
0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124323, IEEE
Transactions on Software Engineering

PARASARAM et al. TRIDENT: CONTROLLING SIDE EFFECTS IN AUTOMATED PROGRAM REPAIR 1

Trident: Controlling Side Effects
in Automated Program Repair

Nikhil Parasaram, Earl T. Barr, and Sergey Mechtaev

Abstract—The goal of program repair is to eliminate a bug in a given program by automatically modifying its source code. The majority
of real-world software is written in imperative programming languages. Each function or expression in imperative code may have side
effects, observable effects beyond returning a value. Existing program repair approaches have a limited ability to handle side effects.
Previous test-driven semantic repair approaches only synthesise patches without side effects. Heuristic repair approaches generate
patches with side effects only if suitable code fragments exist in the program or a database of repair patterns, or can be derived from
training data. This work introduces Trident, the first test-driven program repair approach that synthesizes patches with side effects
without relying on the plastic surgery hypothesis, a database of patterns, or training data. Trident relies on an interplay of several parts.
First, it infers a specification for synthesising side-effected patches using symbolic execution with a custom state merging strategy that
alleviates path explosion due to side effects. Second, it uses a novel component-based patch synthesis approach that supports lvalues,
values that appear on the left-hand sides of assignments. In an evaluation on open-source projects, Trident successfully repaired 6 out
of 10 real bugs that require insertion of new code with side effects, which previous techniques do not therefore repair. Evaluated on the
ManyBugs benchmark, Trident successfully repaired two new bugs that previous approaches could not. Adding patches with side
effects to the search space can exacerbate test-overfitting. We experimentally demonstrate that the simple heuristic of preferring
patches with the fewest side effects alleviates the problem. An evaluation on a large number of smaller programs shows that this
strategy reduces test-overfitting caused by side-effects, increasing the rate of correct patches from 33.3% to 58.3%.

Index Terms—program repair, program synthesis, symbolic execution, side effects

F

1 INTRODUCTION

Most existing software is written in imperative pro-
gramming languages. Statements in imperative languages
can have side effects: observable effects beyond returning a
value to the invoker of the operation. Common side effects
include changing the value of a variable, writing data to
disk, or enabling or disabling a button in the user interface.

Despite the importance of modifications with side effects
for real-world programs, state-of-the-art program repair
tools have a limited ability to handle side effects, which
restricts their applicability. Test-driven program repair ap-
proaches that rely on program synthesis, both symbolic [1]
and enumerative [2], currently only synthesise side-effect-
free expressions, or scale only to small programs [3]. Cur-
rent heuristic repair approaches generate patches with side
effects only if suitable code fragments exist in the buggy
program [4] or in a pre-defined database of patterns [5],
which may not contain the needed code. Machine learning
approaches [6] can potentially generate patches with side
effects, but their success depends on the size and the quality
of training data. Finally, existing approaches for controlling
test-overfitting [7], [8] do not take side effects into account.
This lacuna is important, because our experiments demon-
strate that patches with side effects are more prone to test-
overfitting.

This work introduces TRIDENT, the first test-driven pro-
gram repair approach that synthesizes patches with side
effects without relying on the plastic surgery hypothesis,
a database of patterns, or training data. TRIDENT effectively
addresses the limitations of previous constraint-based pro-

• The authors are with University College London.

Manuscript received April 19, 2005; revised August 26, 2015.

gram repair techniques [1], [9], and complements heuristic
techniques [4], [10], since it does not rely on the plastic
surgery hypothesis [11] or a repair pattern database.

TRIDENT takes a buggy program and its test suite,
then follows the general workflow of semantic program
repair [12]: it localises faulty statements, infers a specifica-
tion for patching these statements using symbolic execu-
tion, and then constructs a patch via program synthesis.
Assignment statements and function calls are two basic
classes of statements that involve side effects. Compared to
previous semantic techniques, TRIDENT supports two new
defects classes: the insertion/modification of assignment
statements and function calls. To repair a software defect,
an automated program repair tool must (1) contain a correct
patch in its search space, (2) find this patch within a time
budget, and (3) reduce the chance of generating an incorrect,
test-overfitting patch. TRIDENT tackles these challenges by
enhancing specification inference and patch synthesis for
assignment statements and function calls.

In order to include patches with side effects in its search
space, TRIDENT extends existing component-based program
synthesis approaches [13], [14] by introducing the concept of
lvalue components, which can appear in the left-hand-sides
of assignments, and rvalue components, which can appear
in the right-hand-sides of assignments. Then, the basic
building block of TRIDENT’s patch synthesiser is a k-holed
assignment that represents a simultaneous assignment of
k rvalue components to k lvalue components (Section 3.4).
This formalism captures the semantics of both assignment
statements and function calls with side effects. Functions
without loops can be precisely summarised as simultaneous
assignments [15]. For functions with loops, TRIDENT com-

Authorized licensed use limited to: University College London. Downloaded on November 24,2021 at 15:45:40 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124323, IEEE
Transactions on Software Engineering

PARASARAM et al. TRIDENT: CONTROLLING SIDE EFFECTS IN AUTOMATED PROGRAM REPAIR 2

int clamp(int x, int l, int h) {
int r;
// missing assignment r = x;
if (x < l)

r = l;
if (r == x && x > h)

r = h;
return r;

}

(a) A function missing an assignment.

int clamp(int x, int l, int h) {
int r;
L
1 , ...,

L
k = R

1 , ...,
R
k ;

if (x < l)
r = l;

if (r == x && x > h)
r = h;

return r;
}

(b) A buggy function with holes,
placed before suspicious statements.

int clamp(int x, int l, int h) {
int r;
switch(PATCH_ID) {

case 0: x = R; break;
case 1: l = R; break;
case 2: h = R; break;
case 3: r = R; break; }

if (x < l)
r = l;

if (r == x && x > h)
r = h;

return r;
}

(c) Eliminating lvalue-holes using a
switch statement (for k = 1).

Fig. 1: Synthesising a patch that inserts an assignment statement.

putes summaries using loop unrolling.
The inclusion of patches with side effects in the search

space causes a scalability problem during the symbolic
execution that infers the specification of the holes because
it exacerbates the path explosion problem. To alleviate this
problem, TRIDENT leverages a novel merging strategy that
rests on two insights. First, distinct variables can be updated
and still generate states that traverse the same path to
program exit. Second, even when many variables can be
assigned, any concrete patch will affect only a few of them.
When two paths write the same thing (the same rvalue)
to two different variables (two different lvalues), TRIDENT
exploits the first insight to efficiently merge both writes
into a single state. To ensure consistency of this merging,
TRIDENT appends an appropriate path constraint to the
path condition (Section 3.4). It exploits the second insight
to restrict the number of variables that a patch can update.

Although many bugs in imperative programs require
side-effected patches to fix, some side effects can increase
overfitting as our experiments demonstrate (Section 5). To
address this issue, TRIDENT applies a simple patch prioriti-
sation heuristic to minimise overfitting. We find that prefer-
ring a patch with the fewest side effects lowers overfitting.

To evaluate TRIDENT, we used three benchmarks: 10
bugs extracted from free GNU projects for evaluating TRI-
DENT’s scalability on bugs that require patches with side
effects, 36 bugs sampled from ManyBugs [16] for evaluating
TRIDENT’s scalability on generic defects and 110 defects
extracted from Codeflaws benchmark [17] for evaluating
propensity of TRIDENT’s patches to overfit. The 10 bugs
were the first 10 sampled uniformly whose fixes required
side effects and the 110 were cut down from the complete
Codeflaws dataset, again to those needing side effects (Sec-
tion 5). The evaluation demonstrates that TRIDENT gener-
ates patches involving assignments and function calls for 6
out of the 10 realistic bugs. Besides, TRIDENT’s patch pri-
oritisation increases the rate of correct patches from 33.3%
to 58.3% when applied to the 110 defects from Codeflaws.
These results demonstrate the practicality and utility of
TRIDENT.

The key contribution of this work is TRIDENT, the first
scalable test-driven patch synthesis approach that addresses
the memory updates/call function defect class without rely-
ing on the plastic surgery hypothesis, a database of patterns,

or training data; it is enabled by a tight integration of two
technical insights:

• An extension of component-based program synthesis
that introduces lvalue and rvalue components to
capture assignments and function calls;

• Multi-path specification inference, a state merging
technique tailored to the synthesis of side effected
patches that mitigates path explosion.

All code, scripts, and data necessary to reproduce
this work are available at https://program-repair.
s3-ap-southeast-1.amazonaws.com/trident-submission.
zip.

2 OVERVIEW

For a given buggy program, test-driven program repair
(TPR) techniques search for a plausible patch — a patch that
passes a test-suite — in a search space of candidate patches.
Since a test-suite is an incomplete specification, program
repair systems utilize patch prioritization strategies to in-
crease the probability of finding a correct patch. Thus, to
repair a bug, a TPR system has to (1) contain the correct
patch in its search space, (2) be efficient enough to find a
plausible patch given a time budget, and (3) prioritize a
correct patch over plausible, but incorrect, patches.

TRIDENT is the first TPR technique to synthesise side-
effected patches. This fundamental advance exacerbates all
three of TPR’s seminal problems. Section 2.1 presents the
resulting challenges; the rest of the section overviews how
TRIDENT overcomes them. TRIDENT’s novel primitive is
its notion of k-holed assignment (Section 2.2), which can
capture function calls (Section 2.3). Section 2.4 details TRI-
DENT’s strategy for resisting overfitting.

2.1 The Challenges of Synthesis with Side Effects

The two key challenges of adding the insertion/modifica-
tion of assignment statements into the TPR search space
are (1) efficiency, i.e. how to efficiently search the extended
space for plausible patches, and (2) test-overfitting, i.e. how
to ensure that the generated patches are correct.

Consider the function clamp in Figure 1a; it restricts a
number between two other numbers. It has a bug: it does
not assign r to x before its checks. Suppose clamp fails

Authorized licensed use limited to: University College London. Downloaded on November 24,2021 at 15:45:40 UTC from IEEE Xplore. Restrictions apply.

https://program-repair.s3-ap-southeast-1.amazonaws.com/trident-submission.zip
https://program-repair.s3-ap-southeast-1.amazonaws.com/trident-submission.zip
https://program-repair.s3-ap-southeast-1.amazonaws.com/trident-submission.zip

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124323, IEEE
Transactions on Software Engineering

PARASARAM et al. TRIDENT: CONTROLLING SIDE EFFECTS IN AUTOMATED PROGRAM REPAIR 3

int buggy(int x, int y) {
// missing call

inc_if_zero(&x,&y)
if (x > 0 && y > 0)

return 1;
else

return 0;
}

(a) A function missing a function call.

void inc_if_zero(int &x, int &y) {
if (x == 0)

x++;
if (y == 0)

y++;
}

(b) The definition of inc_if_zero.

int buggy(int x, int y) {
// Hole precedes suspicious code
L
1 ,

L
2 = R

1 ,
R
2 ;

if (x > 0 && y > 0)
return 1;

else
return 0;

}

(c) Assignment synthesis in TRIDENT.

Fig. 2: Synthesizing a patch that inserts an function call.

the test clamp(2, 1, 4) → 2, where the “ → 2” denotes the
expected output.

The first way to automatically repair this bug is generate-
and-validate program repair: enumerate and test all possible
insertions of assignments of the form v = e, where v ∈ {x, l,
h, r}, the program variables in scope, and e is an expression
over these variables. The main shortcoming of this method
is that it requires a large number of test executions, and
therefore does not scale to the large search spaces needed to
repair realistic bugs. The second way to automatically repair
this bug is synthesis-based program repair. Existing tech-
niques, such as Angelix [9], do not synthesize assignments,
because they are limited to side-effect-free expressions.

Since a test suite is an incomplete specification, TPR tech-
niques are prone to test-overfitting, generating patches that
pass the tests, but are incorrect. Extending the search space
with side-effected patches poses additional challenges: (1)
larger search spaces are more prone to test-overfitting [18],
and (2) intuitively, changes with side effects are more likely
to break functionality that is not covered by tests. A common
approach to alleviate test-overfitting is to define a cost
function on the search space, and search for a patch that
passes the tests and minimises the cost. To the best of our
knowledge, no cost function that takes side effects into
account has been proposed.

2.2 Synthesising Assignments

To address the efficiency challenges that side-effected
patches pose, we first introduce a new reification of a
memory update that we call k-holed assignment. Then,
we use this representation to define an efficient update-
aware specification inference approach called multi-path
specification inference.

A lvalue-hole, or L, refers to a set of writable memory
locations. The two-holed assignment L = R combines an
lvalue-hole and an rvalue-hole. Synthesising such assign-
ment effectively means filling L with an lvalue (e.g. a vari-
able), and R with an rvalue (e.g. an arithmetic expression).
A k-holed assignment L

1 , ...,
L
k = R

1 , ...,
R
k generalises two-

holed assignment to the simultaneous assignment of up to
k lvalue holes (Definition 6).

Following SemFix [12], TRIDENT inserts holes before
suspicious locations (Figure 1b and Figure 2c), infers a
logical specification for the holes, and then leverages the
inferred specification to synthesise expressions to fill the
holes. SemFix specification inference uses symbolic execu-
tion equipped to handle programs with rvalue-holes. Thus,
a key prerequisite for supporting synthesis with side effects

is extending specification inference to programs with k-
holed assignments, as shown in Figure 1b.

A naïve approach to extend specification inference to k-
holed assignments is to transform these assignments into
switch statements as shown in Figure 1c for k = 1. Specif-
ically, we can enumerate all possible variables that can
appear on the left-hand side of an assignment as cases in
a switch statement, and, for each case, insert an rvalue-hole
for the right-hand expression. This transformation allows
reusing SemFix’ specification inference to synthesize an
assignment statement. However, this approach is inefficient
because adding a switch statement significantly increases
the number of paths that symbolic execution must explore.
Current general-purpose state-merging strategies do not
efficiently handle the resulting path explosion because they
require fixed state topology and do not have a mechanism
for bounding the search of lvalues. Section 6.2 elaborates
these limitations.

To alleviate path explosion of this naïve approach, we
propose a more efficient semantics for inferences the spec-
ification of a k-holed assignment that we call multi-path
specification inference. Multi-path specification inference rests
on the insight that assignments to different variables along
a path can leave that path’s decisions unchanged. For exam-
ple, inserting x = l-1; or l = x+1; at entry in Figure 1a
both result in executing the true branch of first if-statement
and the false branch of the second if-statement. Therefore,
it is possible to merge the states induced by assignments
to different variables, significantly reducing the number of
paths to explore, thereby increasing the chance of finding a
patch within a time budget. After merging states that cor-
respond to assignments of different variables, the resulting
path constraint effectively captures an equivalence class of
assignments that drive test execution along this path.

To merge states corresponding to assignments of differ-
ent variables, multi-path specification inference uses two
groups of constraints: (1) those representing an assignment
of a symbolic value to each writable memory location,
controlled by a dedicated boolean selector variable, and (2)
cardinality constraints over the selector variables that re-
strict the number of memory locations that a patch satisfying
the specification assigns along a given path.

Consider the k-holed assignment statement L
1 =

R
1 , ...,

L
k = R

k at the missing assignment in Figure 1b.
Multi-path specification inference, when executing this

Authorized licensed use limited to: University College London. Downloaded on November 24,2021 at 15:45:40 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124323, IEEE
Transactions on Software Engineering

PARASARAM et al. TRIDENT: CONTROLLING SIDE EFFECTS IN AUTOMATED PROGRAM REPAIR 4

statement, constructs the following path constraint:

φ
def
= (sx → x′ = αx ∧ ¬sx → x′ = x)

∧ (sl → l′ = αl ∧ ¬sl → l′ = l)

∧ (sh → h′ = αh ∧ ¬sh → h′ = h)

∧ (sr → r′ = αr ∧ ¬sr → r′ = r)

∧ AtMost(k, sx, sl, sh, sr)

where, for β ∈ {x, l, h, r}, αβ is the symbolic variable rep-
resenting values of the rvalue-hole R, sβ is a boolean selec-
tor variable that enables/disables assignments to different
memory locations, β′ is the value of the program variable
β after the statement, and AtMost(k, –) is a cardinality
constraint that encodes that at most k of its program variable
arguments can be True . Here, AtMost(k, –) means that at
most k of the variables x, l, h and r can be modified as a
result of executing the k-holed assignment.

TRIDENT’s encoding merges the semantics of a subspace
of assignments into the same state. Then, the values of
the selector variables determine the subset of variables the
synthesised statement updates. This significantly reduces
the number of explored paths during symbolic execution.
For example, consider a path that takes the false branches
of the both if-statements that corresponds to the constraint
ψ

def
= (x′ ≥ l′) ∧ (r′ 6= x′ ∨ x′ ≤ h′). When TRIDENT

explores this path in the program with k-holed assignments
(Figure 1b), the path has the path condition φ ∧ ψ. Lacking
k-holed assignment, traditional symbolic execution would,
to achieve an equivalent result, have to explore four paths
in the program with switch statement (Figure 1c), yielding
the path conditions x′ = αx ∧ ψ, l′ = αl ∧ ψ, h′ = αh ∧ ψ
and r′ = αr ∧ ψ. In this case, TRIDENT reduces the number
of explored paths, for k = 1, from 4 to 1.

After exploring the path φ ∧ ψ, TRIDENT can synthesize
the patch r = x, since this patch is consistent with φ ∧ ψ
if sr is true, and produces the desired output r′ = 2.
To synthesize it, TRIDENT uses the variables {x, l, h, r} as
both lvalue and rvalue components. TRIDENT automatically
extracts the variables and data fields defined or used in the
current function as components, as Section 3.5 details.

The cardinality constraint AtMost(k, –) is essential for
assignment synthesis. First, it allows synthesising state-
ments that modify more than one memory location. Second,
it reduces the search space by avoiding paths that are
only feasible when more than k variables are modified.
For example, consider clamp in Figure 1b and the test
clamp(2, 1, 4) → 2, which clamp fails returning 0, not 2.
Using AtMost(1, –) to restrict the search space to assign-
ments that modify at most one variable makes the path that
follows the false branch of the first if-statement and the true
branch of the second if-statement infeasible. This is because
changing evaluation of the second if-statements requires
changing the binding of two variables, which AtMost(1, –)
forbids because it makes the following constraint unsatisfi-

able:

(sx → x′ = αx ∧ ¬sx → x′ = 2)

∧ (sl → l′ = αl ∧ ¬sl → l′ = 1)

∧ (sh → h′ = αh ∧ ¬sh → h′ = 4)

∧ (sr → r′ = αr ∧ ¬sr → r′ = 0)

∧ AtMost(1, sx, sl, sh, sr)

∧ (x′ ≥ l′)
∧ (r′ = x′ ∧ x′ > h′)

We assume that k is relatively small, because large k implies
that complex modifications are required and such programs
have serious problems such as wrong algorithms or lacking
functionality. TRIDENT is designed for program features that
are almost correct with the exception of a small fragment of
code. Currently, TRIDENT starts from k = 1. If it cannot
synthesise a patch, it increments k and repeats, until it
reaches a configurable bound on k.

2.3 Synthesising Function Calls
The abstraction provided by k-holed assignments is pow-
erful enough to express more complex, side-effected mod-
ifications such as function calls. This is because loop-free
functions are equivalent to simultaneous assignment, and
program with loops can be summarised as simultaneous
assignments using loop unrolling [15].

Consider the buggy program in Figure 2a with a missing
call to the function inc_if_zero shown in Figure 2b.
Assume buggy fails the test buggy(0, 0)→ 1.

TRIDENT computes function summaries for all functions
that can be called at the target location. Currently, user must
provide a library of functions, and TRIDENT computes the
summaries via symbolic execution with loop unrolling. For
example, TRIDENT computes the following summary for
inc_if_zero:

(x=0→ x′=x+1 ∧ x 6=0→ x′=x)

(y=0→ y′=y+1 ∧ y 6=0→ y′=y)

where x and y denote the values bound to the variables
x and y before executing inc_if_zero, and x′ and y′

represent their values after executing it.
Given function summaries, TRIDENT executes buggy

to infer its patch synthesis specification, as explained in
Section 2.2. Here, we assume that TRIDENT infers this
specification with AtMost(k = 2,−), which corresponds
to inferring a specification for lvalue-holes in the form
of simultaneous assignment to at most 2 variables, as in
Figure 2c. Specifically, TRIDENT infers this specification from
the test-passing path:

(sx → x′ = αx ∧ ¬sx → x′ = 0)

∧ (sy → y′ = αy ∧ ¬sy → y′ = 0)

∧ AtMost(2, sx, sy)

∧ (x′ > 0 ∧ y′ > 0)

After inferring this patch synthesis specification, TRI-
DENT combines it with with inc_if_zero’s summary,
if the two are consistent, to synthesise a call to
inc_if_zero(&x,&y), which replaces the pair of assign-
ments in Figure 2c.

Authorized licensed use limited to: University College London. Downloaded on November 24,2021 at 15:45:40 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124323, IEEE
Transactions on Software Engineering

PARASARAM et al. TRIDENT: CONTROLLING SIDE EFFECTS IN AUTOMATED PROGRAM REPAIR 5

int f(int x, int y, bool ok)
{

int r;
r = x + 1;
if (x < y)

r = y + 1;
if(ok > 0) return r;
else return x+r;

}

(a) Low cost patch.

int f(int x, int y, bool ok)
{

int r;
r = x + 1;
if (x < y)

r = ++ok;
if(ok > 0) return r;
else return x+r;

}

(b) High cost patch.

Fig. 3: Patches with different cost.

2.4 Resisting Overfitting

As demonstrated in Section 5.3, the inclusion of patches
with side effects into the program repair search space in-
creases the probability of generating test-overfitting patches.
To alleviate this problem, we propose a patch prioritization
strategy that assigns lower cost to patches that have fewer
side effects.

Consider the code fragments in Figure 3a and Figure 3b.
The function f (x , y , ok) is expected to return max(x, y) + 1
if (ok > 0), otherwise should return max(x, y) + x + 1.
Assume that TRIDENT generated patches that inserted the
highlighted assignments to pass the test f(−3, 1, 1)→ 2. Al-
though both programs pass the test, the patch in Figure 3b is
incorrect, as it breaks the functionality for inputs satisfying
(y > x) ∧ (ok = 0).

To reduce the chance of generating such overfitted
patches, we propose a heuristic to minimise the number
of side effects in a patch. This heuristic is based on the
intuition that updating fewer variables decreases the chance
of breaking the functionality that is not covered by the tests.
Specifically, the patch in Figure 3a is assigned cost 1, since
it only changes r. The patch in Figure 3b is assigned cost
2, since it changes r and ok. Therefore, TRIDENT prefers
the patch in Figure 3a due to its lower cost. Although this
method does not guarantee that the chosen patch is correct,
our evaluation in Section 5.3 shows that it does, in practice,
alleviate test-overfitting associated with side effects.

3 TRIDENT

First, we formally define a programming language to de-
scribe our algorithms in Section 3.1. Then, we formalise the
notion of side-effected patches in Section 3.2. Finally, we
define the semantics of symbolic execution for our language
in Section 3.3. The last three sections are devoted to the core
contributions of TRIDENT. Section 3.4 describes the state-
merging strategy for alleviating path explosion when infer-
ring specification for patch synthesis. Section 3.5 defines a
component based synthesis approach that explicitly reasons
about side effects. Finally, Section 3.6 introduces a patch
prioritization strategy for alleviating test-overfitting due to
side effects.

3.1 The Programming Language L
We consider an imperative programming language Lwhose
syntax is described in Figure 4. Program p ∈ L is a set of
function declarations, i.e. L def

= 2decl , with distinct names.

〈stmt〉 ::= 〈lvalue〉 = 〈rvalue〉 | 〈call〉 |
if (〈rvalue〉) { 〈stmt〉 } else { 〈stmt〉 } |
while (〈rvalue〉) { 〈stmt〉 } |
〈stmt〉 ; 〈stmt〉
int 〈var〉 = 〈rvalue〉
return 〈rvalue〉

〈rvalue〉 ::= 〈const〉 | 〈var〉 | *〈var〉 | &〈var〉 |
〈rvalue〉 + 〈rvalue〉 | other operations...

〈lvalue〉 ::= 〈var〉 | *〈var〉
〈rvlist〉 ::= 〈rvalue〉 | 〈rvalue〉 , 〈rvlist〉
〈call〉 ::= 〈fun〉 (〈rvlist〉)
〈vlist〉 ::= 〈var〉 | 〈var〉 , 〈vlist〉
〈decl〉 ::= int 〈fun〉(〈vlist〉) { 〈stmt〉 }

Fig. 4: Syntax of the programming language L.

L is a subset of C with only integer values, without global
variables or switch statements, among other simplifications.
L uses CPL’s notion of value category1 [19]. An ex-

pression in a program is an rvalue when it appears in a
condition or on the right-hand side of an assignment or
an argument of a function call, corresponding to the non-
terminal 〈rvalue〉. An expression is an lvalue when it appears
on the left-hand side of an assignment, which corresponds
to the non-terminal 〈lvalue〉.

To avoid complicating the grammar, we assume that all
expressions can be evaluated in "right-hand mode", but only
certain expressions can be evaluated in "left-hand mode".
For example, x can be both an lvalue and an rvalue, but
x+1 can only be an rvalue.

Memory is a function µ : N→ Z from addresses to values.
The stack frame β is a finite subset of N. An environment
γ is a mapping from variable names to their addresses.
The program stack σ is a stack of pairs {(βi, γi)}i of the
stack frame βi and the environment γi, with the usual stack
operations pop and push . Dom(γ) indicates the set of visible
program variables. Stack frame allocator is a procedure
newframe that, each time it is called, returns a new stack
frame that is disjoint from previously allocated stack frames.
The variable allocator newloc is a procedure that, for a given
stack frame, returns a location within this stack frame that
is not allocated to any variable.

The semantics of a statement s in L2 is the relation
〈s, µ, σ〉 ⇓ 〈µ′, σ′〉, where µ′ and σ′ are the memory and the
stack obtained by executing the statement s in the context of
memory µ and stack σ according to the semantics of the C
language. Similarly, the semantics of an rvalue expression e
in L is the relation 〈e, µ, σ〉 ⇓ 〈µ′, σ′, r〉, where r is the result
of evaluating the expression.
L programs have C-like semantics, under several simpli-

fying assumptions: all values are allocated on stack, stack

1. CPL is an an ancestor of C; we use its definition of value categories,
as opposed to the more complex categories in C, to simplify the
presentation.

2. We omit the, rather standard, formal definition of the semantics of
a C-like language with pointers.

Authorized licensed use limited to: University College London. Downloaded on November 24,2021 at 15:45:40 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124323, IEEE
Transactions on Software Engineering

PARASARAM et al. TRIDENT: CONTROLLING SIDE EFFECTS IN AUTOMATED PROGRAM REPAIR 6

NUM

〈n, θ, σ, π〉 ⇓s 〈θ, σ, π, n〉

OP
〈e1, θ, σ, π〉 ⇓s 〈θ1, σ1, π1, φ1〉 〈e2, θ1, σ1, π1〉 ⇓s 〈θ′, σ′, π′, φ2〉 φ = φ1 op φ2

〈e1 op e2, θ, σ, π〉 ⇓s 〈θ′, σ′, π′, φ〉

RVALUE-VAR
((_, γ), _) = pop(σ)

〈v, θ, σ, π〉 ⇓s 〈θ, σ, π, θ(γ(v))〉

DEREF-RVALUE-VAR
((_, γ), _) = pop(σ)

〈∗v, θ, σ, π〉 ⇓s 〈θ, σ, π, γ(v)〉

ASSIGN
〈e, θ, σ, π〉 ⇓s 〈θ′, σ′, π′, φ〉 ((_, γ), _) = pop(σ)

〈v = e, θ, σ, π〉 ⇓s 〈θ′[γ(v) 7→ φ], σ′, π′〉

SYMB

〈α, θ, σ, π〉 ⇓s 〈θ, σ, π, α〉

IF-TRUE
〈e, θ, σ, π〉 ⇓s 〈θ1, σ1, π1, φ〉 π1 ∧ φ is SAT 〈s1, θ1, σ1, π1 ∧ φ〉 ⇓s 〈θ′, σ′, π′〉

〈if (e) { s1 } else { s2 }, θ, σ, π〉 ⇓s 〈θ′, σ′, π′〉

IF-FALSE
〈e, θ, σ, π〉 ⇓s 〈θ1, σ1, π1, φ〉 π1 ∧ ¬φ is SAT 〈s2, θ1, σ1, π1 ∧ ¬φ〉 ⇓s 〈θ′, σ′, π′〉

〈if (e) { s1 } else { s2 }, θ, σ, π〉 ⇓s 〈θ′, σ′, π′〉

WHILE-TRUE
〈e, θ, σ, π〉 ⇓s 〈θ1, σ1, π1, φ〉 π1 ∧ φ is SAT 〈s, θ1, σ1, π1 ∧ φ〉 ⇓s 〈θ2, σ2, π2〉 〈while (e) { s }, θ2, σ2, π2〉 ⇓s 〈θ′, σ′, π′〉

〈while (e) { s }, θ, σ, π〉 ⇓s 〈θ′, σ′, π′〉

WHILE-FALSE
〈e, θ, σ, π〉 ⇓s 〈θ1, σ1, π1, φ〉 π1 ∧ ¬φ is SAT

〈while (e) { s }, θ, σ, π〉 ⇓s 〈θ, σ, π〉

SEQ
〈s1, θ, σ, π〉 ⇓s 〈θ1, σ1, π1〉 〈s2, θ1, σ1, π1〉 ⇓s 〈θ′, σ′, π′〉

〈s1 ; s2, θ, σ, π〉 ⇓s 〈θ′, σ′, π′〉

CALL
〈e1, θ, σ, π〉 ⇓s 〈θ1, σ1, π1, φ1〉 ... 〈en, θn−1, σn−1, πn−1〉 ⇓s 〈θn, σn, πn, φn〉 ({v1, ..., vm}, s) = decl(f)

β = newframe() γ = {vi 7→ newloc(β)} σ′ = push(σn, (β, γ)) 〈s, θn, σ′, πn〉 ⇓s 〈θ′, σ′′, π′〉 ((_, γ′),) = pop(σ′′)

〈f(e1, ..., en), θ, σ, π〉 ⇓s 〈θ′, σn, π′, θ(γ′(return))〉

VAR-DECL
〈e, θ, σ, π〉 ⇓s 〈θ′, σ′, π′, φ〉 ((β, γ), t) = pop(σ′) γ′ = γ[v 7→ newloc(β)] σ′′ = push(t, (β, γ′))

〈int v = e, θ, σ, π〉 ⇓s 〈θ′, σ′′, π′〉

Fig. 5: Semantics of symbolic execution.

KHOLE-ASSIGN
((_, γ), _) = pop(σ) n = |Dom(γ)| s1, ..., sn = fresh bool symb. variables α1, ..., αn = fresh int symb. variables

θ′ = θ[γ(vi) 7→ αi]vi∈Dom(γ) π′ = π ∧ (
∧

vi∈Dom(γ)

¬si → αi = θ(γ(vi))) ∧AtMost(k, {s1, ..., sn})

〈 L1 , ..., L
k = R

1 , ...,
R
k , θ, σ, π〉 ⇓m 〈θ′, σ, π′〉

Fig. 6: Semantics of multi-path specification inference.

frames have infinite size and never de-allocated, variables
have dynamic scope, and the entry function and its argu-
ments have to be specified explicitly. Specifically, executing
an L program means evaluating the entry function applied
to its arguments in the context of zeroed memory and an
empty stack, as stated in the definition below:

Definition 1 (Execution). Let p ∈ L be a program, f be p’s

entry function, A
def
= [a1, ..., an] be an ordered set of integers (en-

try function arguments). Execution is the function exec defined

as exec(p, f,A)
def
= (µ, r) such that 〈f(a1, ..., an), λx. 0, ∅〉 ⇓

〈µ, _, r〉.

TRIDENT uses tests as correctness criteria; a test is a
pair ([a1, ..., an], φ), where a1, ..., an is a sequence of integer
inputs, and φ is a predicate on the return value. A program
p with the entry function f passes the test ([a1, ..., an], φ) iff
φ(r) where (_, r) def

= exec(p, f, [a1, ..., an]).

3.2 Patches with Side Effects

Any modification that changes the behaviour of the pro-
gram can be in principle considered as a patch with side
effects. Thus, to make a more fine-grained distinction be-

tween side-effect-free and side-effected patches, we over-
approximate side effects syntactically. Specifically, we con-
sider a patch with side effects if any individual part of its
diff explicitly updates memory.

A patch is a pair of programs (p, p′). The difference be-
tween p and p′ — diff (p, p′) — is the minimal (in terms of
the number of AST nodes) substitution { sp1 7→ sp

′

1 , ..., s
p
n 7→

sp
′

n } of statements/expressions in p to statements/expres-
sions in p′ such that p′ is obtained by simultaneously ap-
plying this substitution to p (we assume that spi and sp

′

i are
all unique statements at different program locations). We
call a pair (spi , s

p′

i) in this mapping an atomic substitution.
An atomic substitution has a side effect iff there exists a
memory, stack pair that defines a context in which the
execution of p and p′ results in a different value for at least
one memory location.

Definition 2 (Atomic Substitution with Side Effect). An
atomic substitution (spi , s

p′

i) has a side effect iff there exists an
address a ∈ N, a memory µ, and a stack σ such that 〈spi , µ, σ〉 ⇓
〈µ1, _, _〉, 〈sp

′

i , µ, σ〉 ⇓ 〈µ2, _, _〉 and µ1(a) 6= µ2(a).

This definition considers side effects syntactically w.r.t.
the minimal difference between a program and a patched

Authorized licensed use limited to: University College London. Downloaded on November 24,2021 at 15:45:40 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124323, IEEE
Transactions on Software Engineering

PARASARAM et al. TRIDENT: CONTROLLING SIDE EFFECTS IN AUTOMATED PROGRAM REPAIR 7

version under a given diff algorithm.

Definition 3 (Patch with Side Effect). A patch has a side effect
iff an atomic substitution of its difference has a side effect.

For example, consider a patch

(int f(y) { x = y − 1}, int f(y) { x = y + 1}).
The difference of this patch is the minimal substitution
{y − 1 7→ y + 1}. The expressions y − 1 and y + 1 do
not write to memory, so their evaluation results in the same
memory values for any initial memory and stack. Therefore,
this patch has no side effects.

Since our simplified language does not use heap and
variables are never de-allocated, any call to a function with
assignments is considered to be an expression with side
effects. However, this definition can be trivially relaxed for
languages with heap and stack frame de-allocations if we
define side effects w.r.t. to the heap and the stack rather than
the entire memory.

3.3 Symbolic Execution of L
TRIDENT relies on SMT solving and symbolic execution. As
is usual in SMT literature [20], we consider formulas and
terms built from predicate and function symbols (e.g. “ + ”,
“ − ”, “ > ”) from a given signature Σ. We denote the set
of all such formulas and terms as LΣ. We also consider a
background theory T that fixes the interpretations of the
symbols in Σ.

We use the letters α, β, γ and δ to denote variables from
LΣ, and the letters π, φ and ψ to designate formulas from
LΣ. Symbolic memory θ is a function from memory addresses
to logical terms from LΣ (for an address a, the correspond-
ing logical term is θ(a)). We express the equality of two sym-
bolic program states θ1 and θ2 for all initialised addresses as
the formula θ1 = θ2

def
=

∧
v∈Initialised θ1(v) = θ2(v).

Assume that {α1 7→ n1, ..., αk 7→ nk} is an assignment
of the variables from L (a mapping from the variables to
values). We say that this assignment satisfies a formula π iff
a substitution of the variables αi with the corresponding
values ni — denoted as π[α1 7→ n1, ..., αk 7→ nk] —
evaluates to True .

The semantics of symbolic evaluation is defined as eval-
uation that transforms symbolic memory and augments
current path constraint:

Definition 4 (Semantics of symbolic evaluation). The seman-
tics of symbolic evaluation of a statement s in L is the relation
〈s, θ, σ, π〉 ⇓s 〈θ′, σ′, π′〉, where θ′, σ′ and Π′ are the symbolic
memory, the stack and the path condition obtained by executing
the statement s in the context of symbolic memory µ, stack σ, and
path condition π according to the semantics of symbolic execution
in Figure 5.

The semantics of symbolic evaluation of rvalue expres-
sions is defined accordingly.

Definition 5 (Symbolic execution). Let p ∈ L be a
program, f be a function declared in p (entry function),

Φ
def
= [φ1, ..., φn] be an ordered set of terms from LΣ (en-

try function arguments). The function symex is defined as

symex (p, f,A)
def
= {(πi, θi, ψi)}i (set of triples) such that, for

all i, 〈f(φ1, ..., φn), λx. 0, ∅,True〉 ⇓s 〈θi, _, πi, ψi〉.

3.4 TRIDENT’s Multi-Path Specification Inference
A key part of TRIDENT repair algorithm is inferring spec-
ification for patch synthesis. This specification is a logical
formula that summarises how changes at the given location
can affect the output of the program. The main difference
between TRIDENT and previous semantic algorithms, such
as Angelix, is that TRIDENT’s specification encodes the effect
of assigning multiple memory locations. A naïve way to
implement specification inference shown in Figure 1c causes
path explosion and therefore reduces the scalability of pro-
gram repair as demonstrated in Section 5. Thus, we propose
a multi-path specification inference approach that uses a
specialised state merging strategy to reduce the number of
explored paths.

In order to formalise multi-path specification inference,
we extend language L with a k-holed assignment statement
defined below:

Definition 6 (k-holed assignment). Let k, l be integers such
that l ≤ k, L

1 , ...,
L
k be lvalue-holes, R

1 , ...,
R
k be rvalue-

holes, x1, ..., xl be a sequence of lvalue expressions, e1, ..., el be a
sequence of rvalue expressions. The semantics of k-holed assign-
ment L

1 , ...,
L
k = R

1 , ...,
R
k w.r.t. the substitution x1, ..., xl,

e1, ..., el is defined as

t1 = x1

...

tl = xl

x1 = e1[x1 7→ t1, ..., xl 7→ tl]

...

xl = el[x1 7→ t1, ..., xl 7→ tl]

where t1, ..., tl are fresh variables, and ei[x1 7→ t1, ..., xl 7→ tl]
is the expression obtained by replacing x1, ..., xl with t1, ..., tl
correspondingly.

The fresh variables t1, ..., tl in the definition prevent the
preceding assignments from affecting the result of the fol-
lowing ones. We refer to this extended language with k-
holed assignments as L′.

Multi-path specification inference is defined for pro-
grams from L′ using an augmented version of symbolic
execution. For simplicity, we assume that there is only a
single test, but all definitions in this paper can be trivially
generalised for multiple tests by considering the conjunction
of constraints corresponding to these tests.

Definition 7 (Multi-path specification inference). Let p ∈ L′
be a program, f be a function declared in p (entry func-
tion), ([a1, ..., an], φ) be a test. The function infer is defined

as infer(p, f, [a1, ..., an])
def
= symexm(p, f, [a1, ..., an]) where

symexm is given in Definition 5 with the semantics ⇓m , where
the relation ⇓m is an extension of ⇓s to L′ in Figure 6.

3.5 TRIDENT’s Patch Synthesis
TRIDENT employs component-based program synthesis that
constructs a patch as a combination of components that
satisfies a given logical specification. The key novelty rel-
ative to previous techniques [13], [14] is that it supports
side-effected components. Specifically, we consider com-
ponents of three types identified as sets of labels: {R}

Authorized licensed use limited to: University College London. Downloaded on November 24,2021 at 15:45:40 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124323, IEEE
Transactions on Software Engineering

PARASARAM et al. TRIDENT: CONTROLLING SIDE EFFECTS IN AUTOMATED PROGRAM REPAIR 8

Algorithm 1: Patch synthesis

Input:
Components: A list of components
S: inferred specification

for tree ∈ enumerate_trees(Components) do
φ = encode(tree, S)
is_sat, valuation = solve(φ)
if is_sat then

return decode(tree, valuation)

for components that represent rvalue-expression, {L} for
components that represent lvalue expressions, and {R,L}
for components that are both rvalue expressions and lvalue
expressions, such as program variables.

Definition 8 (Component). Component is a tuple
(T, {iR1 , ..., iRn }, {iL1 , ..., iLm}, φ), where T is the type of
the component (i.e. {R}, {L}, or {R,L}), {iR1 , ..., iRn } is the
set of rvalue inputs, {iL1 , ..., iLm} is the set of lvalue inputs, and
φ is the semantics of the component, a logical formula over the
variables {iR1 , ..., iRn , iL1 , ..., iLm}, representing the input, and
{ot}t∈T , representing the outputs.

For example, a component that adds one to a given value
can be represented as follows

(R, {iR1 }, {}, oR = iR1 + 1),

because it is component that has one rvalue input and is
itself an rvalue. Meanwhile, a component that increments a
variable, is represented as

(R, {iR1 }, {iL1 }, oR = iL1 ∧ iL1 = iR1 + 1),

because it accepts an argument as both an rvalue (for
reading) and an lvalue (for writing), updates the value of
the lvalue input, and returns this value as rvalue output.

TRIDENT represents patches as trees of components.
Specifically, a component tree is a pair (c, {iR1 7→
tR1 , ..., i

R
n 7→ tRn , i

L
1 7→ tL1 , ..., i

L
m 7→ tLm}) of the root

component c and a mapping from its inputs to subtrees
tR1 , ..., t

R
n , t

L
1 , ..., t

L
m. The semantics of the tree is a formula

that connects input and outputs of the components:

J(c, {iR1 7→ tR1 , ..., i
R
n 7→ tRn , i

L
1 7→ tL1 , ..., i

L
m 7→ tLm}K

def
=

φ ∧ iR1 = oR1 ∧ ... ∧ iRn = oRn ∧ iL1 = oL1 ∧ ... ∧ iLm = oLm

∧ JtR1 K ∧ ... ∧ JtRn K ∧ JtL1 K ∧ ... ∧ JtLmK,

where φ is the semantics of the component c and oR1 , ... are
the outputs of the root components of the subtrees tR1 ,

TRIDENT uses an enumerative algorithm to find a patch
that satisfies the given specification. However, an enu-
merative algorithm is not efficient for generating integer
constants because of search space explosion. To address
this, TRIDENT applies an SMT solver to generate these
constants, similarly to SyGuS solvers [14]. For example, to
represent a set of components that add different constants
to a given value, instead of considering concrete semantics
oR = iR1 + 1, oR = iR1 + 2, ..., we consider an abstract

Algorithm 2: Patch Prioritization

Input:
Patch : A list of components
Line : Line number of patch
P : Program

if has_no_side_effects(Patch) then
return 0

P ′ := apply_patch(P,Patch)
return mutated_memory_count(P ′,Line)

semantics oR = iR1 + c and ask an SMT solver to find a
value of the parameter c that satisfies the specification.

Algorithm 1 demonstrates the patch synthesis algo-
rithm that combines enumeration and SMT-solving. First,
this algorithm enumerates abstract trees, that is, trees of
components in which the leafs corresponding to constants
are represented as parameters. Then, it encodes each ab-
stract tree and the specification into a formula that is sat-
isfiable iff there is a assignment of constants that makes
the patch satisfy the specification. Particularly, for a pro-
gram p with a k-holed assignment and the entry func-
tion f , a test ([a1, ..., an], φ), a specification {(πi,, ψi)}i

def
=

infer(p, f, [a1, ..., an]), and a candidate components tree t, it
constructs the following formula:

JtK ∧
∨
i

πi ∧ φ(ψi)

For multiple tests, TRIDENT considers the conjunction of the
corresponding formulas. If the formula is satisfiable, then
TRIDENT constructs a concrete patch from the model by
substituting constant parameters with concrete values.

3.6 TRIDENT’s Patch Prioritization
TRIDENT employs patch prioritization strategy to alleviate
test-overfitting. TRIDENT prioritizes patches based on the
assumption that minimising the number of side effects in
the patched expression will reduce overfitting. Algorithm 2
returns the patch priority where the patches with lower
priority value are preferred by the patch prioritisation strat-
egy. The algorithm takes as input the program, patch and
the line number where the patch is applied. The function
apply_patch applies the patch on program P . The function
mutated_memory_count returns the number of memory
locations whose values are changed by the execution of the
patched line Line in the program P ′. If the patch P has no
side effects under Definition 3, then algorithm 2 gives it a
priority of 0, to avoid synthesising patches with side effects
when they are not required.

4 IMPLEMENTATION

Figure 7 shows the architecture of TRIDENT, which consists
of three main components:

• The frontend transforms and analyses buggy pro-
grams;

• The inference engine infers synthesis specifications;
and

Authorized licensed use limited to: University College London. Downloaded on November 24,2021 at 15:45:40 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124323, IEEE
Transactions on Software Engineering

PARASARAM et al. TRIDENT: CONTROLLING SIDE EFFECTS IN AUTOMATED PROGRAM REPAIR 9

Buggy
program

Frontend

Clang

Inferrer

KLEE

Synthesiser

PySMT

Z3

PatchDocker

Runtime

Fig. 7: Architecture of TRIDENT.

• The synthesiser constructs patches.

The frontend performs several source code focused
tasks. First, it localises suspicious locations in the
buggy program using Ochiai statistical fault localisa-
tion [21]. Second, it instruments suspicious locations by
inserting holes in the form of calls to the function
__trident_khole_assignent using Clang, LLVM’s de-
fault frontend [22]. Finally, it calls the other components
of TRIDENT to infer synthesis specification and synthesize
patches.

The inference engine is built on top of KLEE symbolic
execution engine [23] and extensions implemented as a
C library that is linked to the buggy program when it
is executed using KLEE. The runtime provides a function
__trident_khole_assignent that represents a k-holed
assignment L

1 , ...,
L
k = R

1 , ...,
R
k . This function take the

values of program variables and addresses of assignable
memory locations, and constructs path constraints and sym-
bolic state according to the semantics of the rule KHOLE-
ASSIGN in Figure 6.

The synthesizer constructs patches based on inferred
specification in the form of KLEE path conditions and
provided components and function summaries. It uses
PySMT [24] to manipulate SMT formulas, and Z3 for con-
straint solving.

TRIDENT relies on Docker [25] virtual environments to
execute the subject program for fault localization and patch
validation, and to perform symbolic execution with KLEE.

The following transformation schemas for C programs,
which adapt transformation schema successfully used in
previous work [9], define TRIDENT’s the search space:

〈stmt〉 ; 7→ 〈stmt〉 ; L
1 , ...,

L
n = R

1 , ...,
R
n ;

if (〈expr〉) 〈stmt〉 7→ c, L
2 , ...,

L
n = R

1 , ...,
R
n ; if (c) 〈stmt〉

while (〈expr〉) 〈stmt〉 7→ while (c) { 〈stmt〉 ; c, L
2 , ...,

L
n = R

1 , ...,
R
n }

for(_; 〈expr〉; _) 〈stmt〉 7→ for (_; c; _){〈stmt〉 ; c, L
2 , ...,

L
n = R

1 , ...,
R
n }

switch (〈expr〉) 〈stmt〉 7→ c, L
2 , ...,

L
n = R

1 , ...,
R
n ; switch (c) 〈stmt〉

〈call〉 ; 7→ L
1 , ...,

L
n = R

1 , ...,
R
n ;

〈assignment〉 ; 7→ L
1 , ...,

L
n = R

1 , ...,
R
n ;

In these transformations, we synthesize a k-holed assign-
ments c, L

2 , ...,
L
k = R

1 , ...,
R
k with a dedicated variable

c that is used as an rvalue expressions for conditional
statements, loops and switch statements. Effectively, this
emulates synthesis of expressions with side effects.

TABLE 1: OSS10 dataset of bugs from open source projects

Program Commit kLoC Missing/incorrect statements

grep 191a84a 38 match_lines=match_words=0;
grep 7585d81 27 strip_trailing_slashes(optarg);
coreutils c160afe 208 x.preserve_xattr = true;
coreutils 9944e47 249 if (!nfiles) fstatus[0].failed=1;
coreutils ca99c52 249 if (line_width<0) line_width=0;
coreutils 9f5aa48 224 relative_to = relative_base;
coreutils 2a80912 247 f[i].fd = -1;
busybox 0506e29 297 end = key->range[3];
busybox 5c13ab4 331 flags = option_mask32;
busybox 6f7a009 351 xtc &= ~TC_UOPPOST;

TABLE 2: CF110 dataset of bugs from Codeflaws benchmark

Class Number Description

SISA 38 Insert assignment
DRWV 14 Replace variable with variable
DMAA 3 Insert/replace array access
ORRN 21 Replace relational operator
OILN 15 Tighten/loosen condition
OAIS 19 Insert/delete arithmetic operator

Total 110

4.1 Limitations
TRIDENT inherits the usual limitations of symbolic execu-
tion approaches. First, it faces the usual path explosion
problem, which the state merging algorithm, described in
Section 3.4, alleviates. Second, state-of-the-art symbolic ex-
ecution engines cannot automatically model the environ-
ment, like network communication. Third, SMT solver are
necessarily incomplete and cannot solve all expressions in
actual programs. Finally, handling pointers and data struc-
tures is an open challenge for symbolic execution.

Aliasing occurs when the same data can be accessed
through different pointers. Our synthesis algorithm assumes
that there is no aliasing in the considered L-values. Specif-
ically, all L-values passed to the synthesizer must refer to
different memory locations in the context of given tests.
TRIDENT’s implementation trivially guarantees this prop-
erty since it only passes references to local and global
variables as L-values. To support dynamic data structures,
such as linked lists, an alias analysis technique can be
applied. Supporting dynamic data structures also requires
modelling them symbolically. TRIDENT’s implementation
does not support dynamic data structures, because KLEE
does not explicitly model them.

5 EVALUATION

To evaluate TRIDENT, we first demonstrate its utility: we
show that TRIDENT can synthesise patches with side-effects
for bugs in real-world programs. Synthesising side-effected
patches exacerbates two seminal challenges: the path explo-
sion problem of symbolic execution and the test-overfitting
problem of program repair. TRIDENT combats path explo-
sion with multi-path specification inference introduced in
Section 3.4. Section 5.2 reports the effectiveness of this
countermeasure. Section 5.3 shows how much more prone
to test-overfitting patches with side effects are than side-
effect-free patches, and how well TRIDENT’s prioritisation
heuristic alleviates this problem.

Authorized licensed use limited to: University College London. Downloaded on November 24,2021 at 15:45:40 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124323, IEEE
Transactions on Software Engineering

PARASARAM et al. TRIDENT: CONTROLLING SIDE EFFECTS IN AUTOMATED PROGRAM REPAIR 10

Benchmarks: To answer our research questions, we
constructed three bug datasets:

OSS10 10 bugs from open source projects that require
patches containing addition/modification of as-
signments and function calls, extracted from
Coreutils, Grep and Busybox (Table 1);

CF110 110 bugs from Codeflaws [17]. Among these 110
version, 55 require patches with side effects, and
55 require patches without side effects.

MB37 37 bugs taken from ManyBugs [16].

To construct OSS10, we identified bugs from Coreutils,
Grep and Busybox that require patches with side effects. We
chose these projects for our dataset, because they are well-
supported by KLEE, and also their version control history
links bug fixing commits with corresponding regression
tests. Specifically, we uniformly sampled bugs from these
projects, keeping the first 10 that manual assessment de-
termined involved statements with side effects, those that
add/modify assignments or function call. Table 1 lists the
size of the codebase from which each bug is drawn.

ManyBugs [16] benchmark consists of 185 defects taken
from nine large, open source C projects. This benchmark
is commonly used in evaluating automatic program repair
tools [9], [26], [27]. Prior work [28] argues for explicitly
defining the defect classes while evaluating various pro-
gram repair tools, to ensure a fair comparison of tools on
comparable classes. A defect class is a family of bugs that
share a common attribute. For instance, GenProg [4] does
not repair expression-level bugs, while Angelix [9] does
not fix bugs pertaining to insertion of new statements or
modifying existing statements in a way that induces side
effects. TRIDENT supports the defect classes of Angelix3

while additionally supporting those defect classes with side
effects that k-holed assignment can model. Following pre-
vious work [27], we eliminated the samples that do not
belong to TRIDENT’s defect classes or that TRIDENT could
not compiled due to version incompatibilities; this led to
MB37, which is a dataset of 37 samples.

We chose Codeflaws as the source for our second dataset,
because it contains bugs from a large variety of defect
classes. Codeflaws bugs were not labeled with side effects
in mind. To construct CF110, we therefore inspected bugs
in defect classes that require, or rule out, patches with
side effects, and then uniformly sampled bugs from the
inspected set. Specifically, we selected 55 bugs from classes
SISA, DRWV and DMAA (with side effects), and 55 bugs
from classes ORRN, OILN and OAIS (without side effects).
Section 6 details the reasons for constructing new datasets.

Tool Configurations: In our experiments, we use the
following tool configurations:

TN TRIDENT with disabled patch prioritisation;
TP TRIDENT with enabled patch prioritisation;
PR Prophet [26] with default configuration;
SOS SOSRepair [27] with default configuration;
AKN Angelix-like assignment synthesis with disabled

KLEE merging;

3. Although TRIDENT supports Angelix’ defect class, their search
spaces are different: Angelix attempts to minimally modify existing
expressions, while TRIDENT synthesises expressions from scratch. This
explains differences in the results.

int clamp(int x, int l, int h) {
int r;
klee_open_merge()
switch(PATCH_ID) {

case 0: x = R; break;
case 1: l = R; break;
case 2: h = R; break;
case 3: r = R; break; }

klee_close_merge()
if (x < l)

r = l;
if (r == x && x > h)

r = h;
return r;

}

Fig. 8: Applying KLEE state merging in AKP.

AKP Angelix-like assignment synthesis with enabled
KLEE merging;

ANG Angelix [9] with default configuration; and
GP GenProg [4] with default configuration.

The TP and TN configurations employ multi-path spec-
ification inference described in Section 3.4 with cardinal-
ity constraints with K = 2. AKN is an application of
Angelix for assignment synthesis that uses a switch state-
ment to enumerate possibly writable memory locations
(Section 2.2). AKP is an extension of AKN that applies
KLEE’s built-in state-merging mechanism by surround-
ing the switch statement with klee_open_merge() and
klee_close_merge() as shown in Figure 8. ANG is An-
gelix [9] applied only to side-effect-free expressions, but re-
implemented using the same synthesiser as TRIDENT with
only rvalue components. We used GenProg [4] in our ex-
periments because, although it does not synthesise patches
with side effects, it can potentially generate them by copying
from other parts of the same program. PR is the original ver-
sion of Prophet [26] with the default configuration specified
in their replication package. For SOS, GP, and ANG we used
the generated patches listed in their replication packages to
compile the results.

Experimental Setup: We conducted all experiments
inside a Docker container on an Intel® Core™ i7-2600 CPU
2.7 GHz machine running on Ubuntu 16.04 with 16GB of
memory. We used 2 hours as the timeout for each tool.

5.1 TRIDENT Fixes Real Bugs
To investigate the applicability of TRIDENT for realistic

projects, we ran it on the real bugs in the OSS10 and MB37
datasets. On OSS10 that contain bugs involving side effects,
we executed three configurations: TP, AKP and GP. Here
AKP serves as the baseline approach. GP is an alternative
approach, because it cannot synthesise new statements, but
can copy/move them from a code bank, by default the rest
of the same program. On OSS10 that contain both bugs
involving side effects and side-effect-free bugs, apart from
TP, we executed four configurations that represent state-of-
the-art C program repair tools: ANG, PR, SOS and GP.

In order to identify if the generated patches are correct,
we conservatively compared them with human patches,
classifying a patch as correct only if it is syntactically identi-
cal to the human patch, or can be obtained from the human
patch through a trivial refactoring.

Authorized licensed use limited to: University College London. Downloaded on November 24,2021 at 15:45:40 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124323, IEEE
Transactions on Software Engineering

PARASARAM et al. TRIDENT: CONTROLLING SIDE EFFECTS IN AUTOMATED PROGRAM REPAIR 11

(a) The number of plausible patches generated by each tool. (b) The number of correct patches generated by each tool.

Fig. 9: Venn diagrams describing the intersection of the repaired bugs in MB37 dataset by different repair tools. Generally,
the tools are complementary. TRIDENT correctly fixes 2 bugs that other tools do not repair correctly.

...
case EXCLUDE_DIRECTORY_OPTION:

if (!excluded_directory_patterns)
excluded_directory_patterns = new_exclude ();
strip_trailing_slashes (optarg);
add_exclude (excluded_directory_patterns, optarg,

EXCLUDE_WILDCARDS);
break;

...

(a) Function call generated by TRIDENT for Grep.

...
if (!TIFFFillStrip(tif,strip))
return((tmsize_t)(-1));

size = strip_size;

if ((*tif->tif_decodestrip)(tif,buf,size,plane)<=0)
return((tmsize_t)(-1));

(*tif->tif_postdecode)(tif,buf,size);
return(size);

...

(b) Assignment statement generated by TRIDENT for Libtiff.

Fig. 10: Examples of patches generated by TRIDENT.

TABLE 3: Generated patches for OSS10: indicates correct
patch, G# — plausible patch, # — no patch found.

Bug Patch Time (s)

TP AKP GP TP AKP GP

191a84a # # # 1273.2 Timeout Timeout
7585d81 # 469.8 554.2 Timeout
c160afe # # 94.6 Timeout Timeout
9944e47 G# # # 76.3 Timeout Timeout
ca99c52 # # # Timeout Timeout Timeout
9f5aa48 # # # Timeout Timeout Timeout
2a80912 # # 75.6 Timeout Timeout
0506e29 # # # Timeout Timeout Timeout
5c13ab4 # 367.9 348.3 Timeout
6f7a009 G# G# # 283.4 349.6 Timeout

Overall 4+2 2+1 0+0

Table 3 summarises the results of our experiment on
OSS10. The time column indicates the time(in seconds)
taken to generate a patch for the corresponding buggy
location. TP generated more patches than AKP and GP on
the considered dataset. TP generated more patches than
AKP due to the efficiency of its state merging algorithm. GP
could not generate patches for the considered bugs, because

required statements are not present in the source code. TP
repaired all versions, except for Grep 7585d81, using one
or more assignments. For Grep 7585d81, TP generated a
function call shown in Figure 10a, which is identical to the
human patch. In order to enable this function call synthesis,
we first generated summaries for all supported functions in
Grep, and used them as components for patch synthesis.

Table 4 summarises the results of our experiments on
MB37 dataset: TRIDENT’s performance is comparable to
other state of the art tools. Figure 9 shows the overlap of
generated patches for different tools. TRIDENT generates 2
correct patches that no other tool could repair, Figure 9b.
Figure 10b shows one of these two patches.

Even though TRIDENT supports the defect classes of
Angelix, we can see from Figure 9b and Figure 9a that
Angelix synthesises some bugs that TRIDENT cannot and
vice-versa. This is due to the difference in their search
spaces: Angelix attempts to minimally modify existing ex-
pressions, whereas TRIDENT synthesises expressions from
scratch. One illustrative example is Figure 11. Here, Angelix
successfully generates a patch, since it is easy to modify
the existing expression to reach the patch by simply drop-
ping the expression tif->tif_rawcc != orig_rawcc.

Authorized licensed use limited to: University College London. Downloaded on November 24,2021 at 15:45:40 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124323, IEEE
Transactions on Software Engineering

PARASARAM et al. TRIDENT: CONTROLLING SIDE EFFECTS IN AUTOMATED PROGRAM REPAIR 12

TABLE 4: The number of plausible and correct patches each program repair tool generates on bugs in MB37 dataset.
TRIDENT generates 16 out of 37 patches of which 8 are equivalent to patches written by the developers.

Bug kLoC Total Plausible Correct

TN ANG PR SOS GP TN ANG PR SOS GP

gmp 145 2 1 2 1 0 1 0 0 0 0 0
gzip 491 4 3 3 2 0 1 2 1 2 0 0
libtiff 77 10 5 5 5 8 7 3 3 1 2 2
php 1,099 19 6 6 9 4 9 3 3 4 3 0
wireshark 2,814 2 1 1 1 2 2 0 0 0 2 0

Overall 37 16 17 18 14 20 8 7 7 7 2

* by the compression close+cleanup routines. But

* be careful not to write stuff if we didn’t add data

* in the previous steps as the "rawcc" data may well be

* a previously read tile/strip in mixed read/write mode.

*/
- if (tif->tif_rawcc > 0 && tif->tif_rawcc != orig_rawcc
+ if ((tif->tif_rawcc > 0)
&& (tif->tif_flags & TIFF_BEENWRITING) != 0
&& !TIFFFlushData1(tif))
{

Fig. 11: Angelix’s patch for libtiff-2007-11-02-371336d-
865f7b2.

TRIDENT, in contrast, does not generate a patch, since the
patch requires an expression with 11 components, which is
infeasible due to the vast number of candidate patches that
use up to 11 components.

TRIDENT generated two correct patches exclusively, be-
cause the correct patches are not in the search space of the
other approaches. These correct patches require inserting an
assignment. Angelix cannot generate a patch that inserts
an assignment. GenProg and Prophet could not generate
these patches, since the needed assignments do not appear
in the buggy programs. SOSRepair could not generate them
because its performance depends on the size and quality of
the database of patterns.

TRIDENT repaired 3 more real bugs from OSS10 dataset
that require patches with side effects than the baseline,
state of the art semantic repair augmented to synthesise
assignments. TRIDENT correctly repaired 2 new bugs
from MB37 dataset that the other state of the art tools
such as Prophet, SOSRepair, Angelix and GenProg did
not repair.

5.2 Containing Path Explosion

Concretely, path explosion manifests itself during a sym-
bolic run in terms of the number of paths visited. To
investigate how TRIDENT’s state merging mitigates path
explosion in our setting, we executed three configurations
— TP, AKN, and (3) AKP— on the both OSS10 and CF110
datasets. We compare these three configurations in terms of
the average number of paths each visits during k runs over
corpus against the time limit of 10 hours.

Table 6 summarises the results of our experiments on
CF110 dataset, and Table 5 summarises the results of our
experiments on OSS10 bugs. Both tables display the average

TABLE 5: The average number of paths explored in the
OSS10 dataset. The buggy versions for which TRIDENT,
under its TP configuration, generated a patch are bolded.
On the corpus, TP visits almost 1000 fewer paths than the
closest baseline, on average.

Version Paths (Average)

TP AKP AKN

191a84a 5.4 13.2 22.5
7585d81 95.0 96.0 96.0
c160afe 10.0 268.0 1602.5
9944e47 22.0 490.5 616.0
ca99c52 5688.0 6024.2 6352.0
9f5aa48 1175.0 1320.0 9000.0
2a80912 8.0 39.0 104.0
0506e29 12922.0 16807.0 16807.0
5c13ab4 88.0 317.0 936.0
6f7a009 12647.0 15966.0 21378.0

Overall 3266.1 4133.9 5691.3

TABLE 6: The average number of paths explored in the
CF110 dataset. Here, TRIDENT, under TP, visits 8 fewer
paths on average than the closest baseline.

Class Paths (Average)

TP AKP AKN

SISA 12.87 18.43 26.69
DRWV 9.15 13.62 25.23
DMAA 38.86 76.18 98.24
ORRN 15.50 30.36 56.77
OILN 16.47 24.33 40.68
OAIS 16.88 24.72 31.92

Overall 27.39 35.51 37.32

number of paths that each approach explores per suspicious
location; for CF110, this average is over all versions from a
defect class. In both cases, TRIDENT, under its TP configura-
tion, visits fewer paths than either baseline, demonstrating
the effectiveness of its state-merging strategy at coping with
path explosion in practice. Figure 12 shows a violin plot for
the distribution of number of paths for each class in CF110;
here, we see that, for each of TP’s runs, the bulk of the area of
each violin plot is lower than for the baselines and, crucially,
that its tail of outliers is even more markedly lower.

Table 7 demonstrates the solving time and the number
of solver queries of the patch synthesiser for OSS10. On
average, TRIDENT required fewer solver calls, but since the
constraints it passes to the solver have additional clauses to
control patch side effects, the total solving time does not sig-

Authorized licensed use limited to: University College London. Downloaded on November 24,2021 at 15:45:40 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124323, IEEE
Transactions on Software Engineering

PARASARAM et al. TRIDENT: CONTROLLING SIDE EFFECTS IN AUTOMATED PROGRAM REPAIR 13

SISA
TP

SISA
AKN

SISA
AKP

DRWV
TP

DRWV
AKN

DRWV
AKP

DMAA
TP

DMAA
AKN

DMAA
AKP

ORRN
TP

ORRN
AKN

ORRN
AKP

OILN
TP

OILN
AKN

OILN
AKP

OAIS
TP

OAIS
AKN

OAIS
AKP

0

100

200

300

400

500

Pa
th

co
un

t

Fig. 12: The distribution of paths explored in the CF110 dataset. The x-axis contains the defect class name and the name of
tool configuration. The weight of each violin plot is lower and their tails are shorter than either baseline.

TABLE 7: The patch synthesizer’s solving time and the
number of solver queries for each tool for the bugs in
OSS10 dataset. The versions for which TP generated a
patch exclusively are bolded. TP has, on average, fewer
solver queries, but since its constraints involve additional
clauses, the solving time does not considerably differ across
configurations.

Version Solving Time (Seconds) Query Count

TP AKP AKN TP AKP AKN

191a84a 99.0 107.3 76.9 1794 1199 372
7585d81 2.4 2.4 2.1 9 9 9
c160afe 17.3 246.0 164.5 1197 8258 7827
9944e47 21.7 162.4 194.8 1328 6836 1213
ca99c52 241.7 170.6 110.2 184 579 461
9f5aa48 1131.1 661.2 1467.4 1570 3617 7824
2a80912 29.1 94.6 72.2 620 564 561
0506e29 79.3 74.7 70.5 72 64 83
5c13ab4 106.2 173.5 171.1 10873 10034 3206
6f7a009 92.8 95.5 98.1 2833 2985 2523

Total 1820.6 1788.2 2427.8 20480 34145 24079

nificantly differ from other techniques. The key advantage
of TRIDENT is not in reducing the patch generation time, but
reducing the number of paths that are necessary to explore
to find a test-passing path, which increases the chance of
finding a patch, as demonstrated in Section 5.1.

Overall, TP explores 22.9% fewer paths on average com-
pared to AKP and 26.6% fewer paths when compared to
AKN on CF110 dataset, and 21% fewer paths on average
compared to AKP and 43% fewer paths when compared to
AKN on OSS10 dataset.

TRIDENT’s novel state merging strategy reduces the
number of explored paths by 22–43% compared to the
baselines — state of the art semantic repair augmented
to synthesis assignments and KLEE’s general-purpose

TABLE 8: Plausible and correct patches generated for
CF110 bugs; as expected, TRIDENT slightly increases test-
overfitting on patches without side effects (first three rows)
and its patch priorisation strategy reduces test-overfitting,
as the comparison between TP and TN on patches with side-
effects (the last three rows) shows.

Class LoC Plausible Correct

TP TN ANG TP TN ANG

OILN 46± 21 2 2 1 0 0 0
OAIS 36± 25 8 8 7 1 1 1
ORRN 53± 36 7 7 7 2 2 3

Overall 17 17 15 3 3 4

SISA 59± 35 16 16 1 9 6 0
DRWV 46± 20 8 8 0 5 2 0
DMAA 83± 28 0 0 0 0 0 0

Overall 24 24 1 14 8 0

state merging strategy.

5.3 Resisting Overfitting

A program repair technique overfits a test suite when it
produces patches that pass the test suite, but are incorrect.
Following convention, we call patches that pass a test suite
plausible. We measure the degree of test-overfitting as 1− C

P
,

one minus the ratio of correct C to plausible patches P. In
this experiment, we define correctness as passing the held-
out test suite provided by Codeflaws benchmark.

We first establish how extending the search space with
side effects exacerbates test-overfitting, then show that TRI-
DENT produces a higher proportion of correct patches than
the baseline. For the former, we compare TRIDENT with
ANG, which is only applied to expression without side
effects. For the later, we compare the overfitting rate of two

Authorized licensed use limited to: University College London. Downloaded on November 24,2021 at 15:45:40 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124323, IEEE
Transactions on Software Engineering

PARASARAM et al. TRIDENT: CONTROLLING SIDE EFFECTS IN AUTOMATED PROGRAM REPAIR 14

TRIDENT’s configurations: TP (with enabled patch priori-
tisation), and TN (with disabled patch prioritisation). We
execute all the above configurations on CF110.

Table 8 summarises the results. The top three classes
OILN, OAIS and ORRN contain programs that can be fixed
with a side-effect-free patch and the bottom three classes
SISA, DRWV and DMAA require side effects. TP and TN
generate more patches than ANG for the side-effect-free
classes OILN, OAIS and ORRN but the extra patches fail the
held-out tests. TP and TN both have the test-overfitting ratio
of 82.4%. Meanwhile, the test-overfitting of ANG is 73.3%.
These results indicate that adding patches with side effects
to the search space increases test-overfitting. For classes
with side effects SISA, DRWV and DMAA, TP has the test-
overfitting rate of 41.7%, and TN has the test-overfitting rate
of 66.7%. ANG, in contrast, generates one patch which is
incorrect. The results demonstrate that TP’s new prioriti-
sation heuristic alleviates test-overfitting by decreasing the
rate test-overfitting from 66.7% to 41.7%.

Despite the fact that handling patches with side effects
expands the search space thereby increasing the rate of
test-overfitting, TRIDENT’s specialised patch prioritisa-
tion alleviates this negative effect, reducing overfitting
from 66.7% to 41.7%.

6 RELATED WORK

Our work is relevant to three existing research areas: pro-
gram synthesis, symbolic execution and automated program
repair (APR). It leverages the first two to propose TRIDENT,
the first test-driven program repair approach that synthe-
sizes patches with side effects without relying on the plastic
surgery hypothesis, a database of patterns, or training data,
in the form of assignments and calls to loop-free functions.
Along the way, TRIDENT proposes a state merging strategy
tailored for side effect that alleviates path explosion.

6.1 Program Synthesis
Existing program synthesis techniques such as Synthetic
Separation Logic [29], Jennisys [30] and Natural synthe-
sis [31] can synthesize heap-manipulating programs, in-
volving statements with side effects. These techniques are
designed to efficiently synthesize small programs from a
given specification. In contrast, we designed TRIDENT to
infer the synthesis specification thereby compensating for
the lack of specification in real-world software. Thus, TRI-
DENT is orthogonal to these techniques, and can potentially
synergise with them to improve patch synthesis.

6.2 Symbolic Execution
TRIDENT relies on symbolic execution for (1) inferring spec-
ification for synthesis via state merging, and (2) computing
function summaries.

Although various general-purpose state-merging strate-
gies [32], [33] for symbolic execution have been proposed,
they have two important limitations in the context of assign-
ment synthesis. First, to align symbolic memory in complex
real-world programs, general-purpose state-merging strate-
gies make assumptions about the topology of the states to

merge. For example, KLEE [23] assumes that the merged
states have exactly the same allocated memory objects and
the same set of symbolic variables. These assumptions do
not hold in the context of assignment synthesis, reducing
the effectiveness of such techniques as demonstrated in
Section 5. Second, a generated patch can modify several
memory locations, and the number of such locations has
to be bounded during path exploration to prevent path ex-
plosion. However, it is not clear how general-purpose state-
merging techniques can efficiently express such a bound.

The key difference of general-purpose state-merging
approaches from our techniques is that they operate on
regions of code that impact of which on the state they
seek to merge with a dedicated split and merge operations.
However, path explosion can occur within these regions.
TRIDENT builds state merging for the impact of patches
in its search space into its very representation of symbolic
state, obviating explicit split and merge operations. This
representation incorporates cardinality constraints to bound
the number of memory locations that can be modified by
the synthesised patch.

To compute function summaries, TRIDENT uses symbolic
execution with loop unrolling as in compositional symbolic
execution [15].

6.3 Automated Program Repair

We classify program repair techniques into static and test-
driven, depending on the correctness criteria used. Static
techniques rely on static analysis or formal specification,
while test-driven techniques rely on a test suite. Test-driven
techniques typically scale to large programs and large search
spaces, but are subject to test-overfitting.

TRIDENT is a new test-driven automated program repair
technique; its realisation necessitated a new program repair
algorithm. It tackles an extended search space, making it
more prone to test-overfitting, so it required new patch
prioritisation strategy for its defect class. Finally, its eval-
uation required the compilation of new datasets, tailored to
the generation of side-effected patches. We put TRIDENT’s
contributions into context below.

Test-driven Program Repair Algorithms: Techniques
like Genprog [4], RSRepair [34], AE [35], Astor [36], Cap-
Gen [37], SimFix [38] and PraPR [39] are generate-and-
validate approaches that, unlike TRIDENT, run tests to val-
idate each patch they explore. Genprog [4], RSRepair [34]
and AE [35] use search algorithms to find a patch. We
used Genprog [4] as one of the tools from this class of
program repair algorithms to compare against TRIDENT.
Astor [36] provides a framework for generate and validate
tools to explore the design space of program repair through
extension points. CapGen [37] prioritises patches based on
the similarity of the context, whereas PraPR [39] is a byte-
code level repair algorithm that mutates JVM bytecode to
search for the patch. CapGen [37], PraPR [39], SimFix [38]
and Astor [36] fix bugs in Java; TRIDENT fixes bugs in C.
Hence, it was not feasible to run them on our datasets.
Cure [40] is a representative of recent advances of applying
neural machine translation for patch generation. Trident, in
contrast, is a constraint-based approach, which has inherent
advantages concerning the explainability of its output.

Authorized licensed use limited to: University College London. Downloaded on November 24,2021 at 15:45:40 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124323, IEEE
Transactions on Software Engineering

PARASARAM et al. TRIDENT: CONTROLLING SIDE EFFECTS IN AUTOMATED PROGRAM REPAIR 15

Like TRIDENT, techniques like SemFix [12], Angelix [9],
SE-ESOC [1], SPR [2], Nopol [41] and S3 [42] employ pro-
gram synthesis to generate patches. However, these tech-
niques do not explicitly handle side effects, focusing in-
stead on synthesizing side-effect-free expressions. TRIDENT
addresses this important limitation. SOSRepair [27] can
synthesize patches with side effects, but, to do so, relies on
a database of patterns extracted from the program.

Several existing techniques synthesize memory-
manipulating transformations. Kapus et al. [43] use
symbolic execution to synthesize refactorings for string
manipulating loops, but focus only on memoryless loops
that do not carry information across iterations. TRIDENT’s
techniques might support more complex refactoring
involving non-memoryless loops. Wolverine [3] generates
patches for more complex programs that manipulate
dynamic data structures, but requires user interaction and
was shown to work only for small student programs. Some
techniques leverage deep learning to sort and transform
code and, like all of these approaches, they are data hungry
and rely on a large amount of training data [44], [45].
TRIDENT scales to real-world programs, is fully-automated,
and does not rely on training data.

Test-overfitting in Program Repair: Test-overfitting is
a central challenge of test-driven program repair [46]; it
affects both generate-and-validate [47] and semantic [48]
techniques. Researchers have proposed various approaches
to tackle this problem. The first group of approaches uses
a pre-defined database of transformations to increase the
chance of generating correct patch [5], [10], [49]. The second
group generates additional tests [50], [51]. The third group
of techniques defines a cost function that assigns lower
cost to patches that are more likely to be correct [7], [8],
[26], [42], [52]. TRIDENT complements existing techniques
by proposing a new cost function specialized for the class of
defects that require patches with side effects.

Static Program Repair Algorithms: Two exemplars of
this class are an approach by Nguyen et al. [53] and Foot-
patch [54]. The approach of Nguyen et al. [53] can synthesize
patches with side effects and provide formal correctness
guarantees, but requires formal specification, and was only
demonstrated to repair small programs. TRIDENT scales
to real-world programs, but relies on a test suite, so it is
subject to test-overfitting. Footpatch [54] takes advantage of
separation logic to repair resource leaks, memory leaks, and
null dereferences by copying appropriate code fragments.
TRIDENT is mostly orthogonal to Footpatch: we designed
TRIDENT to handle arbitrary defect classes by synthesizing
new code based on tests; it can, however, potentially benefit
from separation logic to reason about aliasing.

Program Repair Benchmarks: For evaluating TRIDENT,
we constructed new bug datasets, rather than directly us-
ing existing benchmarks, such as ManyBugs [16], Intro-
Class [16], Codeflaws [17], DBGBench [55]. We did not use
ManyBugs, because the majority of its bugs either require
side-effect-free patches or complex patches than involve
many lines in several files. We did not use DBGBench,
because it did not contain enough bugs with side-effect-free
modifications, and some of its bugs were not reproducible
with KLEE. IntroClass contains only very small program.
We reused some defect classes from Codeflaws that involve

the insertion of assignments or functions calls.

7 CONCLUSION

This paper proposes the first test-driven program repair
approach that synthesizes patches with side effects without
relying on the plastic surgery hypothesis, a database of pat-
terns, or training data. TRIDENT relies on a tight integration
of three techniques: (1) multi-path specification inference
that allows to efficiently infer specification for synthesizing
patches with side effects, (2) program synthesis encoding
that allows to express modifications such as assignments
and function calls, and (3) patch prioritization heuristics
that helps to alleviate test-overtiffing due to side effects.
Our evaluation demonstrates that TRIDENT is able to re-
pair real bugs in open-source projects, and the proposed
prioritization strategy indeed helps to increase the chance
of generating correct patches.

REFERENCES

[1] S. Mechtaev, A. Griggio, A. Cimatti, and A. Roychoudhury, “Sym-
bolic execution with existential second-order constraints,” in Pro-
ceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2018, pp. 389–399.

[2] F. Long and M. Rinard, “Staged program repair with condition
synthesis,” in Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering, 2015, pp. 166–178.

[3] S. Verma and S. Roy, “Synergistic debug-repair of heap manipula-
tions,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, 2017, pp. 163–173.

[4] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A
systematic study of automated program repair: Fixing 55 out
of 105 bugs for 8 each,” in 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 2012, pp. 3–13.

[5] J. Kim and S. Kim, “Automatic patch generation with context-
based change application,” Empirical Software Engineering, vol. 24,
no. 6, pp. 4071–4106, 2019.

[6] Z. Chen, S. J. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshy-
vanyk, and M. Monperrus, “Sequencer: Sequence-to-sequence
learning for end-to-end program repair,” IEEE Transactions on
Software Engineering, 2019.

[7] S. Mechtaev, J. Yi, and A. Roychoudhury, “Directfix: Looking for
simple program repairs,” in 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, vol. 1. IEEE, 2015, pp.
448–458.

[8] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and
L. Zhang, “Precise condition synthesis for program repair,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
(ICSE). IEEE, 2017, pp. 416–426.

[9] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multi-
line program patch synthesis via symbolic analysis,” in Proceedings
of the 38th international conference on software engineering, 2016, pp.
691–701.

[10] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 2013, pp. 802–
811.

[11] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro, “The plas-
tic surgery hypothesis,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
2014, pp. 306–317.

[12] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“Semfix: Program repair via semantic analysis,” in 2013 35th
International Conference on Software Engineering (ICSE). IEEE, 2013,
pp. 772–781.

[13] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided
component-based program synthesis,” in 2010 ACM/IEEE 32nd
International Conference on Software Engineering, vol. 1. IEEE, 2010,
pp. 215–224.

Authorized licensed use limited to: University College London. Downloaded on November 24,2021 at 15:45:40 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124323, IEEE
Transactions on Software Engineering

PARASARAM et al. TRIDENT: CONTROLLING SIDE EFFECTS IN AUTOMATED PROGRAM REPAIR 16

[14] R. Alur, R. Bodik, G. Juniwal, M. M. Martin, M. Raghothaman,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa,
Syntax-guided synthesis. IEEE, 2013.

[15] S. Anand, P. Godefroid, and N. Tillmann, “Demand-driven compo-
sitional symbolic execution,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2008, pp. 367–381.

[16] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu,
S. Forrest, and W. Weimer, “The manybugs and introclass bench-
marks for automated repair of c programs,” IEEE Transactions on
Software Engineering, vol. 41, no. 12, pp. 1236–1256, 2015.

[17] S. H. Tan, J. Yi, S. Mechtaev, A. Roychoudhury et al., “Codeflaws:
a programming competition benchmark for evaluating automated
program repair tools,” in 2017 IEEE/ACM 39th International Confer-
ence on Software Engineering Companion (ICSE-C). IEEE, 2017, pp.
180–182.

[18] F. Long and M. Rinard, “An analysis of the search spaces for gen-
erate and validate patch generation systems,” in 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE). IEEE,
2016, pp. 702–713.

[19] D. W. Barron, J. N. Buxton, D. Hartley, E. Nixon, and C. Strachey,
“The main features of cpl,” The Computer Journal, vol. 6, no. 2, pp.
134–143, 1963.

[20] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Hand-
book of Model Checking. Springer, 2018, pp. 305–343.

[21] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accu-
racy of spectrum-based fault localization,” in Testing: Academic
and industrial conference practice and research techniques-MUTATION
(TAICPART-MUTATION 2007). IEEE, 2007, pp. 89–98.

[22] “Clang: Llvm’s default frontend,” https://clang.llvm.org/, ac-
cessed: 2021-03-03.

[23] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: unassisted and
automatic generation of high-coverage tests for complex systems
programs.” in OSDI, vol. 8, 2008, pp. 209–224.

[24] M. Gario and A. Micheli, “Pysmt: a solver-agnostic library for fast
prototyping of smt-based algorithms,” in SMT workshop, vol. 2015,
2015.

[25] “Docker OS virtualisation,” https://www.docker.com/, accessed:
2021-03-03.

[26] F. Long and M. Rinard, “Automatic patch generation by learning
correct code,” in Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 2016,
pp. 298–312.

[27] A. Afzal, M. Motwani, K. Stolee, Y. Brun, and C. Le Goues,
“Sosrepair: Expressive semantic search for real-world program
repair,” IEEE Transactions on Software Engineering, 2019.

[28] M. Monperrus, “A critical review of" automatic patch generation
learned from human-written patches": Essay on the problem state-
ment and the evaluation of automatic software repair,” in Proceed-
ings of the 36th International Conference on Software Engineering, 2014,
pp. 234–242.

[29] N. Polikarpova and I. Sergey, “Structuring the synthesis of heap-
manipulating programs,” Proceedings of the ACM on Programming
Languages, vol. 3, no. POPL, pp. 1–30, 2019.

[30] K. R. M. Leino and A. Milicevic, “Program extrapolation with
jennisys,” in Proceedings of the ACM international conference on
Object oriented programming systems languages and applications, 2012,
pp. 411–430.

[31] X. Qiu and A. Solar-Lezama, “Natural synthesis of provably-
correct data-structure manipulations,” Proceedings of the ACM on
Programming Languages, vol. 1, no. OOPSLA, pp. 1–28, 2017.

[32] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state
merging in symbolic execution,” Acm Sigplan Notices, vol. 47, no. 6,
pp. 193–204, 2012.

[33] K. Sen, G. Necula, L. Gong, and W. Choi, “Multise: Multi-path
symbolic execution using value summaries,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, 2015,
pp. 842–853.

[34] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of random
search on automated program repair,” in Proceedings of the 36th
International Conference on Software Engineering, 2014, pp. 254–265.

[35] W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program equiv-
alence for adaptive program repair: Models and first results,” in
2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2013, pp. 356–366.

[36] M. Martinez and M. Monperrus, “Astor: Exploring the design
space of generate-and-validate program repair beyond genprog,”
Journal of Systems and Software, vol. 151, pp. 65–80, 2019.

[37] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-
aware patch generation for better automated program repair,” in
2018 IEEE/ACM 40th International Conference on Software Engineer-
ing (ICSE). IEEE, 2018, pp. 1–11.

[38] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping
program repair space with existing patches and similar code,” in
Proceedings of the 27th ACM SIGSOFT international symposium on
software testing and analysis, 2018, pp. 298–309.

[39] A. Ghanbari and L. Zhang, “Prapr: Practical program repair via
bytecode mutation,” in 2019 34th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). IEEE, 2019, pp.
1118–1121.

[40] N. Jiang, T. Lutellier, and L. Tan, “Cure: Code-aware neu-
ral machine translation for automatic program repair,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE, 2021, pp. 1161–1173.

[41] J. Xuan, M. Martinez, F. Demarco, M. Clement, S. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic
repair of conditional statement bugs in java programs,” IEEE
Transactions on Software Engineering, vol. 43, no. 1, pp. 34–55, 2016.

[42] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3:
syntax-and semantic-guided repair synthesis via programming
by examples,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, 2017, pp. 593–604.

[43] T. Kapus, O. Ish-Shalom, S. Itzhaky, N. Rinetzky, and C. Cadar,
“Computing summaries of string loops in c for better testing and
refactoring,” in Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2019, pp. 874–
888.

[44] M. White, M. Tufano, M. Martinez, M. Monperrus, and D. Poshy-
vanyk, “Sorting and transforming program repair ingredients
via deep learning code similarities,” in 2019 IEEE 26th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2019, pp. 479–490.

[45] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified
pre-training for program understanding and generation,” arXiv
preprint arXiv:2103.06333, 2021.

[46] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated pro-
gram repair,” Communications of the ACM, vol. 62, no. 12, pp. 56–65,
2019.

[47] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure worse
than the disease? overfitting in automated program repair,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, 2015, pp. 532–543.

[48] X. B. D. Le, F. Thung, D. Lo, and C. Le Goues, “Overfitting in
semantics-based automated program repair,” Empirical Software
Engineering, vol. 23, no. 5, pp. 3007–3033, 2018.

[49] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, J. Klein, M. Mon-
perrus, and Y. Le Traon, “Fixminer: Mining relevant fix patterns
for automated program repair,” Empirical Software Engineering, pp.
1–45, 2020.

[50] J. Yang, A. Zhikhartsev, Y. Liu, and L. Tan, “Better test cases for
better automated program repair,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, 2017, pp. 831–
841.

[51] X. Gao, S. Mechtaev, and A. Roychoudhury, “Crash-avoiding pro-
gram repair,” in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2019, pp. 8–18.

[52] L. D’Antoni, R. Samanta, and R. Singh, “Qlose: Program repair
with quantitative objectives,” in International Conference on Com-
puter Aided Verification. Springer, 2016, pp. 383–401.

[53] T.-T. Nguyen, Q.-T. Ta, I. Sergey, and W.-N. Chin, “Automated re-
pair of heap-manipulating programs using deductive synthesis,”
2021.

[54] R. van Tonder and C. L. Goues, “Static automated program repair
for heap properties,” in Proceedings of the 40th International Confer-
ence on Software Engineering, 2018, pp. 151–162.

[55] M. Böhme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe, and
A. Zeller, “Where is the bug and how is it fixed? an experiment
with practitioners,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, 2017, pp. 117–128.

Authorized licensed use limited to: University College London. Downloaded on November 24,2021 at 15:45:40 UTC from IEEE Xplore. Restrictions apply.

https://clang.llvm.org/
https://www.docker.com/

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124323, IEEE
Transactions on Software Engineering

PARASARAM et al. TRIDENT: CONTROLLING SIDE EFFECTS IN AUTOMATED PROGRAM REPAIR 17

Nikhil Parasaram received his BTech in com-
puter science and engineering from the Inter-
national Institute of Information Technology Hy-
derabad. He is currently working towards his
PhD at the University College London under the
supervision of Prof Sergey Mechtaev and Prof
Earl Barr. His PhD work focuses on automated
synthesis of memory manipulating patches.

Earl T. Barr received the PhD degree from the
University of California, Davis. He is a Professor
at the University College London. Earl works on
testing and program analysis, software engineer-
ing, debugging, big code, and cybersecurity. Earl
has won three ACM distinguished paper awards;
his paper entitled “The Naturalness of Software”
was a research highlight in the May 2016 Com-
munications of the ACM. Earl dodges vans and
taxis on his bike commute in London. Web page:
http://earlbarr.com.

Sergey Mechtaev is a Lecturer at University
College London. Previously, he obtained a PhD
degree from the National University of Singa-
pore. His research interests include automated
program repair, program synthesis and symbolic
execution. He has received ACM SIGSOFT Out-
standing Dissertation Award for his PhD thesis
on semantic program repair. He has been a
programme committee member of ASE, and a
reviewer of TSE, TOSEM and EMSE. Web page:
http://mechtaev.com

Authorized licensed use limited to: University College London. Downloaded on November 24,2021 at 15:45:40 UTC from IEEE Xplore. Restrictions apply.

http://earlbarr.com
http://mechtaev.com

