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The question of how finite-amplitude, small-scale topography affects small-amplitude
motions in the ocean is addressed in the framework of the rotating shallow water
equations. The extent to which the dispersion relations of Poincaré, Kelvin and Rossby
waves are modified in the presence of topography is illuminated, using a range of
numerical and analytical techniques based on the method of homogenisation. Both
random and regular periodic arrays of topography are considered, with the special
case of regular cylinders studied in detail, because this case allows for highly accurate
analytical results. The results show that, for waves in a β-channel bounded by sidewalls,
and for steep topographies outside of the quasi-geostrophic regime, topography acts to
slow Poincaré waves slightly, Rossby waves are slowed significantly, and Kelvin waves
are accelerated for long waves and slowed for short waves, with the two regimes being
separated by a narrow band of resonant wavelengths. The resonant band, which is due
to the excitation of trapped topographic Rossby waves on each seamount, may affect
any of the three wave types under the right conditions, and for physically reasonable
results requires regularisation by Ekman friction. At larger topographic amplitudes, for
cylindrical topography, a simple and accurate formula is given for the correction to the
Rossby wave dispersion relation, which extends previous results for the quasi-geostrophic
regime.
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1. Introduction

Solutions of the rotating shallow water equations (rSWE hereafter), linearised about a
state of rest in the presence of a large-scale potential vorticity gradient, provide textbook
illustrations of the fundamental wave motions in the ocean (and atmosphere). Standard
textbook treatments (e.g. Vallis 2006; Pedlosky 1987; Gill 1982), see also Paldor et al.
(2007), naturally assume a flat or uniformly sloping ocean bottom, and proceed to obtain
the dispersion relations of the waves in question, namely Rossby, Poincaré and Kelvin
waves. Here the question of how these dispersion relations are modified in the presence of
finite topography, with horizontal scale much smaller than the wavelength of the waves
in question, is addressed in detail using the method of homogenisation. The aim is to
provide some quantitative insight into the extent to which variable ocean bathymetry
can cause wave propagation speeds to differ from predictions based on the average ocean
depth, with a view to providing guidance to ocean model developers as to the general
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importance of accurate parameterisation of bottom roughness, at least as far as accurately
representing the propagation of large-scale waves is concerned.

We aim to connect with and extend two important bodies of work. The first concerns
the non-rotating problem, in which the linear rSWE reduce to the classical wave equation.
Topography enters the problem as a variable local wave speed c =

√
gh (g gravity, h

ocean depth), and to determine the effective speed ceff of long waves in the presence of
variations in c is a classical problem in the mathematics of homogenisation, in its essence
equivalent to that first formulated by Rayleigh (1892) for the heat equation. Modern
analysis of homogenisation problems (see e.g. the reviews of Nandakumaran 2007; Allaire
2012; Mei & Vernescu 2010, §5.5) reveals that, using 〈·〉 to denote a horizontal average,
〈c−2〉−2 6 c2eff 6 〈c2〉, i.e. for any small-scale bathymetry the square of the effective long
wave speed ceff is bounded below by the harmonic mean of c2 (in the elasticity literature
the Reuss bound) and above by its arithmetic mean (the Voigt bound). Equivalently, the
effective ocean depth Heff ‘felt’ by the long waves satisfies 〈h−1〉−1 6 Heff 6 〈h〉. Notably,
the lower (harmonic mean or Reuss) bound is actually attained for propagation over one-
dimensional topography (e.g. Rosales & Papanicolaou 1983; Hu & Chan 2005), (see also
Holmes 2012, for an introductory treatment) meaning that the simple approximation of
using the averaged depth 〈h〉 in place of Heff will certainly result in large modelling errors
for waves propagating over steep ocean ridges. For two-dimensional topography Heff lies
somewhere between the two bounds, and one aim here is to quantify its exact dependence
on topographic height and area fraction for some idealised two-dimensional topographies,
in particular arrays of periodic cylinders for which highly accurate asymptotic solutions
exist (e.g. Balagurov & Kashin 2001; Godin 2013). Another key question is how the
classical wave equation analysis is modified by the introduction of rotation, i.e. are
Poincaré and Kelvin waves affected to the same extent as non-rotating gravity waves?

The second key body of work concerns the quasi-geostrophic limit of the rSWE. Here
solutions of the homogenisation problem formulated by Rhines & Bretherton (1973),
applied to both sparse random topographies and (possibly densely packed) periodic arrays
(Vanneste 2000a,b; Benilov 2000), give insight into the extent to which Rossby wave
propagation is affected by small-scale topography. Compared to the gravity wave case,
the physics is relatively complicated, as the long Rossby waves of interest can interact
resonantly with trapped topographic Rossby waves attached to each seamount (see e.g.
Jansons & Johnson 1988). In the absence of regularising dissipative processes, such
as Ekman friction, the modified Rossby wave dispersion relations feature singularities
at the resonant frequencies. These quasi-geostrophic results are naturally restricted to
topography satisfying the requirements of quasi-geostrophic scaling, i.e. ocean depth
variations must satisfy |h − 〈h〉|/〈h〉 � 1, and the horizontal scale of the topography
must be sufficiently large that the Rossby number of the motion remains small (see
discussion below). The present treatment, in the full rSWE, relaxes these assumptions
and extends the previous results to finite topographies including islands. Not only is an
assessment of the wider validity of the quasi-geostrophic results made possible, but also
a quantitative comparison between the relative effect of the topography on the different
wave types (Rossby, Kelvin and Poincaré) can be made.

It is important to emphasise that the focus here is on waves which are long relative to
the topographic length-scale. The homogenisation technique and related multiple-scale
methods can be adapted to study the behaviour of waves with wavelengths comparable
to the topography, a situation which allows for phenomena such as Bragg resonance
between surface gravity waves and periodic topography (e.g. Mei 1985; Naciri & Mei
1988). Similarly, Bühler & Holmes-Cerfon (2011) and Li & Mei (2014) have considered
the effect of bathymetry on internal tides in a stratified ocean, and have quantified the
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damping effect of a random topographic distribution at leading order in amplitude. As a
consequence, the results presented here do not constitute a complete picture, and shorter
waves can be expected to exhibit a distinct and rich phenomenology.

The paper is organised as follows. In section 2 the method of homogenisation is intro-
duced and applied to the linearised rSWE to obtain the homogenised governing equations.
The coefficients in these governing equations are determined from the solution of so-called
cell problems, defined on the short length-scale, which are formulated explicitly for the
rSWE. The quasi-geostrophic and non-rotating limits of the governing equations and
cell problems are then considered, making the connection to previous results clear. In
section 3 the case of periodic arrays of seamounts arranged in a regular square lattice
is treated in detail. Particular attention is given to cylindrical seamounts, because the
multipole expansion method of e.g. Balagurov & Kashin (2001) and Godin (2013) can
be used in this case to obtain highly accurate asymptotic solutions to the cell problems,
including the new ‘rotating’ cell problem which arises from the rSWE. The outcome is
various means to determine the topographically-induced corrections to the dispersion
relations of Kelvin, Poincaré and Rossby waves, including an explicit formula valid for
Rossby waves in the presence of finite amplitude topography, complementing the quasi-
geostrophic results of Benilov (2000) and Vanneste (2000b). In section 4 the case of well-
separated randomly distributed seamounts is considered, with seamount height, radius
and density determined by a prescribed distribution. Again, the goal is to determine the
corrections to the wave dispersion relations. In section 5 conclusions are drawn.

2. Homogenisation of the linear rotating shallow water equations

2.1. The non-dimensional equations and multiple scales approach

The two-dimensional rotating shallow water equations, in dimensional form and lin-
earised about a state of rest, are

ut + fk × u = −g∇η, (2.1)

ηt +∇ · (hu) = 0.

Here u is the horizontal velocty and η the free surface displacement, k is the unit vector
in the vertical direction, h is the depth of the undisturbed ocean which varies on a
horizontal scale l due to the presence of bottom topography, f = f0 + βy is the local
Coriolis parameter, and g is the acceleration due to gravity.

In order to apply asymptotic analysis consistently, it is convenient to work with non-
dimensional equations. It will be assumed in all that follows that l � L,Lβ , where
L =

√
gH0/f0 is the Rossby radius and Lβ = f0/β is the length scale associated with

the planetary vorticity gradient. Since our interest here is in waves with wavelength
longer than l, it is convenient to take the Rossby radius L as our horizontal scale, and
to treat the nondimensional parameter b = L/Lβ as order unity. Choosing a time-scale
f−1

0 , a velocity scale U , and free-surface displacement scale f0UL/g, the non-dimensional
equations are found to be

ut + (1 + by)k × u = −∇η, (2.2)

ηt +∇ · (hu) = 0.

For ease of notation in (2.2), the same variable names have been retained as for their
dimensional counterparts in (2.1). Notice that the velocity scale U in the treatment above
is arbitrary, except that it must be sufficiently small for the linear equations to remain
valid.
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Below, we will also make use of the linear potential vorticity (PV) equation, which
follows from (2.2) by taking the curl of the momentum equation and then substituting
in the continuity equation

1

h

∂

∂t

(
ζ − (1 + by)η

h

)
+ u · ∇

(
1 + by

h

)
= 0, (2.3)

where ζ = k · ∇ × u is the relative vorticity.

To exploit the horizontal scale-separation between the topography and the length scales
of the waves of interest, a small parameter ε = l/L� 1 can now be introduced. To permit
multiple-scale analysis, the spatial variable X = x/ε can be defined, which describes
spatial variations on the scale of the topography. Importantly, we treat x and X as
independent variables in the following analysis. In general, the topography h(X,x) can
also be allowed to vary on the long length scale associated with x, as would be useful for
example to describe a large-scale topographic slope covered in small-scale seamounts.

Next, we introduce an average 〈·〉 over the short scales, which can be applied to any
function g(X,x),

〈g〉 =
1

|Ω|

∫
Ω

g(X,x) dX. (2.4)

In the following sections, two main cases will be considered. The first, most tractable
case, is that of a regular periodic lattice of seamounts, in which case Ω is a single doubly-
periodic cell (|Ω| denotes its area). The second case is that of randomly distributed
topography, in which case Ω can be taken to be a spatial average over a ‘mesoscale’
region which is (asymptotically) intermediate in size between the small and large scales.
In the asymptotic limit, the number of mountains in the mesoscale region will tend to
infinity, and the mesoscale average will be independent of the particular distribution of the
topography and will therefore be equivalent to an ensemble average. The analysis which
follows in the rest of this section applies equally in both regimes. Averaged variables will
be denoted below by capitals, e.g. applying the spatial average to the topography gives

H(x) = 〈h(X,x)〉. (2.5)

Finally, replacing horizontal derivatives according to the multi-scale formalism, using
the chain rule (i.e. ∇ → ε−1∇X +∇x) gives

εut + ε(1 + by)k × u = −∇Xη − ε∇xη, (2.6)

εηt +∇X · (hu) + ε∇x · (hu) = 0.

The equations (2.6) are the starting point for the analysis to follow.

2.2. The homogenised equations

The large-scale homogenised equations can be obtained from (2.6) by seeking a
multiple-scales perturbation solution of the form

η(X,x, t; ε) = η0(X,x, t) + εη1(X,x, t) + ... (2.7)

u(X,x, t; ε) = u0(X,x, t) + εu1(X,x, t) + ....

Inserting (2.7) in (2.6) gives, at leading order

∇Xη0 = 0, ∇X · (hu0) = 0. (2.8)
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From this we deduce that η0 = Π(x, t) is independent of the small-scale variable X (i.e.
η0 = 〈η0〉 := Π), and that

u0(X,x, t) =
UH +∇⊥Xψ

h
, (2.9)

where ∇⊥X ≡ k ×∇X is the skew-gradient operator, and

U(x, t) =
〈u0h〉
〈h〉

is the depth-weighted average velocity. Here ψ(X,x, t) is an unknown scalar function to
be determined.

Next, applying the averaging operator to the multi-scale equations (2.6), after multi-
plying the momentum equation by h, gives, at leading order

Ut + (1 + by)k ×U = −∇xΠ +
〈η1∇Xh〉

H
, (2.10)

Πt +∇x · (HU) = 0.

Equations (2.10) govern the evolution of long waves in the presence of topography, except
that to close the equations it remains necessary to evaluate the correlation term 〈η1∇Xh〉
in terms of the averaged variables U , Π and H.

To evaluate the correlation term η1 must be determined, and to do so it is necessary
to consider the momentum equation of (2.6) at next order. Multiplying by h and taking
the divergence ∇X · (·), gives

∇X · (h∇Xη1)− (1 + by)∇2
Xψ = −∇Xh · ∇xΠ. (2.11)

This is an elliptic equation for η1 which involves the other unknown function ψ. Evidently
another equation is needed to close the system, which can be determined most easily from
the PV equation (2.3), which at leading order in ε is

∇X ·
(
∇Xψt
h

)
−(1+by)∇Xψ ·∇⊥X

(
1

h

)
= −H ((1 + by)U − k ×Ut)·∇X

(
1

h

)
. (2.12)

Notice that (2.11) and (2.12) have both been written with terms involving the unknown
ψ and η1 on the left, and ‘source’ terms involving h and the averaged variables on the
right. Before η1 can be found in terms of the sources from (2.11), (2.12) must first be
solved for ψ. The time-dependence in (2.12) is an expected feature, and arises because
the rotation adds new physics to the shallow water equations, namely that topography
at any horizontal scale will support the motion of trapped topographic Rossby waves
(Jansons & Johnson 1988; Longuet-Higgins 1967). As discussed in the quasi-geostrophic
context by Vanneste (2000b) and Benilov (2000), these trapped Rossby waves can be
excited resonantly by the large-scale motion.

In general, because (2.11-2.12) are linear in ψ and η1, the solution for η1 can be
expressed formally using a Green’s function approach, in the form of history integral
over the past state of the system. This approach, broadly following that of (Vanneste
2000a), is followed in Appendix B, and results in an integro-differential equation (B 6)
for the time-evolution of the momentum U .

However, our primary interest here is in the impact of the topography on the dispersion
relations of periodic waves, therefore solutions ∝ exp (−iωt) will henceforth be sought,
allowing the substitution ∂t → −iω. It follows that (2.12) becomes

∇X ·
(
∇Xψ

h

)
−i

1 + by

ω
∇Xψ ·∇⊥X

(
1

h

)
= −H

(
i
1 + by

ω
U − k ×U

)
·∇X

(
1

h

)
, (2.13)
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and the solution η1 of (2.11) and (2.13) can be expressed as

η1 = Φ · ∇xΠ +H(1 + by)Ψ(1+by)/ω ·
(

i
1 + by

ω
U − k ×U

)
. (2.14)

In (2.14) the vectors Φ = (Φ1, Φ2)T and Ψα = (Ψ1,α, Ψ2,α)T are obtained by solving the
so-called cell-problems

∇X · (h∇XΦi) = −∂Xi
h, (2.15)

and

∇X · (h∇XΨi,α) = ∇2
XGi,

∇X ·
(
∇XGi
h

)
− iα∇XGi · ∇⊥X

(
1

h

)
= −∂Xi

(
1

h

)
, (2.16)

respectively, where α > 0 is a parameter. The cell problems are elliptical equations defined
on Ω, and have unique solutions up to arbitrary functions of the large-scale variables only
(see e.g. section 5.3.2 of Holmes 2012). The arbitrary functions can be ignored since they
do not contribute to the correlation term in (2.10).

It is important to emphasise that the solutions Φ and Ψα of the cell problems depend
only on the details of the topography, not on the waves being studied or on dynamical
parameters such as b. The first cell problem (2.15) is, for reasons to be explained below,
identical to that most commonly arising in classical two-dimensional homogenisation
problems of mathematical physics, such as heat transfer through heterogeneous media,
the study of which dates back to Rayleigh (1892). The second cell problem (2.16),
which is perhaps more accurately described as a one-parameter family of cell problems
parametrised by α, is introduced by the presence of rotation and the associated topo-
graphic Rossby waves. An important point is that for real α, Ψα = Ψ∗−α, as can be seen
by making the substitutions α→ −α and Gi → G∗i (complex conjugate).

Inserting our expression for η1 from (2.14) leads to

− iω

(
I +

(
1 + by

ω

)2

K(1+by)/ω

)
·U + (1 + by)

(
I + K(1+by)/ω

)
· k ×U =

− (I + D) · ∇xΠ, (2.17)

where I is the identity matrix and the matrices D and Kα are given by

D = − 1

H

(
〈Φ1∂X1

h〉 〈Φ2∂X1
h〉

〈Φ1∂X2
h〉 〈Φ2∂X2

h〉

)
, Kα =

(
〈Ψ1,α∂X1

h〉 〈Ψ2,α∂X1
h〉

〈Ψ1,α∂X2
h〉 〈Ψ2,α∂X2

h〉

)
. (2.18)

For cell problems with a four-fold rotational symmetry, for example axisymmetric
seamounts arranged in a regular square lattice, these matrices simplify to D = DI and

Kα =

(
K1(α) −iK2(α)

iK2(α) K1(α)

)
,

for real, scalar functions K1(α) and K2(α), which hereafter we will call the topographic
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resonance functions. The cell-averaged linear shallow water equations then simplify to

−iω

(
1 +

(
1+by
ω

)2

K1

(
1+by
ω

)
+
(

1+by
ω

)
K2

(
1+by
ω

))
U

+(1 + by)
(

1 +K1

(
1+by
ω

)
+
(

1+by
ω

)
K2

(
1+by
ω

))
k ×U = −(1 +D)∇xΠ,

−iωΠ +∇x · (HU) = 0, (2.19)

where again, we emphasise that D, K1(α), and K2(α) are properties of the topography
alone.

The system of equations (2.19) can be solved to obtain expressions determining the
dispersion relations of the Poincaré, Kelvin and Rossby waves solutions of the rSWE on
the β-plane. In sections 3 and 4 below numerical and analytical results are presented
which illustrate the extent to which different topographies affect the dispersion relations
of these waves. The results of this section have counterparts when Ekman friction is
included in the governing equations, but for simplicity our main focus here is on the
frictionless case. However, as in the quasi-geostrophic problem (Vanneste 2000a,b), it
is necessary to include a regularising process such as Ekman friction in order to make
physical sense of behaviours when there is a resonance between the waves of interest and
topographic Rossby waves on the seamounts. Other dissipative processes, such as eddy
diffusivity of momentum, could also play a regularising role. Additionally, nonlinearity
will also likely act to remove the singularity at the resonances as occurs in the theory
of Bragg scattering of water waves (see e.g. the weakly nonlinear analysis of Hara &
Mei 1987). Here, following Vanneste (2000b), only Ekman friction is considered and in
appendix A the results above are generalised to include this effect. The analogue of the
equations (2.19) are shown there to be (A 12).

Next, we consider some relevant limits of equations (2.10) and (2.19).

2.3. Quasi-geostrophic limit of the homogenised equations

The quasi-geostrophic limit of the homogenised equations (2.10) can be obtained by
considering the joint limit b � 1, in which h = 1 − bhb, i.e. deviations from a uniform
depth of unity are small, and are described by the re-scaled bottom topography hb(X)
(as for the full system, hb can be allowed to depend on x if required). Time must also be
rescaled to the slower timescale T = bt. Expanding

Π = Π(0) + bΠ(1) + b2Π(2) + ..., U = U (0) + bU (1) + b2U (2) + ..., (2.20)

leads to geostrophic balance at leading order −∇xΠ
(0) = k×U (0) (equivalently U (0) =

∇⊥xΠ(0)), and at next order

∂TU
(0) + k ×U (1) + yk ×U (0) = −∇xΠ

(1) − 〈η(0)
1 ∇Xhb〉, (2.21)

∂TΠ
(0) +∇x ·U (1) = 0.

Applying ∇⊥x · to the momentum equation in (2.21), and using the free surface displace-
ment equation to eliminate ∇x ·U (1), leads to the quasi-geostrophic potential vorticity
equation

∂T

(
∇2

xΠ
(0) −Π(0)

)
+Π(0)

x +∇x · 〈hb∇⊥Xη
(0)
1 〉 = 0. (2.22)

Here η
(0)
1 is determined by the leading order terms in (2.11) and (2.12) which can be

simplified to

∂T∇2
Xη

(0)
1 −∇Xη

(0)
1 · ∇⊥Xhb = ∇xΠ

(0) · ∇⊥Xhb. (2.23)
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Equations (2.22) and (2.23) are the homogenised equations of the quasi-geostrophic
system of Vanneste (2000a) and Vanneste (2000b) in the absence of friction. If we seek
solutions ∝ exp (−iΩT ), where Ω = ω/b is the frequency on the slow time-scale, then

the solution η
(0)
1 is found from the leading order terms in (2.14) to be

η
(0)
1 =

i

Ω
Ψ̃1/Ω · ∇⊥xΠ. (2.24)

where the vector Ψ̃α = Re (Ψ̃1,α, Ψ̃2,α)T has components which solve the cell problem
(2.16) at leading order in b,

∇2
X Ψ̃i,α − iα∇X Ψ̃i,α · ∇⊥Xhb = −∂Xihb. (2.25)

Focussing on symmetric topography, defining K̃(α) = −〈Ψ̃1,α∂X1hb〉 to be the quasi-
geostrophic analogue of K1(α) (the quasi-geostrophic analogue of K2(α) vanishes), and
then substituting Ω = ω/b allows the eigenvalue equation for the homogenised quasi-
geostrophic system to be written as

−iω
(

1 + b2

ω2 K̃
(
b
ω

))
∇2

xΠ
(0) + iωΠ(0) + bΠ(0)

x = 0, (2.26)

recovering the result of Vanneste (2000a).
The derivation of (2.22-2.26) above differs from that of Vanneste (2000a) in a significant

way. Here, we have obtained (2.22-2.26) by first deriving the homogenised equations (2.10)
and then taking the quasi-geostrophic limit, corresponding to the following ordering of
the small parameters: ε � b � 1. Vanneste, by contrast, applied the homogenisation
procedure to the quasi-geostrophic equations themselves, consistent with the ordering
b � ε � 1. The fact that the same equations are found in each case gives a clear
indication that the result is independent of the value of the ratio ε/b = lLβ/L

2 (where l is
the topography length scale, L is the Rossby radius and Lβ = f0/β). In fact, independence
of ε/b can be shown more explicitly by a direct asymptotic treatment of (2.6) with ε ∼ b
(details not given here). In other words, there is no restriction on the topographic length
scale l, beyond the shallow water scaling l � H0, for (2.22-2.23) to hold, a result which
extends that of Vanneste, which covers only the case l� L2/Lβ .

2.4. Non-rotating homogenised equations

To introduce our main results below, it is helpful to first consider (2.10) in the absence
of rotation

Ut = −∇xΠ +
〈η1∇Xh〉

H
, (2.27)

Πt +∇x · (HU) = 0.

where in this case η1 = Φ · ∇xΠ, with Φ = (Φ1, Φ2)T , and Φi is determined by the cell
problem (2.15). In this case, taking the time-derivative of the free surface equation and
substituting for Ut results in the wave equation

Πtt = ∇x · (H(I + D) · ∇xΠ) . (2.28)

with D given by (2.18). The result (2.28) shows that, as expected, shallow water gravity
waves obey the wave equation. For symmetric arrays of seamounts with D = DI,

the local gravity wave speed is given by H
1/2
eff , where Heff = H(1 + D) is the non-

dimensional effective depth (the dimensional units here being
√
gH0). As discussed in

the introduction, functional analysis techniques (e.g. Nandakumaran 2007; Allaire 2012;
Mei & Vernescu 2010, §5.5) applied to (2.28) when D = DI reveals the Reuss-Voigt
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bounds H̄ ≡ 〈h−1〉−1 6 Heff 6 〈h〉 ≡ H, with the lower (harmonic mean or Reuss)
bound being attained exactly for propagation over a one-dimensional topography. In
section 3.2 below the two-dimensional case is discussed in detail for the case of regular
periodic arrays of circular cylinders.

3. The influence of topography on shallow water waves: regular
arrays of seamounts

3.1. The β-channel dispersion relation in the absence of topography

To set the scene for a quantitative assessment of topographic effects on the dispersion
relations, it is helpful to recall the characteristics of Rossby, Kelvin and Poincaré waves
in the flat-bottomed case. While (2.19) can be used to investigate wave dispersion
in arbitrary domains, including bounded ocean basins and the equatorial β-plane, for
definiteness we consider a semi-infinite midlatitude β-channel bounded by sidewalls at
y = ±w, where w is the ratio of the half-width of the channel to the Rossby radius.
The approach closely follows that of Paldor et al. (2007) and Paldor & Sigalov (2008) to
which the reader is referred for more detail. The channel width parameter is set as w = 1
hereafter, because, while it is the case that w does affect the branches of the dispersion
relation by determining the quantisation of the meridional wavenumber in the channel,
varying w is found to have a minimal effect on the relative change of each branch due to
the topography.

In the absence of topography, D = Ki(α) = 0 and H is constant in (2.19), and the
equations can be simplified by eliminating U and Π to obtain

∇2
xV +

1

H

(
ω2V − (1 + by)2V

)
+ i

b

ω
Vx = 0. (3.1)

Seeking periodic solutions in x by substituting V (x, y)→ V (y)eikx (abusing notation by
retaining the variable name V ) gives the Sturm-Liouville problem

d2V

dy2
+

(
ω2

H
− k2 − bk

ω
− (1 + by)2

H

)
V = 0, V (±1) = 0. (3.2)

The problem is standard once the Sturm-Liouville eigenvalues {En, n = 1, 2, 3...} are
identified with E(ω, k) = ω2/H − k2 − bk/ω. In general the {En}, which since w is fixed
depend only on b, can be calculated numerically and the Poincaré and Rossby branches
of the dispersion relation follow from finding the roots of the cubic

ω2

H
− k2 − bk

ω
= En(b). (3.3)

The Kelvin wave, which has V = 0 everywhere, is solved for separately and has dispersion
relation ω =

√
Hk.

Fig. 1 (dotted curves) shows the first three branches of the dispersion relation, obtained
from (3.3) after solving (3.2) to obtain E1, E2 and E3 using a standard Chebyshev
spectral discretisation (e.g. Trefethen 2000, 48 points are used), for parameters b = 0.5
and H = 0.7135 (chosen to match the average depth when topography is present). The
value of b = 0.5 chosen is larger than that typically obtained from the planetary vorticity
gradient in the midlatitude open ocean (b ≈ 0.005) or in the atmosphere (b ≈ 0.05).
However, as is well known (e.g. Pedlosky 1987, §3.10), large-scale gradients in the ocean
depth H result in a gradient in the potential vorticity which also support Rossby wave
propagation, and therefore larger values of b may be more representative of typical ocean
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Figure 1. Dispersion relations for Poincaré, Rossby, and Kelvin waves with beta parameter
b = 0.5, over (black curves) a flat-bottomed ocean of depth H = 0.7135, and (blue curves)
a regular array of cylindrical seamounts with h+ = 1, h− = 0.1 (i.e. cylinder height
ht = h+ − h− = 0.9) covering area fraction A = 1/π. Only the first three branches of Poincaré
and Rossby waves are shown in the upper panel, and the lower panel zooms in to show the
Rossby waves more clearly. The dashed blue curve in the resonant frequency band shows the
Kelvin wave solution in the extended equations when Ekman friction is present (see text).
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conditions. Regardless, the relative frequency changes due to topography of each branch
of the dispersion relation are in fact found to be insensitive to the value of b.

It is useful to recall that analytical approximations to the curves in Fig. 1 are easily
obtained in the limit b� 1. At leading order in b these are (e.g. Paldor et al. 2007), for
Poincaré, Rossby and Kelvin waves respectively,

ωP = ±
√

1 +H (k2 + n2π2/4), ωR = − bkH

1 +H (k2 + n2π2/4)
, and ωK =

√
Hk.

(3.4)
Corrections to (3.4) at next order in b are given in Paldor & Sigalov (2008).

3.2. The effect of small-scale topography on the dispersion relation: a summary

Next a summary of results quantifying the effect of small-scale topography on the β-
channel dispersion relations will be presented and discussed. Details of how the results
are actually obtained, by numerical solution of (2.19), are postponed to the sections
below. Results will be for regular periodic arrays of cylindrical seamounts, for which the
topography is arranged in doubly-periodic cells Ω defined on X ∈ (−π, π]× (−π, π]. The
ocean depth is then given by

h(X) =

{
h− |X| 6 R
h+ |X| > R

, (3.5)

i.e. the cylindrical seamounts have radius R, or cover area fraction A = R2/4π, and have
height ht = h+ − h−.

First, to give an idea of the extent of the possible impact of small-scale topography,
the solid curves in Fig. 1 show how the dispersion relation is changed in the presence of
a rather extreme topography, for which ht = 0.9, i.e. the height of the cylinders is 90%
of the depth of the background ocean (h+ = 1, h− = 0.1), and the cylinder area fraction
is A = 1/π (R = 2). The average ocean depth is the same as for the flat-bottomed case
(dotted curves). The main results, summarising the effect of topography on the waves,
are as follows: Poincaré waves are slightly slower, typically by around 20% including near-
inertial waves, and Rossby waves are significantly slower, with their phase speed reduced
by around 50-60%. The Kelvin wave is slightly faster at small wavenumbers and slower at
large wavenumbers, with the two regimes separated by a band of resonant wavenumbers
within which Ekman friction effects must be considered to obtain physically reasonable
results. The grey curve shows a separate calculation for this region, based on numerical
solutions of the extended equations (A 12), which include Ekman friction.

To illustrate how the results in Fig. 1 depend upon the topographic parameters, Fig. 2
shows the relative change in frequency for a set of representative waves. In the top panel,
the frequency change is shown as a function of area fraction A (note that A < π/4, since
A = π/4 corresponds to the cylinders touching), for the gravest inertial wave (k = 0,
n = 1), a representative Poincaré wave (k = 5, n = 1), a relatively short Kelvin wave
(k = 5, chosen so that it is outside the resonant frequency band in Fig. 1), and both short
(k = −20) and long (k = −2) Rossby waves. The topographic height is chosen as ht = 0.5
(lower than for Fig. 1 where ht = 0.9) and the beta parameter as b = 0.5. The results
reinforce the impression from Fig. 1 that Rossby waves are affected much more than
Kelvin or Poincaré waves. In fact, the contrast is even greater for the lower topography,
because, as will be seen below, Rossby wave corrections are driven by resonances (or
near-resonances) with topographic Rossby waves on the seamounts, which can have a
large effect even for low topography.

The lower panel shows how the results depend on the topographic height ht. Curves
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Figure 2. The effect of topography on the frequency of various wave types for b = 0.5, h+ = 1,
h− = 1−ht and cylinder area fraction A. Upper panel: Frequency change as a function of A for
fixed topographic height ht = 0.5. Note that the curves for the inertial, Poincaré, and Kelvin
waves are near-indistinguishable. Lower panel: Frequency change as a function of ht for fixed
area fraction A = 1/π. The shading shows the resonant regions for (I) the short Rossby wave,
(II) the long Rossby wave, and (III) the inertial wave (for details see text). In both panels,
curves with open circles show results when Ekman friction is present. These additional solutions
are only plotted within and close to the relevant resonant regions.
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for the six cases shown in the upper panel are plotted along with three further curves
showing calculations with Ekman friction, which are included in order to give some
indication of the behaviour in the (shaded) resonant regions. (Region (I) is resonant for
the short Rossby wave, region (II) for the long Rossby wave, and region (III) for the
inertial wave). The topography-induced change to the frequency for both the short and
the long Rossby waves is seen to change sign as the resonant region is traversed, and the
Ekman friction calculations give an idea of how the curves join in practice. The value of
the Ekman friction r is chosen in each case to be close to the minimum required to obtain
stable numerical results from (A 12) across the resonant region. As seen in the previous
panel, Rossby waves are slowed by large-amplitude topography, but here can be seen to
be accelerated by small-amplitude topography. Ekman friction, however, suppresses the
acceleration at low amplitudes, and has comparatively little effect when the topography
is large. The effect on inertial, Poincaré and Kelvin waves is once again relatively small
except at extremely large ht, when the inertial waves experience resonance and are slowed
significantly (when Ekman friction is present).

In summary, all rSWE waves can experience resonance when their frequency ap-
proaches that of the trapped topographic Rossby waves, as has been reported for quasi-
geostrophic Rossby waves by Vanneste (2000a,b) and Benilov (2000). The details vary
by wave type. Rossby waves resonate only with relatively low topography, and inertial
/ Poincaré waves only for very large amplitude topography. Kelvin waves will always
experience resonance for some wavenumbers, for any topography supporting trapped
waves, because their dispersion relation spans all frequencies.

Next, the calculations necessary to create Figs. 1 and 2 will be explained.

3.3. The first cell problem and the equivalent depth

Before an attempt can be made to solve (2.19), it is necessary to first solve the cell
problems (2.15) and (2.16) defined on the doubly-periodic cell Ω. The first of these,
(2.15), is of particular interest because its solution allows the equivalent depth Heff in
the non-rotating problem to be determined.

For the case of the periodic array of cylindrical seamounts given by (3.5), (2.15)
(dropping the i index as the problem is now identical up to a rotation for i = 1 and 2)
simplifies to

∇2
XΦ

+ = 0, and ∇2
XΦ
− = 0, (3.6)

where the “+” and “−” indices correspond to parts of the solution in |X| > R, and
|X| < R respectively. The outer solution Φ+ takes periodic boundary conditions on the
edge of Ω. At the cylinder edge, the boundary conditions are

Φ+ = Φ−, (3.7)

h+∂ρΦ
+ − h−∂ρΦ− = − (h+ − h−) cos θ,

on |X| = R, where (ρ, θ) are the usual polar coordinates for X. For further discussion
of the cylinder edge boundary conditions see appendix C.

The cell problem (3.6-3.7) is a canonical problem arising in many areas of mathematical
physics, most classically heat conduction through a two-dimensional porous medium with
cylindrical occlusions (Rayleigh 1892; Keller 1963; McPhedran et al. 1988; Balagurov &
Kashin 2001) but also in electrostatics and optics (McPhedran & McKenzie 1980) and
in determining dielectric permittivity (Godin 2013). Our approach to solving (3.6-3.7),
closely follows that of Godin (2013), and is based on a multipole expansion which exploits
the rapid convergence of the Laurent series of the Weierstrass zeta-function. Details are
given in appendix D.
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Figure 3. Effective depth Heff (dotted black curve) as a function of cylinder area fraction A in
the cylindrical array problem with h+ = 1, and topographic heights (left) ht ≡ h+ − h− = 0.9

and (right) ht = 0.5. Also plotted are the approximants H
(i)
eff for i = 0, 1, 2 (green line, blue line,

red line) and the arithmetic (H)/harmonic (H̄) mean depths (upper/lower grey dotted lines).

Godin’s method (see also Balagurov & Kashin 2001) results in an infinite linear system
which must be inverted in order to solve for Φ+ and Φ− and thus obtain Heff exactly.
However it turns out that truncation of the system at very low order results in a sequence
of increasingly accurate Padé approximants to the exact solution. Moreover, at low order
these can be easily evaluated, for example the first three are given by

H
(0)
eff = h+ (1− 2γA) +O(A5/2),

H
(1)
eff = h+

(
1− γA
1 + γA

)
+O(A9/2), (3.8)

H
(2)
eff = h+

(
1− γA− g4γ

2A4

1 + γA− g4γ2A4

)
+O(A17/2).

Here A is the cylinder area fraction (in our set-up A = R2/4π) and γ = (h+−h−)/(h+ +
h−), which hereafter will be termed the topography parameter, as it mediates how the
topography influences the equivalent depth. Notice that −1 < γ 6 1, with γ = 1
corresponding to an island, γ = 0 no topography, and γ → −1 a bottomless pit. For
small topography of height hb, γ ≈ hb/2h+. The constant g4 ≈ 0.305 is obtained from
the multipole expansion described in detail in appendix D.

Figure 3 shows the effective depth Heff for cylinders with height (left) ht = 0.9 and
(right) ht = 0.5, as a function of the cylinder area fraction A. Note that the maximum
possible area fraction is A = π/4, when the cylinders touch, and Godin’s approach breaks
down (Keller 1963, describes the ‘near-touching’ regime). In each case Heff (dotted black
curve) is obtained by a numerical calculation in which the linear system is truncated at
24 terms, which is found sufficient for convergence to machine precision for all results
shown. As anticipated, H̄ 6 Heff 6 H, i.e. Heff in each case is seen to lie within the

Reuss-Voigt bounds (grey solid curves). Also plotted are the approximants H
(0)
eff , H

(1)
eff

and H
(2)
eff , showing that H

(2)
eff gives an excellent approximation to the numerical result

right up until the cylinders nearly touch. The zeroth order approximant H
(0)
eff is accurate

for small area fraction, but diverges significantly from the numerical solution at larger
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A, and is is seen to violate the Reuss bound. This fact is important in assessing the
limitations of results for randomly distributed seamounts in section 4, because the sparse

seamount approximation (A � 1) used there turns out to be equivalent to using H
(0)
eff

to approximate Heff . The results (3.8) have been further verified against Fig. 3 of Hu &
Chan (2005), who plot the refractive index (H/Heff)1/2 for the case of islands (γ = 1)
as a function of area fraction A (see also Mei & Vernescu 2010, §7.1, for an analogous
result for acoustic waves). Excellent agreement is found (results not shown).

Finally, note that the difference between the equivalent depth Heff and the mean depth
H accounts entirely for the differences between the Poincaré and Kelvin wave dispersion
relations at large wavenumber k seen in Fig. 1, because in the large k limit these waves
do not feel rotation.

3.4. The second (rotating) cell problem

In this section the method used to solve the rotating cell problem (2.16), which is a
new feature of the rSWE, is described. Recall that solutions of (2.16) are required in
order to evaluate the topographic resonance functions K1(α), and K2(α) which appear
in (2.19). In the cylindrical seamount case given by (3.5), (2.16) becomes (dropping the
i index, and focussing on the i = 1 problem, which is sufficient due to symmetry)

∇2
XΨ
±
α = ∇2

XG
± = 0, (3.9)

with the boundary conditions

Ψ+
α = Ψ−α , ∂θG

+ = ∂θG
−,

h+∂ρΨα − h−∂ρΨα = ∂ρG
+ − ∂ρG−, (3.10)

∂ρG
+

h+
− ∂ρG

−

h−
− iα

R

(
∂θG

+

h+
− ∂θG

−

h−

)
= −

(
1

h+
− 1

h−

)
cos θ,

on |X| = R. Here, the notation closely follows that for the non-rotating problem, and
detailed derivations of the boundary conditions can be found in appendix C. Full details
of how the multipole expansion method of Godin (2013) is adapted to solve (3.9-3.10)
are given in appendix D.

Following the method for Heff described above, the topographic resonance functions
K1(α) and K2(α) are obtained from Godin’s method by truncating and solving infinite
linear systems, in which α appears as a parameter. The lowest order truncations result

in Padé approximants for Ki(α), namely K
(0)
i , K

(1)
i etc., and explicit expressions for the

leading three are given in (D 8-D 9).

The convergence of the sequences K
(i)
1,2(α) → K1,2(α) is, however, more complicated

than for H
(i)
eff → Heff discussed above. To illustrate, Fig. 4 shows results for i = 0, 1, 2

(curves) and i = 24 (circles). The complexity is introduced because the approximant

functions K
(i)
1,2(α) each have i singularities (for i > 1) in α > 1. In the limit i→∞, there

are evidently an infinite number of these singularities, meaning that the ‘true’ K1,2(α)
cannot be described by rational functions of α. A similar problem, arising in electrostatics
and optics, is analysed in McPhedran & McKenzie (1980). Adapting their results to the
present context, the locations of the singularities αp (in α > 0) are given by the formula

αp =

√
1− λpγ2

(1− λp)γ2
, (3.11)

where λp is the pth eigenvalue of the infinite matrix
(
DETD

)2
, given in appendix D.
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Figure 4.K
(i)
1,2(α) plotted as functions of α and A. The low order Padé approximants (i = 0, 1, 2)

are shown with green, blue, and red lines respectively, and the “true” Padé approximants (i = 24)
are shown with circles. To give an idea of the convergence, only the main solution branches are
plotted for each curve, e.g. in the first panel the ‘true’ K1 has an infinite number of singularities
in 1.2 . α . 1.5, which would be impossible to plot. The topographic height is fixed at ht = 0.9,
and the area fraction, and α are fixed at A = 49/25π, and α = 1.45 in the top and bottom rows
respectively.

Further, it follows that the αp converge to an essential singularity at α∞ = limp→∞ αp =
γ−1. It turns out that, as is suggested by Fig. 4, all singularities are confined to a narrow
range of α, which expands slowly as the area fraction increases towards its maximum
value. The low order approximants do a good job away from the resonant band, and as
the order increases they capture the location of the leading singularities with increasing
accuracy.

Physically, the singularities in K1,2(α) at α = αp (p > 1) occur due to the excitation
of the normal modes of the topographic Rossby waves which propagate around the
edges of the cylindrical sea-mounts (Jansons & Johnson 1988; Benilov 2000; Vanneste
2000a; Longuet-Higgins 1967). That the singularities all occur in α > 1 is related to the
topographic Rossby waves frequencies being bounded above by the inertial frequency. If
a large-scale wave has a frequency which matches the frequency of one of these normal
modes, a resonant excitation will occur which requires Ekman friction or other dissipation
to regularise. The structure of the streamfunction of the first three normal modes is
shown in Fig. 5. In practice, if a small amount of friction is added to the system, the
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Figure 5. Spatial structure of the first three normal modes of the topographic array, illustrated
by contouring GR = Re {ψ}. The cylindrical seamounts have radius R = 2 (area fraction 1/π)
and height ht ≡ h+ − h− = 0.9.

effect of the higher modes is negligible compared to the first mode, due to the weak
correlation between their fine-scale structure and that of the topography itself. The lower
row in Fig. 4 shows how K1,2(α) depend on the area fraction of the topography, for fixed
α = 1.45. The resonant band is seen to be located around A ≈ 0.64.

In summary, the convergence issues with the functions Ki(α) present difficulties for the
numerical solution of (2.19). Consequently, solutions of (2.19) are treated as valid only
if no singularities of Ki((1 + by)/ω) are present within the computational domain. This
condition defines the ‘resonant regions’ in Figs. 1 and 2) (or, strictly speaking, the non-
resonant region). Solutions given within the resonant regions use the extended system
(A 12) to include Ekman friction, and are therefore regularised.

3.5. Numerical solution of (2.19)

Once the functions K1(α) and K2(α) are found to the required accuracy, (2.19) can be
solved numerically. The numerical method used is as follows. First, solutions ∝ exp(ikx)
are sought for fixed wavenumber k, reducing the system to a first-order system of ODEs
in the y-variable, defined on the interval [−1, 1]. This system is suited to a Chebyshev
spectral method (e.g. Trefethen 2000), in which the y-grid is discretised into N + 1
points (N = 96 is used) located at the zeros of the Chebyshev polynomial of order N+1.
Standard techniques allow the differentiation matrix Dy to be obtained for the grid,
which, for the flat bottomed case with K1(α) = K2(α) = D = 0. allow the discretised
version of (2.19) to be written as a generalised eigenvalue problem of the form

−iωAv +Bv = 0, (3.12)

where v = (U1, · · · , UN+1, V2, · · · , VN , Π1, · · · , ΠN+1)T , and A,B are square block
matrices of size 3N + 1. Note that the discretised V -equation spans only the interior
Chebychev points, with the block matrices being adjusted accordingly, in order that the
boundary conditions V (±1) = 0 are satisfied. The values of ω, and v satisfying (3.12)
can then be found using standard numerical eigenvalue routines.

When topography is present the matrices A and B in (3.12) themselves depend on ω,
through the arguments of K1(·) and K2(·), and the method above must be adapted. Our
approach is to use a fixed-point iteration method, by writing

−iωnA (ωn−1)vn +B (ωn−1)vn = 0, (3.13)

for iteration n, and using the flat-bottomed frequency for the initial guess ω0. The idea is
that repeated solution of (3.13) will lead to the convergence of ωn and vn to the desired
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solutions ω and v. While basic, this method works well in the sense that analogues of
all flat-bottomed solutions can be routinely found using around 20 iterations (for near-
machine accuracy), even for extreme topographies.

A further constraint on the numerical solutions is that, once ω is known, Ki((1+by)/ω)
must be non-singular throughout the domain y ∈ [−1, 1]. Otherwise a resonance is
evidently present, and the numerical solution of (3.13) does not make sense, not least
because the discrete grid cannot handle singularities. For each singular point αp of
Ki(α), all frequencies in the interval ω ∈ [(1− b)α−1

p , (1 + b)α−1
p ] will have a singularity

somewhere in the domain. The resonant frequency band is therefore defined to be the
union over all p of these intervals. To find meaningful solutions in the resonant frequency
band, it is necessary to add finite Ekman friction to the system and solve the resulting
extended equations detailed in Appendix A. These Ekman friction calculations have
been implemented by the same method, allowing our calculations to be extended into
the resonant band.

3.6. Approximate formulae for the dispersion relations

Numerical calculation of the dispersion relation using (2.19) is, as described above,
a complicated multi-step process. In practice it is arguably more insightful to have
approximate formulae for the topographic effect, for example analogues of the b � 1
dispersion relations (3.4) for the flat-bottomed case. It turns out that different approaches
to obtain such formulae are necessary for Poincaré and Kelvin waves versus Rossby waves,
and each will be considered in turn. It is important to emphasise that the limit b � 1
does not equate to the quasi-geostrophic limit, which also requires the topography to be
O(b), and that the results in the following two subsections are therefore valid for finite
topographies.

3.6.1. Poincaré and Kelvin waves

Consider the limit b � 1 in which Poincaré waves and Kelvin waves have frequencies
of order unity. (A separate regime in which the Kelvin wave has frequency O(b) is not
considered here.) In the limit b� 1, the Taylor expansion

K1,2

(
1
ω + b yω

)
= K1,2

(
1
ω

)
+ b yωK

′
1,2

(
1
ω

)
+O(b2),

can be used to simplify (2.19), which at leading order in b becomes

−iω
(
1 + 1

ω2K1

(
1
ω

)
+ 1

ωK2

(
1
ω

))
U +

(
1 +K1

(
1
ω

)
+ 1

ωK2

(
1
ω

))
k ×U = − (1 +D)∇xΠ,

−iωΠ +H∇x ·U = 0, (3.14)

with channel wall boundary conditions V (±1) = 0. Mathematically, the absence of
explicit y-dependence in equation (3.14) simplifies matters compared to (2.19), and,
harmonic wave solutions ∝ exp (i (kx+ ly)) can be sought (we take l = nπ/2 for ease
of comparison with the results above). The result is the following nonlinear equation
determining the dispersion relation(

1− ω2
) [
K1

(
1
ω

)2 − (ω +K2

(
1
ω

))2]−Heff

(
ω2 +K1

(
1
ω

)
+ ωK2

(
1
ω

))
κ2
n = 0, (3.15)

where κ2
n = k2 + n2π2/4. In general, the solution branches of (3.15) must be found

numerically using a standard root finding method, although, because it is a single-variable
equation, this is evidently much simpler than solving (2.19). For short waves with ω � 1
(i.e. κn � 1), the resonance functions K1,2(α) can be approximated by their value at
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α = 0, and using the fact that K2(0) = 0, the result simplifies further to

ω2
P = 1

2

(
1 + κ2

nHeff +K2
0

)
+ 1

2

(
(1 + κ2

nHeff +K2
0 )2 + 4K2

0 − 4K0κ
2
nHeff

)1/2
(3.16)

Here Heff and K0 ≡ K1(0) are constants determined by the topography which, in the
case of regular cylinders, allows for progressively more accurate approximations to be
obtained from (3.8) and (D 8) respectively. For example, the zeroth-order approximations
are Heff = h+(1−2γA) and K0 = −2γ2A, which are accurate for low area fraction A. The
result (3.16) can be compared with the flat-bottomed formula (3.4), which is recovered
by setting γ = 0 or A = 0.

For the Kelvin wave it suffices to set V = 0 in (3.14) and, following the analysis of the
flat-bottomed case, it follows that

ω2 +K1

(
1
ω

)
+ ωK2

(
1
ω

)
= k2Heff . (3.17)

Once again, this is a nonlinear equation, which must be solved numerically using a root
finding method to obtain the Kelvin wave dispersion relation. The short wave result
(ω � 1) is

ω2
K = k2Heff −K0, (3.18)

which can be compared with (3.4).

3.6.2. Rossby waves

Rossby waves frequencies are O(b) in the limit b� 1, therefore to obtain approximate
formulae the asymptotic forms of K1(α) and K2(α) are required for α� 1. For the case
of the regular array of cylinders they are

K1 (α) =
c2
α2

+
c4
α4

+ · · · , K2 (α) =
d1

α
+
d3

α3
+ · · · ,

where the sequence of constants {ci} and {di} can be determined to the required accuracy
by expanding the formulae in (D 8-D 9). For example, the zeroth order approximations
to the first coefficients are c2 = 2A and d1 = −2γA.

Retaining terms in (2.19) up to O(b), it follows that

−iω (1 + c2 + d1)U + (1 + by) (1 + d1)k ×U = − (1 +D)∇xΠ,

−iωΠ +H∇x ·U = 0. (3.19)

The leading order Rossby wave dispersion relation is then found to be

ωR = − kb (1 + d1)Heff

(1 + d1)
2

+ (1 + c2 + d1)Heffκ2
n

,

≈ − kbh+ (1− 2γA)

(1− 2γA) + (1 + 2(1− γ)A)κ2
nh+

, (3.20)

where the second expression uses the zeroth-order approximations for Heff , c2 and d1,
which are valid for low area fraction A � 1. The dispersion relation (3.20) can be
compared with its flat bottomed counterpart (3.4).

Some asymptotic dispersion relations are plotted in Fig. 6 for a topography with
relatively large height (ht = 0.9), and area fraction (A = 1/π), and at finite b = 0.5, in
order to test the validity of the approximations by comparison with numerical solutions
of (2.19). Because A is relatively large, the second-order approximants are used for Heff

and K1,2. Agreement between the full solution of (2.19) and the asymptotics is seen to
be good, even at this relatively large value of b, and further tests with lower values of b
have confirmed the expected rate of convergence.
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Figure 6. Frequency plotted against wave number for the Kelvin wave, and the first three modes
(n = 1, 2, 3) of the Rossby waves and Poincaré waves for b = 0.5, h+ = 1, and cylinder height
ht = h+ − h− = 0.9. Shown here is the full numerical solution to (2.19) (magenta lines), and

the leading-order asymptotics (3.15-3.20), using the approximants H
(2)
eff , K

(2)
1,2(α) (black circles).

The right panel shows a close-up of the Rossby waves.

3.7. Quasi-geostrophic regime

In this section our focus is the quasi-geostrophic regime which, as discussed in section
2.3 above, requires not only b� 1, as in the preceding sections, but also O(b) topography.
Writing ht = bhb, and applying the methods described above to (2.26) results in the
following nonlinear equation for the Rossby wave dispersion relation for the scaled
frequency Ω = ω/b,

Ω +
k

1 + κ2
n

+
κ2
n

Ω(1 + κ2
n)
K̃
(

1
Ω

)
= 0. (3.21)

The function K̃(α) is defined using the solution of the quasi-geostrophic cell problem
(2.25), and is the quasi-geostrophic analogue of K1 (K2 → 0 in the quasi-geostrophic
limit). The first three approximants are given by (D 10). Using the zeroth-order approx-
imant in (3.21) recovers the dispersion relation found in Vanneste (2000b) and Benilov
(2000) for widely separated seamounts. The use of more accurate approximants for K̃ in
(D 10) therefore extends these previous results to the case of more densely packed regular
topography.

It is interesting that the quasi-geostrophic limit results in a qualitatively different
formula (3.21) for the Rossby wave dispersion relation compared to the finite topography
limit (3.20). Specifically, the quasi-geostrophic formula allows for the possibility of
resonant behaviour, while the finite topography formula involves just a quantitative
modification of the flat-bottomed formula. The explanation is that the finite topography,
b � 1 limit excludes resonance because the long Rossby wave frequency becomes
O(b) while the trapped topographic Rossby waves retain O(1) frequency. In the quasi-
geostrophic limit, by contrast, both the long waves and the trapped waves have O(b)
frequency, and therefore resonance remains possible.

To investigate the regimes of validity of the quasi-geostrophic and finite topography
approximations, Fig. 7 compares the calculated frequencies to those of the full rSWE,
obtained from numerical solutions of (2.19). The comparison is for b = 0.1, and a
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Figure 7. Rossby wave frequency against topographic depth for a fixed wavenumber
(k, l) = (−π/2, π/2), b = 0.1, and area fraction 1/π. Shown are the full numerical solution

(black curves), the finite topography approximation calculated using K
(2)
1,2(α) (red circles), and

the quasi-geostrophic approximation calculated using K̃(2)(α) (blue circles). The shaded region
indicates the range of frequencies which are prohibited by resonance, and the numerical solution
including friction (r = 0.17) is included, joining the two solution regions.

topography of regular periodic cylinders across the full range of topographic heights ht,
with cylinder area fraction A = 1/π. In the full system resonance is found to occur when
ht is around 0.04 to 0.06, which can be regularised with e.g. Ekman friction. The quasi-
geostrophic formula (3.21) captures the full dispersion curve behaviour quite accurately
close to the resonance, while the finite topography result (3.20) evidently does not. As
the topography amplitude is increased beyond ht ≈ 0.3, however, the quasi-geostrophic
approximation is increasingly inaccurate, and the finite topography result captures the
full rSWE behaviour well. In practice, therefore, each approximation has its own domain
of validity.

4. Randomly distributed seamounts

The regular periodic seamounts covered in the previous section have the advantage
that the rSWE dispersion relations can be calculated accurately for arbitrary seamount
height ht and area coverage A. However, with respect to the ocean this ‘regular array’
topography is obviously artificial. In particular, resonance effects will be unduly amplified,
because the topographic Rossby wave at every seamount (at the same latitude y) has the
same frequency. It is evidently worthwhile to compare the results above with those for a
randomised topography in which seamount location, height and radius are governed by a
specified distribution. The drawback of considering a randomised distribution, as shown
previously in the quasi-geostrophic case (Vanneste 2000b; Benilov 2000), is that in order
for the problem to be tractable an assumption of widely separated seamounts must be
made, i.e. the area fraction A� 1. As will be shown, this approximation turns out to be

equivalent to using the zeroth-order approximants H
(0)
eff , K

(0)
i for the effective depth and

topographic resonance functions which, as can be seen in e.g. Fig. 3, become inaccurate
at finite A.
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To examine the effect of randomly distributed seamounts the averaging operator (2.4)
needs careful interpretation. The region Ω = Ω(x) formally becomes a region centred on
x that is asymptotically intermediate in scale between the large and small length scales. In
this asymptotic regime, for a suitable randomly generated field g in (2.4), the averaged
field 〈g〉 will be independent of the details of Ω. In practice, it is not straightforward
to make calculations with (2.4) unless the function g can be linearly decomposed into
contributions from each mountain in Ω, i.e. interactions between mountains can be
neglected so that (suppressing x-dependency)

g(X) ≈
N∑
i=1

g1(X −Xi, Ri, γi) (4.1)

where Xi is the location of the ith mountain, and g1(X, R, γ) is the contribution to g
from a single seamount of radius R and height parameter γ at the origin. Inserting (4.1)
into (2.4), and exploiting the fact the region Ω is large, allows the joint limit N → ∞,
Ω → ∞ to be taken. A number density n(R, γ) can now be introduced, defined so that
the number of seamounts with radius ∈ [R,R+ dR) and height parameter ∈ [γ, γ + dγ)
in a small area dX is n(R, γ) dR dγ dX. This allows the sum in (4.1) to be replaced with
integrals in (2.4), which can each be centred on the origin by change of variables so that

〈g〉 =

∫ 1

−1

∫ ∞
0

∫
R2

g1(X, R, γ)n(R, γ) dX dR dγ. (4.2)

Next, consider the averaging operator (4.2) as applied to equation (2.18) to determine
Heff for the case of cylindrical topography distributed according to n(R, γ). The first cell
problem (3.6-3.7) is greatly simplified compared to the doubly periodic case, as it need
only be solved in R2, using standard polar coordinates. The solution (Φ+ = γR2 cos θ/ρ,
Φ− = γρ cos θ) is equal to the zeroth-order solution for seamounts in the doubly-periodic
domain given in appendix D.1. In other words, the zeroth-order small R approximation
in the doubly-periodic case and the non-interacting seamount approximation in (4.1) are
equivalent. Inserting the solutions into (2.18) gives

Heff = h+

(
1− 2

∫ 1

−1

∫ ∞
0

πR2γ n(R, γ) dR dγ

)
. (4.3)

The expression (4.3) for Heff simplifies further if it is assumed that n(R, γ) is separable,
i.e.

n(R, γ) =
A

a0
pR(R) pγ(γ), (4.4)

where A� 1 is the area fraction covered by seamounts as above, a0 =
∫∞

0
πR2pR(R) dR

is the average seamount area, pR(R) is the pdf of the cylinder radii and pγ(γ) is the pdf
of the height parameter. In this case

Heff = h+

(
1− 2A

∫ 1

−1

γ pγ(γ) dγ

)
, (4.5)

from which the zeroth-order doubly-periodic result in (3.8) is recovered, independently
of the choice of pR(R), by setting the heights of all cylinders to be equal, i.e. pγ(γ) =
δ(γ − γ0) for constant γ0.
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The topographic resonance functions can be calculated similarly, and the results are

K1(α) = −
∫ 1

−1

∫ ∞
0

2πR2γ2

1− α2γ2
n(R, γ) dR dγ

(
= −2A

∫ 1

−1

γ2pγ(γ)

1− α2γ2
dγ

)
K2(α) = α

∫ 1

−1

∫ ∞
0

2πR2γ3

1− α2γ2
n(R, γ) dR dγ

(
= 2αA

∫ 1

−1

γ3pγ(γ)

1− α2γ2
dγ

)
. (4.6)

The terms in brackets show the results for the separable case, which reduce the zeroth-
order expressions in (D 8-D 9) for seamounts of constant height.

The results (4.3-4.6) allow (2.19) to be solved numerically using the methods of sec-
tion 3 above. It is also possible to obtain analytical results by exploiting the smallness
of A, employing a regular expansion for the frequency of the form

ω = ω0 +Aω1 +O(A2), (4.7)

and thereby obtaining the leading order corrections to the dispersion relations (c.f.
Vanneste 2000b, for the quasi-geostrophic case). Details will be given in Goldsmith’s
thesis. Here, we present numerical results for cylindrical seamounts which are uniformly
distributed in height, with the depth over the seamounts in the range hmin < h− < hmax,
and with a separable number density (4.4). This situation corresponds to

pγ(γ) =


(1 + γ+) (1 + γ−)

(γ+ − γ−)

1

(γ + 1)2
γ− < γ < γ+

0 otherwise

, (4.8)

where γ− = (h+ − hmax)/(h+ + hmax) and γ+ = (h+ − hmin)/(h+ + hmin). Recall that
pR(R) is arbitrary in this set-up, because the results depend only on the area fraction A.

Fig. 8 shows results for the distribution (4.8) with hmin = 0.1 and hmax = 0.4, and
A = 0.1, which represents a range of tall cylindrical seamounts which, compared to the
scenario shown in Fig. 1 (where A = 1/π), have a significantly lower area coverage.
Qualitatively, the effect of the topography is similar (although weaker) compared to
the constant height case nearly everywhere, except close to the resonant region for the
Kelvin waves. In the Kelvin wave dispersion relation, singularities are present at ω = γ±
(dimensionally f0γ±). It is perhaps surprising that the dispersion relation contains any
singularities at all when the heights of the seamounts are distributed, but as shown by
Benilov (2000) for Rossby waves in the quasi-geostrophic case, the integrals in (4.6) result
in logarithmic singularities at the end-points of the distribution at γ±. This translates
into logarithmic singularities in the dispersion relations at ω = γ±, which, much more
than the algebraic singularities which occur when the seamount heights are constant, are
smoothly regularised by the addition of relatively weak Ekman friction. The grey curve
shows the solution of the extended system (A 14) with Ekman friction parameter r = 0.1.
Further details and discussion of these results will be given in Goldsmith’s thesis.

5. Conclusions

The main results of this work, summarised in Figs. 1, 2 and 8, show the extent to which
finite-amplitude topography can influence Rossby, Kelvin and Poincaré wave speeds
compared to the flat-bottomed case. Our results have been presented to illustrate the
extent of the error that will necessarily be introduced in ocean general circulation models,
due to using the mean ocean depth in place of the fully-resolved small-scale topography.
Clearly, significant errors in Rossby wave speeds in particular are possible, due either to
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Figure 8. Dispersion relations for mountains distributed according to (4.8) with hmin = 0.1
and hmax = 0.4. The beta parameter b = 0.5 and area coverage A = 0.1. Black curves show the
flat-bottomed solution and blue curves show the solution with topography present. The dashed
blue curve shows the solution when friction is present, and is plotted only between the two
logarithmic resonances, indicated by the dotted lines. The right panel expands the Rossby wave
dispersion relations for clarity.

large-amplitude topography with significant area coverage, or due to resonance between
the Rossby wave and trapped topographic Rossby waves over seamounts. How significant
the latter effect is in the ocean (also for Kelvin waves) remains an open question. Certainly
the impact of resonance is reduced, although not removed entirely, by using a distribution
of topographic heights in place of topography with a single height. Another reason
resonance may not be so important in practice is that, as noted in the conclusions of
Vanneste (2000b), in the typical ocean situation the frequency of the trapped topographic
Rossby waves will usually be higher than that of the propagating Rossby waves, meaning
the topography will not resonate but will act to slow the Rossby wave propagation
speed. The corrected dispersion relation (3.20), which quantifies this effect in the finite
amplitude (b� 1) regime, gives a useful insight into its magnitude.

The value of the results presented here is not limited to oceanography. The rSWE
are used in many other fields, perhaps most relevantly in atmospheric science, where
they provide a valuable reduced model describing wave propagation through a stably
stratified atmosphere. In this perspective, the ‘topography’ can represent not physical
topography per se, but small-scale regions of reduced stratification due to the presence of
e.g. distributions of convective clouds. The approach taken here may therefore be of value
in quantifying how, for example, equatorial wave speeds are modified by unresolved cloud
fields (see also e.g. Biello & Majda 2005), with implications for their parametrisation.
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Appendix A. Homogenisation of the rSWE in the presence of Ekman
friction

In this section, the analysis of section 2 is repeated for the rSWE with Ekman friction,
which in nondimensional form are

ut + (1 + by)k × u = −∇η − ru
h
, (A 1)

ηt +∇ · (hu) = 0.

The Ekman friction parameter r = E/f0H0, where E is the dimensional Ekman drag
coefficient. Following the procedure of section 2, at leading order (2.8) is obtained, and the
leading order surface displacement Π and velocity u0 can be defined as in the frictionless
case. At next order, multiplying the velocity equation by h and averaging, results in

Ut + (1 + by)k ×U = −∇xΠ − r
U

H̄
+
〈η1∇Xh〉

H
+ r

〈
ψ∇⊥X

(
1
h

)〉
H

, (A 2)

Πt +∇x · (HU) = 0,

where H̄ = 〈h−1〉−1 is the harmonic mean of the depth. Compared to (2.10) there are two
extra terms in (A 2), one from the mean drag due to the Ekman friction, and a second
correlation term involving ψ.

The cell problems are then obtained folllowing the methodology of section 2. The
analogue of the first cell problem (2.11) is obtained by multiplying the O(ε) equation by
h and taking the divergence, giving

∇X ·(h∇Xη1)−(1+by)∇2
Xψ−r∇Xψ·∇⊥X

(
1

h

)
= −∇Xh·∇xΠ−rHU ·∇X

(
1

h

)
, (A 3)

The second cell problem determining ψ follows from the potential vorticity equation,
which at leading order in r is given by

∇X ·
(
∇Xψt
h

)
+ r∇X ·

(
∇Xψ

h2

)
− (1 + by)∇Xψ · ∇⊥X

(
1

h

)
=

H (k ×Ut − (1 + by)U) · ∇X

(
1

h

)
+ rHk ×U · ∇X

(
1

h2

)
. (A 4)

Seeking solutions with frequency ω, and exploiting the linearity of (A 3) and (A 4), leads
to

η1 = Φ · ∇xΠ + rHΛ ·U +H(1 + by)Ψ (1+by)
ω , rω

·
(

i
1 + by

ω
U − k ×U

)
+ i

r2H

ω
Σ (1+by)

ω , rω
· k ×U , (A 5)

ψ = HΘ (1+by)
ω , rω

·
(

i
1 + by

ω
U − k ×U

)
+ i

rH

ω
Υ (1+by)

ω , rω
· k ×U ,

where the vectors Φ = (Φ1, Φ2)T , Λ = (Λ1, Λ2)T , Ψα,δ = (Ψ1,α,δ, Ψ2,α,δ)
T , Σα,δ =

(Σ1,α,δ, Σ2,α,δ)
T , Θα,δ = (Θ1,α,δ, Θ2,α,δ)

T , and Υα,δ = (Υ1,α,δ, Υ2,α,δ)
T are obtained by

solving

∇X · (h∇XΦi) = −∂Xih, (A 6)

∇X · (h∇XΛi) = −∂Xi

(
1

h

)
, (A 7)
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and

∇X · (h∇XΨi,α,δ) = ∇2
XΘi,α,δ +

δ

α
∇XΘi,α,δ · ∇⊥X

(
1

h

)
, (A 8)

∇X · (h∇XΣi,α,δ) =
α

δ
∇2

XΥi,α,δ +∇XΥi,α,δ · ∇⊥X
(

1

h

)
, (A 9)

where,

∇X ·
(
∇XΘi,α,δ

h

)
+ iδ∇X ·

(
∇XΘi,α,δ

h2

)
− iα∇XΘi,α,δ · ∇⊥X

(
1

h

)
= −∂Xi

(
1

h

)
,

(A 10)

∇X ·
(
∇XΥi,α,δ

h

)
+ iδ∇X ·

(
∇XΥi,α,δ

h2

)
− iα∇XΥi,α,δ · ∇⊥X

(
1

h

)
= ∂Xi

(
1

h2

)
,

(A 11)

respectively, where α and δ are complex parameters. The Ekman friction generalisation
of (2.19) therefore requires a pair of two-parameter families of equations to be solved in
order to determine η1 and ψ. Substituting η1 and ψ into equation (A 2), the generalisation
of (2.19) is found to be

− iω

(
I +

(
1+by
ω

)2

K 1+by
ω ,

r
ω

+
(

1+by
ω

)
r
ωM 1+by

ω ,
r
ω

)
·U

+ (1 + by)

(
I + K 1+by

ω ,
r
ω

+ r
1+byM 1+by

ω ,
r
ω

− i r2

ω(1+by)N 1+by
ω ,

r
ω

)
· (k ×U) =

− (I + D) · ∇xΠ −
r

H̄
(I + E) ·U , (A 12)

with the mass conservation equation for Π unchanged. Here D and Kα,δ are given by
(2.18) as before, and the new matrices E, Mα,δ, and Nα,δ have elements

(E)ij = −H̄ 〈Λj∂Xih〉 , (Mα,δ)ij =

〈
Θj,α,δ∂

⊥
Xi

(
1

h

)〉
,

and (Nα,δ)ij =

〈
Σj,α,δ∂Xi

h+ Υj,α,δ∂
⊥
Xi

(
1

h

)〉
.

(A 13)

As in section 2, further simplifications result if it is assumed that the topography has a
four-fold symmetry. Details will be given in Goldsmith’s thesis.

In the event that the topography is sparse and the Ekman friction is weak, i.e. the
topography area fraction A � 1 and Ekman friction parameter r � 1, as in the case of
randomly distributed seamounts covered in 4, then (A 2) can be greatly simplified by
only those terms which are leading order in A and r. The result is

Ut + (1 + by)k ×U = −∇xΠ −
r

h+
U +

〈η1∇Xh〉
h+

, (A 14)

Πt +∇x · (HU) = 0,

and Ekman friction can be neglected when determining η1, which is given by (2.14).
Equation (A 14) is used to calculate the Ekman friction results presented in section 4.
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Appendix B. Time-dependent solution to the homogenisation
problem

Here the full time-dependent solution to the cell-problem (2.12) is given, and used to
obtain the time-dependent generalisation of (2.19), following the approach taken for the
quasi-geostrophic system in Vanneste (2000a). Starting from a state of rest, the solution
to (2.12) is

ψ = H

∫ t

0

R(X,x, t− τ) · ((1 + by)U(x, τ)− k ×Ut(x, τ)) dτ, (B 1)

and hence from equation (2.11), η1 is given by

η1 = Φ(X,x, t)·∇xΠ+H(1+by)

∫ t

0

S(X,x, t−τ)·((1 + by)U(x, τ)− k ×Ut(x, τ)) dτ.

(B 2)
Here,R(X,x, t) = (R1, R2)T , and S(X,x, t) = (S1, S2)T are periodic, zero-mean vectors
satisfying the cell problems

∇X · (h∇XSi) = ∇2
XRi, (B 3)

∇X ·
(
∇XRit
h

)
− (1 + by)∇XRi · ∇⊥X

(
1

h

)
= −δ(t)∂Xi

(
1

h

)
, (B 4)

and the initial conditions

R(X,x, 0−) = S(X,x, 0−) = 0, (B 5)

where δ(·) is the Dirac delta function. The cell problem (2.15) satisfied by Φ remains
unchanged.

Using the expression (B 2), we can rewrite the momentum equation in (2.10) as an
integro-differential equation

Ut − (1 + by)2

∫ t

0

T (x, t− τ) ·U(x, τ) dτ

+ (1 + by)

((
I + T (x, 0+)

)
· k ×U −

∫ t

0

T t(x, t− τ) · k ×U(x, τ) dτ

)
=

− (I + D) · ∇xΠ, (B 6)

where T is the matrix given by

T (x, t) =

(
〈S1∂X1h〉 〈S2∂X1h〉
〈S1∂X2

h〉 〈S2∂X2
h〉

)
,

and D is defined as before.

Appendix C. Boundary conditions for discontinuous topography

In this section, the boundary conditions relating to the cell-problems (2.15) and (2.16)
are derived in detail. Suppose that h is discontinuous along a closed curve C in Ω, then
it is necessary to determine the boundary conditions on Φ, Ψα, and Gi along C. Surface
displacement must be continuous over C, and hence from (2.14),

Φ+
i = Φ−i , and Ψ+

i,α = Ψ−i,α, (C 1)
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and similarly, since the velocity field must be continuous, (2.9) gives

n · ∇⊥XG+
i = n · ∇⊥XG−i , (C 2)

where the +/− superscripts indicate the parts of the solution outside / inside the curve
C, and n is the unit normal vector on C. The remaining boundary conditions are found
from the divergence form of the cell-problems

∇X · (h∇XΦi + eih) = 0,

∇X · (h∇XΨi,α −∇XGi) = 0, (C 3)

∇X ·
(
∇XGi
h

+ iα
∇⊥XGi
h

+
ei
h

)
= 0,

where ei is the i’th cartesian basis vector. The arguments of the divergence operator in
each case must be continuous across C, i.e.

[(h∇XΦi + eih) · n]
+
− = 0,

[(h∇XΨi,α −∇XGi) · n]
+
− = 0, (C 4)[(

∇XGi
h

+ iα
∇⊥XGi
h

+
ei
h

)
· n
]+

−
= 0.

In the case of the cylindrical topography (3.5), in which C is a circle centred at the origin
with radius R, only the i = 1 problem need be considered due to rotational symmetry.
Dropping the i subscript, and focussing on the i = 1 problem, which is sufficient to obtain
K1(α) and K2(α), the boundary conditions (C 4) become (3.10) given in the main text.

Appendix D. The multipole expansion method

Here the multipole method used to solve the cell problems (3.6-3.7) and (3.9-3.10)
in section 3 is described. The method closely follows that of Godin (2013) (see also
Balagurov & Kashin 2001).

First, G± and Ψ±α in (3.9-3.10) are expanded into their real and complex parts G± =
G±R + iG±I , and Ψ±α = Ψ±α,R + iΨ±α,I . Next, all real dependent variables are expanded in a
complex power series, for example

Φ− = Re

{ ∞∑
m=0

Wmz
m

}
, (D 1a) Φ+ = Re

{ ∞∑
m=1

Ymrm(z)

}
, (D 1b)

where z = X1 + iX2 is the usual complex variable defined on Ω (recall that the + and
− superscripts refer to solutions in |z| > R and |z| < R respectively). Expansions for
Ψ−α,R, Ψ−α,I , G

−
R, and G−I have the same form as (D 1a), with coefficients Am, Bm, Fm, Gm

respectively, whereas Ψ+
α,R, Ψ+

α,I , G
+
R, and G+

I have the form of (D 1b) with coefficients
Cm, Dm, Mm, Pm. In general all of the coefficients are complex, except for m = 0, when
they must be real. The sequence of functions {rm(z)} are given by

r1(z) = ζ(z;Λ)− ζ(π;Λ)
z

π
,

rm(z) =
(−1)m−1

(m− 1)!

dm−1

dzm−1
r1(z), (m > 1)

with r0(z) defined by r′0(z) = r1(z). Here ζ(z;Λ) is the Weierstrass zeta-function
associated with the lattice Λ = {zk = 2π(kx + iky) |k = (kx, ky) ∈ Z2}. The advantage
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of expanding in the functions {rm(z)} is that use can be made of the Laurent expansion
of the Weierstrass zeta functions, which for the rectangular lattice Λ can be written

ζ(z;Λ) =
1

z
−
∞∑
j=1

q4j z
4j−1,

where

qj =
∑
zk∈Λ∗

1

zjk

with the sum over the lattice Λ∗ = Λ\{0}. The sequence {q4j , j = 2, 3, ...} can be
calculated using the recurrence relation

q4j =
3

(4j − 1)2(2j − 3)

2j−2∑
l=2

(4j − 2l − 1)(2l − 1)q2lq4j−2l.

From the above results, and the fact that ζ(π,Λ) = 1
4 (Balagurov & Kashin 2001), it

follows that

r0(z) = log z − z2

8π
−
∞∑
m=1

q4mz
4m

4m

r1(z) =
1

z
− z

4π
−
∞∑
m=1

q4mz
4m−1

r2(z) =
1

z2
+

1

4π
+

∞∑
m=1

(4m− 1)q4mz
4m−2

rm(z) =
1

zm
+

∞∑
j=[(m+3)/4]

(−1)m
(

4j − 1

m− 1

)
q4jz

4j−m (m > 3)

from which the outer solutions can be expanded as (for example)

Φ+ = Re

(
Y0 log z +

∞∑
m=1

Ym
zm

+

∞∑
m=0

∞∑
j=0

YjEjmz
m

)

where

Ejm =



0 j = m = 0

−δm2

8π
− Qm

m
j = 0 m > 1

−δj1δm1

4π
+
δj2δm0

4π
+ (−1)j

(
m+ j − 1

j − 1

)
Qj+m j > 1

where δjk is the Kronecker delta, and Qm = qm if m = 4k for integer k, and is zero
otherwise.

The boundary conditions for the two cell problems are (3.7) and (3.10) respectively. It
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is helpful to decompose boundary condition (3.10) into real and imaginary parts

Ψ+
α,R = Ψ−α,R,

Ψ+
α,I = Ψ−α,I ,

∂θG
+
R = ∂θG

−
R,

∂θG
+
I = ∂θG

−
I , (D 2)

h+∂ρΨ
+
α,R − h−∂ρΨ

−
α,R = ∂ρG

+
R − ∂ρG

−
R,

h+∂ρΨ
+
α,I − h−∂ρΨ

−
α,I = ∂ρG

+
I − ∂ρG

−
I ,

∂ρG
+
R

h+
−
∂ρG

−
R

h−
+
α

R

(
∂θG

+
I

h+
−
∂θG

−
I

h−

)
= −

(
1

h+
− 1

h−

)
cos θ,

∂ρG
+
I

h+
−
∂ρG

−
I

h−
− α

R

(
∂θG

+
R

h+
−
∂θG

−
R

h−

)
= 0

on |X| = R. To apply the conditions (3.7) and (D 2), note that z = Reiθ on the boundary.
It is helpful to write wm = RmRe (Wm), ym = R−mRe (Ym), am = RmRe (Am),
cm = R−mRe (Cm), bm = −RmIm (Bm), dm = R−mIm (Dm), fm = RmRe (Fm),
mm = R−mRe (Mm), gm = −RmIm (Gm), pm = R−mIm (Pm), and it follows that,
for m > 1

wm = ym +

∞∑
j=0

Rm+jyjEjm,

am = cm +

∞∑
j=0

Rm+jcjEjm, bm = dm −
∞∑
j=0

Rm+jdjEjm, (D 3)

fm = mm +

∞∑
j=0

Rm+jmjEjm, gm = pm −
∞∑
j=0

Rm+jpjEjm.

and that

ym − γ
∞∑
j=0

Rm+jyjEjm = Rγδm1,

cm − γ
∞∑
j=0

Rm+jcjEjm =
2

h+ + h−
mm, dm + γ

∞∑
j=0

Rm+jdjEjm =
2

h+ + h−
pm,

mm + γ

∞∑
j=0

Rm+jmjEjm + γα

pm − ∞∑
j=0

Rm+jpjEjm

 = −Rγδm1, (D 4)

pm − γ
∞∑
j=0

Rm+jpjEjm + γα

mm +

∞∑
j=0

Rm+jmjEjm

 = 0,

where γ = (h+ − h−)/(h+ + h−). Now, by truncating the series at some finite value, say
m = j = M , a linear system is obtained, which can be written in matrix form for the
first cell problem (3.6-3.7) as

w =
(
I +DETD

)
y,

(
I − γDETD

)
y = γRf , (D 5)
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and for the second cell problem (3.9-3.10) as

a =
(
I +DETD

)
c, m = 1

2 (h+ + h−)
(
I − γDETD

)
c,

b =
(
I −DETD

)
d, p = 1

2 (h+ + h−)
(
I + γDETD

)
d, (D 6)(

I + γDETD
)
m+ αγ

(
I −DETD

)
p = −γRf ,(

I − γDETD
)
p+ αγ

(
I +DETD

)
m = 0.

where f = (1, 0, ..., 0)T , w = (w1, w2, ..., wM )T (the remaining vectors are defined
analogously), D =diag(R,R2, ..., RM ), and E has components Ejm given above.

D.1. Effective depth: small R asymptotics

Now consider the equations pertaining to the effective depth of the fluid, namely (D 5)
in the regime R � 1. It is straightforward in principle to solve the system to any order
in R. For example, retaining terms up to R9 gives

y1 − γ
(
−R

2

4π
y1 − 3R4q4y3 − 7R8q8y7

)
= γR

y3 − γ(−R4q4y1 − 35R8q8y5) = 0

y5 − γ(−21R8q8y3) = 0

y7 − γ(−R8q8y1) = 0

from which the following sequence of Padé approximants for y1 and w1 are easily found.
Retaining only terms up to order R, gives the “zeroth” order approximations for y1 and
w1,

y
(0)
1 = w

(0)
1 = γR,

and likewise, retaining terms involving R3 and R5, give

y
(1)
1 =

γR

1 + γR2/4π
+O(R9), w

(1)
1 =

γR(1−R2/4π)

1 + γR2/4π
+O(R9),

and

y
(2)
1 =

γR

1 + γR2/4π − 3γq2
4R

8
+O(R17), w

(2)
1 =

γR(1−R2/4π + 3γq2
4R

8)

1 + γR2/4π − 3γ2q2
4R

8
+O(R17).

It is easy to see how this process could be extended up to any order, however it is also
notable that due to the extremely fast convergence rate for small R (see e.g. Fig. 3), that
for the analytical purposes of section 3, the second order approximant is sufficient. It is
also an easy process to implement numerically to find Padé approximants at much higher
orders, which give results up to machine precision (in this paper, the 24th approximant
is considered the “exact” solution). The effective depth is then given by

H
(i)
eff = H − R (h+ − h−)w

(i)
1

4π
, (D 7)

which leads directly to the results given in (3.8).

Exactly the same procedure may be followed using equations (D 6) to determine the
Padé approximants for a1 and b1 which are the coefficients needed to calculate the
topographic resonance functions K1(α) and K2(α). Omitting the details, the leading
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three Padé approximants to K1(α) are

K
(0)
1 (α) = −2γ2A

(
1

1− α2γ2

)
,

K
(1)
1 (α) = −2γ2A

(
1−A

1− α2γ2 + γ2A2 (α2 − 1)

)
, (D 8)

K
(2)
1 (α) = −2γ2A

(
(1−A)

(
1− α2γ2

)
− g4γ

2A4
(
1− α2

)
(1− α2γ2 + g4γ2A4 (α2 − 1))

2
+ γ2A2 (α2 − 1) (1− α2γ2)

)
,

where g4 = 3q2
4(4π)4 ≈ 0.305. Similarly for K2(α)

K
(0)
2 (α) = 2αγ3A

(
1

1− α2γ2

)
,

K
(1)
2 (α) =

2αγ3A

1− γA

(
1−A2

1− α2γ2 + γ2A2 (α2 − 1)

)
, (D 9)

K
(2)
2 (α) =

2αγ3A

1− γA− g4γ2A4

×

((
1−A2 − g4A

4
) (

1− α2γ2
)

+ g4γA
4
((
γ2 − 1

)
A+ γ(1− g4A

4)(α2 − 1)
)

(1− α2γ2 + g4γ2A4 (α2 − 1))
2

+ γ2A2 (α2 − 1) (1− α2γ2)

)
.

Finally, it is also helpful to give the results for the quasi-geostrophic analogue of K1(α),
obtained from the solution of (2.25) by the same method. These are

K̃(0) (α) = − 1
2h

2
bA

(
1

1− 1
4α

2h2
b

)
,

K̃(1) (α) = − 1
2h

2
bA

(
1−A

1− 1
4α

2h2
b(1−A)

)
, (D 10)

K̃(2) (α) = − 1
2h

2
bA

(
(1−A)

(
1− 1

4h
2
bα

2
)

+ 1
4g4A

4h2
bα

2(
1− 1

4α
2h2
b + 1

4g4A4h2
bα

2
)2

+ 1
4α

2h2
bA

2
(
1− 1

4α
2h2
b

)) .
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