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After becoming disoriented, an organism must use the local environment to reorient and recover vectors
to important locations. A new theory, adaptive combination, suggests that the information from different
spatial cues is combined with Bayesian efficiency during reorientation. To test this further, we modified
the standard reorientation paradigm to be more amenable to Bayesian cue combination analyses while
still requiring reorientation in an allocentric (i.e., world-based, not egocentric) frame. Twelve adults and
20 children at ages 5 to 7 years old were asked to recall locations in a virtual environment after a disori-
entation. Results were not consistent with adaptive combination. Instead, they are consistent with the
use of the most useful (nearest) single landmark in isolation. We term this adaptive selection.
Experiment 2 suggests that adults also use the adaptive selection method when they are not disoriented
but are still required to use a local allocentric frame. This suggests that the process of recalling a loca-
tion in the allocentric frame is typically guided by the single most useful landmark rather than a
Bayesian combination of landmarks. These results illustrate that there can be important limits to
Bayesian theories of the cognition, particularly for complex tasks such as allocentric recall.

Public Significance Statement
Whether studying the development of children’s spatial cognition, creating artificial intelligence with
human-like capacities, or designing civic spaces, we can benefit from a strong understanding of how
humans process the space around them. Here we tested a prominent theory that brings together statistical
theory and psychological theory (Bayesian models of perception and memory) but found that it could not
satisfactorily explain our data. Our findings suggest that when tracking the spatial relations between
objects from different viewpoints, rather than efficiently combining all the available landmarks, people of-
ten fall back to the much simpler method of tracking the spatial relation to the nearest landmark.
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Reorientation is the process of recovering one’s heading and
position in a given space. This is a process that allows a

disoriented organism to recover the correct vector to important
locations. The ability to do this is a key adaptation for the vast
majority of mobile organisms. The study of how humans and
other animals do this has moved forward our understanding of
both cognition (Lee, 2017; Mou & Zhou, 2013; Nardini et al.,
2009; Twyman et al., 2018) and the mammalian brain (Cressant
et al., 1997; Ito et al., 2015; Keinath et al., 2017; Park et al.,
2011). This has especially become a crucial point in develop-
mental studies of spatial cognition, igniting a debate over mod-
ular cognition (Cheng, 1986; Doeller & Burgess, 2008; Hermer
& Spelke, 1996, 1994) versus adaptive behavior (Cheng et al.,
2013; Learmonth et al., 2002; Ratliff & Newcombe, 2008b;
Twyman et al., 2018). A recent article formalizes and details a
specific proposal concerning adaptive behavior (Xu et al.,
2017). More than just adaptive, this new theory posits that
children’s use of different cues to reorient is fully rational and
Bayesian. The full name of the model is the adaptive cue com-
bination model of human spatial reorientation. For brevity, we
will refer to it as adaptive combination. The present study seeks
to further test this model as a general way of understanding
how humans, especially young children, reorient themselves to
find goal locations.
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Adaptive combination is an important model for the study of
developing spatial cognition. Despite decades of research (Cheng et
al., 2013; Lee, 2017; Miller, 2009), there are still debates about the
way that different cues are used by young children to reorient. For
example, an early theory posited that reorientation only depends on
environmental surfaces or boundaries, with the exception of adults
who have a linguistic mechanism of incorporating additional infor-
mation (Hermer & Spelke, 1994). In other words, if the target was
to the right of a wall that was relatively short and coloured blue, an
adult can synthesize the two pieces of information (right of short þ
right of blue) into one linguistic construct that could guide behav-
ior: “to the right of the short blue wall.” This theory, like many after
it, faced a serious difficulty. It was discovered that young children’s
performance can be improved through the addition of a nonboun-
dary cue as long as the room is sufficiently large (Learmonth et al.,
2002). This showed that the process is not purely dependent on
boundary information, even in young children. The present article
seeks to test adaptive combination independently in the hopes of
leading toward a consensus on how developing spatial cognition
handles multiple reorientation cues.
If adaptive combination is true, it is also a breakthrough finding for

the study of developing Bayes-like reasoning in perception and mem-
ory. Almost all previous studies to look at Bayesian cue combination
in children under 10 years old have returned negative results (Adams,
2016; Burr & Gori, 2011; Chambers et al., 2018; Dekker et al., 2015;
Gori et al., 2012; Jovanovic & Drewing, 2014; Nardini et al., 2010,
2013; Petrini et al., 2014), including one that looked at combination
of cues for spatial recall (Nardini et al., 2008). For example, when
judging a horizontal location with a spatialized audio cue and a brief
visual cue, children under 10 years old fail to integrate the two effi-
ciently; the precision of their judgements is not any better than with
the visual cue alone (Gori et al., 2012). If the process of reorientation
really does happen with full Bayesian efficiency, this means that spa-
tial cognition is an exception to the general rule. Children might begin
reasoning in a Bayes-like way in terms of reorienting first, then extend
this to other cognitive processes throughout childhood. This again
makes it vital to see if this theory can be verified independently: It has
serious potential impact in terms of both spatial cognition and a gen-
eral theory of how Bayesian reasoning develops.
The remaining sections of the introduction (a) detail this model and

define further terminology, (b) specify the gaps in evidence for adapt-
ive combination, (c) explain key choices in the present study’s design,
and (d) detail specific hypotheses and the way they will be tested.

The Adaptive Combination Model and Terminology

First, we need to make it clear what the adaptive combination
model is and how it works. The article grounds the model first in
optimal Bayesian principles but largely leaves aside the issues of
prior distributions (assumed to be uniform for all the data they
model) and the question of explicit decision rules. Rather, they insert
a number of typical assumptions into the broader Bayesian frame-
work until the model is governed by a central law which specifies the
way that multiple cues are used. That law is given in the article in
relation to four specific cues, reflecting the data they had available.
That law can be stated generally as

f1þ2 ResponsejTargetð Þ / f1 ResponsejTargetð Þ
3 f2 ResponsejTargetð Þ; (1)

where the function f1 ResponsejTargetð Þ specifies the probability of
given responses to given targets with only the first cue,
f2 ResponsejTargetð Þ does the same for the trials with only the sec-
ond cue, and f1þ2 ResponsejTargetð Þ governs responses when both
cues are presented at the same time. One can view this as the core
pattern of interest when applying Bayesian cue combination models
to cognition: under typical assumptions, it (a) respects Bayesian
principles, (b) optimally integrates the information given by both
cues, and (c) minimizes uncertainty (Rohde et al., 2016). We dis-
cuss this with the term Bayesian cue combination, but the reader
should also be aware that Bayesian principles can result in addi-
tional and/or different predictions if other assumptions are inserted
—for example, if a nonsymmetric loss function is used. The reader
should also be aware that the same pattern can be motivated
through a maximum likelihood framework (Ernst & Banks, 2002).

To further understand Equation 1, an example might be helpful.
Some more terminology will be needed. In the typical reorientation
paradigm (see Figure 1), children are placed in a rectangular arena
and shown a target hidden in one corner. They are disoriented and
then released to search one of the corners for the target. The correct
corner is conventionally called C (for correct), the rotational equiva-
lent called R (for rotational equivalent), the corner on the same short
wall as the target called N (for near), and the corner on the same
long wall called F (for far). If the geometry of the room is the only
available cue, this is a G condition (for geometry). If there is also
something unique about one of the walls to associate with the target,
then it is an A þ G condition (i.e., Associative þ Geometry).

We can now insert some specific numbers and give example
calculations. With boundary geometry alone, suppose participants
respond at C 40% of the time, R 40%, N 10%, and F 10%. That is
f1 ResponsejTargetð Þ. Suppose that an associative cue alone
would point a child to C 40%, R 10%, N 40%, and F 10%. That is
f2 ResponsejTargetð Þ. Assuming that adaptive combination is cor-
rect, we can now predict how often they will respond at each location
during an A þ G condition. We multiply to obtain P(C) = .4 3 .4 =
.16, P(R) = .04, P(N) = .04, and P(F) = .01. These then must be nor-
malized (divided by their sum) to arrive at the final probabilities.
Those are P(C) = 64%, P(R) = 16%, P(N) = 16%, and P(F) = 4%.
That is f1þ2 ResponsejTargetð Þ.

Equation 1 can lead to a variety of different interesting patterns,
but one will be particularly critical here. In the example, the two
cues presented together led to a higher proportion of correct
answers (64%) than either cue alone (40%). In general, if both f1
and f2 have some concentration (a discrete mode or a continuous
peak) in the same place, then f1þ2 will have an even greater con-
centration around the same place. In the case in which f1 and f2 are
normal distributions, f1þ2 will be a normal distribution with preci-
sion (1/variance) that is additive: it will be equal to the sum of the
precisions of f1 and f2.

The general framework for Bayesian cue combination, crucially
for our purposes here, is completely agnostic about any detail
beyond Equation 1. It has no preference or disregard for any kind
of cue. It does not matter what domain the task is within (e.g., spa-
tial memory, speech perception, weight perception, etc.). It works
the same way if the two cues are very different, such as a boundary
and a local landmark, or if they are very similar, such as two
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landmarks, or even if they are the exact same stimulus played
repeatedly (Jones, 2018). It functions for either continuous
responses or discrete nominal responses. It only matters that f1, f2,
and f1þ2 can be specified.

The Need for Additional Scrutiny

Second, we need to clarify where the gaps in evidence for adapt-
ive combination exist. In the literature on Bayesian perception and
decision making, there is a standard set of three findings that are
used to show that two cues are combined in a Bayesian manner.
This is routine enough that it has been codified into a tutorial with
supporting R packages for the case of normal distributions (Rohde
et al., 2016). The procedure measures how precise participants are
with one cue in isolation, the other cue in isolation, and both cues
together. It then must be shown that (a) precision is better with
both cues versus the first cue in isolation, (b) precision is better
with both cues versus the second cue in isolation, and (c) precision
is not significantly different with both cues versus the Bayesian
optimal prediction (predicated on Equation 1). These findings rule
out the alternative hypothesis that either single cue is being used
in isolation; otherwise, we would not expect better precision when
both are presented. These findings also speak against the alterna-
tive hypothesis that the two cues are being used together in some
non-Bayesian fashion; since Bayesian cue combination is the opti-
mal way to improve precision, no other process could also match
the optimal Bayesian precision.
Although the procedure above is designed for assessing cue com-

bination in the case of normal distributions, it adapts readily to dis-
crete nominal distributions. It should still hold that (a) there is a
difference between the response distribution with one cue versus
both cues, (b) there is a difference between the response distribution
with the other cue versus both cues, and (c) the distribution of
responses with both cues is not significantly different than the pre-
diction given by Equation 1. This set of findings rule out the

possibility that any single cue is being used in isolation. They also
speak against the alternative hypothesis that the two are being used
in some way that does not conform to Bayesian cue combination.

Unfortunately, the article arguing for adaptive combination (Xu
et al., 2017) provides only one of the three pieces of evidence.
Specifically, it reviews evidence that performance with A þ G
conditions differs from performance with G conditions. It does not
show that performance with A þ G conditions differs from per-
formance with A conditions (where only an associative cue is pre-
sented; in practice, a square room with a single uniquely colored
wall). It also does not use data from G conditions and A conditions
to derive predictions for A þ G conditions and compare that to A
þ G data. This leaves open the alternative hypothesis that children
may complete an A þ G condition by only using the associative
cue. Twyman and colleagues (2018) also pointed out the need for
this type of data in their discussion (p. 934).

We tried to fill this gap as best as possible by looking through the
available literature. Unfortunately, this attempt failed to show that per-
formance in A þ G conditions is different than performance in A con-
ditions. We reexamined previous data for an A þ G condition
(Learmonth et al., 2002) and an A condition (Hermer-Vazquez et al.,
2001). Since results are known to depend on age, we used the data
from 5 year olds from both studies. As Adaptive Combination is theor-
ized to ignore associative cues in small rooms, rather than combine
them, we also used the data from the larger room in the Learmonth et
al. (2002) study. Analysis suggests that the two distributions are not
reliably different, v2(3) = 2.08, p = .56. Further, a Bayesian version of
this analysis can test the hypothesis that the response distributions are
the same versus the hypothesis that they are different. This analysis
results in BF01 = 18.44, considered “strong” evidence that they are the
same. We would present additional analyses, but A conditions are rela-
tively rare in the literature, and this was the only comparison we could
find with a sufficient age match, the standard methods described ear-
lier, and a full report of the response distributions.

Figure 1
Examples of Previous Results With Reorientation Tasks

Note. Children were placed in a rectangle arena with four hiding locations, one in each corner.
The target was hidden in the corner marked “correct.” Children were first disoriented and then
allowed to search for the target. On the right, participants can only use the geometry to find the tar-
get. This means that they respond in roughly equal numbers at the correct corner and its rotational
equivalent (i.e., both corners with a long wall to the left and a short wall to the right). On the left,
one of the walls was colored blue, while the others were white. This associative cue made it possi-
ble to disambiguate the correct corner and its rotational equivalent. Children responded more often
at the correct corner. See the online article for the color version of this figure.
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There is also another project that examined cue combination in
reorientation (Wang et al., 2018), but it also leaves further need for
investigation. They used streets (S) and buildings (B) as cues in an
adult sample. On the one hand, there was no significant difference
between dual-cue SB performance and the predictions of their com-
bination model. Further, a BIC analysis favored a combination
model over a single-cue model. On the other hand, there was no sig-
nificant difference between single-cue B performance and dual-cue
SB performance in either experiment. In addition, the BIC delta
was 4.0—a result that is typically considered “positive” but not
“strong” or “decisive” (Kass & Raftery, 1995). Further, since it was
an adult sample, it does not particularly help resolve questions
about development. It is ultimately an interesting but mixed set of
results that leave open the need for further study.
From the point of view of the literature on Bayesian perception

and decision making, this makes it clear that further evidence is
needed for the adaptive combination model. The reanalysis of the
available previous data suggests that Bayesian reasoning is not occur-
ring here. Instead, it suggests that participants in an A þ G condition
are merely using the associative cue to complete the task. This is cer-
tainly an unusual interpretation—to our knowledge, it has not previ-
ously been tested if performance in an A þ G condition might
depend entirely on the use of the associative cue. However, it may
still be possible to improve on this analysis. This will be described in
more detail in the next section, but briefly: The number of trials per
participant is (radically) smaller than most cue combination studies,
it is not ideal to use cues that are not equally useful, and it is not ideal
to use between-subjects data. We therefore designed a new study to
test adaptive combination in a more rigorous fashion.

The Present Study

Third, we now outline key design decisions for the study. To do
this, we need to comment on our focus with this design. We need to
draw a distinction between reorientation, the process of regaining a
sense of place and heading to find goal locations, and the reorienta-
tion paradigm, a common method where participants are placed in
a rectangular room and asked to find a target in one of the corners.
We are interested in reorientation. We are not directly interested in
the reorientation paradigm itself; we are only interested in it to the
extent that it provides information about reorientation. At first, this
may seem to put us at odds with the authors of the adaptive combi-
nation model because they used only data from the reorientation
paradigm. However, this is not the case. A full and careful reading
of their article indicates that they are not aiming only to understand
the particulars of how young children deal with being turned around
in a rectangular room with a blue wall. It makes sense that they
modeled the classic reorientation paradigm because those were the
data that were available in great enough quantities to model in a
meaningful way with their approach. However, the goal of the arti-
cle, like ours, is to examine a general model and principle that could
be a unified explanation for behavior across different environments
and across development. From our point of view, it will be a major
strength if adaptive combination can predict outcomes in a reorien-
tation task that falls outside the reorientation paradigm; if it cannot,
we view this as a limitation that is at least worth considering. Based
on our overall view, we chose to fashion our task toward the best
test of the underlying Bayesian mechanics without regard to the
typical reorientation paradigm.

Any cue combination study must overcome several routine prob-
lems (Rohde et al., 2016), all of which make a standard A þ G
method less than ideal. First, the two cues to be presented should
ideally be matched in their reliability; participants should be about as
precise with either cue. This is the situation in which the potential
benefit of combination is greatest, and so the one in which the Bayes-
ian optimal prediction is as different as possible from the alternative
hypothesis that only one cue is being used. Second, it is also ideal to
use a task for which the noise in perception/memory is approximately
normally distributed around the target. This makes it possible to ana-
lyze precision (1/variance), which generally provides more statistical
power than discrete nominal distributions. It also makes it possible to
use simple, standard ways of predicting the optimal precision (Ernst
& Banks, 2002). Third, it is ideal to use a situation where each partic-
ipant can provide the highest possible number of trials, allowing for a
within-subjects design. This makes it possible to calculate individual
predictions for Bayesian optimal precision and compare these to indi-
vidual measurements of precision with both cues. None of these three
conditions are met in a standard Aþ G condition: the associative cue
is more reliable than the geometric cue (Hermer-Vazquez et al.,
2001; Lee et al., 2012; Nardini et al., 2009), the errors are discretely
distributed, and young participants will not generally tolerate much
more than four trials in total.

Instead, we adapt a method from previous studies (Negen, Hey-
wood-Everett, et al., 2018; Negen, Roome, et al., 2018). Virtual reality
is used to make the trials faster and to make the task more engaging.
Participants are shown a target being hidden among some landmarks.
They then have their view blocked while their perspective changes.
From this new perspective, the participant attempts to point where the
target was hidden. On some trials, there is a pair of landmarks marking
the North South (N/S) axis of the space, called NS trials. On other tri-
als, there is a pair of landmarks marking the East West (E/W) axis,
called EW trials. In the last kind of trial, both pairs of landmarks are
available. We refer to this as an NSEW trial. (Throughout the article,
we use NS or EW to mean a trial type and N/S or E/W to mean an
axis of the space.) This allows us to measure performance with two
different cues (landmark pairs) in isolation and with both together. Par-
ticipants included both adults and children (5 to 7 years) because
adaptive combination is supposed to apply across the life span.

This design overcomes the usual problems described above.
Because both cues are landmark pairs, they are matched in reliabil-
ity. Responses on this kind of task are approximately normally dis-
tributed around the targets. Because more trials are tolerated, a
within-subjects design is possible. This makes it a good way to test
if reorientation cues are used together in a Bayesian manner. In that
sense, the present study is a test of a general version of adaptive
combination rather than a test of its ability to explain the specific
reorientation paradigm that is so prevalent in the literature.

Hypotheses

Fourth (and finally), we detail the specific hypotheses and what
predictions they make. For each of the three hypotheses, we first
give a conceptual description in the top paragraph, followed by a
bottom paragraph that lays out and justifies the specific empirical
predictions about three outcome measures. Figure 2 is a reference
guide for the different trial types and the empirical predictions of
each hypothesis. The Appendix contains simulations that verify
these are the correct predictions.
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Main Hypothesis: Adaptive Combination

As governed by Equation 1, the participant combines the informa-
tion from the two landmark pairs in the optimal Bayesian fashion.
This is a new extension (Xu et al., 2017) of the adaptive behavior
proposal (Cheng et al., 2013), suggesting that participants are not

only taking account of which cues are available and which one is
best, but also combining different cues while weighting them in line
with Bayesian principles. This would be in line with how adults per-
form in many simple perceptual tasks (for review, see Pouget et al.,
2013). If this hypothesis fits children’s performance, that would
break with the general pattern of children under 10 failing to show

Figure 2
Trial Types and Key Predictions

Note. In terms of the methods, every trial is a NS trial (with North [N] and South [S] landmarks visible), an EW
trial (East [E] and West [W] visible), or a NSEW trial (all four visible). However, for the analysis to differentiate
between hypotheses, it is useful to regroup the trials. On the top half of this figure, the blue squares indicate which
trials are included in each of the three regrouped categories. There are 25 possible targets in a 5 3 5 grid. The black
dots indicate which landmarks are visible during those trials. NSEW includes all trials where all four landmarks
were visible. NS or EW includes all trials where only the North and South landmarks were visible, plus the trials
where only the East and West landmarks were visible. Near trials are a subset of NS or EW trials where the partici-
pant has the nearest possible landmark (or at least one of them if several are equidistant). The bottom tabular display
gives predictions and shows that these regroupings allow us to test different predictions from the different hypothe-
ses. See the online article for the color version of this figure.
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Bayesian reasoning (Burr & Gori, 2011) and warrant the exploration
of a new theory of how Bayesian reasoning develops.
Figure 2 defines which trials are considered NSEW trials, NS or

EW trials, and near trials. The adaptive combination hypothesis pre-
dicts that precision in NSEW trials will be equal to the optimal Bayes-
ian precision. In other words, the optimal Bayesian process should
produce the optimal Bayesian precision. There is a simple and well-
known formula used to predict the optimal Bayesian precision (Ernst
& Banks, 2002). This hypothesis also predicts that NSEW accuracy
will be better than NS or EW accuracy. This is predicted because the
Bayesian process should always benefit from additional landmarks—
NSEW trials have four landmarks, but NS or EW trials have only
two. NSEW accuracy should also be better than Near accuracy for the
same reason (near trials also have only two landmarks).

Alternative Hypothesis: Adaptive Selection

If participants do not use multiple cues with full Bayesian effi-
ciency, they may still adopt a sensible strategy that constrains error
while only using one landmark. Under adaptive selection, partici-
pants select the landmark nearest to the target, encode the target loca-
tion against it, and ignore the other landmarks. In doing so, they
improve average performance over just using a random landmark—
but not as consistently as a Bayesian process would. This is more in
line with older forms of the adaptive proposal (Cheng et al., 2013). It
posits that children take account of which cue will be most useful
and use this to guide which cue they use, but does not entail any
combination of landmarks, that is, Bayesian reasoning. This would
be in line with previous results where children are able to select the
best single cues. For example, they tend to prefer visual cues for
judging spatial relationships and auditory cues for judging temporal
relationships (Gori et al., 2012). However, it would not allow for any
new conclusions regarding Bayesian reasoning in development.
This hypothesis predicts that precision in NSEW trials will be

worse than the optimal Bayesian prediction. In other words, a nonop-
timal non-Bayesian process should not lead to the optimal Bayesian
precision. This hypothesis also predicts that accuracy in NSEW trials
will be better than accuracy in NS or EW trials overall, because the
NSEW trials will sometimes have a nearer (better) single landmark to
select and use. For example, look at the top middle target in Figure 2.
The nearest landmark, at the North, is visible on every NSEW trial.
However, it is not present during half of the NS or EW trials. This
should drive higher NSEW accuracy than NS or EW accuracy. How-
ever, near accuracy should be equivalent to NSEW accuracy because
they both provide the nearest (best) possible landmark to select and
use. For example, looking again at the top middle target, the North
landmark is visible for all NSEW trials and all near trials.

Null Hypothesis: Random Cue Selection

On a trial with both landmark pairs, the participant chooses one
landmark at random and encodes the target against it. The other land-
marks are ignored. In essence, under this hypothesis, an NS or EW
trial is an NSEW trial where we have done some of the random choos-
ing for the participant. This would be similar to how children per-
formed in a previous spatial task with two cues available, alternating
in an unpredictable way between self-motion information and land-
mark information (Nardini et al., 2008). However, again, it would not
allow for any new conclusions regarding early Bayesian reasoning.

This predicts that precision in NSEW trials will be worse than the
optimal prediction. This is again because the nonoptimal non-Bayes-
ian process should not produce the optimal Bayesian precision. It
also predicts that accuracy in NSEW trials will not be different from
accuracy in NS or EW trials overall. For example, we can look at the
top middle target in Figure 2 again. On a NSEW trial, we only expect
them to use the North (best) landmark on one out of four trials. We
would expect the same thing for NS or EW trials (two trials would
have the North and South available, with the North selected on one
trial). This hypothesis further predicts near accuracy will be better
than NSEW accuracy. For near trials, we would expect them to use
the North landmark two times out of four. In other words, in a Near
trial, the lack of poor encoding choices should actually help partici-
pants if they are choosing encoding references randomly.

Experiment 1

Method

Ethics approval was granted by the Durham University Psychol-
ogy Ethics Committee (Reference: 09/15 Development of Spatial
Cognition).

Participants

There was total of 36 participants tested. Of these, 12 were adults
(seven women). They ranged from 18 to 23 years old (M = 20.9 years,
SD = 1.25 years). The remaining 24 were children. Four did not com-
plete the task, one because the headset was too large and three due to
mood. Of the remaining 20 (four girls), they ranged in age from 5
years and 0 months to 7 years and 5 months, with a mean of 6.1 years
and a standard deviation of .6 years. All participants were recruited in
the Northeast U.K. area. To the knowledge of the researchers, no chil-
dren had been diagnosed with any perceptual or developmental disor-
der that might have affected task performance. The advertisements
asked only for participants with normal vision or vision that could be
corrected to normal with contact lenses. Adult participants (Psychol-
ogy undergraduates) earned credits in a scheme where undergraduates
participate in each other’s research projects. Children were given a
small toy of their choosing. Written informed consent was obtained,
either from the adults themselves or the parents of the children. Verbal
assent was also obtained from the children themselves. Given the
three specific hypotheses and the large effect sizes expected between
them, we were comfortable with the power given by 12 adults or 20
children: 80% power at an effect size of .76 or .58.

Apparatus

The study used Vizard 5 (Vizard, 2018) and the Oculus Rift head-
set (Consumer Version, Oculus, Menolo Park, CA). It also used an
Xbox One controller (Microsoft, Redmond, WA). The virtual world
(see Figure 3) contained three major features situated around a 5-m3
5-m virtual space. First, there was a set of train tracks in a circle
around the central space with a small cart. The cart could move
around the tracks and had opaque shutters that could come up and
down. The participant’s perspective was always from within the cart.
Second, there was a set of four landmarks which could fade in and
out of view. They were each unique and distinctive: black spheres,
gray pyramids, red blocks, and blue cones. With the center of the
space at (0, 0), these were placed at the four cardinal points: (0, 3) (0,
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–3) (3, 0), and (–3, 0) in meters. Third, there were the diggers. These
were the characters that played the game with participants. To make
them more engaging to the children, they were given silly names and
apparel. One digger, who had a moustache and wore a pipe hat, was
named Digger T. Diggington, III. The other digger, who wore a set of
glasses with jewels and a large feather attached to a band around her
head, was named Martha Diggington, Esquire. The 3D models for the
Diggingtons had joints in the digging arm to their front so that they
could be animated as digging a place for the target and then digging it
back up. Fourth, there were the jewels. These served as targets to find.
They were translucent blue (80% opacity) and fashioned after a round
brilliant cut. There were no other landmarks or features in the environ-
ment that could be used to reorient (e.g., the skybox was uniform
blue). The ground had a repeating sand texture at 20% opacity.

Procedure

The game began by allowing the participant to select the charac-
ter they wanted to play with. The other character faded out of
view. The first warmup trial began.
Each trial involved a series of four steps (see Figure 3). First,

the target was shown. The digger went to the target location. They
stayed there for 3.5 s while an animation played of the target

(jewel) being buried. The last .5 s involved the jewel going 3 m
into the air and moving straight down into the ground to make it as
clear as possible exactly where it was.

Second, there was the disorientation. The opaque shutters on the
cart moved up to block the participant’s vie, and 3 s elapsed while a
sound effect of a train moving played. The viewpoint changed. The
shutters then lowered. This took a total of 4 s. Participants were told
that the cart moves around the track to a new location. This disorien-
tation procedure has the key effect of placing participants at a new,
unpredictable viewpoint, although without physically turning them
as has been common in some other studies.1

Figure 3
Methods for Experiment 1

Note. (A) A first-person screenshot of the view within the experiment. Please be aware that the lenses of the ocu-
lus rift slightly distort the internal screen image, so the image given to it is distorted in the opposite way. For exam-
ple, in the headset, the red and blue landmark clearly face each other directly; in the screenshot, they appear slightly
offset. (B) First, the target (blue hexagon) was shown to the participant while they were in the cart (dashed box).
Then the cart “closed,” blocking their view, and the participant was moved þ90, –90, or 180 degrees around the
track (black circles). Then the view was opened, and the participant moved a gray cone to the point where they
believed the target to be. Finally, feedback was given as to the correct placement. This could be done with the
North and South landmark (red and blue), the East and West landmark (gray and black), or all four. See the online
article for the color version of this figure.

1 In the original studies (Cheng, 1986), the method was to gently remove
the animal, move the experimental apparatus to another part of the room,
then gently replace the animal with a new viewpoint and direction, all in
the dark. There was no spinning or attempt to induce a vestibular/
proprioceptive signal related to the disorientation. In subsequent studies
with humans (particularly, children), practicalities including time limits
made it necessary to induce viewpoint change via blindfolding/spinning.
This has some unfortunate side effects, including the possibility of
disturbing the young participants and making them feel dizzy. We consider
virtual viewpoint changes to be a welcome return to avoiding these
unwanted issues, if participants are clearly made aware in other ways (as
here) that a viewpoint change has occurred.
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Third, there was the response. The participant used the joystick
on the controller to move a large arrow with its tip on the ground
within the 5-m 3 5-m central space. There was a gray circle on
the tip of the arrow with a radius of 75 cm. When satisfied with
the location, the participant pressed a button on the controller to
enter their response. They were allowed as much time as they
wanted, but younger participants were encouraged to take their
best guess if they said that they did not know the right place.
Fourth, there was feedback. The digger moved over to the

response location and played a 2-s digging animation. If the
response was within 75 cm of the target, the jewel appeared out of
the ground, a small ding sound played, and the digger jumped up
and down in a celebratory animation. If not, no jewel appeared, no
sound played, and the digger turned toward the participant to play a
“deflated” animation. Over the course of 1 s, their body widened
along the ground plane by 20% while their height shrunk 20%. It
then returned to normal shape over the next 1 s. During this, a small
blue circle flashed on the ground at the correct target location. When
a button on the controller was pressed again, the next trial began.
The first five trials were considered warmup trials. These data

are not analyzed in any part of the results. During this time, the
experimenters gave the children hints and explanations about the
game. For remaining trials, participants were not given any extra
information about the target location.

Stimuli and Trial Parameters

Target locations were on a 5 3 5 grid with 1 m spacing. For
example, there was a corner target at (2, 2), a center target at (0,
0), an off-center target at (0, –1), and a target in front of the West
landmark at (–2, 0). For the five warmup trials, the targets were
always (0, 0) (0, 2) (2, 0) (–2, 0), and (0, –2). After that, for adults,
all 25 possible target locations were used. For children, to make
the game shorter, only nine target locations were used: (0, 2) (–1,
1) (2, 1) (–1, 0) (0, 0) (1, 0) (–2, –1) (1, –1) and (0, –2). These
were selected to represent a range of different distances from the
different landmarks and the center. Each target was tested once
with the East and West landmarks (EW trial), once with the North
and South landmarks (NS trial), and once with all four (NSEW
trial). The order of trials was random. This means, in total, that
adults produced 75 analyzed trials each and children produced 27.
The cart could travel either þ90, –90, or 180 degrees around the

track. This was done because the corners provided a good view of
the target space where all four landmarks were visible but not
obstructing the 5-m 3 5-m response area. The amount of travel
was chosen randomly on each trial. Each trial began wherever the
last one ended.

Analysis Plan

To analyze these data, we planned to have four tests. First, just
to confirm that the task was understood by participants, we
checked that target locations and response locations were signifi-
cantly correlated along both the x-axis and the y-axis. After this,
responses were excluded as outliers if they were more than 2.5
standard deviations in error away from the target.
To make the next three tests clear, we need to comment on ac-

curacy, mean error, precision, and variable error. Some of the
hypotheses are stated in terms of accuracy. To be more specific,
we intend this as the mean error: the average distance between the

target location and the response location, calculated along the two-
dimensional (2D) plane using the Pythagorean theorem. Lower
mean error indicates better accuracy. The other hypotheses are
stated in terms of precision. To look at precision, we analyze vari-
able error: the standard deviation of the response locations minus
the target locations (retaining the sign). As the variable error
(standard deviation) of responses increases, precision decreases.
Precision is conventionally defined as variable error raised to the
power of negative two. Using variable error in the analyses, rather
than precision, is standard practice in the cue combination litera-
ture (Rohde et al., 2016). This is because variable error tends to
better approximate a normal distribution and tends to have a
(much) less serious problem with sensitivity to outliers. In line
with this, we analyzed variable error. Lower variable error indi-
cates better precision. Conveniently, this means that a shorter bar
denotes better performance in all of the bar graphs that will be
shown. Since responses were along a 2D ground plane, there is a
separate variable error along each axis of the space. We used vari-
able error to test specific predictions about reaching the optimal
Bayesian precision; otherwise, we used accuracy as a measure of
performance.

For the second test, we looked at the Bayesian optimal variable
error in NSEW trials, where all four landmarks were visible, versus
observed variable error in NSEW trials. Adaptive combination pre-
dicts that these will be equal. In other words, an optimal Bayesian
process should produce the optimal Bayesian variable error. Adapt-
ive Selection and Random Selection suggest that observed variable
error with both cues should be worse than the optimal prediction. In
other words, a nonoptimal non-Bayesian process should fail to pro-
duce the optimal Bayesian variable error. For each participant,
along each axis, for each trial type (NS, EW, and NSEW), we cal-
culated the variable error. For each participant, the optimal variable
error is calculated with the equation (Ernst & Banks, 2002):

ropt ¼ r�2
EW þ r�2

NS

� ��1
2: (2)

This comparison, as well as the next two, are tested with paired
t tests. This second test conforms entirely with the standard
method of testing for optimal Bayesian cue combination (Rohde et
al., 2016). Because the hypotheses for this test are directional, a
one-tailed test was used.

Third, we tested the accuracy in NSEW trials versus the accu-
racy in NS or EW trials, where only two landmarks were visible.
Random Selection predicts that accuracy should be the same in
NSEW trials versus NS or EW trials—under Random Selection, a
NS or EW trial is just a NSEW trial where we have done some of
the random selection for the participant. Adaptive selection and
adaptive combination predict that NSEW accuracy should be bet-
ter than NS or EW accuracy, using the additional information in a
NSEW trial to improve accuracy through either selecting the best
single landmark (selection) or via Bayesian cue combination
(combination).

Fourth, we tested NSEW accuracy against near accuracy. A trial
is considered a near trial if it is a NS trial or EW trial where a
nearby single landmark is visible—at least as near as the nearest
one in a NSEW trial with the same target (see Figure 2). This anal-
ysis proceeds on the assumption that accuracy at localizing a target
location using a landmark decreases as the target location gets
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further from the landmark (e.g., Negen, Roome, et al., 2018). Ran-
dom selection predicts that NSEW accuracy should be worse than
near accuracy, since the participant will sometimes randomly
select one of the landmarks from the further (worse) pair to use on
a NSEW trial. Adaptive selection predicts that NSEW and near ac-
curacy should be equal because participants complete a NSEW
trial by only using the nearest landmark anyway. Adaptive combi-
nation predicts that NSEW accuracy should be better than near ac-
curacy because the Bayesian framework allows information from
the further (worse) landmarks to be incorporated in a way that it
still improves the responses.
Bayes factors (BFs) for t tests and correlations were calculated

using an online tool (Rouder et al., 2009) and BFs for analyses of
variance (ANOVAs) were calculated with Jamovi 1.8.1 (Jamovi,
2021). The notation BF10 indicates support for the alternative hy-
pothesis and the notation BF01 indicates support for the null
hypothesis.

Results

Results strongly favor adaptive selection for both adults and chil-
dren. See online supplemental materials for raw data. For adults,
the responses were correlated with the targets along the x-axis,
r(898) = .83, p , .001, BF10 = 3.52 3 10225, and the y-axis, r(898)
= .80, p , .001, BF10 = 1.37 3 10197 (see Figure 4). Responses
were excluded if they were more than 2.5 standard deviations away
from the target (2.1m; 4.3% or 77 observations). Variable error was
worse (higher) than the Bayesian optimal variable error along both
the E/W axis, t(11) = –1.97, p = .038, d = –.57, BF10 = 1.72, and
the N/S axis, t(11) = –2.76, p = .009, d = –.80, BF10 = 5.04 (see Fig-
ure 5). Accuracy was better in NSEW trials versus the NS or EW
trials, t(11) = –3.02, p = .012, d = –.87, BF10 = 7.23 (see Figure 6).
Accuracy was not better in the NSEW trials versus the near trials,
t(11) = .21, p = .839, d = .06, BF01 = 2.59.
If adaptive combination were correct, we would not expect to

see a difference between the optimal variable error and the
observed variable error with both cues. We would also expect to
see that NSEW accuracy was better than near accuracy. If random
selection were correct, we would not expect to see a difference
between NSEW accuracy versus NS or EW accuracy. We would
also expect to see that NSEW accuracy was worse than near accu-
racy. In other words, both adaptive combination and random selec-
tion were positively ruled out by statistically significant findings.
In contrast, adaptive selection correctly predicted that the variable
error with both cues would be worse than optimal, that NSEW ac-
curacy would be better than NS or EW accuracy, and that there
would not be a difference between NSEW accuracy and near
accuracy.
For children, the pattern was the same (but with worse variable

error and accuracy). The responses were correlated with the targets
along the x-axis, r(537) = .28, p , .001, BF10 = 2.00 3 108, and
the y-axis, r(537) = .31, p , .001, BF10 = 3.30 3 1010 (see Figure
4). Responses were excluded if they were more than 2.5 standard
deviations away from the target (3.75 m; 2.9% or 31 observations).
Variable error was worse (higher) than the Bayesian optimal vari-
able error along both the E/W axis, t(19) = –3.13, p = .003, d =
–.70, BF10 = 12.20, and the N/S axis, t(19) = –3.87, p = .001, d =
–.87, BF10 = 50.47 (see Figure 5). Accuracy was better in NSEW
trials versus the NS or EW trials, t(19) = –3.30, p = .004, d = –.74,

BF10 = 11.84 (see Figure 6). Accuracy was not better in the
NSEW trials versus the near trials, t(19) = .25, p = .803, d = .06,
BF01 = 3.22. By the same logic as that used for the adults, this
favors adaptive selection.

Interim Discussion

The results of Experiment 1 point toward adaptive selection for
both adults and children. Adaptive selection is a non-Bayesian
process of selecting the best single cue and using it in isolation.
For children under 10 years, this is in line with previous research
regarding the use of multiple cues (Adams, 2016; Burr & Gori,
2011; Chambers et al., 2018; Dekker et al., 2015; Gori et al.,
2012; Jovanovic & Drewing, 2014; Nardini et al., 2008, 2010,
2013; Petrini et al., 2014). Reanalysis of previous data agrees as
well. This means that, in regard to the children, we now have a
consistent and clear pattern of results. They likely do not use a
Bayesian process in the classic geometric reorientation paradigm
(see the reanalysis of A vs. A þ G conditions). They do not use a
Bayesian process in the present paradigm. They do not use a
Bayesian process when given landmark and self-motion cues (Nar-
dini et al., 2008). Children under 10 generally do not use multiple
cues in a Bayesian manner (Burr & Gori, 2011; though see Negen
et al., 2019).

For adults, when considering both the present result and the pre-
vious literature, the overall pattern of results is somewhat dis-
jointed and requires further examination. Adults can frequently
use a Bayesian process in perception and memory (Pouget et al.,
2013). It is not clear why adults would not have used a Bayesian
process here. The next experiment is designed to see why this was
occurring.

To isolate the variable preventing cue combination, we can
closely compare experiment 1 and a previous study that did find
cue combination (Jetzschke et al., 2017). Both studies used adults,
a virtual reality method, and multiple landmarks as the different
cues. However, there are two differences. The previous study did
not use an explicit disorientation procedure. Participants were led
from a study location to a release location in a circuitous way, but
with their eyes open and the landmarks always visible. This makes
it difficult to trace the exact route back to the study location but
never induces a sense of disorientation. This might be important
because disorientation could induce specific neural processes that
attend to specific spatial cues more than others (Cheng, 1986;
Knierim et al., 1995, 2017). The previous study also used a hom-
ing task, asking participants to return to the homing location,
rather than a recall task, asking participants to select where a target
location was presented. This is potentially important because hom-
ing relative to landmarks can be completed in a completely ego-
centric fashion, just remembering a “snapshot” of what the
landmarks looked like from the studied home viewpoint (Stürzl et
al., 2008). The task here requires a completely allocentric strategy.
Experiment 2 is therefore as similar as possible to Experiment 1,
except it also removes the disorientation aspect; it disrupts egocen-
tric vectors to the targets in a way that does not disorient the par-
ticipant. If cue combination is observed, then the disorientation is
likely preventing cue combination. If not, then the difference is
likely due to the task itself (homing vs. recall) and its implications
in terms of egocentric versus allocentric reasoning.
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Figure 4
Adult (A) and Child (B) Data From Experiment 1

Note. Red dots are responses on NS trials, where the North (N) and South (S) landmark
are visible. Blue dots are East West (EW) trials. Purple dots are NSEW trials. The black
square is the target. Black crosses are excluded trials. See the online article for the color
version of this figure.
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Experiment 2

Experiment 2 is an experiment done solely with adults, as simi-
lar as possible to Experiment 1 but without disorientation. This
was done to test the hypothesis that adults will combine cues in
allocentric spatial tasks without disorientation, but not allocentric
spatial tasks with disorientation.

Method

The method was as similar as possible to Experiment 1, except
without disorientation (see Figure 7). In short, we spun the target
and landmarks instead of the participant. To make this possible,
the virtual environment was altered. The target area and the land-
marks were raised onto a circular pedestal. The pedestal had iden-
tical markers placed around its edge. The ground near the pedestal
also had identical markers. There was also a gray half-sphere that
could appear over the top of the pedestal, blocking all vision of the
target area and the landmarks. The participant’s viewpoint was set
back another 2 m so that they could see the spinning platform and
the stationary ground around it, making it clear that the platform
specifically was spinning (and not the participant moving around
it). After being shown the target, the participant was not moved or
turned in any way. Instead, the gray half-sphere covered the pedes-
tal. The pedestal spun rapidly and erratically for three seconds,
making it impossible to track the target egocentrically. The gray
half-sphere was removed. The participant then attempted to point

to the target location. This requires the participants to use the land-
marks, which is the same as Experiment 1. One might think of this
as a local or intrinsic allocentric frame. However, it induces no
sense of disorientation. Beyond this, the experiment was the same
as Experiment 1.

Results

Results again favor adaptive selection. The responses were cor-
related with the targets along the x-axis, r(898) = .91, p , .001,
BF10 = 1.1 3 10341, and the y-axis, r(898) = .90, p , .001, BF10 =
3.413 10321 (see Figure 8). Responses were excluded if they were
more than 2.5 standard deviations away from the target (1.5 m;
2.6% or 46 observations). Variable error was worse than the
Bayesian optimal variable error along both the E/W axis, t(11) =
–2.15, p = .028, d = –.62, BF10 = 2.18, and the N/S axis, t(11) =
–1.93, p = .040, d = –.56, BF10 = 1.64 (see Figure 9). Accuracy
was better in NSEW trials versus the NS or EW trials, t(11) =
–7.15, p , .001, d = –2.06, BF10 = 577.52 (see Figure 10). Accu-
racy was not better in the NSEW trials versus the Near trials, t(11) =
.30, p = .772, d = .09, BF01 = 2.54. All these patterns are the same
as Experiment 1.

While the results are the same as the adults in Experiment 1 in
terms of favoring adaptive selection, the lack of disorientation
did lead to better overall performance. In a 2 (disorientation vs.
no disorientation) 3 2 (NSEW vs NS or EW) ANOVA, using
mean error as the dependent variable, there was a significant

Figure 5
Average Variable Error Broken Down by Trial Type (x-Axis), Participant Group
(Top Versus Bottom Panels), and Axis of the Space (Left Versus Right Panels)

Note. Error bars are 95% confidence intervals for the mean. Asterisks mark significant paired t
tests against NSEW. The red marking is the optimal prediction. Along both axes, participants
had significantly higher variable error than the optimal prediction when shown all landmarks.
This speaks against adaptive combination but is consistent with either adaptive selection or ran-
dom selection. NSEW = North South East West. * p , .05. ** p , .01. *** p , .001. See the
online article for the color version of this figure.

ADAPTIVE SELECTION 1419



effect of disorientation, F(1, 22) = 4.47, p = .046, h2 = .124,
BF10 = 1.83. Similarly, in a 2 (disorientation vs. no disorienta-
tion) 3 2 (NS axis vs. EW axis) 3 3 (NS, EW, or NSEW land-
marks visible) ANOVA, using variable error as the dependent
variable, there was a main effect of disorientation, F(1, 22) =
7.77, p = .011, h2 = .171, BF10 = 2.29, with worse (higher) vari-
able error after disorientation.
The pattern of results above will likely raise post hoc questions

about the possibility that participants were using multiple cues in a
suboptimal way. In all three samples across both experiments,
there were multiple times when the NSEW variable error was sig-
nificantly lower than the NS or EW variable error. In Experiment
2, the variable error along the E/W axis was significantly lower in
NSEW trials than NS trials and also significantly lower than EW
trials. In many related studies, this would be taken as evidence for

suboptimal cue combination. We examined the data for evidence
of suboptimal cue combination and ultimately concluded that there
is not sufficient evidence to warrant this interpretation.

To examine this properly, we have to look carefully at the pre-
dictions made by adaptive selection. This hypothesis, which does
not involve using two cues on the same trial, can still account for a
lower variable error in NSEW trials than NS or EW trials. This is
because some NS or EW trials have a larger distance from target
to landmark than any of the NSEW trials. If these long distances
to the landmark increase variable error, then a person who uses the
nearest single landmark for encoding would still have a higher
variable error in NS or EW trials than NSEW trials. Instead, to
show that variable error decreases with additional landmarks in a
way that cannot be explained by adaptive selection, we must look
at near trials. Adaptive selection predicts that there will not be a

Figure 7
Methods for Experiment 2

Note. Participants were shown the target. The target and landmarks were covered and then spun rapidly and erratically. The cover was removed, and
the participant would then indicate the target from memory. See the online article for the color version of this figure.

Figure 6
Accuracy and NSEW Trials

Note. NSEW trials are broken down by group (top vs. bottom panels), trial type (x-axis), and
comparison trials (left versus right panels). Results favor adaptive selection, which predicts a
difference versus NS or EW trials but not versus near trials. NSEW = North South East West.
* p , .05. ** p , .01. See the online article for the color version of this figure.
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difference in variable error between NSEW trials and near trials.
Participants in both would just encode against the nearest single
landmark. Suboptimal cue combination predicts that variable error
will be lower in NSEW trials than Near trials. Participants would
integrate the additional information for higher precision.
To examine this, we calculated the variable error in near trials and

NSEW trials separately for each participant. These were entered into
a 3 (group: children, adults with disorientation, adults without disori-
entation) 3 2 (trial type: NSEW or near) 3 2 (axis: N/S or E/W)
mixed ANOVA (see Figure 11). The main effect of trial type was not
significant, F(1, 41) = .69, p = .41, h2 = .001, BF01 = 13.64, meaning
that variable error was not significantly higher in near trials than
NSEW trials. No other within-subjects effects or interactions were
significant. As expected, there was a main effect of group, with chil-
dren having the highest variable error and the adults without disorien-
tation having the lowest, F(2, 41) = 80.8, p , .001, h2 = .69, BF10 =
63 1011. A Friedman test was also conducted due to potential issues
with unequal variance, entering NSEW N/S, NSEW E/W, near E/W,

and near N/S variable errors. This did not find any effect, v2(3) =
4.34, p = .23. All of this fails to support suboptimal cue combination
over Adaptive Selection; if anything, the BF result (BF01 = 13.64)
points toward the lack of suboptimal cue combination.

This might also bring up some questions about our optimality
predictions, so please allow us to present some short theoretical
results to clarify that the optimal predictions are not biased toward
Adaptive Selection. The typical formulation requires variable error
to be constant for all targets (Rohde et al., 2016), which seems to
be violated in the present study. This makes it possible to achieve a
dual-cue variable error that is below (better than) the optimal pre-
diction calculated here. This is because the optimal prediction uses
a particular kind of average over targets (root mean squared), but
some targets will have variable error below the average variable
error, which creates a kind of lever for deeper noise reductions.
Specific numbers will help as an example. Suppose Cue 1 has a var-
iance of 1 at Location A and 2 at Location B. Suppose Cue 2 is the
opposite, having a variance of 2 at Location A and 1 at Location B.

Figure 8
Adult Data From Experiment 2 (Without Disorientation)

Note. Red dots are responses on NS trials, where the North (N) and South (S) landmark are visible. Blue dots
are East West (EW) trials. Purple dots are NSEW trials. The black square is the target. Black crosses are
excluded responses. See the online article for the color version of this figure.
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The overall variance of each cue will be measured on average at 1.5
(i.e., [1 þ 2]/2 = 1.5). The optimal prediction will be three fourths
(i.e., [1.5�1 þ 1.5�1]�1 = 3/4). The true optimal at each location
will be two thirds (i.e., [1�1þ2�1]�1 = 2/3). As two thirds is less
than three fourths, a truly optimal process could do better than the
estimated optimal and a suboptimal process could meet the esti-
mated optimal. This would bias the results toward optimal cue com-
bination. Although differences in variable error due to distance to
the nearest target could result in some small issues with the accu-
racy of our optimality predictions, these inaccuracies are expected
only to go against our theoretical conclusion here.

Interim Discussion

Experiment 2 was done to see if the difference in results between
adults in Experiment 1 and a previous study (Jetzschke et al., 2017)
was due to the use of disorientation in Experiment 1. Because results
were like Experiment 1 (i.e., not showing cue combination), but
Experiment 2 did not involve disorientation, this hypothesis seems
unlikely. Instead, this isolates a more fundamental aspect of the

tasks: Here, participants had to use landmarks in a local allocentric
frame to recall locations, whereas the previous study asked partici-
pants to return “home” in a way that allows egocentric snapshots to
be useful. Other than this, Experiment 2 and the previous study both
tested adults, used virtual methods, did not disorient participants,
and used multiple landmarks as the cues.

It may also be helpful to contrast the difference in Experiments 1
and 2 versus other studies that use movement of observer versus
scene. Moving a participant around a scene often results in better per-
formance than moving a scene in front of a participant (e.g., Mou et
al., 2009). Here, changing the participant’s viewpoint within a stable
scene led to worse performance than moving the scene in front of the
participant. There could be several reasons for the contrast. The most
obvious is that vestibular information could be used to update ego-
centric relations to the scene in other studies; moving the participant
might allow for a more accurate egocentric strategy that was not
available in Experiment 1 here. This also fits with a series of addi-
tional findings where the advantage is eliminated or reversed by giv-
ing participants additional information about the magnitude of the
displacement in lieu of vestibular information (Mou et al., 2009).

Figure 9
Average Variable Error Broken Down by Trial Type (x-Axis) and Axis of the Space
(Left Versus Right Panels)

Note. Error bars are 95% confidence intervals for the mean. Asterisks mark significant paired t
tests against NSEW. The red marking is the Bayesian optimal variable error. Both groups, along
both axes, had significantly higher (worse) variable error than the Bayesian optimal variable
error when shown all landmarks. This speaks against adaptive combination but is consistent
with either adaptive selection or random selection. NSEW = North South East West. * p , .05.
*** p , .001. See the online article for the color version of this figure.

Figure 10
Accuracy Compared With the NSEW Trials, Broken Down by Trial Type (x-Axis) and
Comparison Trials (Left Versus Right Panels)

Note. Results favor adaptive selection, which predicts a difference versus North South (NS) or East
West (EW) trials but not versus near trials. *** p , .001. See the online article for the color version
of this figure.
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General Discussion

Both experiments point strongly toward adaptive selection, a
non-Bayesian process of selecting the most useful landmark and
using it isolation. They point away from adaptive combination, a
Bayesian process. Specifically, the Bayesian predictions about pre-
cision were consistently violated. They also point away from ran-
dom selection, a non-Bayesian process of selecting a landmark to
use at random. Specifically, accuracy was better than we would
expect from using a random landmark. In contrast, results are con-
sistent with all three predictions if participants are just encoding
the target location against the nearest single landmark. We inter-
pret this to mean that landmarks are not used together in a Bayes-
ian fashion to recall locations, at least in a situation where
egocentric relations have been disrupted; instead, people use the
nearest available landmark to code locations. This provides an im-
mediate theoretical point: that the adaptive combination model,
taken as a general theory of how multiple cues are used to reorient,
is not as broadly applicable as one might have hoped. We propose
considering the older adaptive selection model, which still allows
young children to use superior cues in place of inferior cues when
both are available, but not to use superior cues in Bayesian combi-
nation with inferior cues.
To aid in interpretation, we need to point out a few things about

the current study. Our focus was not particularly on the way that
boundaries, including rectangular boundaries, are used to reorient.
Instead, the goal of the design here was to find a situation where the
predictions of a Bayesian cue combination model for reorientation
could be clearly confirmed or discredited. Under our reading, adapt-
ive combination is intended to be a flexible framework for the way
that any set of valid cues are used to reorient—not just rectangular
enclosures. To make the predictions of this framework as clear as
possible in the present study, we used pairs of landmarks as cues.
The results here speak against the general form of the adaptive com-
bination model (especially Equation 1) as a way for any reorientation
cues to combine for allocentric recall. For a researcher who is specifi-
cally interested in the use of rectangular enclosures, rather than a gen-
eral theory of how reorientation happens, the new data presented

here have a more modest interpretation. It could still be the case that
other cues are used in a Bayesian fashion to reorient, perhaps even at
young ages. We suggest holding off on that conclusion unless and
until more evidence for it is found.

We should also point out that a variation without disorientation
did not appear to alter results. In other words, these results do not
appear strictly limited to reorientation. Instead, they appear to
apply to situations where egocentric relations are broken. It does
appear that using landmarks to reorient is a non-Bayesian process,
but it may make more sense to describe this in terms that are more
general: Landmarks are not used in a Bayesian process to recall
locations when the use of the allocentric frame is forced.

Our reanalysis of previous data also suggests that geometric and
associative cues are not combined in a Bayesian fashion by young
children, but here we must be more tentative. In the introduction,
we reanalyzed previous data to compare performance in an asso-
ciative-only reorientation task versus an A þ G (one uniquely col-
ored wall in a rectangle) reorientation task. No difference was
found. This does not fit well with the idea that the associative
cue’s information is being combined in the optimal Bayesian man-
ner with the geometric cue’s information. Instead, it suggests that
the associative cue’s information is used in isolation. However,
this analysis is far from ideal. For example, it uses between-sub-
jects data. In our view, this specific question remains open.

It should also be pointed out that adaptive combination and adapt-
ive selection can make nearly identical predictions in the right cir-
cumstances. For example, pose a child is given a very strong
associative cue (e.g., a very salient and nonsymmetric picture on one
wall) and a very weak geometric cue (e.g., a rectangular boundary
with a length of 2 m and a width of 2.05 m). Adaptive selection
would select the associative cue and the child would perform as if
they only had the associative cue. Adaptive combination would
weight the two cues together according to Equation 1, but because
the geometric cue is much weaker, it would receive negligible
weight, and the results would not be measurably different to those
based on using the associative cue alone. In general, the two theories
make very similar predictions in any situation with one dominant

Figure 11
Variable Error as a Function of Trial Type (NSEW or Near), Axis, and Participant Group

Note. Suboptimal cue combination would predict that variable error in near trials will be higher than variable
error in NSEW trials. Adaptive selection predicts that this effect should not appear. This effect was not signifi-
cant in the present data. Error bars are 95% confidence intervals. NSEW = North South East West. See the
online article for the color version of this figure.

ADAPTIVE SELECTION 1423



reorientation cue. Differences can only become clear when there are
multiple reorientation cues with comparable reliability.
As far as we are aware, the present interpretation of an Aþ G con-

dition is novel. In the developmental literature, it is well established
that young children can use purely geometric cues to reorient (Lee,
2017). In interpreting the results of an A þ G condition, the usual
question has been whether the associative cue is used in concert with
the geometric cue (Cheng et al., 2013; Hermer & Spelke, 1994). It
could be the case that the associative cue is used in isolation while
ignoring the geometric cue—at least in situations with a relatively
large room. (In a small room, in contrast, it is well established that
performance is similar to only having the geometric cue.) It may be
possible to test an exclusive reliance on the associative cue more
directly in the future, but it would require some significant methodo-
logical innovations. Ideally, the same participants would complete a
large number of A, G, and A þ G condition trials. It is not obvious
how to make the standard paradigm into something that will be toler-
ated by young children for significantly longer. Further, details of the
method would need to be adjusted somehow to make A performance
better-matched to G performance—perhaps by reducing the contrast
of the associative cue and exaggerating the ratio of the rectangle’s
lengths. Further, and perhaps most difficult, it is not clear how this
kind of paradigm would differentiate Bayesian reasoning from other
simpler models. For example, the information from the geometric
and associative cue could be combined through conjunctive logic (e.
g., search until finding a target that agrees with both remembered
cues) rather than probabilistic Bayesian reasoning. This would also
predict that Aþ G performance would be better than A performance.
It may ultimately be more fruitful to move to new paradigms.
To be as fair as possible to our colleagues (Xu et al., 2017), we

should also note that the adaptive combination article did not ex-
plicitly state its intention to apply to tasks with multiple landmarks
(i.e., associative cues). Under our reading, they put forward a
theory that tries to unify reorientation behavior under single com-
pact principle. Because this was a Bayesian model, we would ordi-
narily expect it to efficiently integrate all available cues—that is
such a core feature of such models that it practically serves as a
definition—and that this would include multiple associative cues.
(They also did not say that it does not apply to multiple associative
cues.) If the reader here disagrees with our reading of the adaptive
combination model, then the present study should be taken as an
examination of general Bayesian principles in reorientation rather
than a specific reexamination of the adaptive combination model.
We should emphasize that adaptive combination is a recent exten-

sion of the adaptive behavior position; rejecting adaptive combina-
tion does entail rejecting all adaptive explanations of how young
children reorient. It should not be interpreted to mean that a modular
theory (Hermer & Spelke, 1994), the usual contrast to an adaptive
theory, should be preferred. It would require a very different kind of
experiment to potentially show evidence for nonadaptive and modu-
lar cognition (Lee, 2017; Lee & Spelke, 2008, 2010). Instead, adapt-
ive selection is more in line with the versions of adaptive theories
proposed before adaptive combination (Cheng et al., 2013). In addi-
tion, while our results speak against adaptive combination as a gen-
eral theory of spatial reorientation, it remains possible that it does
apply to some situations—for example, recall that can include an
egocentric process of homing (Jetzschke et al., 2017; Stürzl et al.,
2008), or recall using other kinds of spatial cues (although see above
on difficulties of testing these in a Bayesian framework).

We should also note, in case there is any doubt, that adaptive
selection can also explain all of the data cited by the adaptive combi-
nation article as well (Hermer & Spelke, 1996; Learmonth et al.,
2002; Newcombe et al., 2010; Ratliff & Newcombe, 2008a,’ 2008b).
This is simply because none of them test a condition with one cue
alone, with another cue alone, and with both together. Most specifi-
cally test A þ G conditions against G conditions. This always allows
for performance in the A þ G condition to be explained by use of
the A cue alone. The others vary but can be explained with a similar
argument, such as comparing an A þ G condition to a condition with
a language cue added (Ratliff & Newcombe, 2008a). Without indi-
vidually testing the A cue, the G cue, and the language cue, it is
impossible to rule out the hypothesis that performance in the com-
bined condition is reliant on just one of the cues.

One interesting future direction would be to test the efficiency of
cue selection in a setting where there are not just landmarks. If one
landmark is further than another is, it is fairly clear that it will be less
useful for encoding. If a young participant is asked to choose among
a more diverse set of cues (e.g., including a linguistic cue), it is not
yet known if they will consistently select the most useful cue.

Another interesting future direction is to look more at the poten-
tial role of cue salience. The present study and the standard reor-
ientation paradigm both use environments that are (much) less rich
than many environments that exist outside the laboratory. It is pos-
sible that these processes would be meaningfully different in an
environment with a great many visual cues, additional strong sen-
sations, and a complex geometry. It is possible that participants
might integrate multiple cues in a very rich and naturalistic envi-
ronment as a way of compensating for the increased memory noise
that such complexity would induce. It is also possible that partici-
pants might integrate multiple cues if their salience is greatly
increased in comparison to the rest of the environment. In a selec-
tion model, things like visual salience (rather than distance to tar-
get) might be important for understanding cue selection.

Toward a More General Theory

Here we outline how these results may drive us toward a more
general theory of how reorientation happens with multiple cues.
The present study provides an immediate empirical conclusion:
children and adults select the nearest landmark to use in isolation
for encoding targets during an allocentric reorientation task. A
larger interpretive framework will require more research. To move
this forward, we will sketch one plausible model (of many) to pur-
sue and test further. In short, we consider that egocentric spatial
information may typically be treated in a Bayesian manner after a
certain point in development, sometime in middle childhood; allo-
centric information, across the life span, may instead be processed
with more idiosyncratic non-Bayesian heuristics.

That idea has three parts. First, egocentric spatial information is
typically used in a Bayesian manner by adults. This fits in a variety
of very simple perceptual tasks where participants are asked to make
judgements about locations. For example, adults can combine a spa-
tialized sound and a noisy visual cue to judge horizontal location in
an egocentric frame (Battaglia et al., 2003; Gori et al., 2012). This
also applies to newly-learned skills that signal egocentric distance,
such as an echolocation-like skill taught over the course of a few
hours (Negen, Wen, et al., 2018). This further applies in a navigation
task where the two cues are vestibular and proprioceptive (Frissen et
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al., 2011). Adults also rapidly learn egocentric (sensorimotor) prior
distributions and use them in a Bayesian fashion as well (Bejjanki et
al., 2016; Berniker et al., 2010; Chambers et al., 2018; Körding &
Wolpert, 2004; Kwon & Knill, 2013; Narain et al., 2013; Sato &
Kording, 2014; Tassinari et al., 2006). In practice, this means that
they learn where targets tend to be and bias their responses toward
the places they tend to be most often. Finally, adults tend to adjust
their search strategy in a visual search task when there is an uneven
distribution of targets in an egocentric sense (Jiang & Swallow,
2013, 2014; Smith et al., 2010). This can be viewed as using egocen-
tric prior distributions to affect decision-making.
Importantly, one could view self-motion and landmark informa-

tion in a homing task as egocentric information. These are the cues
and the task used in a series of studies where adults were fit well by a
Bayesian model (Bates & Wolbers, 2014; Chen et al., 2017; Nardini
et al., 2008; Sjolund et al., 2018; Zhao & Warren, 2015). The self-
motion information could be viewed as an egocentric vector to the
goal that is updated by perception of own movement. The landmark
information, in this case, could be like an egocentric “snapshot” of
how the landmarks looked at the target (home) location (Cheung et
al., 2008; Stürzl et al., 2008). In other words, while landmarks are
usually thought of as allocentric information, the specific way that
landmarks looked from a previous home location could be stored in
an egocentric format. This makes this finding fit with the idea that
adults use egocentric information in a Bayesian fashion.
Of course, recent research has shown that this also faces some

limits and suboptimalities (Rahnev & Denison, 2018)—many
Bayesian processes are distorted under certain circumstances. For
example, in one study, adults integrated multiple repeats of the
same audio localization signal with lower than Bayesian efficiency
(Jones, 2018). It is not clear exactly why this occurred, but adults’
performance was much nearer to optimal Bayesian integration
when the signals were not exact repeats of each other. We should
emphasize that it may be typical for egocentric information to be
processed in a Bayesian way, but it will not be universal.
Second, egocentric spatial information is not used in a Bayesian

manner by young children. This would explain their difficulty in
making egocentric spatial judgements with an audio and a visual cue
(Gori et al., 2012), difficulty combining self-motion and landmark in-
formation during a homing task (Nardini et al., 2008), and their diffi-
culty in learning prior spatial distributions (Chambers et al., 2018).
This fits more generally with the pattern of difficulty with Bayesian
reasoning in a wide variety of settings (Burr & Gori, 2011).
Third, allocentric spatial information is not used in a Bayesian

manner. This fits with all the findings here. Instead, what the partici-
pants did here appears to involve focusing on “just enough” of the
allocentric spatial relations to uniquely encode the target location in
principle. It could be that once a task involves allocentric computa-
tions, capacity for the number of cues that can be attended to
becomes a major bottleneck. At that point, it may be more advanta-
geous to focus attention on the way that a target relates to a single
nearby landmark than to spread attention across an entire scene. This
also fits with visual search patterns in an allocentric frame. Partici-
pants do not tend to use the prior distribution to adjust their search
strategies (Jiang & Swallow, 2013, 2014; Smith et al., 2010). This is,
again, “just enough”—learning the prior distribution does not affect
the participant’s ability to complete the task; it only makes it faster to
do so. It may be that allocentric reasoning is too slow for it to affect
the way the visual search task is completed. In general, the

complexities of the representations required for allocentric reasoning
may be too slow and too costly to be a good application of Bayesian
reasoning. That may be reserved instead for mature egocentric
reasoning.

Conclusion

The present study was designed further test predictions from the
adaptive cue combination model of human spatial reorientation,
understood here as a general model of how multiple cues are used to
retrieve vectors to goal locations after losing one’s sense of heading
and placement in a space. The results suggest that this theory needs
modification since the optimal Bayesian predictions were consis-
tently violated. Instead, response patterns were more consistent with
a heuristic of only using the nearest single landmark (ignoring other
landmarks rather than combining their information in a Bayesian
fashion). Further, results are similar if egocentric relations are dis-
rupted through a method without disorientation. As a sketch of a
broader theory for further testing, we suggest that egocentric informa-
tion may typically be used with Bayesian efficiency after middle
childhood (emerging from roughly 7 to 12 years depending on task
details), but that allocentric information is processed using non-
Bayesian heuristics even into adulthood.
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Appendix

Model Simulations

To be as sure as possible about the predictions, we also simu-
lated each model. The MATLAB (MathWorks, 2019) code is
shown in following figure. We assume that the precision of a sin-
gle-cue response decays exponentially with the distance to the
nearest target. Results are shown in Figure A1, depicting the ran-
dom model [blue/left bars]) chooses which cue to use as at ran-
dom for dual-cue trials. The selection model (see Figure A1,
orange/middle bars) chooses the single cue with the highest pre-
cision for dual-cue trials. The combination model (yellow/right
bars) creates a precision-weighted average on dual-cue trials.

The top two rows of Figure A1 show that only the Combination
model achieves the optimal variable error (black dot). The bot-
tom left shows that NSEW accuracy equals NS or EW accuracy
for the random model, but NSEW accuracy is better than NS or
EW accuracy for the other two models. The bottom right shows
that NSEW accuracy is worse than near accuracy for random,
equal for selection, and better for combination. Note how the
patterns in the orange/middle bars are the same as the actual
data.

(Appendix continues)
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Here is the simulation code: Matlab (MathWorks, 2019):

%Size of simulation and parameters
nDataPerTarget = 100000;
EWLandmarksX = [3,�3];
EWLandmarksY = [0, 0];
NSLandmarksX = [0, 0];
NSLandmarksY = [3,�3];
[X,Y] =meshgrid(�2:2,�2:2); Targets = [X(:),Y(:)];
%Mechanism for decay of precision by distance
BasePrecision = 10;
PrecisionDecayBeta = .5;
DistanceToPrecision = @(distance) BasePrecision .* exp
(-PrecisionDecayBeta.*distance);

%Pre-Calculate precisions or each target
PrecisionEW=NaN(size(Targets,1),1);
PrecisionNS =NaN(size(Targets,1),1);
for i = 1:length(PrecisionEW)

DistanceE = sqrt((Targets(i,1)-EWLandmarksX(1)).^2 þ
(Targets(i,2)-EWLandmarksY(1)).^2);

DistanceW = sqrt((Targets(i,1)-EWLandmarksX(2)).^2 þ
(Targets(i,2)-EWLandmarksY(2)).^2);

PrecisionEW(i) = DistanceToPrecision(min(DistanceE,
DistanceW));

DistanceN = sqrt((Targets(i,1)-NSLandmarksX(1)).^2 þ
(Targets(i,2)-NSLandmarksY(1)).^2);

DistanceS = sqrt((Targets(i,1)-NSLandmarksX(2)).^2 þ

(Targets(i,2)-NSLandmarksY(2)).^2);
PrecisionNS(i) = DistanceToPrecision(min(DistanceN,

DistanceS));
end
StandardDevEW= PrecisionEW .^ (�1/2);
StandardDevNS = PrecisionNS .^ (�1/2);

%Simulate trials
%Pre-allocate
target = NaN(nDataPerTarget*size(Targets,1)*3,2);
response = target;
isNear = false(nDataPerTarget*size(Targets,1)*3,1);
isNSEW = isNear; isNSorEW = isNear; isEW = isNear; isNS
= isNear;
%Simulate
for modelNumber = 1:3
IND = 1;
for repeat = 1:nDataPerTarget
for targetNumber = 1:size(Targets,1)
for trialType = 1:3%Trial types: EW, NS, NSEW

target(IND,:) = Targets(targetNumber,:);
isNear(IND,1) = (trialType==1 && abs(target

(IND,1)).=abs(target(IND,2))) || . . .
(trialType==2 && abs(target(IND,2)).=abs(target

(IND,1)));
isNSEW(IND,1) = trialType == 3;
isNSorEW(IND,1) = trialType�= 3;
isEW(IND,1) = trialType == 1;

Figure A1
Simulation Results

Note. See the online article for the color version of this figure.
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isNS(IND,1) = trialType == 2;
if trialType == 1%EWTrial

response(IND,:) = target(IND,:) þ randn(1,2) .*
StandardDevEW(targetNumber);

elseif trialType == 2%NSTrial
response(IND,:) = target(IND,:) þ randn(1,2) .*

StandardDevNS(targetNumber);
else %NSEWTrial
if modelNumber == 1%Random
if rand(1), .5
response(IND,:) = target(IND,:)þ randn(1,2) .*

StandardDevEW(targetNumber);
else
response(IND,:) = target(IND,:)þ randn(1,2) .*

StandardDevNS(targetNumber);
end

elseif modelNumber == 2%Selection
response(IND,:) = target(IND,:)þ randn(1,2) .*

min(StandardDevEW(targetNumber),StandardDevNS
(targetNumber));

else %Combination
tmpEW = target(IND,:) þ randn(1,2) .*

StandardDevEW(targetNumber);
tmpNS = target(IND,:) þ randn(1,2) .*

StandardDevNS(targetNumber);
wEW = PrecisionEW(targetNumber) /

(PrecisionEW(targetNumber)þPrecisionNS(targetNumber));
wNS = 1 - wEW;

response(IND,:) = tmpEW.*wEW þ tmpNS.
*wNS;

end
end

IND = INDþ 1;

end
end

end
%Produce summaries

VariableErrorEW(modelNumber,1) = std(response(isEW,1)
-target(isEW,1));

VariableErrorEW(modelNumber,2) = std(response(isNS,1)
-target(isNS,1));

VariableErrorEW(modelNumber,3) = std(response
(isNSEW,1)-target(isNSEW,1));

VariableErrorNS(modelNumber,1) = std(response(isEW,2)
-target(isEW,2));

VariableErrorNS(modelNumber,2) = std(response(isNS,2)
-target(isNS,2));

VariableErrorNS(modelNumber,3) = std(response
(isNSEW,2)-target(isNSEW,2));

NSEWAccuracy(modelNumber,1) = mean(sqrt((target

(isNSEW,1)-response(isNSEW,1)).^2þ . . .
(target(isNSEW,2)-response(isNSEW,2)).^2));
NSorEWAccuracy(modelNumber,1) = mean(sqrt((target

(isNSorEW,1)-response(isNSorEW,1)).^2þ . . .
(target(isNSorEW,2)-response(isNSorEW,2)).^2));

NearAccuracy(modelNumber,1) = mean(sqrt((target
(isNear,1)-response(isNear,1)).^2þ . . .

(target(isNear,2)-response(isNear,2)).^2));

end

%Display results
%EWVE
subplot(2,2,1); hold on
h = bar(VariableErrorEW');
ylabel('Variable Error')
set(gca,'XTick',1:3)
set(gca,'XTickLabel',{'EW','NS','NSEW'})
plot(3, (mean(mean(VariableErrorEW(:,2:3))).^-2.*2).^(-1/2),
'ko', 'MarkerFaceColor','k')
title('E/WAxis')
legend
('Random','Selection','Combination','Optimal','location','SouthEast')

%NSVE
subplot(2,2,2); hold on
bar(VariableErrorNS')
ylabel('Variable Error')
set(gca,'XTick',1:3)
set(gca,'XTickLabel',{'EW','NS','NSEW'})
plot(3, (mean(mean(VariableErrorNS(:,2:3))).̂ -2.*2).^(-1/2), 'ko',
'MarkerFaceColor','k')
title('N/SAxis')

%NSEWvsNSorEWAccuracy
subplot(2,2,3)
bar([NSEWAccuracy,NSorEWAccuracy]')
set(gca,'XTick',1:3)
set(gca,'XTickLabel',{'NSEW','NS or EW'})
ylabel('MeanError')

%NSEWvsNearAccuracy
subplot(2,2,4)
bar([NSEWAccuracy,NearAccuracy]')
set(gca,'XTick',1:3)
set(gca,'XTickLabel',{'NSEW','Near'})
ylabel('MeanError')
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