

1 **Title:** Timing and dose of upper limb motor intervention after stroke: A systematic review.

2

3 **Cover title:** Timing and dose of upper limb intervention.

4

5 **Authors:**

6 **Kathryn S Hayward**, PhD. Departments of Physiotherapy, Medicine & Florey Institute of

7 Neuroscience and Mental Health, University of Melbourne, Heidelberg, Australia.

8 kate.hayward@unimelb.edu.au. ORCID:0000-0001-5240-3264

9 **Sharon F Kramer**, PhD. Centre for Quality and Patient Safety Research, Institute for Health

10 Transformation, and Alfred Health Partnership, Deakin University, Burwood, Australia.

11 s.kramer@deakin.edu.au. ORCID:0000-0003-2795-6259

12 **Emily J Dalton**, MOccTherPrac (Hons). Department of Physiotherapy, University of

13 Melbourne, Heidelberg, Australia. daltone@student.unimelb.edu.au. ORCID:0000-0003-

14 3920-8530

15 **Gemma R Hughes**, MPT. Physiotherapy, Austin Health, Heidelberg, Australia. Florey

16 Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, Australia.

17 gemma.hughes@austin.org.au. ORCID:0000-0002-3077-4256

18 **Amy Brodtmann**, PhD, Florey Institute of Neuroscience and Mental Health, University of

19 Melbourne, Heidelberg, Australia. agbrod@unimelb.edu.au. ORCID:0000-0001-9466-2862

20 **Leonid Churilov** PhD. Melbourne Medical School, University of Melbourne, Parkville,

21 Australia. leonidc@unimelb.edu.au. ORCID:0000-0002-9807-6606

22 **Geoffrey Cloud**, MBBS. Department of Neuroscience, Central Clinical School, Monash

23 University, and Alfred Health, Melbourne, Australia. g.cloud@alfred.org.au. ORCID:0000-

24 0002-8365-6907

25 **Dale Corbett**, PhD. Cellular & Molecular Medicine and Canadian Partnership for Stroke
26 Recovery, University of Ottawa, Ottawa, Canada. dcorbett@uottawa.ca. ORCID:0000-0003-
27 0217-4576

28 **Laura Jolliffe**, PhD. Department of Neuroscience, Central Clinical School, Monash
29 University, Melbourne, Australia. laura.jolliffe@monash.edu. ORCID:0000-0002-1369-9442

30 **Tina Kaffenberger**, MD. Florey Institute of Neuroscience and Mental Health, University of
31 Melbourne, Heidelberg, Australia. tina.kaffenberger@florey.edu.au. ORCID:0000-0001-
32 9848-2666

33 **Venesha Rethnam**, PhD. Florey Institute of Neuroscience and Mental Health, University of
34 Melbourne, Heidelberg, Australia. venesha.rethnam@gmail.com. ORCID:0000-0002-0493-
35 8536

36 **Vincent Thijs**, PhD. Florey Institute of Neuroscience and Mental Health, University of
37 Melbourne, Heidelberg, Australia. Neurology, Austin Health, Heidelberg, Australia.
38 vincent.thijs@florey.edu.au. ORCID:0000-0002-6614-8417

39 **Nick Ward**, MD. Department of Clinical and Movement Neuroscience, UCL Queen Square
40 Institute of Neurology; The National Hospital for Neurology and Neurosurgery, Queen
41 Square, London, United Kingdom. n.ward@ucl.ac.uk. ORCID:0000-0002-7688-9649

42 **Natasha Lannin**, PhD. Department of Neuroscience, Central Clinical School, Monash
43 University, and Alfred Health, Melbourne, Australia. Natasha.Lannin@monash.edu.
44 ORCID:0000-0002-2066-8345

45 **Julie Bernhardt**, PhD. Florey Institute of Neuroscience and Mental Health, University of
46 Melbourne, Heidelberg, Australia. Julie.bernhardt@florey.edu.au. ORCID:0000-0002-2787-
47 8484

48

49

50 **Corresponding author:**

51 Kathryn Hayward

52 Level 5 Harold Stokes Building, Austin Hospital

53 Heidelberg, VIC Australia

54 Email kate.hayward@unimelb.edu.au

55 Telephone: +61 03 9035 7293

56 Twitter: @kate_hayward_

57

58 **Keywords:** stroke rehabilitation, dose, upper extremity, systematic review, time

59

60 **Subject terms:** rehabilitation, treatment, behavioural/psychosocial treatment

61

62 **Word count:** 7,983/8,000 including 2 Tables and 4 Figures

63

64 Abstract

65 This systematic review aimed to investigate timing, dose and efficacy of upper limb
66 intervention during the first 6-months post-stroke. Three online databases were searched up
67 to July 2020. Titles/abstracts/full-text were reviewed independently by two authors.
68 Randomized and non-randomized studies that enrolled people within the first 6-months post-
69 stroke, aimed to improve upper limb recovery, and completed pre- and post-intervention
70 assessments were included. Risk of bias was assessed using Cochrane reporting tools. Studies
71 were examined by timing (recovery epoch), dose and intervention type. Two hundred and
72 sixty-one studies were included, representing 228 (n=9,704 participants) unique datasets. The
73 number of studies completed increased from one (n=37 participants) between 1980-1984 to
74 91 (n=4417 participants) between 2015-2019. Timing of intervention start has not changed
75 (median 38 days, IQR 22-66) and study sample size remains small (median n=30, IQR 20-
76 48). Most studies were rated high risk of bias (62%). Study participants were enrolled at
77 different recovery epochs: 1 hyperacute (<24hr), 13 acute (1-7days), 176 early subacute (8-
78 90days), 34 late subacute (91-180days), and 4 were unable to be classified to an epoch. For
79 both the intervention and control groups, the median dose was 45(IQR 600-1430)
80 minutes/session, 1(IQR 1-1) session/day, 5(IQR5-5) days/week for 4(IQR3-5) weeks. The
81 most common interventions tested were electromechanical (n=55 studies), electrical
82 stimulation (n=38 studies) and constraint induced movement (n=27 studies) therapies.
83 Despite a large and growing body of research, intervention dose and sample size of included
84 studies were too small to detect clinically important effects. Furthermore, interventions
85 remain focussed on subacute stroke recovery with little change in recent decades. A united
86 research agenda that establishes a clear biological understanding of timing, dose and
87 intervention type is needed to progress stroke recovery research. PROSPERO ID:
88 CRD42018019367/CRD42018111629.

90 **Non-standard Abbreviations and Acronyms**

91 Action Research Arm Test (ARAT)

92 Box and Block Test (BBT)

93 Cochrane Risk of Bias (ROB-2)

94 Fugl Meyer Upper Limb assessment (FMUL)

95 International Committee of Medical Journal Editors (ICMJE)

96 Minimal clinical important difference (MCID)

97 Prospective Register of Systematic Reviews (PROSPERO)

98 Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)

99 Risk Of Bias In Non-Randomized Studies - of Interventions (ROBINS-I)

100 Template for Intervention Description and Replication (TIDieR)

101 Wolf Motor Function Test (WMFT)

102

103 INTRODUCTION

104 Up to 80% of stroke survivors have upper limb motor impairment early after stroke¹⁻³, and
105 few demonstrate complete recovery at 6-months post-stroke⁴. Upper limb motor intervention
106 trials designed to improve recovery within the first 6-months of stroke have yielded mostly
107 neutral findings⁵. As a result, the burden of upper limb impairment after stroke remains high.
108 Understanding how to improve upper limb recovery is a scientific, clinical and patient
109 priority⁶⁻⁸. Indeed, a number of fundamental questions exist concerning upper limb
110 intervention after stroke⁷. The Stroke Recovery and Rehabilitation Roundtable taskforce used
111 upper limb recovery as the exemplar for their trial development framework,⁷ and
112 demonstrated current uncertainty about: 1) the optimal timing of post-stroke motor
113 intervention, 2) the optimal intervention dose, and 3) what intervention(s) might offer the
114 most benefit. Our aim was to systematically review upper limb intervention studies that
115 commenced within the first 6-months post-stroke to investigate timing, dose and efficacy.

116

117 METHODS

118 This systematic review was prospectively registered on PROSPERO
119 (CRD42018019367/CRD42018111629) and a protocol paper was published⁹. Preferred
120 Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 statement
121 provided the framework for reporting¹⁰.

122

123 Search strategy for identification of relevant studies

124 Electronic searches were conducted in MEDLINE (via Ovid), EMBASE (via Ovid) and
125 Cochrane Controlled Register of Trials on 17 April 2018, and updated on 16 July 2020. The
126 search strategy included terms related to stroke, upper limb function and movement, and

127 therapy and intervention (see Supplemental A, page 2). The only search strategy limit was
128 'human'.

129

130 **Study eligibility**

131 Inclusion criteria were:

- 132 • Adults (>17 years) with a diagnosis of stroke (ischemic or hemorrhagic) and average
133 (mean/median) stroke onset ≤6-months (or at least 50% of the sample had a diagnosis
134 of stroke within the time frame) to reflect the window of presumed heightened
135 potential for motor recovery¹¹⁻¹³.
- 136 • Undergoing hospital-based (in or outpatient) rehabilitation to reflect where most
137 rehabilitation takes place during the first 6-months post-stroke.
- 138 • Upper limb intervention(s) (experimental or usual care) that aimed to improve upper
139 limb function (see below for intervention type description). No restrictions were made
140 on the comparison or control group, e.g., attention and active control groups were
141 eligible.
- 142 • At least two waves (excluding mid-intervention) of motor impairment or activity
143 assessment were required i.e., pre- and post-intervention.
- 144 • Study design of RCT, non-RCT, cohort including observational, and pre-post single
145 group.
- 146 • Languages: English, Dutch, French, German (SFK/VT/TK fluent).

147

148 Exclusion criteria were:

- 149 • Interventions that were delivered in the home.
- 150 • Interventions that were pharmacological e.g., recovery-promoting drugs or
151 complimentary e.g., acupuncture, non-invasive brain stimulation or priming.

152 • Interventions that were focussed on reducing secondary impairments e.g., pain,
153 contracture, spasticity, subluxation; did not include any upper limb motor practice
154 e.g., mental/motor imagery practice alone; general motor practice e.g., activities of
155 daily living; or non-motor impairment practice e.g., sensory, hemispatial neglect.
156 • Designs of single case, case series, qualitative, surveys, protocols, cross-sectional and
157 single session intervention.
158 • Conference proceedings or reviews.

159

160 **Screening of studies**

161 All studies identified by the search strategy were uploaded to Covidence
162 (<https://www.covidence.org/>¹⁴) and duplicates were removed. Two authors
163 (KSH/SFK/EJD/GRH/VR) independently screened studies for eligibility based on
164 title/abstract using the prespecified eligibility criteria. Full-text for all remaining studies were
165 retrieved and reviewed independently (KSH/SFK/EJD/GRH/VR). Reports from the same
166 study population were linked (KSH/EJD /GRH) to ensure that data were only included once.
167 This was achieved by review of study authorship, clinical trial registration details (if
168 available) and study methods for reference to linked studies. Disagreements were resolved by
169 discussion and review of criteria between at least two additional authors
170 (KSH/SFK/EJD/GRH).

171

172 **Data extraction**

173 Due to the large volume of studies, all authors completed data extraction (n≥10 articles each)
174 using a predetermined custom-built data collection excel spreadsheet. Two virtual training
175 sessions and three check-in sessions were held with authors via Zoom. Emails addressing
176 queries and frequently asked questions during extraction were distributed as required. All

177 demographics, time post-stroke, intervention type and dose, as well as clinical outcome data
178 were cross-checked by a second reviewer (KSH/EJD/GRH). All discrepancies were discussed
179 with a third reviewer for consensus (KSH/SFK/EJD/GRH). If a resolution could not be
180 achieved, a statistician (LC) reviewed the paper to make the final decision. The data
181 extraction form was detailed in the protocol paper⁹ and summarized below.

182

183 *Demographics*: Mean/median study sample age, proportion of male and female participants,
184 mean/median days post-stroke to trial enrolment or treatment commencement, and proportion
185 of ischemic and hemorrhagic participants, as well as country where the study was conducted
186 were extracted.

187

188 *Study design*: Study design (RCT, non-RCT, cohort, pre-post), clinical trial registration
189 (yes/no), trial phase (phase I/II/III/IV¹⁵), safety (i.e., planned safety protocol in method and
190 actual report of adverse events in the results, yes/no), assessment time-points (i.e., pre, post,
191 follow-up), and stratification (performed yes/no) were extracted. Report of eligibility
192 criterion (yes/no) related to upper limb function (impairment or activity), stroke severity, first
193 stroke, cognition, language, sensation, perception and time post-stroke were also extracted.

194

195 *Time post-stroke*: Mean/median group values from stroke onset to study enrolment or
196 intervention start as reported by each study, and reported study eligibility criterion related to
197 timing were extracted. All time post-stroke data were transformed into days (i.e., for
198 multiplication of month data, 1-month = 30-days). Each study was allocated to a post-stroke
199 recovery epoch based on mean/median group values. If these data were not available, we
200 classified studies based on their eligibility criterion. The Stroke Rehabilitation and Recovery
201 Roundtable taskforce defined recovery epochs were used to standardize allocation¹⁶:

202 hyperacute, \leq 24-hours post-stroke; acute, $>$ 24-hours but \leq 7-days post-stroke; early subacute,
203 $>$ 7-days but \leq 3-months post-stroke, and late subacute, $>$ 3-months ($>$ 90-days) but \leq 6-months
204 (\leq 180-days) post-stroke. If required (e.g., number of studies per epoch \geq 50), early subacute
205 and late subacute were further subcategorized into 1-month epochs (e.g., early subacute
206 epoch 1: 8- to 30-days; early subacute epoch 2: 31- to 60-days etc.).

207

208 *Dose*: To gather the most consistent data across studies¹⁷, dose dimensions¹⁸ pertaining to
209 interventions provided to the hemiplegic upper limb for duration (weeks of intervention),
210 days (days/week intervention provided), sessions (number/day) and session length
211 (minutes/session) and were extracted from the methods (planned dose). Dose dimensions
212 related to an episode within a single session were not examined i.e., intensity or difficulty¹⁸.
213 Using these data, total intervention dose (minutes) was calculated if not reported by study
214 authors. If only some dose dimensions were provided (e.g., total intervention dose and
215 number of sessions), this information was used to define missing dose dimension(s) (e.g.,
216 session length). In line with capturing hemiplegic limb intervention dose only, non-
217 hemiplegic intervention dose was not extracted (e.g., sling use within constraint protocols).

218 The proportion of studies that delivered a potentially important threshold dose (\geq 2-hours/day)
219 for motor recovery was noted¹⁹. We extracted (yes/no) if any dimensions of actual dose
220 completed within the intervention were reported in the study results. Where able, the same
221 dose dimensions were extracted for the control intervention and usual (or
222 standard/conventional) therapy.

223

224 *Upper limb intervention type*: Categorized based on the intervention description of the
225 comparison of interest in the aim, description in the methods, or pictures included.
226 Intervention type categories were consistent with a previously published Cochrane review of

227 upper limb intervention²⁰: bilateral arm training, biofeedback, bobath approach, constraint-
228 induced movement therapy, electrical stimulation, hands-on therapy (manual therapy
229 techniques), repetitive task training, electromechanical devices (including robotics), strength
230 training, task-specific training, virtual reality, standard therapy, mirror therapy, video game-
231 based intervention, music therapy or other.

232

233 *Outcome measures*: To document upper limb recovery, change (impairment or activity)
234 across two assessment waves (e.g., pre- to post-intervention) was examined. The clinical
235 outcome considered to best reflect recovery of upper limb impairment, and recommended by
236 the international Stroke Rehabilitation and Recovery Roundtable taskforce,²¹ was the Fugl
237 Meyer Upper Limb (FMUL) assessment⁹. The order for upper limb activity measures was
238 Box and Block Test (BBT), Wolf Motor Function Test (WMFT) rate, Action Research Arm
239 Test (ARAT), and WMFT scale, which reflects prioritisation of timed measures (e.g., BBT)
240 over observational measures (e.g., ARAT)⁹. Data were extracted (mean(SD) or median(IQR))
241 for each assessment wave by study group, as well as within group change scores (post-
242 intervention minus pre-intervention). PlotDigitizer V2.6.9 interpretive software was used to
243 extract missing data from figures. Using pre- to post-intervention mean/median change
244 scores, two authors (KSH/EJD) determined if a minimal clinical important difference
245 (MCID) was achieved for the intervention group (or largest dose contrast to the control or
246 intervention of contrast per the study aim if multiple intervention groups) and the control
247 group. If there was uncertainty in data reporting, a third reviewer reviewed the data (NAL).
248 Accepted MCID scores were applied to inform efficacy: FMUL ≥ 5.25 points²², BBT ≥ 5.5
249 points²³, WMFT-rate ≥ 2 seconds and WMFT-scale ≥ 0.4 points²⁴, and ARAT ≥ 5.7 points²⁵.
250 Data were considered missing if there were no outcome data for a particular measure or data

251 were not extractable (e.g., data had been log transformed so could not be used to determine
252 MCID, FMUL was not reported out of 66 points as reflex items were not performed).

253

254 **Risk of bias and intervention reporting**

255 Cochrane Risk of Bias (ROB-2) tool was used to rate bias across five domains for RCTs²⁶.
256 All other designs were rated using the Risk Of Bias In Non-Randomized Studies - of
257 Interventions (ROBINS-I) tool²⁷. These tools were completed during data extraction.
258 Intervention reporting was rated using the TIDieR checklist²⁸. At least 30% of each author's
259 ROB/TIDieR ratings were crosschecked by another author (EJD/GRH). If consistent errors
260 were identified within a rater, all ROB/TIDieR ratings for a rater were cross-checked. All
261 inconsistencies were discussed between two authors (KSH/SFK/EJD).

262

263 **Data synthesis**

264 Demographics and study design variables were tallied, and reported as median (IQR),
265 minimum to maximum range, or number of studies (percentage) as appropriate. Due to the
266 heterogeneity of data across recovery epochs, dose and efficacy outcomes, as well as the high
267 proportion of study with bias concerns, no pooled analyses were performed. Descriptive data
268 for each recovery epoch, as well as dose and intervention type by recovery epoch were
269 tallied, and reported as median (IQR), minimum to maximum range, or number of studies
270 (percentage) as appropriate.

271

272 **RESULTS**

273 **Summary of included studies**

274 Database searching yielded 16,399 results, with 261 included studies that represented 228
275 unique study datasets (n=9,704 participants). The PRISMA flow chart is provided in Figure

276 1. The primary reason for exclusion at full-text was recruitment of participants more than 6-
277 months post-stroke (43%). The demographics of participants across studies are reported in
278 Table 1. A summary of each included study is provided in Supplemental B (see page 3) and
279 C (see page 8) and references for included studies are in Supplemental D (see page 56).
280 Most studies had an eligibility criterion related to upper limb impairment or activity (n=201,
281 88.2%; e.g., available range of movement or outcome on a particular measure such as Fugl
282 Meyer Upper Limb), cognition (n=184, 80.7%; e.g., general statements such as capacity to
283 follow instructions or give informed consent, as well as outcome on a particular measure such
284 as Mini-Mental State Examination), first stroke only (n=133, 58.3%), and language (n=118,
285 51.8%; e.g., primary language spoken, aphasia status). Few studies had an eligibility criterion
286 related to sensation or perception (n=85, 37.3%; e.g., neglect or sensory loss) or stroke
287 severity (n=16, 7.0%; e.g., using NIHSS, Scandinavian Stroke Scale or modified Rankin
288 Scale).

289

290

291 ***Insert here***

292 ***Figure 1: PRISMA study selection flow diagram.***

293

294 ***Insert here:***

295 ***Table 1: Study demographics***

296

297

298 **Trends across upper limb studies completed during the first 6-months post-stroke**

299 The number of studies per 5-year window increased from one (n=37 participants) between
300 1980-1984 to 91 (n=4,417 participants) between 2015-2019 (Figure 2 Panel A). The median

301 days post-stroke (median 37.7 days IQR 22.0-65.9; Figure 2, Panel B) and sample size
302 (median 30.0, IQR 20.0-48.0; Figure 2 Panel C) have remained stable over time.

303

304 The majority of studies were rated to have high (ROB-2, n=97 out of 174 RCTs) or
305 serious/critical (ROBINS-I, n=44 out of 54 non-RCTs) risk of bias. Intervention reporting
306 using TIDieR was variable. While overall, most studies reported few TIDieR intervention
307 items (53% scored 6 or less out of 12 on TIDieR), there was demonstration of an
308 improvement in the median TIDieR scores in the last decade. Risk of bias and TIDieR
309 outcomes by calendar year are presented in Figure 2 Panel A (for each study see
310 Supplemental B, page 3).

311

312 ***Insert here:***

313 ***Figure 2: Number of studies, Risk of Bias, TIDieR, time post-stroke and sample size over***
314 ***time across included upper limb studies.***

315 ***Panel A:*** Stacked bar chart defines the number of studies per year (black) and the number of
316 high/serious/critical risk of bias (red) for n=228 studies. The blue dashed line represents the
317 median TIDieR score for studies reported per calendar year.

318 ***Panel B:*** Median time post-stroke in days for studies per calendar year for n=219 with
319 reported data out of 228 studies.

320 ***Panel C:*** Median sample size for studies per calendar year for n=228 studies. Note: 2020
321 was an incomplete year with the search last updated in July 2020.

322

323 **Timing of intervention**

324 Out of 228 studies, 188 studies (82%) determined eligibility using time post-stroke. A total of
325 219 studies (96%) reported the actual mean or median time from stroke onset to study

326 enrolment or intervention start. Only 47 studies (21%) provided a justification for
327 intervention timing. Across all studies the median days to intervention start was 37.7 (IQR
328 22.0 to 65.9); consistent with early subacute recovery epoch 2 (30- to 60-days). There was
329 one study (n=128 participants) that started intervention during the hyperacute phase, 13
330 (n=652) during the acute phase, 176 (n=7,803) during the early subacute phase (88 [n=4,485]
331 epoch 1: 8-30 days, 60 [n=2,470] epoch 2: 31-60 days, and 22 [n=610] epoch 3: 61-90 days;
332 6 (n=238) unable to be further classified), and 34 (n=1,024) in the late subacute phase. There
333 were 4 (n=97) studies completed within the first 6-months with insufficient information to
334 allocate a recovery epoch.

335

336 **Dose of intervention**

337 The proportion of studies that reported each dose dimension for intervention, control and
338 usual care, as well as by recovery epoch, are presented in Table 2. The poorest dimension
339 reported was total intervention dose. Reporting of actual dose completed was also poorly
340 reported: 11 studies reported any dimension of actual intervention dose, 8 studies reported
341 any dimension of actual control dose, and 5 studies reported any dimension of actual usual
342 care dose. In the intervention group, 71% (n=163) received usual care on top of the
343 intervention dose, while when the control group was not usual care, but another intervention,
344 53% (n=100) received usual care on top of the control dose.

345

346 The intervention group was dose matched to the control group in the majority of studies (124
347 out of 188 studies with 2 or more groups; 66%). Therefore, for both the intervention and
348 control groups, the median dose was 45 minutes/session, 1 session/day, 5 days/week for 4
349 weeks. Few studies (n=28, 12%) provided at least 2 hours/day of intervention. In general, the
350 largest median total dose in minutes tested was during the acute recovery epoch.

351 **Efficacy of upper limb intervention**

352 A summary of MCID outcomes by recovery epoch are presented in Figure 3A for impairment
353 and Figure 3B for activity (for individual studies see Supplemental B, page 3). Irrespective of
354 the recovery epoch, the MCID (dichotomized as achievement or not) for studies with at least
355 two groups was mostly the same i.e., if the intervention achieved a MCID, the control group
356 also achieved a MCID. For impairment, 102 studies contained data to permit interpretation of
357 a MCID. In 69% (n=70) of these studies, impairment outcomes were similar: 62% (n=63)
358 showing MCID in both groups, and 7% (n=7) showing neither group achieved MCID. For the
359 activity outcome, 107 studies contained data to permit interpretation of a MCID. In 67%
360 (n=72) of these studies, activity outcomes at end of intervention were similar: 55% (n=59)
361 showing MCID in both groups, and 12% (n=13) showing neither group achieved MCID.
362 Across all studies with MCID data (and within each recovery epoch), less than one third
363 demonstrated an MCID in the intervention group but not in the control group.

364

365

366

Insert here:

367 **Table 2:** Median, minimum and maximum for common dose dimensions, and proportion of
368 studies that reported each dose dimension.

369

370

Insert here:

371 **Figure 3: A. Impairment and B. Activity outcomes.** Minimal clinical important difference
372 (MCID) for intervention and control groups by recovery epoch post-stroke. There was one
373 study in hyperacute phase of recovery, 13 in the acute phase, 176 in the early subacute phase
374 (88 in epoch 1, 60 in epoch 2, and 22 in epoch 3), 34 in the late subacute phase, and 10
375 unable to be subcategorised. No control group applies to the single group non-RCT studies.

376 **Upper limb intervention type**

377 The number of studies per intervention type are reported in Table 1 and distribution by
378 recovery epoch in Figure 4.

379

380

381 ***Insert here:***

382 ***Figure 4: Stacked bar chart demonstrating when each upper limb intervention type has been***
383 ***tested across the first 6-months post-stroke.***

384

385

386 **DISCUSSION**

387 This systematic review shows an increase over time in stroke recovery research focused on
388 improving upper limb recovery during the first 6-months post-stroke. However, timing of
389 intervention start post-stroke and sample size have remained relatively stable, and risk of bias
390 remained modest. Intervention reporting has seen an improvement in the last decade
391 (TIDieR²⁸). The dose chosen for testing in most studies was less than 1 hour/day, which may
392 be too low to drive best motor recovery^{17,19}. Most interventions tested did not result in a
393 MCID in favour of the intervention group. These findings from over 40 years of research,
394 highlight the need to reflect and consider how our research needs to change to create
395 opportunities to identify interventions that deliver the recovery gains that people living with
396 stroke, their carers and clinicians need.

397

398 We deliberately restricted this review to studies that enrolled participants within 6-months of
399 stroke onset as this is considered to reflect a window of heightened potential for motor
400 recovery¹¹⁻¹³. Within this period, the recovery epoch with the highest proportion of studies

401 included was early subacute epoch 1 (8- to 30-days post-stroke), which corresponds with
402 engagement in inpatient rehabilitation services in many countries. Whether the timing of
403 intervention start in these studies was pragmatically driven or specifically selected to take
404 advantage of the hypothesised ‘plasticity window’ was not clear. Few authors provided a
405 rationale for their timing choice (20.6%). Establishing a strong biological rationale for
406 selection of clinical intervention timing would complement the preclinical evidence that
407 exists^{11,29}, and strongly guide timing selection in future studies. If the optimal time is within
408 the first few weeks of stroke onset, it must be acknowledged that trials starting this early can
409 be challenging. People can be awaiting tests to confirm a stroke diagnosis, may be medically
410 unstable or experiencing neurological decline, or may be processing the acute event
411 preventing consideration of therapy focused research requests³⁰. Furthermore, considerable
412 spontaneous biological recovery occurs during this early epoch^{12,16,31}. This means that not all
413 recovery achieved early after stroke can be attributed to the intervention tested. Disentangling
414 spontaneous and intervention related recovery is currently difficult. This is often the rationale
415 for starting upper limb recovery studies beyond 6-months post-stroke (i.e., stable motor
416 status³²). Moving forward we need to identify efficient and effective ways to recruit and treat
417 stroke patients in earlier epochs if indeed a window exists in which our interventions should
418 be applied at high(er) doses for maximum benefit.

419
420 Both the lack of justification for and variability in dose prescribed across included studies
421 suggests dose selection to date has been pragmatic. There was little difference in the median
422 dose for intervention and control groups, nor between the median dose within each recovery
423 epoch. All were broadly consistent with standard care descriptions from recent observational
424 reports i.e., 45 to 60-minutes/day³³. Yet, such a dose has been acknowledged to be
425 insufficient to optimise upper limb recovery in systematic reviews with meta-analysis^{17,19}.

426 The most recent suggestion is that 2 or more hours/day represents a dose threshold that leads
427 to clinically meaningful improvements¹⁹. We found few studies (<13%) delivered a dose at or
428 beyond this threshold within the first 6-months post-stroke. On top of low dose therapy, most
429 studies were dose-matched (>65%). Dose matched studies are largely comparative
430 effectiveness in design, suggestive of phase IIb or III trials. Only one phase I trial³⁴ has been
431 completed to date, limiting the articulation of safe and tolerable dose ranges for a given upper
432 limb intervention, and few phase IIa trials to identify the optimal dose(s) to take forward into
433 a comparative effectiveness trial³⁵. The lack of early phase trials adds further weight to the
434 likelihood that dose selection within included studies was likely pragmatic. Completion of
435 phase I and IIa trials requires adherence to systematic clinical trial phasing^{15,36}, which could
436 see trials deliver a dose that is biologically and mechanistically informed.

437

438 This review highlights the need to improve the design of recovery studies⁷ and the quality of
439 reporting³⁷. One in four studies were registered with a clinical trial registry. The International
440 Committee of Medical Journal Editors (ICMJE) encouraged registration of trials from July
441 2005³⁸, and some rehabilitation journals mandated registration in the late 2000s (e.g.,
442 *Physical Therapy* transparently reported starting January 1, 2008³⁹). As of May 2021, 12 of
443 the top 20 ranked journals (2019 ‘Rehabilitation’ Journal Citation Reports, Web of Science)
444 mandated prospective clinical trial registration on their website. This highlights a key gap to
445 close. Surprisingly, very few studies reported (15%) or collected (30%) safety data (i.e.,
446 adverse events). Adverse events reporting should be standard in clinical research⁴⁰, and
447 assuming that therapy-based interventions are safe is naïve^{41,42}. The impact of upper limb
448 intervention on pain, contracture, spasticity, falls or other potentially related adverse events
449 needs to be consistently considered. A large proportion of included studies were rated to have
450 a high risk of bias²⁶, which remained unchanged with time. Higher risk of bias impacts

451 confidence in the true effect of an intervention. While many studies had modest intervention
452 reporting (TIDieR), there was an indication of improvement in the last decade, which is in
453 line with the TIDieR publication date²⁸. Reporting of dose dimensions¹⁸ examined was
454 variable and was particularly poor concerning usual care, which is consistent with previous
455 reviews in stroke recovery^{42,43}. Given usual care varies greatly around the world, and in some
456 countries is influenced by payment systems, better reporting than “plus usual therapy” is
457 necessary. Such statements provide no information to understand the dose of background
458 therapy received, which may contaminate study outcomes. There was also little consideration
459 for how much of the planned dose (described in the methods) was actually delivered to
460 participants⁴⁴. While enhanced research training will improve a number of these elements, the
461 role of ethics committees, journals and journal editors to motivate the field to overcome these
462 limitations cannot be ignored. Ethics committees can enforce adherence to good clinical
463 practice standards that include safety data collection, while journals and editors can enforce
464 adherence with standards established by ICMJE, TIDieR, and other reporting guidelines
465 available on EQUATOR network such as CONSORT for RCTs. This may require the use of
466 supplemental materials to enhance transparent reporting.

467
468 Appropriate funding of earlier phase stroke recovery research and establishment of stroke
469 recovery research networks could help overcome many problems highlighted by this review.
470 It is expensive to conduct systematic, phased clinical research that tests high(er) intervention
471 doses, and collects intervention, control, and usual care dose data in sufficient detail.
472 However, appropriately supporting such research will position the field to learn far more than
473 what can be gleaned from many of the small trials included in this review. To develop an
474 economy of scale, conducting investigator-initiated trials within networks can foster
475 collaborations, leverage and maximize expertise, enhance recruitment, ensure equitable

476 distribution of resources, and promote collection of consistent data elements⁴⁵. Some
477 countries have established stroke recovery trial networks: UK Stroke Research Network (now
478 decommissioned), StrokeNet⁴⁶ funded by the NIH and CANSTROKE⁴⁷ funded by Brain
479 Research Canada. None have yet reported on their impact to improve trial design, quality or
480 outcomes. The recently formed International Stroke Recovery and Rehabilitation Alliance
481 (ISRRA) aims to develop flagship projects that may build critical trial capacity and
482 partnerships globally⁴⁸. These initiatives are key to align research interests to collectively
483 design and deliver scientifically transformative stroke recovery research.

484

485 *Limitations*

486 This review has limitations. Firstly, we did not conduct pooled analyses due to the large
487 volume of outcome data not collected by individual studies (e.g., did not collect FMUL or
488 used a brief version of the FMUL) or insufficiently reported (e.g., log transformed data
489 without raw scores), large proportion with high risk of bias and generally small sample size
490 of included studies. To support pooled interpretation and comparison of findings across
491 recovery epochs, dose and intervention type, we encourage researchers to use supplemental
492 materials to transparently report the intervention (e.g., TIDieR checklist²⁸) and detail dose
493 dimensions¹⁸; adhere to common data elements²¹; and report original scores along with any
494 transformed data. Secondly, we did not search for gray literature, such as conference
495 abstracts or theses, included non-English studies from a small selection of countries, and
496 searched for articles up to until July 2020. Given the large volume of studies that were
497 included, it is unlikely that the inclusion of additional studies would lead to significant
498 changes in our findings. We did not include home-based interventions as this review was
499 targeting hospital-based interventions. Broadening to home-based interventions would have
500 led to a higher yield of included studies.

501

502 **Conclusions**

503 Due to the lack of consistent data elements, there was insufficient evidence to conclude the
504 optimal time to commence upper limb intervention post-stroke, nor the effect of timing and
505 dose on efficacy. As such, there has never been a more important time for stroke recovery to
506 establish a united agenda to collectively address the biggest problems, whilst adopting a
507 systematic approach to stroke recovery research that adheres to international standards.

508 Similar to our acute stroke colleagues⁴⁹, we can expect to have more trial failures before we
509 succeed^{50,51}. But with appropriate investment in upper limb recovery research, we can build a
510 clear biological rationale for the selection of timing, dose and intervention type post-stroke.

511

512 **Disclosures:** Nil.

513

514 **Acknowledgements:**

515 *Person:* KSH & JB, National Health and Medical Research Council of Australia
516 [KSH:1088449, JB:1154904]; NAL & AB, Heart Foundation of Australia Future Leader
517 Fellowship [NL:GNT102055; AB:GNT100784, GNT104748]; EJD, Australian Government
518 Research Training Program Scholarship.

519 *Project:* Awarded to KSH from Heart Foundation of Australia and Stroke Foundation of
520 Australia.

521 *Institutional:* The Florey Institute of Neuroscience and Mental Health acknowledges the
522 support of the Victorian Government's Operational Infrastructure Support Grant.

523

524 **Data availability:** Available upon reasonable request to Dr Kathryn Hayward
525 (kate.hayward@unimelb.edu.au)

526 **References**

527 1. Nakayama H, Jorgensen HS, Rasschou HO, Olsen TS. Recovery of upper extremity
528 function in stroke patients: The copenhagen stroke study. *Archives of Physical
529 Medicine and Rehabilitation*. 1994;75:394-398

530 2. Persson HC, Parziali M, Danielsson A, Sunnerhagen KS. Outcome and upper
531 extremity function within 72 hours after first occasion of stroke in an unselected
532 population at a stroke unit. A part of the salgot study. *BMC neurology*. 2012;12:162

533 3. Simpson L, Hayward KS, McPeake M, Eng JJ. An updated distribution of upper limb
534 weakness post stroke: Are fewer people experiencing arm weakness today?
535 *International Journal of Stroke*. 2018;13:41

536 4. Jorgensen HS, Nakayama H, Rasschou HO, Vivelarsen J, Stoier M, Olsen TS.
537 Outcome and time course of recovery in stroke. Part ii: Time course of recovery. The
538 copenhagen stroke study. *Stroke*. 1995;30:406-412

539 5. Stinear CM, Lang CE, Zeiler S, Byblow WD. Advances and challenges in stroke
540 rehabilitation. *Lancet Neurol*. 2020;19:348-360

541 6. Pollock A, St George B, Fenton M, Firkins L. Top 10 research priorities relating to
542 life after stroke--consensus from stroke survivors, caregivers, and health
543 professionals. *International journal of stroke : official journal of the International
544 Stroke Society*. 2014;9:313-320

545 7. Bernhardt J, Hayward KS, Dancause N, Lannin N, Ward N, Nudo RJ, Farrin AJ,
546 Churilov L, Boyd L, Jones TA, et al. A stroke recovery trial development framework:
547 Consensus-based core recommendations from the second stroke recovery and
548 rehabilitation roundtable. *International Journal of Stroke*. 2019;14:792–802

549 8. Lannin N, Ada L, Lindley R, Longworth M, McCluskey A, Middleton S. Stroke
550 clinicians' priorities for stroke research. *The Internet Journal of Allied Health
551 Sciences and Practice*. 2012;10:1-7

552 9. Hayward KS, Kramer SF, Thijs V, Ratcliffe J, Ward NS, Churilov L, Jolliffe L,
553 Corbett D, Cloud G, Kaffenberger T, et al. A systematic review protocol of timing,
554 efficacy and cost effectiveness of upper limb therapy for motor recovery post-stroke.
555 *Syst Rev*. 2019;8:187

556 10. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD,
557 Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. The prisma 2020 statement: An
558 updated guideline for reporting systematic reviews. *Bmj*. 2021;372:n71

559 11. Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitative experience declines
560 with time after focal ischemic brain injury. *Journal of Neuroscience*. 2004;24:1245-
561 1254

562 12. Cortes JC, Goldsmith J, Harran MD, Xu J, Kim N, Schambra HM, Luft AR, Celnik P,
563 Krakauer JW, Kitago T. A short and distinct time window for recovery of arm motor
564 control early after stroke revealed with a global measure of trajectory kinematics.
565 *Neurorehabil Neural Repair*. 2017;31:552-560

566 13. Murphy TH, Corbett D. Plasticity during stroke recovery: From synapse to behaviour.
567 *Nature Reviews Neuroscience*. 2009;10:861-872

568 14. Covidence systematic review software VHI, Melbourne, Australia. Available at
569 www.covidence.org.

570 15. U.S. Food and Drug Administration. Step 3: Clinical research. 2018

571 16. Bernhardt J, Hayward KS, Kwakkel G, Ward NS, Wolf SL, Borschmann K, Krakauer
572 JW, delBoyd L, Carmichael S, Corbett D, et al. Agreed definitions and a shared vision
573 for new standards in stroke recovery research: The stroke recovery and rehabilitation
574 roundtable taskforce. *International Journal of Stroke*. 2017;12:444-450

575 17. Lohse KR, Lang CE, Boyd LA. Is more better? Using meta-data to explore dose-
576 response relationships in stroke rehabilitation. *Stroke*. 2014;45:2053-2058

577 18. Hayward KS, Churilov L, Dalton EJ, Brodtmann A, Campbell BCV, Copland D,
578 Dancause N, Godecke E, Hoffmann TC, Lannin NA, et al. Advancing stroke recovery
579 through improved articulation of nonpharmacological intervention dose. *Stroke*.
580 2021;52:761-769

581 19. Schneider EJ, Lannin NA, Ada L, Schmidt J. Increasing the amount of usual
582 rehabilitation improves activity after stroke: A systematic review. *J Physiother*.
583 2016;62:182-187

584 20. Pollock A, Farmer SE, Brady MC, Langhorne P, Mead GE, Mehrholz J, van Wijck F.
585 Interventions for improving upper limb function after stroke. *The Cochrane database
586 of systematic reviews*. 2014;11:CD010820

587 21. Kwakkel G, Lannin N, Borschmann K, English C, Ali M, Churilov L, Saposnik G,
588 Winstein C, van Wegen E, Wolf SL, et al. Standardised measurement of sensorimotor
589 recovery in stroke trials: Consensus-based core recommendations from the stroke
590 recovery and rehabilitation roundtable (srrr). *International Journal of Stroke*.
591 2017;12:451-461

592 22. Page SJ, Fulk GD, Boyne P. Clinically important differences for the upper-extremity
593 fugl-meyer scale in people with minimal to moderate impairment due to chronic
594 stroke. *Phys Ther.* 2012;92:791-798

595 23. Chen HM, Chen CC, Hsueh IP, Huang SL, Hsieh CL. Test-retest reproducibility and
596 smallest real difference of 5 hand function tests in patients with stroke. *Neurorehabil*
597 *Neural Repair.* 2009;23:435-440

598 24. Lin KC, Hsieh YW, Wu CY, Chen CL, Jang Y, Liu JS. Minimal detectable change
599 and clinically important difference of the wolf motor function test in stroke patients.
600 *Neurorehabil Neural Repair.* 2009;23:429-434

601 25. Van der Lee JH, De Groot V, Beckerman H, Wagenaar RC, Lankhorst GJ, Bouter
602 LM. The intra- and interrater reliability of the action research arm test: A practical test
603 of upper extremity function in patients with stroke. *Arch Phys Med Rehabil.*
604 2001;82:14-19

605 26. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J,
606 Schulz KF, Weeks L, Sterne JA, et al. The cochrane collaboration's tool for assessing
607 risk of bias in randomised trials. *Bmj.* 2011;343:d5928

608 27. Sterne JA, Hernan MA, Reeves BC, Savovic J, Berkman ND, Viswanathan M, Henry
609 D, Altman DG, Ansari MT, Boutron I, et al. Robins-i: A tool for assessing risk of bias
610 in non-randomised studies of interventions. *Bmj.* 2016;355:i4919

611 28. Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, Altman DG,
612 Barbour V, Macdonald H, Johnston M, et al. Better reporting of interventions:
613 Template for intervention description and replication (tidier) checklist and guide.
614 *BMJ.* 2014;348:g1687

615 29. Zeiler SR, Krakauer JW. The interaction between training and plasticity in the post-
616 stroke brain. *Current Opinions in Neurology.* 2013;26:609-616

617 30. Bernhardt J, Raffelt A, Churilov L, Lindley RI, Speare S, Ancliffe J, Katijjahbe MA,
618 Hameed S, Lennon S, McRae A, et al. Exploring threats to generalisability in a large
619 international rehabilitation trial (avert). *BMJ Open.* 2015;5:e008378

620 31. Prabhakaran S, Zarahn E, Riley C, Speizer A, Chong JY, Lazar RM, Marshall RS,
621 Krakauer JW. Inter-individual variability in the capacity for motor recovery after
622 ischemic stroke. *Neurorehabilitation and Neural Repair.* 2008;22:64-71

623 32. Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, Giuliani C, Light
624 KE, Nichols-Larsen D, Investigators E. Effect of constraint-induced movement

625 therapy on upper extremity function 3 to 9 months after stroke: The excite
626 randomized clinical trial. *JAMA*. 2006;296:2095-2104

627 33. SSNAP School of Population Health aES, King's College London on behalf of the
628 Intercollegiate Stroke Working Party, . Ssnap annual public report 2018. 2019

629 34. Colucci E, Clark A, Lang CE, Pomeroy VM. A rule-based, dose-finding design for
630 use in stroke rehabilitation research: Methodological development. *Physiotherapy*.
631 2017;103:414-422

632 35. Dalton E, Churilov L, Lannin NA, Corbett D, Campbell B, Hayward K. Early-phase
633 dose articulation trials are underutilized for post-stroke motor recovery: A systematic
634 scoping review. *Annals of physical and rehabilitation medicine*. 2021;101487

635 36. Dalton EJ, Churilov L, Lannin NA, Corbett D, Hayward KS. Dose articulation in
636 preclinical and clinical stroke recovery: Refining a discovery research pipeline and
637 presenting a scoping review protocol. *Frontiers in Neurology*. 2019;10:1148

638 37. Walker MF, Hoffmann TC, Brady MC, Dean CM, Eng JJ, Farrin AJ, Felix C, Forster
639 A, Langhorne P, Lynch EA, et al. Improving the development, monitoring and
640 reporting of stroke rehabilitation research: Consensus-based core recommendations
641 from the stroke recovery and rehabilitation roundtable. *International journal of stroke*
642 : official journal of the International Stroke Society. 2017;12:472-479

643 38. De Angelis C, Drazen JM, Frizelle FA, Haug C, Hoey J, Horton R, Kotzin S, Laine C,
644 Marusic A, Overbeke AJ, et al. Clinical trial registration: A statement from the
645 international committee of medical journal editors. *Lancet (London, England)*.
646 2004;364:911-912

647 39. Craik RL, Maher CG. Still "not satisfied" ... yet. *Physical Therapy*. 2008;88:423-425

648 40. International Council for Harmonisation of Technical Requirements for
649 Pharmaceuticals for Human Use (ICH). Ich harmonised guidelines integrated
650 addendum to ich e6(r1): Guideline for good clinical practice. 2016

651 41. AVERT Trial Collaboration group, Bernhardt J, Langhorne P, Lindley RI, Thrift AG,
652 Ellery F, Collier J, Churilov L, Moodie M, Dewey H, et al. Efficacy and safety of
653 very early mobilisation within 24 h of stroke onset (avert): A randomised controlled
654 trial. *Lancet (London, England)*. 2015;386:46-55

655 42. Borschmann K, Hayward KS, Raffelt A, Churilov L, Kramer SF, Bernhardt JA.
656 Rationale for intervention and dose is lacking in stroke recovery trials: A systematic
657 review. *Stroke Research and Treatment* 2018;8087372

658 43. Lohse KR, Pathania A, Wegman R, Boyd LA, Lang CE. On the reporting of
659 experimental and control therapies in stroke rehabilitation trials: A systematic review.
660 *Arch Phys Med Rehabil.* 2018;99:1424-1432

661 44. McGee D, Lorencatto F, Matvienko-Sikar K, Toomey E. Surveying knowledge,
662 practice and attitudes towards intervention fidelity within trials of complex healthcare
663 interventions. *Trials.* 2018;19:504

664 45. Australian Clinical Trials Alliance. Economic evaluation of investigator-initiated
665 clinical trials conducted by networks. . *ACSQHC.* 2017;Sydney

666 46. Cramer SC, Wolf SL, Adams HP, Jr., Chen D, Dromerick AW, Dunning K, Ellerbe
667 C, Grande A, Janis S, Lansberg MG, et al. Stroke recovery and rehabilitation
668 research: Issues, opportunities, and the national institutes of health strokenet. *Stroke.*
669 2017;48:813-819

670 47. Yaroslavtseva O, Leibovitch F, Foster E, Chundamala J, Eng JJ, Black S, Dukelow S,
671 MacIntosh BJ, MacKay-Lyons M, Ploughman M, et al. The trials and tribulations of
672 developing a stroke recovery clinical trials platform. *International Journal of Stroke.*
673 2019;14:50

674 48. Bernhardt J, Borschmann KN, Kwakkel G, Burridge JH, Eng JJ, Walker MF, Bird
675 ML, Cramer SC, Hayward KS, O'Sullivan MJ, et al. Setting the scene for the second
676 stroke recovery and rehabilitation roundtable. *International journal of stroke : official
677 journal of the International Stroke Society.* 2019;14:450-456

678 49. Kidwell CS, Liebeskind DS, Starkman S, Saver JL. Trends in acute ischemic stroke
679 trials through the 20th century. *Stroke.* 2001;32:1349-1359

680 50. Bernhardt J, Borschmann K, Boyd LA, Carmichael ST, Corbett D, Cramer SC,
681 Hoffman T, Kwakkel G, Savitz S, Saposnik G, et al. Moving rehabilitation research
682 forward: Developing consensus statements for rehabilitation and recovery research.
683 *International Journal of Stroke.* 2016;11:454-458

684 51. Bernhardt J, Borschmann KN, Kwakkel G, Burridge JH, Eng JJ, Walker MF, Bird
685 ML, Cramer SC, Hayward KS, O'Sullivan MJ, et al. Setting the scene for the second
686 stroke recovery and rehabilitation roundtable. *International Journal of Stroke.*
687 2019;14:450-456

688

689 **Table 1: Study demographics**

Age, n=210 studies[^]: from the mean reported in studies	
median (IQR)	61.4 (58.0-65.9)
[^] n=18 reported median as raw data or did not report age data.	
Sex, n=216 studies[*]: n participants, proportion	
Male	5429, 58%
Female	3906, 42%
[*] n=12 studies did not report sex by participant	
Stroke type, n=173 studies[*]: n participants, proportion	
Ischemic participants	6422, 83%
Hemorrhagic participants	1276, 17%
[*] n=55 studies did not report stroke type by participant	
Design, n=228: n studies, proportion	
RCT	174, 76%
Non-RCT	54, 24%
Continent, n=228: n studies, proportion	
Europe	97, 43%
Asia	85, 37%
North America	27, 12%
Australia/New Zealand	14, 6%
South America	3, 1%
Africa	2, 1%
Time post-stroke, n=228: n studies, proportion	
Hyperacute, ≤24-h post-stroke	1, <1%
Acute, >24-h but ≤7-days post-stroke	13, 6%

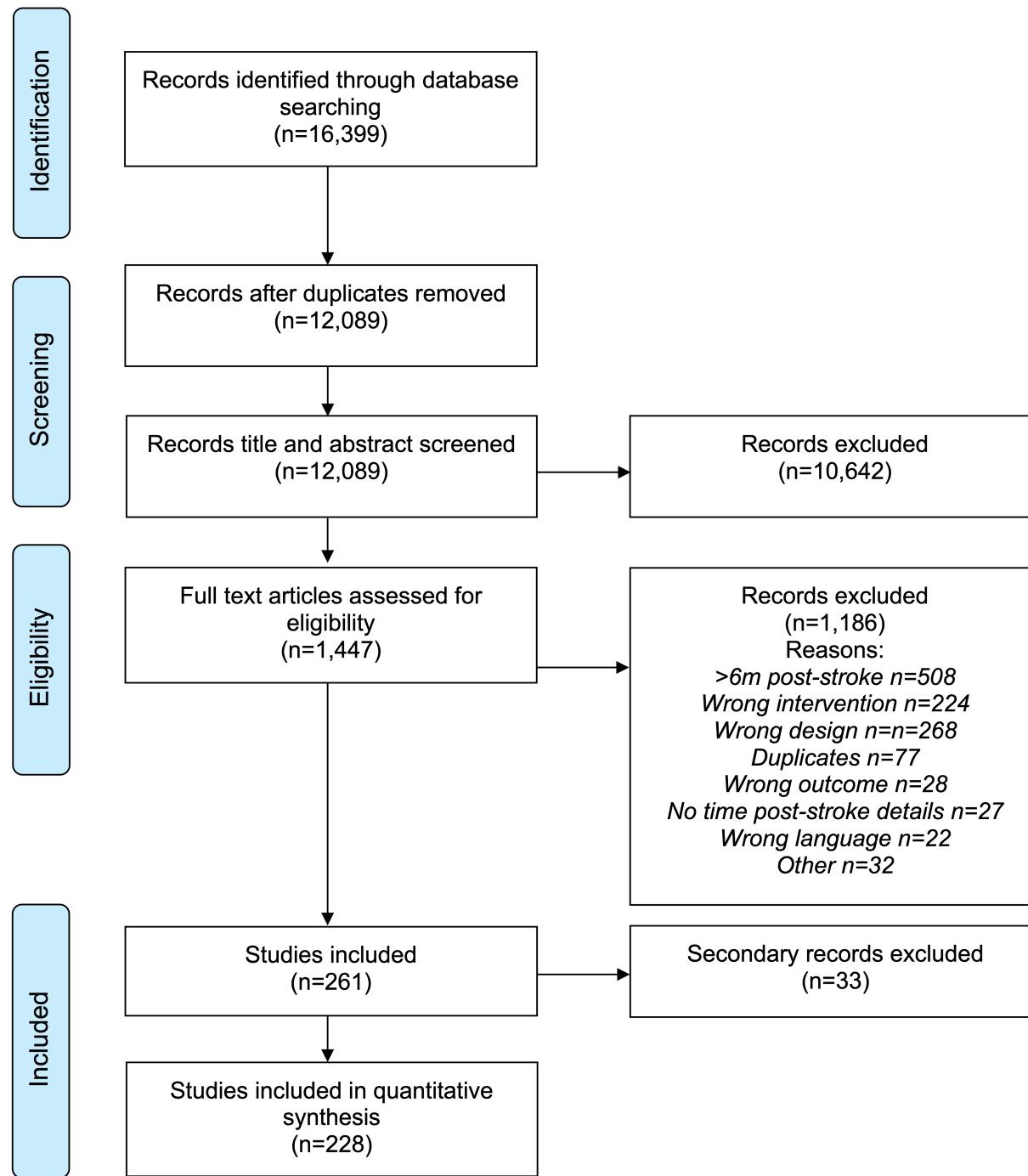
Early subacute, >7-days but \leq 3-months post-stroke	176, 77%
Late subacute, >3-months but \leq 6-months post-stroke	34, 15%
Not stated	4, 2%
Primary outcome, n=228: n studies, proportion	
Fugl Meyer Upper Limb (FMUL)	31, 14%
Action Research Arm Test (ARAT)	26, 11%
Wolf Motor Function Test-Rate (WMFT-Rate)	5, 2%
Box and Block Test (BBT)	4, 2%
Motor Assessment Scale (MAS)	2, 1%
Wolf Motor Function Test-scale (WMFT-Scale)	3, 1%
Other	26, 11%
Not stated	131, 57%
Intervention type, n=228: n studies, proportion	
Electromechanical and robotic therapy	55, 24%
Electrical stimulation	37, 16%
Constraint-induced movement therapy (CIMT)	28, 12%
Repetitive task training	23, 10%
Virtual reality [^]	22, 10%
Mirror therapy [^]	19, 8%
Task-specific training	10, 4%
Video game-based intervention	6, 3%
Strength training	5, 2%
Hands on therapy	5, 2%
Bilateral arm training	4, 2%
Biofeedback	4, 2%

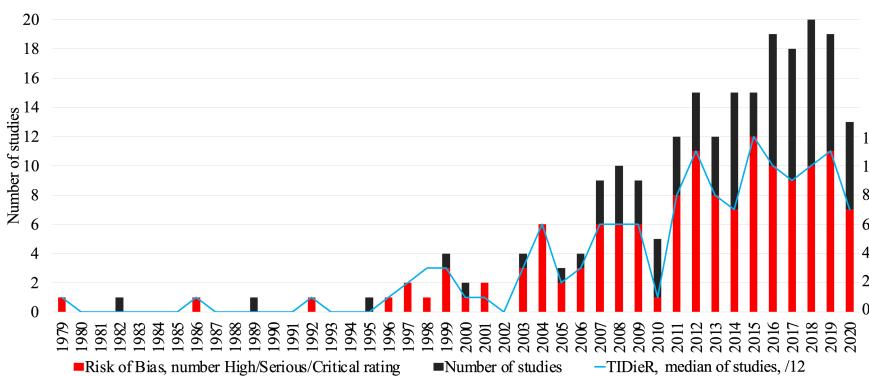
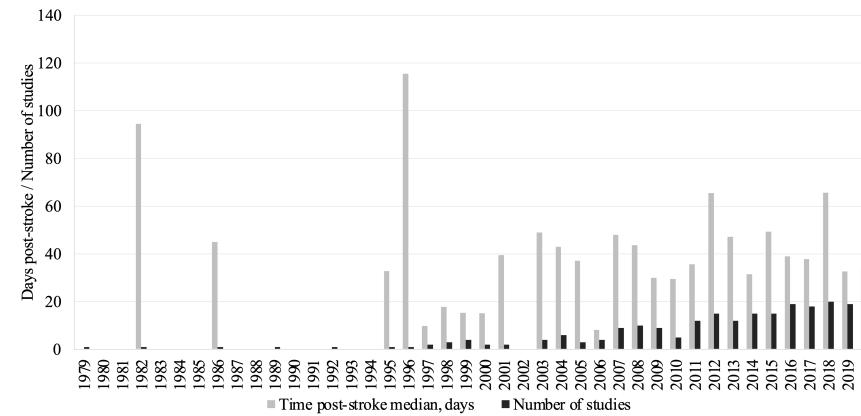
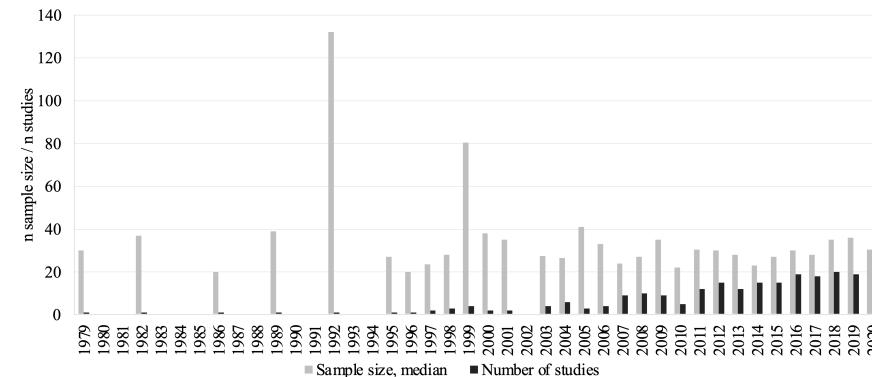
Bobath approach	4, 2%
Music therapy	3, 1%
Mental practice [^]	2, 1%
Standard therapy	1, <1%
Study design and reporting characteristics, n=228: n studies, proportion	
Trial registration, yes: n studies, proportion	56, 25%
Reported trial phase, yes: n studies, proportion	5, 2.2%
Stratification included in design, yes: n studies, proportion	43, 18%
Included a biomarker assessment, yes: n studies, proportion	23, 10%
Safety described in methods, yes: n studies, proportion	35, 15%
Safety reported in results, yes: n studies, proportion	70, 30%

690 [^]All interventions included upper limb motor practice e.g., mental practice was paired with
 691 motor intervention.

692 **Table 2:** Median (IQR), minimum to maximum, and reporting by studies for each dose dimension.

Intervention	Total intervention dose,				Duration, total
	minutes	Session length, minutes	Sessions, per day	Days, per week	weeks
<i>All studies, n=229[#]</i>	900(600-1430), 180-7200, Median(IQR), min-max, n(%)	45(30-60), 10-480, 195(85.2)	1(1-1), 1-4, 214(93.4)	5(5-5), 2-7, 210(91.7)	4(3-5), 1-20, 209(91.3)
<i>Hyperacute, n=1</i>	1200(NA), NA, 1(100.0)	60(NA), NA, 1(100.0)	2(NA), NA, 1(100.0)	5(NA), NA, 1(100.0)	2(NA), NA, 1(100.0)
<i>Acute, n=13</i>	1200(1125-1800), 630- Median(IQR), min-max, n(%)	45(30-98), 20-180, 13(100.0)	1(1-2), 1-3, 13(100.0)	5(5-5), 5-7, 12(92.3)	4(3-5), 2-12, 12(92.3)
<i>Early subacute 1, n=88</i>	800(600-1350), 180-3600, Median(IQR), min-max, n(%)	45(30-60), 10-180, 78(88.6)	1(1-1), 1-4, 83(94.3)	5(5-5), 3-6, 79(90.0)	4(2-5), 1-20, 78(90.0)
<i>Early subacute 2, n=60</i>	900(585-1410), 300-7200, Median(IQR), min-max, n(%)	45(30-60), 10-480, 52(86.7)	1(1-1), 1-2, 53(88.3)	5(5-5), 3-7, 54(90.0)	4(3-6), 2-12, 54(90.0)
<i>Early subacute 3, n=22</i>	900(540-1800), 300-3600, Median(IQR), min-max, n(%)	45(30-60), 10-180, 22(100.0)	1(1-1), 1-2, 21(91.3)	5(5-5), 3-5, 21(91.3)	4(3-4), 2-8, 22(100.0)


<i>Late subacute</i> , n=34	720(540-1350), 300-4500, Median(IQR), min-max, n(%)	33(97.1)	40(30-60), 20-360, 34(100.0)	1(1-1), 1-2, 33(97.1)	5(5-5), 2-6, 33(97.1)	4(3-4), 2-10, 34(100.0)
Control						
<i>All studies</i> , n=188 [^]	900(540-1350), 0-7200, Median(IQR), min [*] -max, n(%)	145(77.1)	45(30-60), 0-480, 153(81.4)	1(1-1), 0-3, 156(83.0)	5(5-5), 0-7, 159(84.6)	4(3-5), 0-20, 160(85.1)
<i>Hyperacute</i> , n=1	1200(NA), NA, 1(100.0)	60(NA), NA, 1(100.0)		2(NA), NA, 1(100.0)	5(NA), NA, 1(100.0)	2(NA), NA, 1(100.0)
<i>Acute</i> [^] , n=12	300(300-1800), 240-2100, Median(IQR), min-max, n(%)	6(50.0)	60(30-68), 20-180, 7(58.3)	1(1-1), 1-3, 7(58.3)	3.5(2-5), 1-7, 6(50.0)	4(4-5), 2-5, 5(41.7)
<i>Early subacute 1</i> [^] , n=76	900(510-1200), 0-5400, Median(IQR), min [*] -max, n(%)	63(83.0)	45(30-60), 0-360, 66(86.8)	1(1-1), 0-2, 66(86.8)	5(5-5), 0-6, 67(88.2)	4(3-5), 2-20, 66(86.8)
<i>Early subacute 2</i> [^] , n=49	960(555-1430), 69-7200, Median(IQR), min-max, n(%)	41(83.7)	30(30-60), 10-480, 41(83.7)	1(1-1), 1-2, 41(83.7)	5(5-5), 3-7, 43(87.8)	4(3-6), 2-12, 44(90.0)
<i>Early subacute 3</i> [^] , n=17	1080(750-1800), 200- 2520, 15(88.2)		60(38-60), 10-90, 15(88.2)	1(1-1), 1-2, 14(82.4)	5(5-5), 3-5, 14(82.4)	4(4-6), 2-8, 16(94.1)




Median(IQR), min-max, n(%)					
<i>Late subacute</i> [^] , n=23					
Median(IQR), min [*] -max, n(%)	625(600-1200), 0-4500, 21(91.3)	30(30-60), 0-300, 21(91.3)	1(1-1), 0-2, 21(91.3)	5(5-5), 0-6, 21(91.3)	4(3-4), 0-6, 22(95.7)
Usual care					
<i>All studies</i> , n=229 [#]					
Median(IQR), min-max, n(%)	1200(698-1800), 240- 5400, 67(29.3)	60(30-60), 15-360, 77(33.6)	1(1-2), 1-4, 87(38.0)	5(5-5), 1-7, 95(41.5)	4(3-4), 2-20, 4(41.0)
<i>Hyperacute</i> , n=1					
Median(IQR), min-max, n(%)	1200(NA), NA, 1(100.0)	60(NA), NA, 1(100.0)	2(NA), NA, 1(100.0)	5(NA), NA, 1(100.0)	2(NA), NA, 1(100.0)
<i>Acute</i> , n=13					
Median(IQR), min-max, n(%)	300(300-300), NA, 1(7.7)	20(20-20), NA, 1(7.7)	1(1-1), NA, 1(7.7)	5(5-5), NA, 1(7.7)	3(3-3), NA, 1(7.7)
<i>Early subacute 1</i> , n=88					
Median(IQR), min-max, n(%)	1300(765-3450), 300- 5400, 32(36.4)	60(47-101), 30-360, 36(40.9)	1(1-1), 1-3, 35(39.8)	5(5-5), 2-6, 39(44.3)	3(3-4), 2-20, 40(45.5)
<i>Early subacute 2</i> , n=60					
Median(IQR), min-max, n(%)	1200(900-1800), 450- 2700, 24(40.0)	60(30-60), 30-180, 26(43.3)	1(1-2), 1-4, 28(46.7)	5(5-5), 1-7, 30(50.0)	4(3-6), 2-8, 30(50.0)

<i>Early subacute 3, n=22</i>	720(675-1400), 600-2520, Median(IQR), min-max, n(%)	45(43-53), 30-60, 8(36.4)	1(1-1), 1-2, 7(31.8)	5(5-5), 2-5, 8(36.4)	4(3-4), 2-8, 9(40.9)
<i>Late subacute, n=34</i>	600(495-950), 240-1500, Median(IQR), min-max, n(%)	30(30-45), 15-60, 14(41.2)	1(1-1), 1-2, 13(38.2)	5(5-5), 2-6, 13(38.2)	4(3-4), 2-8, 14(41.2)

693

694 **Notes:** NA not applicable as only one study had data available. Not all studies could be classified to a recovery epoch (n=10).695 [#] One study contained two individual trials which were treated separately.696 [^] Represents the number of studies after single group studies were removed, ie they did not have a control group.697 ^{*} There were three studies with a control group that received no intervention. Removing these three studies *across all studies*, the minimum total
698 dose, minute=69; session length, minutes=10; sessions/day=1; days/week=1; and total weeks=2. Removing two relevant studies within the *early*
699 *subacute 1 epoch*, the minimum total dose, minutes=240; session length, minutes=10; sessions/day=1; days/week=1; and total weeks=2.700 Removing one relevant study within the *late subacute epoch*, the minimum total dose, minutes=400; session length, minutes=20;
701 sessions/day=1; days/week=3; and total weeks=2.

Panel A:**Panel B:****Panel C:**

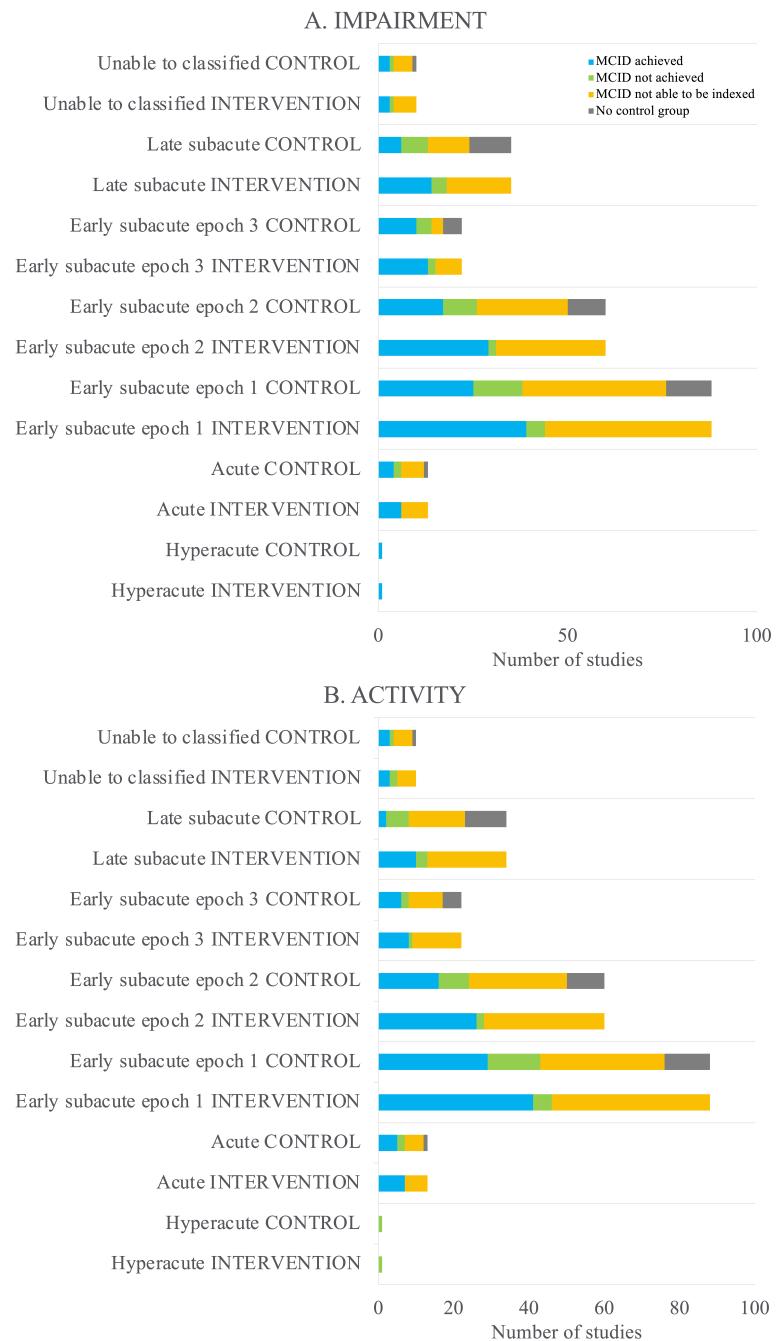
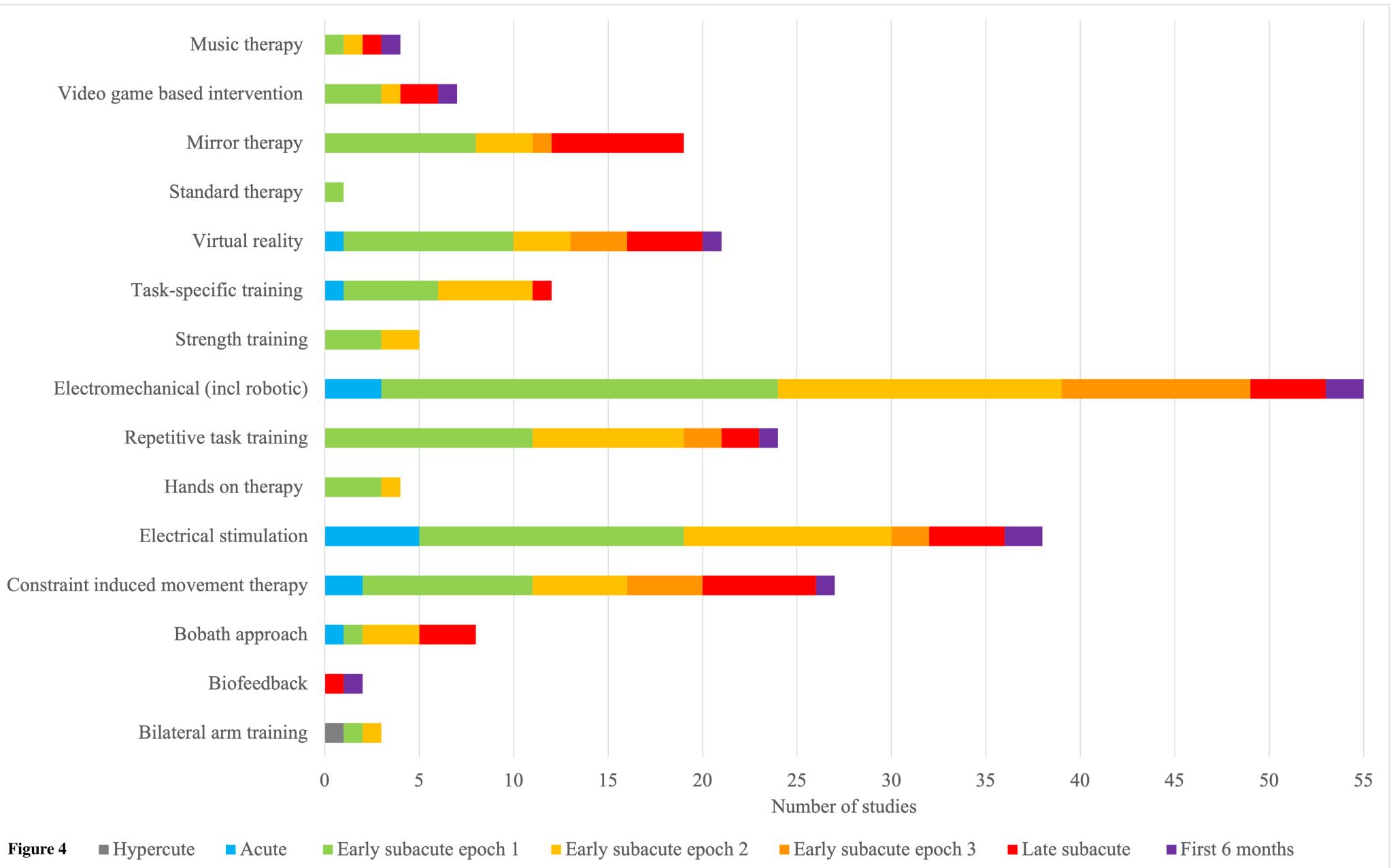



Figure 3

