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The global outbreak of the SARS-Cov-2 virus in 2020 has killed millions of people
worldwide and forced large parts of the world into lockdowns. While multiple vaccine
programs are starting to immunize the global population, there is no direct cure for COVID-
19, the disease caused by the SARS-Cov-2 infection. A common symptom in patients is a
decrease in T cells, called lymphopenia. It is as of yet unclear what the exact role of T cells
are in the immune response to COVID-19. The research so far has mainly focused on the
involvement of classical ab T cells. However, another subset of T cells called gd T cells
could have an important role to play. As part of the innate immune system, gd T cells
respond to inflammation and stressed or infected cells. The gd T cell subset appears to be
particularly affected by lymphopenia in COVID-19 patients and commonly express
activation and exhaustion markers. Particularly in children, this subset of T cells seems
to be most affected. This is interesting and relevant because gd T cells are more prominent
and active in early life. Their specific involvement in this group of patients could indicate a
significant role for gd T cells in this disease. Furthermore, they seem to be involved in other
viral infections and were able to kill SARS infected cells in vitro. gd T cells can take up,
process and present antigens frommicrobes and human cells. As e.g. tumour-associated
antigens are presented by MHC on gd T cells to classical T-cells, we argue here that it
stands to reason that also viral antigens, such as SARS-Cov-2-derived peptides, can be
presented in the same way. gd T cells are already used for medical purposes in oncology
and have potential in cancer therapy. As gd T cells are not necessarily able to distinguish
between a transformed and a virally infected cell it could therefore be of great interest to
investigate further the relationship between COVID-19 and gd T cells.
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INTRODUCTION

The SARS-Cov-2 virus developed into a worldwide pandemic in a matter of months. A year after its
first reporting it has infected over 121.256.160 people and killed 2.681.790 worldwide (Hopkins
University 18.03.2021). Because of this, the scientific community has been researching the
development of potential cures and vaccines to stop the pandemic. This has led to the
development of multiple vaccines (by e.g. Pfizer/BioNTech, Moderna and AstraZeneca).
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Never before in history has so much scientific effort been put
towards one single illness. Thanks to this, a lot is already known
about this disease. There has been a lot of research focusing on
how the virus works and how our immune system tries to deal
with the disease it causes. Yet, there is no direct cure for it. This
might be because there are still certain gaps in our knowledge of
how our immune system copes with COVID-19.

Recently, the discovery of multiple new variants in the UK,
South Africa and Brazil have given even more reason to find a
cure (1, 2). These variants seem to differ in their infectivity,
which could make them an even bigger threat than the original
variant (3).

There is a lot of research focusing on the involvement of
adaptive immunity. The adaptive immune system develops over
a human’s life span and can, as the name suggests, adapt to new
arising challenges. The ab T cells, which are the hallmark T
lymphocytes representing adaptive immunity, have been
extensively studied in relation to COVID-19 (4, 5) over this
short time-frame. However, another part of the immune system
also shows a lot of promise in the fight against COVID-19. The
innate immune system is present since birth and defends us
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against a plethora of diseases and illnesses (6). While it doesn’t
adapt to new challenges in an individual, it has evolved to
respond to a large variety of challenges. gd T cells make up a
part of the innate immune system (7).

These T cells are characterised by their T cell receptor (TCR),
which consists of a g- and a d-chain. These immune cells use
their TCR to recognise a host of signals. gd T cells are particularly
interesting for cell therapy because, unlike their ab T cell
counterparts, they are major histocompatibility complex
(MHC) independent (8, 9). Their TCR can recognise stress
signals from infected or tumour cells. The TCR of Vg9Vd2 T
cells, the most common subtype in peripheral blood, binds
isopentenyl pyrophosphate (IPP) which is an intermediate in
the mevalonate pathway and often overexpressed in cancer cells
(9) (Figure 1) as well as in infected cells.

They have, therefore, been the focus of cancer research
development of novel cell therapies (10). Their MHC independence
makes them especially attractive for allogeneic T-cell treatment. This
also makes them interesting for COVID-19 treatments.

gd T cells can perform a number of functions, which include
the production and secretion of cytokines, such as IFN- g,
FIGURE 1 | Schematic of the function of gd T cells. gd T cells can be activated by stress signals from infected or tumour cells. Stressed or infected cells can express MICA
and MICB which gd T cells can recognise via the NKG2D receptor. Furthermore, the overexpression of certain molecules such as IPP can be recognised through the gd TCR
by recognising BTN3A and BTN2A on stressed or infected cells. gd T cells can respond via different channels. This can be the production of cytokines (IFN-g, TNF-a, IL-6,
IL-17) or cytolysis (Perforin, Granzyme). Additionally, gd T cells can interact with other immune cells and present antigens. Created by BioRender.
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TNF-a, IL-6 and IL-17. They can also perform cytolysis through
cytotoxic perforin and granzyme actions as well as interact with
other immune cells like B cells and dendritic cells (11). Vg9Vd2 T
cells, in particular, are also capable of presenting peptide antigens
to classical T-cells in a ‘professional’ fashion (12, 13).

More recently our lab and others were able to show that the
Vg9Vd2 T cell subset is able to phagocytose certain bacteria and
parasite infected cells such as E. coli and P falciparum (14, 15).
These cells were no longer predominantly inflammatory
cytotoxic cells but, professional phagocytic cells. With the
phagocytosis capability also comes the ability to professionally
present antigens.

This discovery further highlights the potential importance of
gd T cells in the early stages of an infection and their versatility.
Their ability to phagocytose and act as antigen-presenting cells is
a new discovery and needs to be further explored. However, this
could become a highly relevant topic in viral infections such as
SARS-CoV 2 as well.

In this review we bring together what is so far known about
the link between COVID-19 and gd T cells. To understand the
relevance of this link we will give a brief overview of cytokine
release syndrome (CRS) or ‘cytokine storm’ and fibrosis, which
are two common life-threatening complications in COVID-19
patients. Then we will briefly summarize the current
understanding of the response of T cells in general to COVID-
19. Finally, we review the current research into gd T cells in
COVID-19 as well as gd T cells as potential cell therapies in a
viral infectious disease context.
CYTOKINE STORM AND FIBROSIS

A Cytokine Release Syndrome (CRS) or ‘cytokine storm’ is a
hyperactivation of the immune system through cytokines, causing
high fever, lymphopenia and in severe cases acute respiratory
distress syndrome (16, 17). However, the pathogenesis is still not
fully defined (18).

It has been reported in patients of various diseases and
infections and has been observed in MERS and SARS patients
and more recently in SARS-Cov-2 infections (19, 20). Cytokine
storm is caused by an uncontrolled host immune reaction which
causes an activation cascade of cytokine production that are
auto-amplifying (21). However, the causes can be varied, and
cytokine storms are defined more by the final clinical phenotype,
rather than the initiating factors. The clinical phenotype is a
systemic inflammation, multi organ-failure and it can lead to
death if left untreated.

Interestingly, the cytokines in the cytokine storm can be both pro-
inflammatory and immunosuppressive (22). IL-10 is a prominent
immunosuppressive cytokine that indicates a shift away from the
cytokine storm towards a form of “immunoparalysis” (18, 23). This
downregulation of systemic immunological functions seems to be
beneficial in regulating systemic reactions to local infection (24).
However, prolonged immunoparalysis after cytokine storm and
severe sepsis can lead to complications and an increase in mortality
in the if not reversed (25).
Frontiers in Immunology | www.frontiersin.org 3
The proinflammatory cytokines that cause the cytokine storm
can vary. In the case of SARS those are IL-6, interferons, particularly
IFN- g, and IL-1b, amongothers (26). InSARS these cytokines seem
to be produced in large quantities by infected macrophages and
dendritic cells (27–29). The infection of these cells is abortive in
SARS, however in COVID-19 patients infected CD169+

macrophages have caused damage to the lymphoid tissue (30).
These macrophages cause activation-induced-cell-death by
expressing high levels of Fas. Furthermore, these infected
macrophages appear to promote lymphocyte necrosis through the
production of IL-6 by signalling through the STAT3 pathway (30).
The lymphocyte levels could bepartially restored after patientswere
given a Tocilizumab treatment, which is an IL-6 inhibitor which
further supports that lymphopenia is at least in part caused by
infectedmacrophages inCOVID-19patients (31).However, theuse
of Tocilizumab on its ownwas not able to improve the survival rate
of Covid-19 patients (32, 33).

In Covid-19, IL-6, together with IL-10 seem to be the only
cytokines consistently elevated among reports, while TNF-a is
elevated in some reports (31, 34, 35). The elevation of these
cytokines seems to correlate with the decrease of the total T cell
levels (34).

While T cells produce cytokines themselves, it appears that
the inducers of the cytokine storm in COVID-19 seem to be
infected macrophages and dendritic cells that start the cascade.
This could give hope, that medical treatments aimed at
increasing certain T cell levels might aid in recovery. This is
especially intriguing when considering a combination of IL-6
inhibitors to suppress the immunosuppressive capacities of
this cytokine.

Another alarming finding in SARS-Cov-2 infected patients is
pulmonary fibrosis. Fibrosis is the scaring or damaging of organ
tissue. In the case of pulmonary fibrosis, the scaring and damage
occurs to the lungs and is irreversible.Therehavenowbeenmultiple
reports of this type offibrosis affecting Covid-19 survivors (36–38).
Thismeans that even after a patient survives the disease, theymight
have to deal with the consequences the rest of their life.

Interestingly, there is research suggesting that IL-17 is
involved in the development of fibrosis in murine models (39,
40). This is further supported in findings in different types of
human fibrosis, like hepatitis-B-related fibrosis or cystic fibrosis
(41–43).

This in turn is relevant in a gd T cell context because gd T cells
are a producer of IL-17 (44, 45). It is important to note that other
immune cells such as Th17 cells, which are an ab T cell subset,
are also producers of IL-17 (46). However, Th17 cells require
antigen-specific priming to do so. In the case of gd T cells there
are both natural and inducible IL-17 producing cells called Tgd17
cells (47). The natural Tgd17 cells are considered to be localised
in the peripheral mucosal tissues and in mice have been found in
lung tissues (48–52). These natural gd T cells can respond quickly
to infection and are found to produce IL-17 within 24h (48, 53).

The inducible Tgd17 cells seem to mature and differentiate in
lymph nodes in order to make IL-17 in an immune response
after encountering antigens (54). These gd T cells seem to
produce IL-17 within 60h post antigen contact.
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There is not yet any indication that these subtypes are directly
involved in COVID-19. Especially, when considering that there
are a number of immune cells that can produce IL-17 (46).
Nevertheless, gd T cell have the unique ability to both muster an
innate and quick IL-17 response as well as a specific antigen
dependent IL-17 response to an infection.

It is therefore important to look at this Covid-19 complication
with gd T cells in mind; especially, when considering that IL-17
has been found to be elevated in Covid-19 patients (55). Jouan
and colleagues, further found, that the IL-17 was more
concentrated in the lung tissue when compared to blood levels.
This gives further indication of a link between Covid-19 caused
fibrosis and IL-17.

gd T cells could thus play a considerable role in Covid-19
symptoms. In both the case of cytokine storm as well as fibrosis
they might affect the patients in a negative way. It is therefore
important to look at potential gd T cell based approaches with
potential side effects in mind. In the case of fibrosis, IL-17
inhibitors such as Secukinumab could be combined with a gd
T cell based therapy.
T CELLS AND COVID-19

The relationship between COVID-19 and ab T cells has already
been reviewed elsewhere (56). However, we want to highlight a
few key points that might be relevant for gd T cells. Lymphopenia
seems to be a common symptom among COVID-19 patients (5,
31, 57–59). But the T cell levels appear to recover after the
patients overcome the illness (5, 60). Lymphopenia is common in
respiratory viral infections (61) In Covid-19, while the
lymphopenia is consistent in the CD4+ T cell subtype across
reports, the severity of lymphopenia in the CD8+ subtype varies
(62, 63).

Potential causes for this lymphopenia could be hyperactivation
or exhaustion. This is supported by the findings of activation
markers and pro-apoptotic molecules (35, 57). The CD8+ subtype
seems to be activated to a larger degree compared to the CD4+

subtype. However, it isn’t clear if these cytotoxic CD8+ T cells are
hyperactive or exhausted, which would affect their involvement in
COVID-19. Some research suggests hyperactivated CD8+ T cells
(64), while other research suggests exhausted CD8+ T cells with
reduced cytokine production (65).

Interestingly, studies have found memory CD4+ and CD8+ T
cells in recovered patients that are virus-specific (4, 63, 66). It is
Frontiers in Immunology | www.frontiersin.org 4
not yet determined if these memory T cells in fact, provide
immunity to survivors.

All this indicates an involvement of ab T cells in COVID-19.
However, to what extent they aid in combating the illness is not
certain. There does appear to be a large variance between
patients, which calls for distinct therapy approaches based on
the patients differing T cell profiles.
gd T CELLS AND COVID-19

So far, the research into T cell involvement as mentioned above,
has quite heavily focused on the ab T cells. Therefore, there is
limited information on the involvement of gd T cells. However,
what we do know so far can give a good indication of the
relevance of gd T cells.

First of all, the Lymphopenia that is reported doesn’t
exclusively affect ab T cells, but seems to affect gd T cells just
as much (67–70) (Table 1). Intriguingly, one study showed that
patients with the most severity had the lowest amount of gd T
cells (67).

This begs the question, if gd T cell levels in patients could be
indication of the severity of the illness. It is however not clear
how the level of gd T cells in a patient before and at the beginning
of the disease impacts the outcome.

There also seems to be a significant shift in the phenotype of
gd T cells in patients. There are conflicting reports regarding
these changes. One study suggests a transition to a naïve
phenotype both in percentage as well as in absolute numbers
(n=30) (70). This shift does not seem to be affected by the
severity of the disease. In contrast, in another study with
significantly less patients (n=5) a shift towards an effector
(memory) phenotype was detected over the span of two weeks.

A transition to the naïve phenotype seems counterintuitive.
The reports of lymphopenia would suggest an activation and
exhaustion of gd T cells similar to that reported in ab T cells (see
above) and therefore a reduction of the naïve phenotype in the
overall population. This is also supported by the upregulation of
the activation marker CD25 in COVID 19 patients (68). and
further supported by high expression levels of CD69 and PD-1
on gd T cells (55). CD69 is an early activation marker and PD-1 is
an exhaustion marker for some T cells (71, 72) (Figure 2).

The role of PD-1 in the context of gd T cells is as of yet not
fully understood. For CD4 & CD8 ab T cells PD-1 upregulation
seems to indicate exhaustion (73). However, this doesn’t seem to
TABLE 1 | Studies reporting on the effects of Covid-19 on gd T cells and related cytokines.

Donor Cohort Covid-19 Patients Blood vs Tissue Ref

gd T cells 98 healthy controls, 7 healthy child controls, 25 child patients, 68 patients Decreased Not significant (55, 68–70)
d2 T cells 92 healthy controls, 84 adult patients Decreased NA (55, 67, 70)
d1 T cells 20 healthy controls, 30 adult patients No significant difference NA (55)
Activation Markers 38 healthy controls, 68 patients Increased NA (55, 68)
Exhaustion Markers 20 healthy controls, 30 patients increased Higher in Tissue than in Blood (55)
IFN-g 20 healthy controls, 7 healthy child controls, 30 patients, 23 child patients No significant difference Higher in Tissue than in Blood (55, 69)
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apply to all T cells; for example, follicular T helper cells seem to
highly express PD-1 and PD-1 seems to be more involved in
tissue position control (74). More importantly there are now
reports indicating that PD-1 expressing SARS-CoV2 CD8+ ab T
cells are functional and not exhausted (75).

The role of PD-1 expression for gd T cells is not fully known
yet. On the one hand, tumour-bearing mice derived gd T cells
that were PD-1+ showed signs of exhaustion and apoptosis (76).
On the other hand, studies on d2 T cells show that the
relationship is more complex. The cytotoxic activity of PD-1+

and PD-1- gd T cells were comparable against zoledronate treated
PD-1+ Daudi cells (77). This would indicate that gd T cells could
overcome the inhibitory effect of PD-1 through phosphoantigen
stimulated TCR triggering.

In a more recent study in acute myeloid leukemia patients, the
exhaustion of d2 T cells seemed to be more indicated by TIM-3
(78). In fact, the expression of TNF-a and IFN-g was highest in
the PD-1+ TIM-3- subset and lowest in the double negative
subset. A role of TIM-3 in gd T cell exhaustion was also shown in
malaria patients that showed high expression of TIM-3 was
linked to reduced d2 T cell pro-inflammatory cytokine
production (79).

The meaning of high expression of PD-1 on gd T cells in
COVID-19 patient needs further investigation. It does indicate
Frontiers in Immunology | www.frontiersin.org 5
an involvement of gd T cells in the immune response but other
exhaustion markers, other than TIM-3, need to be investigated to
examine how involved the gd T cell response in COVID-19 is.

The involvement of gd T cells in COVID-19 is further
supported, by an increase in IL-18, reported in the same study
by Jouan et al. IL-18 is a cytokine that seems to be involved in gd
T cell activation in viral infections (80).

Considering all these different activation and exhaustion
markers being expressed in COVID-19 patients, it appears
paradoxical to concomitantly have a significant increase in
both relative as well as absolute naïve gd T cells levels.

However, most of these reports are based on blood samples
from patients. This neglects the fact that there are major
differences between the circulating gd T cells and those
recruited into the inflamed tissues (81). In general, the relative
levels of the gd T cell subtypes seems to differ between the blood
stream and tissues. The d1 subtype is more frequently
encountered in tissues, whereas the d2 subtype is mostly found
in the blood in the form of Vg9Vd2 T cells (82–84). In the case of
an infection, more gd T cells would be recruited into the tissue
and it is therefore of interest to look at the differences of blood
and tissue T cell levels.

So far there has only been one study that focuses on the
differences between blood and tissue in relation to gd T cells and
FIGURE 2 | Schematic of what effects gd T cells during a Covid-19 infection. gd T cells levels are low in Covid-19 patients which is characterized by Lymphopenia.
They seem to be exhausted which is detected via the exhaustion marker PD-1. They also seem to be heavily activated which is shown through activation markers
CD25, CD69 and IL-18. However, gd T cells produce high amounts of IFN- g in response to Covid-19. Created by BioRender.
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COVID-19 (55). In this study blood samples were compared
with endotracheal aspirates (n=30). Interestingly, they did not
find any differences in the gd T cell levels between blood and
tissue in COVID-19 patients. It was also not clear if the subtypes
changed between blood and tissue during the disease. However,
not only do they find an increase of the activation marker CD69
and the exhaustion marker PD-1 between healthy controls and
patients, but they find a significant increase of these factors in the
tissue compared to the blood. While they do not analyse the
phenotype of the tissue residing gd T cells, the activation markers
would indicate a high level of activation of these gd T cells.

The differences in tissue vs blood could be a great opportunity
for further research. gd T cells are a very diverse group of
immune cells and differ greatly in function, especially between
tissue and circulating gd T cells (85). So far circulating gd T cells
have been studied the most with the assumption that they
infiltrate tissue when infected. However, the tissue residing gd
T cell subtypes have been studied less, although they are
potentially the first responders to tissue infections.

Tissue residing gdT cells are generally d1 T cells (or with other d
chains, such as d3) while circulating gd T cells are usually d2 T cells
which means their TCR is built differently, with either a d1 or d2
chain. This is potentially relevant for their functions, not least of
which the recently discovered ability to phagocytose infected cells
and professionally present antigens in a TCR-dependant manner
(14, 15). This has so far only been studied with Vg9Vd2 T cells. It
would be of relevance to study, if different gd T cells with different
TCRs can show similar functions. Furthermore, tumour-associated
antigens can be taken up by gd T cells and presented to classical T-
cells by MHC molecules in a professional capacity reminiscent of
dendritic cells (DC) (86, 87). It therefore stands to reason that also
virally infected cells, similarly killed by a SARS virus (88), should be
able to provide viral peptides for MHC processing and cross-
presentation. If so, this may have profound consequences for the
immunology of SARS-Cov-2 and for improved vaccine strategies.
In support of this strong possibility it has been shown that gdT cells
canorchestrate specificCD8+T-cell responses toEpsteinBarr virus
epitopes (89).

It is important to note, that not all functions of gd T cells
require their TCR, for example gd T cell can target cancer cells
through the NKG2D receptor, independently of the TCR (90).

COVID-19 patients show elevated IFN- g levels (69) and
Jouan et al. (55) could show that there was a significant increase
in the tissue compared to blood. The amount of IFN- g
producing innate immune cells in the blood, including gd T
cells were reduced in patients. This would indicate that there
could be a higher amount of IFN- g producing gd T cells in the
tissue to generate the high amount of IFN- g detected.

Activated effector gd T cells have been shown to produce large
amounts of IFN- g. Intriguingly, gd T cells have been shown to
kill SARS in an IFN- g dependent manner (88, 91).

gd T cells seem to be heavily involved in children with COVID-
19 (69). In early life, the innate immune system, including gd T cells,
is a predominant immune response (6). This is particularly
interesting, considering that the severity of COVID-19 is
significantly lower in children compared to adults (92).
Frontiers in Immunology | www.frontiersin.org 6
While Carter et al. found a general lymphopenia in children,
it seems to affect the gd T cell population the most. Additionally,
gd T cells were the only activated T cell population, next to CD4
memory T cells.

This would indicate a strong involvement of gd T cells in the
immune response of COVID-19 in the most resistant
population. While this needs to be further investigated, it
seems that gd T cells have great potential in aiding in
combating the SARS-Cov-2 pandemic.
gd T CELLS IN VIRAL INFECTIONS

gd T cells are involved in various types of viral infections
[reviewed in Poccia et al. (93)]. For example, they seem to
have antiviral activity against human immunodeficiency virus
(HIV) (94, 95), which seems to be on par with that of CD8+ T
cells (96). These cytolytic activities appear to be mostly through
Vg9Vd2 T cells, however an inversion of the d1 to d2 ratio occurs
in HIV patients (97, 98). Both subtypes might therefore be
relevant in the immune response to HIV and other viruses (99).

Respiratory viruses, such as the influenza virus, also cause a gd
T cell response. The mRNA levels in mice post infection have
shown high expression levels gd TCR chain mRNA (100, 101).
More recently activated human Vg9Vd2 T cells have been shown
to effectively kill influenza infected human cells in vitro (102,
103). These gd T cells have also been able to reduce severity and
increase survival rates of immunodeficient, humanized mice
infected with either human influenza (H1N1) or avian
influenza (H5N1) (104).

Recently, it has been shown that the gd T cell response to
influenza changes throughout the human lifespan (105). While
the main response was through IFN-g producing Vg9Vd2 T cells,
the gd T cell repertoire was distinctly different in neonates and
adults. The neonate gd T cell repertoire showed a lot higher
diversity, while the adult repertoire was heavily Vg9Vd2
dominant. Sant et al. further identified a vulnerability to
influenza viruses in those neonate and elderly donors that
lacked Vg9Vd2 TCRs. This shows that gd T cells appear to be
heavily involved in respiratory virus infections such as influenza
viruses. Particularly striking is the importance of IFN- g
producing Vg9Vd2 T cells, which are commonly found in
adult peripheral blood. Their importance in these different
viral infections indicates a strong importance of this subtype in
antiviral immunity.

There seems to be an even more direct link of gd T cells
antiviral capabilities against SARS-Cov-2. After the outbreak of
SARS-Cov in 2003, Poccia et al. found an increase of gd T cells in
survivors 3 months after infection (88). More specifically, this
increase was only observed in the Vd2 subtype, which is most
commonly found in blood. It was also shown in the same study,
that Vg9Vd2 T cells isolated from blood were able to significantly
reduce the viral load in in vitro studies.

These findings indicate an innate involvement of gd T cells in
viral infections. The immune response of these T cells to viral
infections is further indication that they are involved in SARS-
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Cov-2 infections. Especially their connection to SARS infections
seems promising. While there is still research, gd T cells could
become relevant for antiviral therapy, including COVID-19.
gd T CELLS AGAINST CANCER

gd T cells are already used for medical purposes. Their innate
response to inflammation and stressed cells has been used for
cancer therapy. Their efficacy in this field could give indication
for their use in other medical areas such as viral infections. This
stands to reason as the gd T cells, akin to NK-cells, may not
substantially be able to distinguish between a virally infected and
a transformed cancer forming cell.

Two different approaches have so far utilized gd T cells in
cancer therapy, reviewed by (10). gd T cells are expanded in order
to give the patient more cells to combat the cancer. In one
treatment the gd T cells are expanded in vivo. This is done by
giving the patient zoledronate and IL-2 (106, 107). This method
has shown to increase the survival rate of patients with multiple
myeloma (108). However, this treatment has only had modest
success in fighting cancer and has a drawback as IL-2 in low
doses can promote immunosuppressive Treg cells and can be
toxic in high doses (109, 110).

Another treatment option is autologous adoptive transfer. In
this method the gd T cells are isolated from the patient and then
expanded ex vivo (111). This method has been tested as a novel
second-line therapy in various cancer types and has shown
superior results in renal cell carcinoma over other established
options (112–114).

In comparison, adaptive transfer has shown more success
than the in vivo expansion treatment. However, it is also far more
expensive and more time consuming since the gd T cells need to
be expanded over the course of 10-14 days in a specific purpose
built laboratory (GMP facility).

When looking for gd T cell therapy in other illnesses, both
options should be considered.

Seeing the antiviral functions that gd T cells have shown
towards multiple viruses including SARS-Cov2, it might be
worthwhile considering both alternatives for potential treatment.
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gd T cells appear to be quite versatile in their immunological
functions and their repertoire seems to be ever expanding.
Especially the Vg9Vd2 subset has shown poly-cytotoxic functions
in various fields. While the use of gd T cells shouldn’t be limited to
just this subset, their resourcefulness is promising.

When considering their use against COVID-19, two sides need to
beweighedup.On theonesideare theantiviral capacity thatgdTcells
have shown. This is true for HIV and respiratory viruses such as
influenza virus and now potentially SARS-Cov-2. However, on the
other side is the risk of their pro-inflammatory activity adding to the
cytokine storm which rages in COVID-19 patients. The gd T cell-
based treatments that have already been studied in a cancer setting
could be a potential novel cure, but caution is highly advisable as a
cytokine stormcanhavedevastating effects and thepotential negative
effects of these treatments thus need to be assessed with great care.

Another matter to consider is the high variability of gd T cells
between individuals. As mentioned above, the gd T cell population
changes throughout the human lifespan. Additionally, individuals
show different levels of subtypes and different absolute numbers in
the same age groups.

Considering this, it seems more appropriate to look at potential
cures on a case-by-case basis, rather than looking for a cure-all. A
disease as complex as COVID-19 with varying degrees of cytokine
release via cytokine storms and the highly polymorphic nature of
the human immune system needs to be addressed according to
these symptoms. We would strongly argue that gd T cell based
therapies could be treatments worth considering.
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