. [26], were proposed to describe the time evolution
of the vortex population in 2DCT. In particular, using similarity arguments [4] proposed the law (8)
with ω0 constant, c(t ) ∼ t−2/3 and am(t ) ∼ t1/3 (the DSMGT law hereafter). A key result of this
work is that a given law, such as DSMGT, can be explicitly identified with a trajectory for ε(t )
(see Appendix 2). In the case of laws of the type (8), ε(t ) evolves according to Eq. (4) with H = E
constant and

μH = πω2
0ca2

mG
(
k0a1/2

m

)
, σH = π1/2ω2

0ca2
m√

8k0

, (9)

where to leading order G(x) = (1 − 2γ − 2 log x2)/8 and k0 ≈ 0.663 is constant. Equation (9)
reveals that, because DSMGT has ca2

m constant, it has the special property of being on the boundary
between heating and cooling (in fact, ε has only logarithmic time dependence), consistent with
the similarity assumptions underpinning DSMGT. In Fig. 4, however, it is clear the logarithmic
DSMGT heating rate is much lower than that observed in the DNS. A more general law with ω0

constant, am(t ) ∼ tμ and c(t ) ∼ tν has leading behavior ε ∼ t−2μ−ν . The heating observed in the
DNS constrains −2μ − ν ≈ 0.11, and a close fit to the DNS data in Fig. 1. which satisfies this is
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FIG. 4. Time evolution of ε in the DNS (solid black curve ensemble mean, grey area ±1 standard
deviation), versus predictions of Eq. (9) for vortex distributions of the form (8) evolving according to temporal
power laws [solid blue curve, DSMGT law; dashed blue curve, fit with (μ, ν ) = (0.30, −0.71); dotted blue
curves (μ, ν ) = (0.30 ± 0.03, −0.71)]. Red curves show results from the fluid energy conserving punctuated
GVD model with q = 3 and s = 0.2 (solid red) s = 0.6 (dashed red) and s = 1 (dotted red).

(μ, ν) = (0.30,−0.71). It is notable that the majority of vortex number decay laws obtained from
DNS (see Table I of Ref. [26]) have ν ≈ −0.71. In summary the observed heating constrains the
decay rate to be faster than the ν = −2/3 prediction of DSMGT.

H. Constraints on aggregation models

Another approach [12–14,26,27] to understanding 2DCT is to use a simplified vortex dynamics
together with a kinetic aggregation law for vortex merger. Most previous studies used the point
vortex framework, which means that the resulting “punctuated equilibrium” models for 2DCT are
underconstrained because no account is taken of the conservation of the total fluid energy during
merger events. The GVD model, by contrast, can be augmented with a fluid energy-conserving
vortex merger process, in which energy conservation is achieved by careful control of the position
of the merged vortex, see Appendix 4 for details. A number of integrations of this GVD model
have been compared to investigate the effect on ε̇. The results are highly sensitive to the details
of the chosen merger law. A two-parameter (q, s) law was investigated in detail: two like-signed
vortices with radii ri and circulations �i = 2πω0r2

i (i = 1, 2, |�1| � |�2|) are merged when they
come within a distance q(r2

1 + r2
2 )1/2 and the merged vortex is assigned circulation �1 + s�2. That

is, the parameter q ∈ [2.5, 3.5] controls the merger distance, and s ∈ [0, 1] the amount of vorticity
mixed into the background during mergers [28]. The heating rate turns out to be relatively insensitive
to q, but as seen in Fig. 4 is strongly sensitive to s. Positive heating is found only when the vorticity
loss rate in mergers is so high as to be unphysical (s = 0.2), and vorticity-conserving mergers (s =
1) lead to rapid cooling. The results support the “mergers lead to cooling” argument given in the
introduction, and in particular show that the long-time t−1 vortex decay found in Ref. [14] arises
because rapid cooling has driven the system into the dipole regime (ε � −1).

III. DISCUSSION AND CONCLUSION

Our main result is the clear evidence from DNS that decaying 2DCT does not remain self-similar
in time, but instead undergoes a persistent statistical heating consistent with like-signed vortices
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gradually becoming more clustered. Compared to evaporative heating in 2DQT, the heating is
weak, hence the self-similar theory of DSMGT remains reasonably accurate. However, the observed
heating provides a strong constraint on any theory of the evolution of the vortex population, and has
been shown to be more consistent with a vortex decay law ∼t−0.71 (c.f. Ref. [1]) than DSMGT’s
t−2/3. Further, it has been shown that “punctuated equilibrium” aggregation models of vortex
mergers lead to rapid cooling (dipole formation). Even when such models are modified [29] to
conserve fluid energy, and to allow for significant vorticity loss (i.e., mixing into the background),
the observed heating rate cannot be reproduced. Instead, it seems likely that an accurate aggregation
model must consider a combination of mergers with vorticity loss (producing modest cooling) and
straining out of opposite-signed vortices [6] (producing heating analogous to evaporative heating in
2DQT). In this context it is notable that flows with single-signed vortices [30,31] can result in the
formation of “vortex crystals” consisting of a small number of vortices in a stationary configuration,
suggesting that if only mergers occur then the system does cool to the lowest attainable value of
ε. This conclusion resolves the apparent paradox of the introduction, individual mergers do lead to
cooling, but an overall positive heating rate can still drive the system towards a negative temperature
end state. A detailed investigation of the relative roles of vortex mergers versus straining will follow
in future work.
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APPENDIX: MATHEMATICAL AND TECHNICAL DETAILS

1. The density of states function (6) and equilibrium energy spectrum (7)

The GVD density of states function W (ε), given by Eq. (6), can be identified with be the pdf of
the random variable associated with the normalized Hamiltonian

H̄ = H − μH

σH
(A1)

under the uniform ensemble. The uniform ensemble is defined to be the ensemble of vorticity
distributions ω(x) = ∑N

i=1 ωi(|x − X i|) generated when the positions of the vortex centroids Xi

are taken to be random variables uniformly distributed in D. Notice that by construction H̄ has zero
mean and unit variance.

To calculate W (ε) is useful to first consider the Fourier expansion of the vorticity field

ω(x) = 1

2π

∑
k

�k eik·x, (A2)

�k = 1

2π

∫
D

ω(x)e−ik·x dx =
N∑

i=1

ω̂i(k)e−ik·X i (A3)

The final equality exploits the fact that the vortices are much smaller than D. The explicit form of
the Green’s function

G(x, x′) = −
∑

k

eik·(x−x′)

(2πk)2
, (A4)

can be used to write H in terms of the �k,

H =
∑

k

′ |�k|2
k2

. (A5)
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FIG. 5. Left: Density of states function W (ε) in the GVD system, calculated for vortices with areas
distributed according to Eq. (8), with the free parameters (am, c, ω0) chosen as a best fit to the DNS results at
t = 50 for the ki = 32 ensemble (solid black curve), the ki = 64 ensemble (dashed blue curve) and the ki = 16
ensemble (dotted red curve). Right: The corresponding (scaled) inverse temperature β(ε) = W ′(ε)/W (ε).

The expression for μH = 〈H〉0 in Eq. (5) is now obtained by taking the expected value of

|�k|2 =
N∑

i=1

N∑
j=1

ω̂i(k)ω̂ j (k) cos [k · (X i − X j )] (A6)

under the uniform ensemble. The corresponding expression for σ 2
H is found similarly by considering

|�k|4.
Treating the �k in Eq. (A3) as a sum of independent random variables, the Lyapunov central

limit theorem can be used in the limit N → ∞ to write

�k = 1


(k)1/2

(Ak + iBk)

21/2
where Ak, Bk ∼ N (0, 1). (A7)

It follows that |�k|2 ∼ 
(k)−1Ck, where Ck ∼ exp(1) is an exponential random variable with pdf
p(x) = e−x (x > 0). The scaled Hamiltonian H̄ is now a weighted sum of independent exponential
random variables, shifted to have zero mean,

H̄ =
∑

k

′ Ck − 1

σH
(k)k2
. (A8)

The pdf of the sum (A8) can be obtained using the standard Fourier transform method, following
[21,22], leading to Eq. (6).

Figure 5 shows W (ε) calculated using Eq. (6) for different vortex distributions typical of the DNS
(see caption for details). It turns out that W (ε) is almost independent of the specific parameters
chosen, and remains very close to that of the point vortex system. The corresponding inverse
temperatures β = W ′/W (right panel) show the single-valued dependence of β on ε. These curves
do show some sensitivity to the details of the vortex area distribution, but only at negative interaction
energies.

The formula for the equilibrium energy spectrum (7) can then be obtained from an expression
of Bayes’ theorem [22]. Consider the microcanonical pdf pε(ek ) of Ek = |�k|2/k2, where the
microcanonical ensemble is defined to be all states with H̄ = ε. This can be interpreted as a
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conditional pdf under the uniform ensemble and, using Bayes, expressed as

pε(ek ) = W−k
[
ε + σ−1

H (e0k − ek )
]

W (ε)
k2
(k)e−k2
(k)ek . (A9)

Here W−k(·) denotes the density of states function (6) evaluated with wave number k omitted from
the calculation. The W−k term in Eq. (A9) is the conditional pdf for H̄ given that Ek = ek . The
constant e0k = 〈Ek〉0 = 
(k)−1k−2, and the exponential term in Eq. (A9) is the pdf p0(ek ) of Ek

under the uniform ensemble.
The equilibrium energy spectrum is obtained by taking the expectation of the pdf (A9),

〈Ek〉 =
∫ ∞

0
ek pε(ek ) dek . (A10)

The resulting expression is simplified to Eq. (7) using the substitution ξ = ek/σH and the convolu-
tion identities given in Ref. [22].

The saturation spectrum result follows from taking the limit ε → ∞ in Eq. (7). As ε → ∞, most
energy ends up in the k = 1 condensate mode, and it follows that

W (ε) ∼ ε
(1)2e−
(1)ε, as ε → ∞. (A11)

Inserting Eq. (A11) into Eq. (7) and integrating results in the expression for limε→∞〈Ek〉 = 〈Ek〉s

given in the main text.

2. Evolution of ε(t ) under the vortex evolution law (8)

Here it will be shown explicitly that a vortex evolution law of the form (8) completely determines
the time evolution of ε(t ), under the reasonable assumption of conservation of fluid energy. First,
the function


(k) =
(

N∑
i=1

ω̂i(k)2

)−1

, (A12)

where ω̂i(k) is the Hankel transform of the axisymmetric vorticity ωi(r) of the ith vortex, must be
determined. For simplicity we assume the vortices to be Gaussian with constant vorticity maxima
ω0, although these assumptions are easily relaxed. In this case

ωi(r) = ω0 exp

(
− r2

2ai

)
, (A13)

and

ω̂i(k) = ω0ai exp

(
−k2ai

2

)
. (A14)

The function 
(k) can now be straightforwardly evaluated by substituting an integral for the sum

in its definition, giving


(k) =
(∫ ∞

0
ω̂(k, a)2n(a) da

)−1

= F
(
ka1/2

m

)
cω2

0a2
m

,

where

F (x) = x4

1 − (1 + x2) exp (−x2)
. (A15)

Next, the evolution of μH can be estimated from Eq. (A15) by replacing the primed sum in
Eq. (5) by an integral

μH ≈ π

∫ ∞

k0

k dk

k2
(k)
= πcω2

0a2
mG

(
k0a1/2

m

)
,
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where

G(x) =
∫ ∞

x

ds

sF (s)
=

(
1 − 2γ − 2 log x2

)
8

+ O(x2). (A16)

Choosing k0 = 0.663 gives a good fit to the sum over the range of am seen in the simulations. Since
am ≈ 0.001 − 0.01 in the DNS, and x = k0a1/2

m , the small x limit for the integral is well-justified.
Similarly,

σ 2
H ≈ π

∫ ∞

k0

k dk

k4
(k)2
≈ πc2ω4

0A4
m

8k2
0

, (A17)

giving the formulas used in Eq. (9). Predictions for the time-evolution of ε then follow from
power-law assumptions for the evolution of c and Am, and the fact that E remains constant in the
simulations.

3. Fitting the DSMGT distribution to the DNS

Figure 1 shows the evolution of c(t ) and am(t ) calculated from the DNS. These quantities are
obtained by first fitting a DSMGT distribution of vortices, given by Eq. (8), to the instantaneous
DNS output. For the calculations of the theoretical spectra of Fig. 3, the formula (6) is then used
to calculate the density of states function W (ε) used in Eq. (7), using the form of 
(k) given in
Eq. (A15).

The fit is performed as follows. First, vortices in the DNS are identified using the algorithm of
Ref. [4] and are mapped to Gaussian GVD vortices as described in the main text. Only vortices
above a minimum area a− = 10−3 are considered for the calculation. The constant peak vorticity
value ω0 is found from the weighted mean (weighted by absolute value of the vortex circulation)
of the absolute value of the peak vorticity of these vortices. The number density of vortices is then
estimated as c = N[a ∈ (a−, 10a−)]/ ln(10), where N[·] denotes the count of vortices satisfying a
given criterion. Finally the maximum vortex area am is chosen so that μH calculated from Eq. (9)
is equal to the value for the exact distribution calculated from Eq. (5). The result for am in fact
corresponds very closely in practice to the area of the largest vortex in the DNS, at least when N is
large.

4. Fluid-energy conserving aggregation law for vortex merger in the GVD model

The punctuated GVD model solves (2) for N Gaussian vortices with radii ri and circulations
2πω0r2

i (ω0 constant). The model runs for discrete time-periods between critical times when
the vortex merger criterion, that the separation ri j between the ith and jth vortices is less than
the critical distance q(r2

1 + r2
2 )1/2, is first satisfied for two like-signed vortices. At these critical

times, the two merging vortices are instantaneously replaced by a single Gaussian vortex with
circulation �i + s� j (for |�i| > |� j |, or s�i + � j otherwise). The new vortex is first initialized at
xn = γ xi + (1 − γ )x j , where γ = |�i|/(|�i| + |� j |). However, before the GVD code is restarted, a
sequence of small randomly directed perturbations are made to the positions of the new vortex and
its neighbors, of amplitude � = 10−3 for the new vortex, and �(rn j/rn)2 for its neighbors. These
random perturbations represent the (otherwise neglected) net effect of the dipolar flow induced by
the merging vortices. Working on the assumption that the dipolar flow acts to conserve energy,
successive perturbations are accepted if energy of the new configuration is closer to its premerger
value, and rejected otherwise. Perturbations are applied until a configuration with the premerger
energy is found (by interpolating the final perturbation step as required), and the outcome is a
punctuated equilibrium model which conserves fluid energy.
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