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There are large amounts of data generated within the

biopharmaceutical sector. Traditionally, data analysis methods

labelled as multivariate data analysis have been the standard

statistical technique applied to interrogate these complex data

sets. However, more recently there has been a surge in the

utilisation of a broader set of machine learning algorithms to

further exploit these data. In this article, the adoption of data

analysis techniques within the biopharmaceutical sector is

evaluated through a review of journal articles and patents

published within the last ten years. The papers objectives are to

identify the most dominant algorithms applied across different

applications areas within the biopharmaceutical sector and to

explore whether there is a trend between the size of the data set

and the algorithm adopted.
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Introduction
The biopharmaceutical sector has seen significant

improvement in bioreactor design, instrumentation and

analytical technologies over the last 10 years. One of the

most widely adopted technological advancements within

the sector is the utilisation of high-throughput automated

micro-bioreactors, enabling the parallelisation of experi-

ments using a fraction of the liquid volume required for
www.sciencedirect.com 
laboratory-scale experiments [1]. Additionally, there has

also been a large push from regulatory bodies to adopt

process analytical technology (PAT) for improved moni-

toring and control of biopharmaceutical processes [2,3].

Recent advances include also the application of omics,

such as transcriptomics, proteomics, metabolomics and

fluxomics in the sector, allowing for a better understand-

ing of the intracellular workings of cellular processes [4].

These recent advancements have resulted in the genera-

tion of larger and more diverse data sets requiring more

specialised statistical and modelling tools for efficient

data analysis. The process of data analytics can be

described as the analysis of raw data to make useful

conclusions about the information provided. The appli-

cation of these tools enables the true potential of data to

be fully harnessed for improved process understanding

and more informed decision-making [5] facilitating opti-

misation of existing biomanufacturing processes and

hence increased product quantity and quality. The

increased use of these advanced sensors and automated

bioreactors will play a key role in the advancement of the

sector towards the core principles of Industry 4.0 [6].

However, to ensure these ‘smart factories’ of the future

can deliver improved and automated process control, the

need for advanced data analytics is paramount.

The process of data analytics is predominantly carried out

using machine learning (ML) algorithms. ML is a very

broad term which can be defined as the generation of

algorithms to perform tasks based on rules learnt from the

data rather than explicitly programmed by the user. The

application of these algorithms within the biopharmaceu-

tical sector can provide additional insights and identify

patterns within data sets enabling improved decision

making for process optimisation. Certain ML algorithms

such as neural networks (NN) and random forests (RF)

are typically considered computationally intensive which

has previously hindered their widespread application,

however there has been a recent surge in the application

of these algorithms due to the increase in computing

power available and improvements in algorithm effi-

ciency [7]. ML algorithms have seen also an increase

in popularity and impact across other sectors outside the

biopharmaceutical sector, such as analysing markets to

predict better performing stocks in the finance sector [8]

and targeted display adverts in the advertising sector [9].

Traditionally within the biopharmaceutical sector, a
Current Opinion in Chemical Engineering 2019, 34:100758

mailto:s.goldrick@ucl.ac.uk
https://doi.org/10.1016/j.coche.2021.100758
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coche.2021.100758&domain=pdf


2 Biotechnology and bioprocess engineering: mechanistic and data-driven modelling of bioprocesses
subset of ML referred to as multivariate data analysis

(MVDA) has been used to examine variable interactions

and is preferred over univariate and bivariate techniques

due to its ability to analyse multiple variables and mini-

mise false inferences [10,11]. MVDA algorithms such as

partial least squares (PLS) and linear regression (LR) are

commonly used in the sector. Examples include the

application of a PLS algorithm for the prediction of amino

acid concentrations by analysing Raman spectroscopy in

mammalian cell cultures [12] and the application of LR

for root cause analysis of product quality deviations in

therapeutics proteins [13].

With the growing body of ML algorithms, it can be a

challenge to decide which algorithm to implement. Within

this study, an evaluation of data analysis techniques was

carried out over the period of 2010–2020 to identify any

trends related to the utilisation of specific algorithms within

bioprocessing. Initially, the paper reviews the rising preva-

lence of data analysis techniques in the sector by evaluating

literature and patents published between the period of

2010–2020. A more in-depth analysis of the most cited

literature from the period of 2015–2020 was carried out to

identify the most dominant algorithms, the size of the data

sets utilised within each model and their application area

within bioprocessing. This paper outlines a clear increase in

the application of data analytics within the biopharmaceu-

tical sector and demonstrates the wide range of algorithms

implemented to analyse these complicated bioprocessing

data sets. The increased use of these digital methodologies

demonstrates the shift of the sector towards Industry 4.0,

which envisages fully automated and autonomous bioma-

nufacturing operations.

Material and methods
The methodology required to produce this analysis is split

into two parts: a systematic search of all scientific liter-

ature containing the key phrases: MVDA, ML and bio-

pharmaceuticals, assessed between the period of 2010–

2020 and an in-depth analysis of the most impactful

journal articles assessed from the period of 2015–2020.

Literature search (2010–2020)

Google Scholar was queried to search scientific literature

published from 1 January 2010 to 31 December 2020 that

mentioned the key terms ML or MVDA and biopharma-

ceutical. The exact search terms for each query were:

� MMVDA - (“Bioprocess” OR “Biopharmaceutical”)

AND (“Multivariate data analysis” OR “Multivariate

analysis”)

� ML - (“bioprocess” OR “biopharmaceutical”) AND

(“machine learning” OR “artificial Intelligence”)

Similarly, for patents, Google Patent was queried using

the aforementioned search terms to gather patents that
Current Opinion in Chemical Engineering 2019, 34:100758 
contained the key terms MVDA or ML and biopharma-

ceutical between 1 January 2010 and 31 December

2020. For both patents and journal articles, the total

number of results were recorded for each year.

To evaluate the overall relevance factor, the number of

patents and journal articles for both MVDA and ML were

quantified using the formula defined as the ‘Relevance

Index’, Ri:

Ri ¼ 0:5 ðJSiÞ þ 0:5 ðPSiÞ for i ¼ 2010; . . . . . . ; 2020

ð1Þ

where JSi is the standardised number of journal article

results of the ith year and PSi is the standardised number

of patent results of the ith year.

Where the standardised values are defined as:

� Journal articles

JSi ¼ Ji=max ðJÞ for i ¼ 2010; . . . . . . ; 2020 ð2Þ
where Ji is the number of journal article results at the

ith year.

� Patents

PSi ¼ Pi=max ðPÞ for i ¼ 2010; . . . . . . ; 2020 ð3Þ
where Pi is the number of patent results at the ith year.

Literature analysis (2015–2020)

To assess the most impactful articles published over the

last five years, the key journal articles were defined as

those that had the highest average citation number per

year since publication. Whilst the use of ‘citation number’

to evaluate the impact of a journal article has its limita-

tions, they are considered to be a good measure of

scientific impact and relevance [14]. For the purpose of

this paper, this metric enables potential trends to be

identified in the biopharmaceutical sector. The key jour-

nal articles were identified using the software Harzing’s

Publish or Perish [15]. Harzing’s Publish or Perish scrapes

the search results from Google Scholar using the same

search terms mentioned previously and tabulates and

cumulates the data. For each year between 2015 and

2020, the top 10 most cited journal articles for each year

about data analytics were collected. From these 60 journal

articles, the metadata was manually extracted. This

included:

� the algorithm used,

� the number of experiments used in the analysis,

� the number of variables used in the analysis,

� the application area in terms of problem domain (e.g.

fault detection) and process stage (e.g. upstream
www.sciencedirect.com
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Prevalence of ML and MVDA data analytics adoption in the

bioprocessing and biopharmaceutical sector during the period of

2010–2020 in terms of (a) journal articles, (b) patents and (c) the

relevance index. The specific search criteria are provided in the

Materials and Methods. The orange squares represent the search

terms related to MVDA, and purple triangles represent those related to

ML.
processing (USP), downstream processing (DSP) or

other manufacturing areas).

The data collected only considered the top 60 journal

articles which defined the number of variables and num-

ber of experiments analysed within their study. Where

journal articles evaluated multiple algorithms for their

data analysis, the best performing algorithm was selected

for this paper.

Data analysis and visualisation

The metadata was imported, analysed and visualised

using R 4.0.2 and Python 3.8.3.

Results and discussion
Prevalence of data analytics adoption in the

biopharmaceutical sector

As the industry undergoes a digital transformation with

the scale and complexity of the data sets increasing, there

is a need to better understand how data analytics is used

within the biopharmaceutical sector. To quantify the

prevalence of MVDA and ML, a literature and patent

search was carried out across the period of 2010–2020

using the search terms defined in the material and meth-

ods section with the aim of identifying potential trends in

the utilisation of these data analysis techniques. The

distinction in search terms was needed as some algorithms

are exclusively referred to as MVDA while others are

labelled exclusively as ML, therefore these search terms

provide broader understanding of the utilisation of data

analytics across the sector. Figure 1 compares the results

recorded for MVDA and ML in terms of number of

patents and journal articles released over the period of

2010–2020. To simplify the interpretation of these two

metrics, a standardised plot of Relevance Index (Eq. (1))

is presented consolidating both the impact of journal

articles and patents (Figure 1c). This metric enables a

single evaluation of these search terms and helps deter-

mine their utilisation in the sector more broadly.

Figure 1a–c show a positive trend demonstrating that ML

and MVDA are becoming more utilised in the biophar-

maceutical sector. The utilisation of ML within the last

five years has sharply increased by 250% for journal

articles and 357% for patents. However, MVDA has only

increased by 28% for journal articles and 44% for patents

in the same period. The rise in the application of these

techniques is most likely due to an increase in the

complexity, size and format (e.g. images) of data available

for analysis. As a result, more advanced algorithms are

needed to analyse these complex data sets. Additionally,

due to the recent advances in computational power and

access to high-performance machines, the ability to train

and validate ML algorithms on large complex data sets is

now much easier. It is worth noting that some techniques

that have historically been referred to as MVDA, such as

PCA and PLS, are now often labelled as ML due to the
www.sciencedirect.com 
increasing popularity of the latter term. The increase in

published patents related to data analytics shown in

Figure 1b may suggest that ML and MVDA are now

becoming more adopted by industry. A recent patent by

De Kok et al. demonstrated the value of implementing

various non-linear ML techniques such as RFs and k–

nearest neighbour to predict the performance of large

scale systems through experimental design of small scale

systems [16]. Furthermore, a recent patent utilising a PLS
Current Opinion in Chemical Engineering 2019, 34:100758
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algorithm was published by Berry and Moretto for the

analysis of Raman spectra to predict a number of culture

parameters including glucose, lactate and ammonia for

bioreactors ranging from 0.1 L to 100 000 L [17].

An additional consequence of the recent advances in

computational power is the increased availability of com-

mercial software that lowers the knowledge barrier to

implement ML models. However, this can potentially

lead to incorrect applications without full understanding

of the detailed assumptions, considerations, and model

limitations. For example, models must be able to account

for large quantities of noise and variability that is common

in biological systems due to their stochastic nature [18].

Another important consideration for model building is the

interpretability of the model being utilised. Some ML

algorithms, such as NN, are typically much more difficult

to interpret due to their complex structures. This is

particularly important in drug discovery where the selec-

tion of new treatments without justification may hinder

regulatory approval. In these cases, further analysis and

evaluation of a model’s performance and robustness is

needed before implementation [19]. If these conditions

are not considered, the risk of inaccurate predictions

increases resulting in possible process failure and hence,

financial loss.

To improve the adoption of ML algorithms within the

biopharmaceutical sector, organisations need to ensure

the correct architecture of their data storage facilities. Full

and easy access to all available data within a structured

and queryable database such as a data lake or warehouse

will significantly simplify the application of ML algo-

rithms. Some of the more complex ML algorithms often

require larger data sets and more computational power is

required to build and train these models. Therefore, a

company’s data infrastructure becomes a priority.

Overall, ML has become a widely adopted technique

within the biopharmaceutical sector based upon our anal-

ysis of journal articles and patents used in the sector

between the period 2010–2020. The increased utilisation

of both MVDA and ML algorithms within the biophar-

maceutical industry is likely to continue. It is most likely

to accelerate as the sector further adopts these algorithms

for better decision-making within clinical and commercial

manufacturing, however, there is little guidance in the

sector as to how much data is needed for each technique

or which algorithm will perform better. There are numer-

ous examples where data analytics techniques are directly

compared. An extensive analysis by Mendez et al. com-

pared multiple non-linear ML and MVDA algorithms to

classify ten clinical metabolomics data sets. They con-

cluded that there was no general improvement in predict-

ability between the non-linear and linear algorithms

utilised. It was reiterated that ‘a model is only as good as
the data that is used to train it’ suggesting that the data set
Current Opinion in Chemical Engineering 2019, 34:100758 
used to train models is an equally important factor as the

algorithm performing the analysis [20�]. As such, an

analysis on data size and algorithms applications is

needed to identify potential trends.

Classification and application of ML in the

biopharmaceutical sector based on recent literature

To better understand the most prominent application

areas and the most dominant algorithms used within

the biopharmaceutical sector over the period of 2015–

2020, an in-depth evaluation of the most cited journal

articles was conducted. The 10 most cited journal articles

based upon average number of citations per year was

recorded, which resulted in a total of 60 journal articles.

Within each of these journal articles: the specific algo-

rithms utilised, the size of the data sets analysed and

whether the authors classified the algorithm as either

MVDA or ML was documented. Patents were not con-

sidered in the in-depth analysis due to a lack of databases

that could be queried for information. A summary of all

the algorithms utilised within these 60 journal articles

during this period is shown in Figure 2, with the learning

method of each algorithm defined as either supervised or

unsupervised. Supervised learning techniques require a

labelled training set to build the model and establish

relationships between the inputs and outputs of the given

system [21]. Alternatively, unsupervised learning uses

unlabelled data and focuses on identifying patterns

within the data with the purpose of partitioning the data

set into smaller subsets that have similar variable char-

acteristics [21]. In total, there were 11 unique algorithms

identified within the top 60 most cited journal articles

using data analytics during the period of 2015–2020. As

previously discussed within the biopharmaceutical sector,

some of the traditional statistical algorithms such as PCA,

PLS and LR have been labelled as MVDA within these

journal articles. However, these algorithms are more

broadly defined as a subset of ML although their exact

definition can vary between disciplines.

There is a long history of utilising conventional MVDA

algorithms such as PCA and PLS, which assume linear

relationships between inputs and responses. PCA has also

been extensively used to better understand root cause of

batch-to-batch variations and has been successfully

implemented as far back as 1987 [22] and is commonly

used today [1]. PLS algorithms have been employed

historically to monitor end-point quality of fermentations

based on the golden batch concept. This allows for

operators to identify the source of process deviations or

disturbances from an ideal trajectory and take corrective

action quickly [23]. More recently, they have proven

useful for spectral analysis involving PAT applications

[24��]. Other established ML algorithms include NN and

support vector machines (SVM). These algorithms allow

for non-linear relationships to be modelled, which can be

particularly useful for capturing non-linearities within
www.sciencedirect.com
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Figure 2
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Classification of each algorithm employed in the top 60 journal articles based upon average citation number from the period of 2015–2020

identified as MVDA or ML and supervised or unsupervised learning technique. MVDA algorithms labelled as: Linear Regression (LR), Partial Least

Squares (PLS) and Principal Component Analysis (PCA). ML algorithms labelled as: Clustering, Decision Tree (DT), Local Outlier Factor (LOF),

Neural Networks (NN), Random Forests (RF), Support Vector Machines (SVM), Gaussian Process (GP) and Scatter Search (SS).
biological systems. For example, NN were applied suc-

cessfully to predict loading capacity of depth filtration

filters based upon non-linear functional correlations

between inputs and outputs [25]. SVM are also advanta-

geous due to their strong ability to generalise properties

on unseen data which has resulted in its application across

biological areas [26]. For example, SVM have been used

to address the non-linear problem of predicting key

process variables over time in penicillin production

[27]. In-depth descriptions of the majority of the ML

algorithms shown in Figure 2 can be found in the liter-

ature [28,29].

Within each journal article, the information related to the

size of the data sets analysed and the application area was

extracted. The two major factors that were recorded from

each journal article was the number of variables and the

number of experiments within each of the data sets

analysed by these algorithms. For this analysis, the defi-

nition of a variable is any information that was recorded

throughout the experiment and an experiment was con-

sidered as a single independent process run. The

extracted information regarding the number of experi-

ments, number of variables, algorithm type and average
www.sciencedirect.com 
citation per year of the top 60 data analytics journal

articles is summarised in Figure 3.

The average number of variables within the data set

analysed using data analysis techniques was 444 � 801

(minimum 1) demonstrating that there is a large range in

the number variables being analysed within each data set.

As the number of variables increase, PLS becomes the

most commonly used algorithm. This can be seen in

Figure 3, where for 500 or more variables, approximately

60% of the journal articles utilised PLS. PLS is the one of

the most commonly used algorithms for the analysis of

spectral data sets, based on its proven ability to correlate

large numbers of variables (i.e. spectral wavelengths) with

either the critical quality attributes or critical process

parameters of interest. The maximum number of vari-

ables shown in Figure 3 was taken from Lempp et al. who

analysed 4242 transcripts related to different genes of

Escherichia coli [30]. This data was recorded using a single

1 L bioreactor with high-frequency transcriptomics data

measuring a total of 29 different time points across the 20-

hours experiment. Within their analysis, they selected a

hierarchical clustering algorithm and used this to classify

how different gene pools affected the transcription
Current Opinion in Chemical Engineering 2019, 34:100758
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Figure 3

Algorithm

Average Citations per Year

LR

PCA

PLS

Clustering

DT

GP

LOF

NN

RF

SVM

Scatter Search

1

1000100

Number of Experiments

N
um

be
r 

of
 V

ar
ia

bl
es

100
0

10

100

1000

10
20

30

40

Current Opinion in Chemical Engineering

Characteristics of algorithms in the top 60 most cited data analytics journal articles from the time period of 2015–2020 in terms of number of

variables and experiments (log scale), algorithm type and average citations per year. Each symbol represents a different algorithm. The size of the

symbol is proportional to the average number of citations per year for the journal articles, where a bigger symbol indicates a higher number of

citations.
concentrations during the bioreactor run. This demon-

strates that successful models can be built using a single

bioreactor run provided that high frequency analytics are

implemented to ensure sufficient data is available to

validate the model. However, the information captured

on a singular run may not be generalised for the process as

it will not account for batch-to-batch variations or differ-

ences in bioreactor operation. One of smallest numbers of

variables shown by Figure 3 was taken from Villain et al.
who used three variables to build an SVM model which

modelled a quantitative structure activity relationship

(QSAR) for the acute toxicities of algae [31]. To avoid

overfitting, the data set of 368 experiments was used to

cross validate the model using a threefold cross validation

technique. While the number of variables is small, this

demonstrates that models built from smaller number of

variables can still have high predictive power. Typically,

having more variables within a data set allows for more
Current Opinion in Chemical Engineering 2019, 34:100758 
complex models to be built as there are more degrees of

freedom within the data set allowing for more interactions

and relationships between the variables to be defined.

However, complex models are not always desirable as

they can be difficult to interpret and also the risk of these

models being overfitted becomes higher [32]; therefore,

independent external validation data is advised to ensure

the model is robust. The average number of experiments

used for the analysis within each of these journal articles

was equal to 128 � 267 (minimum 1) with the largest

number of experiments identified in Figure 3 from Riba

et al. [33]. Riba et al. utilised 1423 images to train an NN to

classify dispensed cells as viable or dead [33]. For the

purpose of this analysis, each individual image was clas-

sified as an individual experiment. Each image consisted

of a 50 by 50-pixel grid which was used to train and

validate the model. To avoid overfitting, the prediction

performance of the model was evaluated using a 10-fold
www.sciencedirect.com
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cross validation procedure. The translation of images to

information results in large quantities of data being pro-

duced which is well suited for algorithms such as NN as

these algorithms are more data hungry and generally

require more data to build accurate models [34]. How-

ever, it is observed in Figure 3 that NN have been

implemented also to applications with much smaller data

sets, which demonstrates the robustness of this algorithm

to varying volumes of available data.

It was observed in Figure 3 that data analysis techniques

have been successfully applied with experiment numbers

as low as one. Another example of an application which

utilised a small number of experiments to build a valid

model was by Brestich et al., who successfully applied

PLS to UV-vis spectroscopy to monitor preparative chro-

matography [35]. This was achieved through the utilisa-

tion of three experiments to train the PLS model with one

for validation, in addition to employing cross validation to

avoid overfitting the model. While the number of experi-

ments was small, the dimension of these data sets used

was large. For each of the four different chromatography

experiments, a spectrum from 240 nm to 300 nm with

2 nm resolution was obtained. As a result, the data set

produced had large dimensionality, that is, a large number

of variables, allowing for more complex models to be built

that could yield accurate predictions. This is a common

feature of the majority of other PATs in which large

amounts of information can be recorded in a small num-

ber of experiments. Additional data analysis applications

involving a smaller number of experiments has also been

shown in Figure 3, however not all small data sets contain

enough information to build valid models. Indeed, the

study by Vodopivec et al. analysed a data set of five

experiments and applied SVM to compare metabolic

profiling of 350 different metabolites between bioreactors

of different sizes. The authors concluded that the models

produced were of low quality, potentially due to the lack

of data regarding the various metabolites which were not

considered during the bioreactor runs [36]. Furthermore,

this indicates that the data sets used to train these models

were not representative of the whole bioreactor system.

Another journal article with a small number of experi-

ments was by Wang et al. who applied Gaussian process

(GP) multilinear regression to infer the modulation effect

of four metabolites using six experiments as a training set

and one for validation. A smaller number of experiments

was sufficient as GP uses the generated estimates of

modulation effects to estimate parametric models, which

generate more data which resulted in more accurate

predictions [37]. These applications demonstrate that

smaller numbers of experiments can produce robust

and accurate models, but the data needs to be represen-

tative of the whole process being modelled. It must be

noted that for the analysis of any data set, there are

numerous algorithms that can be applied and should yield

similar prediction errors or find the same correlations.
www.sciencedirect.com 
Therefore, the choice of algorithm is most likely highly

dependent on the familiarity and experience of the user

analysing the data. They will most likely apply their

preferred algorithm first and if the results are satisfactory,

this algorithm will be utilised in the model building

process.

A common perception from the sector is that developing a

robust model requires a large number of experiments.

However, the majority of processes in the biopharmaceu-

tical industry suffer from something referred to as the

‘Low-N’ problem, where there is a limited number of

historic experiments available for modelling a particular

process [38�]. The Low-N scenario is common particu-

larly with new biopharmaceutical products which have

often only one or two experiments or runs at manufactur-

ing scale. In these cases, it is common that the number of

experiments is less than the number of variables being

considered. Building models using these data sets are at

risk of being overfitted [39], particularly when the ratio of

variables to experiments is large. Possible solutions to

provide larger data sets necessary for some of these data-

hungry models include using algorithms such as GP to

generate artificial data based on small data sets [40]. The

method mentioned by Tulsyan et al. assumes that the

initial data sets being replicated are representative of the

whole process, which may not be accurate. Other solu-

tions involve the use of Digital Twins to generate unlim-

ited simulated data sets. This data can be used to develop

and evaluate ML algorithms for process optimisation and

speed up the readiness of these algorithms to implement

once experimental data becomes available [41]. Other

challenges have been raised by Mowbrey et al. about the

data produced in the biopharmaceutical sector. This

includes the sparsity of high dimensional data sets that

often do not contain sufficient information about each

individual dimension (variable) for model building [29].

The authors proposed a solution to effectively utilise

these data sets by filling in the knowledge gaps using

first principle models.

Figure 4 shows the breakdown of each application area by

problem domain and process stage. More specifically,

Figure 4a shows the frequency of each problem domain

per algorithm type for the 60 most cited journal articles

from the period of 2015–2020 and highlights PLS was the

most widely implemented and diverse algorithm in the

sector. This was utilised in 33% of journal articles within

five different problem domains. This is most likely due to

its proven success within the sector over the last 30–40

years in analysing noisy data with strongly correlated

variables [42], which are a common feature within bio-

pharmaceutical data sets. Comparatively, NN were used

in 18% of journal articles in Figure 4a and utilised within

five different problem domains. For the purpose of clar-

ification in this paper, ‘Prediction with PAT’ was defined

as soft sensing using an external non-standard device such
Current Opinion in Chemical Engineering 2019, 34:100758
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Figure 4
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Applications of data analytics in the most cited journal articles by (a) problem domain per algorithm type and (b) process stage in terms of

upstream processing (USP), downstream processing (DSP) or other.
as Raman spectroscopy, while ‘Prediction’ referred to the

use of a model to develop a soft sensor using currently

available variables. The main application areas in terms of

problem domain where data analytics have been applied

are in ‘Prediction with PAT’ and ‘Prediction’ which, in

total, account for 62% of the top 60 journal articles. With

the increasing uptake of PAT across the sector, large

amounts of data are being recorded, which can be better

exploited using the available ML algorithms. Interest-

ingly, the PAT applications in all 60 journal articles

screened were focused on process monitoring with no

demonstrations of control which, may indicate the utilisa-

tion of PAT within the biopharmaceutical sector is still in

the early stages of deployment. A similar trend was

identified by Armstrong et al. in bioprocess chromatogra-

phy systems where there was a clear gap between the

number of PAT applications used for monitoring in

comparison to control. One of the challenges they dis-

cussed was related to lack of confidence in the application

of these technologies from a regulatory approval perspec-

tive in comparison to the standard off-line quantification

methods [43�]. While there are no control applications

appearing in the analysis of the top cited literature, ML is

still being utilised in the sector to optimise the perfor-

mance of existing processes. NN have been able to

identifying the optimal fermentation conditions of bio-

pharmaceutical product [44], while also being utilised to

increase the speed of parameter estimation in mechanistic

modelling of chromatography runs [45].
Current Opinion in Chemical Engineering 2019, 34:100758 
Within the topmost cited 60 journal articles during this

period, most techniques focused on upstream processing

(USP) which accounts for 61% of the overall journal

articles as seen in Figure 4b. This is due most likely to

a greater number of variables recorded during USP opera-

tions in comparison to downstream processing (DSP).

This emphasises an opportunity to further explore these

techniques in DSP for process optimisation. It is clear that

ML can provide additional insight into existing processes

as seen in the volume of applications in Figure 4. The

majority of these ML applications are generated within

research and development environments and one of the

remaining challenges will be simplifying the transfer of

these models between different scales and processes.

Craven et al. investigated and compared mechanistic

and statistical model transferability across bioreactors of

different scales and modes of operation in mammalian

cell bioprocessing [46]. The authors found that for the

prediction of viable cell density between batch, fed batch

and continuous operations, the ML models prediction

quality was lower compared to the mechanistic models.

This was attributed to the ML model’s inability to

incorporate feeding into its formulation, indicating that

ML models may struggle to extrapolate from datasets

which are widely different from the dataset it was trained

and validated on. This research demonstrates that data

analytics will continue to be an integral part of biophar-

maceutical process development, but additional work is

required to further exploit the benefits of these tools for
www.sciencedirect.com
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process control and optimisation within commercial

biomanufacturing.

Conclusion
Over the last decade there has been a plethora of algo-

rithms implemented for the analysis of highly diverse

biopharmaceutical data sets. This work highlighted some

interesting trends within the data set investigated.

Between 2010 and 2020, PLS emerged as the most

frequently applied algorithm within the sector, according

to citation frequency. PLS represented 33% of such

journal articles, rising to 60% when there were a large

number of variables (>500). This accounted for almost

50% of the algorithm usage. This is most likely due to the

high implementation of PLS for the analysis of PAT

applications that contain large number of variables due

to nature of the spectral data files. The second most cited

algorithm was NN, with approximately 22% of journal

articles published utilising this technique during this

period. This may be due to the ability of this algorithm

to capture complex relationships, which may yield more

accurate predictions of non-linear variables such as viable

cell densities or amino acid consumption rates. Within the

journal articles evaluated, it was found that the majority of

ML applications were focused on analysing data related

to USP applications, accounting for 61% of the journal

articles investigated. This is likely due to the large

number of variables available for analysis compared to

DSP or other application areas. There was no clear trend

between the size of the data set analysed and the algo-

rithm applied. This outcome demonstrates that the data

set size, in terms of number of variables or experiments, is

independent of the algorithm utilised. The appropriate

algorithm should be based on the specific problem to be

analysed. Therefore, the amount of data required for the

development of useful models within the biopharmaceu-

tical sector is most likely dependent on the complexity of

both the data set and the problem to solve.

Based on the growing trend observed in the use of ML

algorithms, it is clear that the sector will continue to

explore and take advantage of insights and model pre-

dictions to optimise process development and

manufacturing operations. Significant improvements are

expected in current manufacturing operations with

increased adoption of advanced data analytics, enabling

soft sensor and PAT integration and hence more

advanced control strategies. Furthermore, as the industry

adopts the core principles of Industry 4.0, it will move

towards the digitisation of all their recorded data within a

queryable and structured centralised repository such as a

data lake or data warehouse. This digital revolution will

simplify data consolidation and accessibility, enabling

ML algorithms to be applied to all data recorded from

multiple sites across different scales and unit operations.

This will help facilitate the ultimate goal of having a fully
www.sciencedirect.com 
automated data-driven biopharmaceutical manufacturing

facility of the future.
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