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Quantitative markers extracted from resting-state electroencephalogram (EEG) reveal subtle neurophys-
iological dynamics which may provide useful information to support the diagnosis of seizure disorders.
We performed a systematic review to summarize evidence on markers extracted from interictal, visually
normal resting-state EEG in adults with idiopathic epilepsy or psychogenic nonepileptic seizures (PNES).
Studies were selected from 5 databases and evaluated using the Quality Assessment of Diagnostic
Accuracy Studies-2. 26 studies were identified, 19 focusing on people with epilepsy, 6 on people with
PNES, and one comparing epilepsy and PNES directly. Results suggest that oscillations along the theta fre-
quency (4–8 Hz) may have a relevant role in idiopathic epilepsy, whereas in PNES there was no evident
trend. However, studies were subject to a number of methodological limitations potentially introducing
bias. There was often a lack of appropriate reporting and high heterogeneity. Results were not appropri-
ate for quantitative synthesis. We identify and discuss the challenges that must be addressed for valid
resting-state EEG markers of epilepsy and PNES to be developed.

� 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Epilepsy is a neurological disease defined by the occurrence of
at least two unprovoked seizures that are >24 h apart, or one
unprovoked seizure and high recurrence risk [1]. The diagnosis of
a seizure disorder is clinical; a specialist-led process based on con-
sideration of multiple patient characteristics. This primarily
involves a detailed clinical history including a thorough description
of the seizure events. To support the diagnosis, scalp electroen-
cephalogram (EEG), magnetic resonance imaging (MRI), and fur-
ther investigations may be performed as indicated [2].

Diagnostic uncertainty is common following paroxysmal neuro-
logical presentations involving transient loss of consciousness, as
this can be a symptom of epilepsy, as well as a number of different
conditions, including psychogenic nonepileptic seizures (PNES),
syncope, metabolic disorders, migraine, sleep and movement dis-
orders, transient ischemic attacks and transient global amnesia
[3]. Syncope and PNES are the most common differential diagnoses
of epilepsy [3]. Psychogenic nonepileptic seizures are episodes of
observable abrupt paroxysmal change in behavior or conscious-
ness in the absence of the electrophysiological changes in the brain
that accompany an epileptic seizure [4].

Capturing a patient’s typical event on simultaneous video-EEG
recording (video telemetry) is the most direct evidence pointing
to a diagnosis of epilepsy or PNES. To observe a seizure event while
recording normal scalp EEG activity supports a diagnosis of PNES
over epilepsy [5]. However, the use of EEG is time- and resource-
intensive, and the limited recording time of routine EEG appoint-
ments is often inadequate to detect seizure events or interictal
abnormalities that occur infrequently. According to a recent
meta-analysis, the estimated diagnostic sensitivity of routine EEG
for adults with a first unprovoked epileptic seizure was 17.3% (at
94.7% specificity), with a positive test defined by the presence of
interictal epileptiform discharges (IEDs; [6]).

Studies on misdiagnosis of epilepsy highlight the difficulty of
identifying the nature of seizure events, with reports of misdiagno-
sis rates in adults between 5.6% and 26% [7]. Differentiating
between PNES and epileptic seizures represents a significant
problem in clinical practice, resulting in a mean diagnostic delay
of 7 years [8]. This is further complicated by the possibility of
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comorbid epilepsy and PNES. Diagnostic delays prevent appropri-
ate and timely treatment, imposing health and economic burdens
at individual and population levels. To address this, extensive work
has been conducted to identify novel markers with diagnostic rel-
evance for epilepsy and PNES.

In recent years, there has been increasing interest in the resting-
state EEG for studying healthy and neuropathological conditions.
Resting-state EEG is a recording made in the absence of any active
sensory, motor or cognitive task. In contrast to the connectionist
tabula rasa model adopted by many experimental and modeling
studies [9], the framework underlying resting-state research is that
an important portion of brain activity is self-generated and self-
organized, and not merely a response to external stimuli [10,11].

Resting-state EEG activity is believed to reflect the spontaneous
communication dynamics of neural populations, as determined by
the orchestrated action of inhibitory and excitatory conductances
in the brain. This can provide information on the biological organi-
zation of the healthy brain [12], as well as on specific changes
occurring in disease, including different neuropsychiatric disorders
[13,14].
2

The study of spontaneous EEG dynamics could be of great rele-
vance to neurological conditions that arise as a result of intrinsic
neurophysiological abnormalities, such as the epilepsies of idio-
pathic origin, which are thought to be genetically determined [15].

While current neurophysiology practice is mainly based on
visual inspection of EEG recordings, the development of computa-
tional techniques for EEG signal processing has allowed the inves-
tigation and analysis of subtle dynamics that are not detectable by
visual inspection alone (Box 1). These could potentially have a clin-
ical role as adjunctive diagnostic indicators, shall our understand-
ing of these markers in epilepsy and PNES advance enough and
demonstrate appropriate levels of validity.

The aim of this review is to systematically summarize current
knowledge of resting-state quantitative EEG findings in adults with
idiopathic epilepsy or PNES and explore their potential utility as
adjunctive diagnostic markers of disease. We will examine
methodological limitations and sources of bias in an attempt to
guide further advances in the field.
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2. Methods

We performed a systematic review. The protocol for this study
was registered in the online PROSPERO database before search exe-
cution and canbe accessed fromcrd.york.ac.uk/prospero (Record ID:
CRD42020179174). The only deviation from the protocol was the
age boundary for inclusion of study populations; this was moved
from 18 to 16 years, as we observed that many studies defined peo-
3

ple > 16 years of age as adults. Our intentionwas to perform ameta-
analysis, but this was not deemed appropriate for reasons outlined
in Section 3.4, i.e., no marker was investigated bymore than 5 stud-
ieswithin the samediagnostic group, andahigh riskof bias labelwas
assigned to most studies. This manuscript has been prepared
according to the PRISMA-DTA (preferred reporting items for system-
atic reviews and meta-analyses of diagnostic test accuracy studies)
guidelines [16]; a checklist is available in Appendix 1.
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2.1. Objectives

To systematically review the literature concerning the charac-
teristics and diagnostic accuracy of quantitative resting-state EEG
markers in people with idiopathic epilepsy or psychogenic
nonepileptic seizures.

2.2. Criteria for considering studies for this review

2.2.1. Index test
Studies were eligible for inclusion if they utilized whole-brain

EEG, defined as at least 4 electrodes placed bilaterally to overlie
one anterior and one posterior location, and if EEG was recorded
during awake resting-state, interictally. Studies were excluded if
the recordings took place in close time proximity (i.e. a few hours)
to a seizure event, or if there was evidence of interictal epilepti-
form discharges (IEDs) on the EEG considered for analysis.

2.2.2. Population
Studies were eligible if they included human adults (>=16 years

old) with a clinical diagnosis of idiopathic epilepsy or psychogenic
nonepileptic seizures.

2.2.3. Comparator
Studies were included only if a control group was present, con-

sisting of people that did not have the same diagnosis of the pop-
ulation group.

2.2.4. Outcomes
Studies were included if they reported group-level descriptors,

and/or diagnostic accuracy indices (sensitivity and specificity as a
minimum) for the EEG measures examined, or adequate informa-
tion for these to be calculated or obtained from personal
communication.

2.2.5. Type of studies
Studies with analytic designs were included, i.e., observational

or experimental if a baseline resting-state condition was present.
Languages considered were English, Italian, and Spanish. In order
to reduce the influence of convenience sampling, studies with a
total sample size n < 20 were excluded. No restrictions by year or
type of setting were applied.

2.3. Information sources

We searched the following databases for relevant literature up
to the 17/04/2020: MedLine, EMBASE, PsychINFO, and Web of
Science, and the first 200 references as sorted in the relevance
ranking of Google Scholar (as recommended by [17]). The exact
search strategy is reported in Appendix 2. We scanned the refer-
ences of all included studies to identify further relevant work.
Email alerts were set for all the databases in order to continue
screening studies up to the start of data extraction, on the
23/07/2020.

In order to correct for publication bias, a call for gray literature
was emailed to relevant groups identified through the search.

2.4. Study selection

A two-stage screening process was followed. In stage one, titles
and abstracts were independently screened by two reviewers (IF
and SS). In stage two, the full texts of the potentially eligible arti-
cles were independently screened by two reviewers (IF and SS),
and reasons for exclusion were documented. Any disagreements
were resolved through discussion and if necessary, by third party
arbitration (PS). Inter-rater reliability was calculated [18].
4

If study eligibility could not be established following full text
screening, authors were contacted, and further details were
requested. A maximum of 3 contact attempts were made before
excluding studies due to insufficient information available.

When studies included a mixed population cohort (e.g., adults
and children, or people with lesional and non-lesional epilepsy),
authors were contacted with a data sharing request for the eligible
sub-group. In line with our inclusion criterion on sample size, these
were requested if the study included a minimum of 20 participants
fulfilling the inclusion criteria.

No studies were excluded from the systematic review based on
their risk of bias or applicability, as measured by our quality
assessment tool (see Section 3.3). High risk of bias was an exclu-
sion criterion for the meta-analysis (see Section 3.4).

2.5. Data extraction and quality assessment

Data extraction was carried out by one reviewer (IF) and
double-checked by a second reviewer (SS). The data extraction
form has been developed based on the Cochrane Handbook for Sys-
tematic Review Checklist of items to consider in data collection or
data extraction and can be found in Appendix 3 [19]. Study authors
were contacted to request missing information or clarify ambigui-
ties. If impossible to obtain otherwise, means and measures of dis-
persion were approximated from figures. When overlapping
reports on the same sample were individuated, the ‘‘core” paper
containing the key study data was considered for data extraction,
using the other papers as supplements.

Risk of bias and applicability were assessed independently by
two reviewers (IF and SS) by means of the QUADAS-2 (Quality
Assessment for Diagnostic Accuracy Studies 2, [20]). As by guideli-
nes, QUADAS-2 items have been tailored to the present review
(Appendix 4).

2.6. Data synthesis and analysis

Characteristics of included studies were synthetized in results
tables, and qualitatively described. Results of the included studies
with associated diagnostic accuracy indices (sensitivity and speci-
ficity) or effect sizes were reported. Effect sizes were calculated by
means of standardized mean difference (Cohen’s d; [21]). Cohen’s d
was calculated based on means and standard deviations or stan-
dard errors for all studies with available data, except for [22] and
[23] for which the F-statistic and t-statistic values, respectively,
were used, and [24] for which Mann–Whitney U-values were used.
Statistical synthesis was to be performed if 5 or more studies that
investigated the same resting-state EEG metric in people with the
same diagnosis and a control group were individuated [25]. More-
over, studies must not have been labeled as ‘‘low” quality on the
QUADAS-2, as meta-analysis of poor-quality studies may be seri-
ously misleading [26]. Since we have not been able to perform a
meta-analysis, we do not report all pre-specified meta-analytic
methods here. These are extensively described in our protocol
(PROSPERO Record ID: CRD42020179174).
3. Results

3.1. Study selection

8574 studies were identified through our database search. 2
additional studies were identified through weekly email alerts
based on the same search terms. Following duplicate removal,
5305 studies were subject to abstract screening. Of these, 507 were
selected for full-text review (94.1% inter-rater agreement, Cohen’s
k = 0.66 indicating substantial agreement). Authors from 17 studies
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were contacted to request whether a full-text report was produced
from conference abstracts of interest; 8 provided a response. Three
confirmed that no full text report had been created and were there-
fore excluded as ‘‘abstract only”. The 9 studies whose authors did
not provide a response after 3 contact attempts were also excluded
as ‘‘abstract only”.

Authors from 45 studies were contacted to request clarifications
directly related to our inclusion and exclusion criteria; 32 provided
a response. The remainder were excluded following 3 contact
attempts as not enough information was available to determine
eligibility (n = 13). Of those who provided a response, 25 were able
to retrieve the information requested. The remainder were
excluded as not enough information was available to determine
eligibility (n = 7).

Authors from 13 studies were contacted with a sub-group data
sharing request, as only a sub-group of the study participants met
our inclusion criteria. In 3 cases, no response was received. In 8
cases, sub-group data were not available due to the nature of the
analyses, as only group data were saved. Sub-group data were pro-
vided for 2 studies [27,28], which were therefore included in our
systematic review. Analyses for the eligible sub-sample have been
reported in Appendix 6.

Following a request for additional data for one study [29], we
repeated the analyses and found that our results were different
from those reported in the original paper. We contacted the
authors, who agreed that their original analysis approach was
incorrect. It consisted of running independent-sample t-tests on
a set of values that included 6 separate repeated measures per par-
ticipant, rather than averaging across the 6 repeated measures
before running a t-test on the mean values. This resulted in p-
values reflecting a sample of 168 people rather than the actual
Fig. 1. Prisma
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sample size of 28. This study was therefore excluded due to unre-
liable analysis methods.

After reviewing full texts and clarifying information with
authors, a total 484 studies were excluded for the reasons listed
in Fig. 1. Twenty six studies satisfied all inclusion criteria and were
included in our review (100% inter-rater agreement, Cohen’s k = 1).
Authors from 9/25 studies for which communication was needed
provided additional information during the data extraction phase.
No studies were included in quantitative synthesis.

3.2. Characteristics of included studies

Table 1 outlines the main characteristics of the included studies.
19 articles from 12 independent research groups investigated
resting-state EEG dynamics in the population with epilepsy as
compared to controls, 1 study compared epilepsy and PNES specif-
ically, and 6 studies from 4 independent research groups compared
people with PNES and controls.

3.2.1. Studies in epilepsy cohorts
All studies used a case-control design. The total sample sizes

ranged from 27 to 158. Fifteen studies had the investigation of
group differences as their only outcome, while diagnostic accuracy
indices were the only outcome for two studies [30,31]. Three stud-
ies examined both outcomes, with diagnostic accuracy indices
computed for those predictors that were significant in group-
level analyses [27,32,33].

Early studies tended to describe the study population in terms
of seizure types, with four studies including people with non-
lesional epilepsy characterized by partial seizures [34], or a mixed
sample with generalized or partial seizures [27,35,36]. The remain-
Flowchart.



Table 1
Characteristics of the 26 studies included in the systematic review, organized by diagnostic category. (See below-mentioned references for further information.)

Healthy 
controls

As below (same sample as Chowdhury 2014 [39])a degree 
parameter)

β (15-30)
γ (31-70) 
Whole (1-70)

Chowdhur
y
2014 [39]

UK Case-
control

IGE 35 14/21 34.4 (n/s), 
>18

10 Unmed.
15 Monoth.
10 Polyth.

EC 19
(10-20)

20 sec / 20 
sec

Mean Degree 
(K); Degree 
Distribution 
Variance (D);
Clustering 
Coefficient (C); 
Characteristic 
Path Length (L)

1–5
6–9
10–11
12– 19
21–70

Yes 
(visual 
inspection)

Selection of 
alert epochs 
(visual 
inspection)

Group 
differences

Unaffected 
first-degree 
relatives

42 23/19 36 (n/s), 
>18

Unmed.

Healthy 
controls

40 20/20 30.7 (n/s), 
>18

Unmed.

Schmidt
2014 [32]

UK Case-
control

IGE As above (same sample as Chowdhury 2014 [39]) Critical 
Coupling 
Constant (Cc);
Global Order 
Parameter 
(average, and 
per channel)

δ (1-3)
θ (3-6)
low α (6-9)
high α (10-
14)
β (15-30)
γ (30-70)

As above Group 
differences

Healthy 
Controls

As above (Same sample as Chowdhury 2014 [39]) Sensitivity, 
specificity, 
PPV and 
FDR

Schmidt
2016 [30]

UK Case-
control

IGE 30 19/11
a

27.4 (10.6) 
16-57a

Unmed. EC 19
(10-20)a

20 sec / 20 
sec

Power peak;
Mean Degree 
(D); Local 
Coupling 
Constant

α (8-13) 
low α (6-9) 

Yes 
(visual 
inspection)

Recordings 
in late 
morning or 
early pm + 
study of 
circadian 
effect 

Sensitivity,
specificity

Healthy 
Controls

38 18/20
a

30.4 (9.0)
18-52a

Unmed.a

HC sample: overlap with Chowdhury2014 [39]a

Vijith
2015 [33]

India Case-
control

Non-lesional 
epilepsy (GE or 
TLE)

10 n/s n/s (n/s) 
20-50a

Medicated, 
but not right 
before EEGa

EC
a

21
(10-20)

Epilepsy:
120 sec; 
Control: 
60 sec / 12 
sec

Approximate 
entropy; 
Sample 
entropy; 
Hurst exponent

Whole 
spectrum

Yes 
(visual 
inspection)

Not
addressed

Group 
differences

Normal 
controls 
(evaluated for 
syncope but 
outcome was 
normal)

20 n/s n/s Sensitivity, 
specificity, 
accuracy, 
Mathews 
correlation 
coefficient

Jacob
2016 [31]

India Case-
control

Non-lesional 
epilepsy (GE or 
TLE)

As above (same sample as [33] Vijith 2015) Wavelet 
energy; 
Correlation 
Dimension 
(CD); Largest 
Lyapunov 
Exponent 
(LLE)

δ (<4)
θ (4-7)
α (8-13)
β (13-30)
γ (>30)

As above Sensitivity, 
specificity, 
accuracy

Normal 
controls

As above (same sample as [33] Vijith 2015)

Mazzucchi
2017 [45]

Italy Case-
control

Cryptogenic 
focal epilepsy

22 9/13 43 (17), 
18-76

7 Unmed.
8 Monoth.
7 Polyth.

EC 19
(10-20)

+
Source 
analysis

45 sec / 2 
sec

Mean Lagged 
Coherence;
Characteristic 
Path Length 
(L);
Clustering 
Coefficient (C)

δ (1-4)
θ (5-7)
α (8-13)
β (14-30)
γ (31-60)

Yes 
(visual 
inspection)

Not
addressed

Group 
differences 
(“PRE” 
condition)Healthy 

controls
22 16/6 41 (16), 

21-73
n/s

Pellegrino
2017 [44]

Italy Case-
control

Non-lesional 
TLE

15 5/10 44 (4.8), 
19-76

11 Monoth.
4 Polyth.

n/sc 14
(10-20)

10-20 min 
/ 30 sec

Mean power;
Interhemispheri
c power
differences

δ (1-4)
θ (5-7)
α (8-11)
σ (12-15)
β (16-20)

Yes 
(visual 
inspection
+ ICA)

Instructions 
to refrain 
from caffeine 
or alcohol

Group 
differences

Healthy 
controls

14 5/9 48 (5.3), 
19-77

Unmed.
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Notes: Described are the populations of interest for this review only. Some studies might have included additional populations which have not been included in the table.
Abbreviations: EC = eyes closed. EO = eyes open. d = delta. h = theta. a = alpha. b = beta. c = gamma. n/s = not specified. GS = generalized seizures. GTCS = generalized tonic-
clonic seizures. PS = partial seizures. IGE = idiopathic generalized epilepsy. TLE = temporal lobe epilepsy. PGE = primary generalized epilepsy. GGE = genetic generalized
epilepsy. FE = focal epilepsy. Unmed. = unmedicated. Monoth. = Antiepileptic drug monotherapy. Polyth. = Antiepileptic drug polytherapy.
ainformation retrieved via personal communication with study authors.
bresults for a sub-group of the 114 participants, obtained by excluding patients with MRI/CT abnormalities and with IEDs on their EEG recordings (see Appendix 6 for analyses
and results). Individual patient data for this specific sub-group have been provided by the study authors upon request. The results presented in this table have been derived
based on such data, and therefore do not exactly reflect results presented in the original paper, although the overall conclusions remain unchanged. The data on age are
approximations, as the age of each participant represents the mean of the 4-year age range. The original paper performed analysis on power values as well. This has not been
possible to replicate on the eligible sub-group as raw data for this measure were no longer available.
cIn this study, authors examine wakefulness recordings while participants were not performing any tasks (i.e., in resting-state), as assessed by their report of daily activities
(personal communication).
dresults for a sub-group of the 30 participants, obtained by excluding 3 patients that were <16 years old (see Appendix 6 for analyses and results). Individual patient data for
this specific sub-group have been provided by the study authors upon request. The results presented in this table have been derived based on such data, and therefore do not
exactly reflect the results presented in the original paper, although the overall conclusions remain the same.
ecalculated as: Recall = TP/[TP/(TP = FN)].
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der of the studies categorized their population according to epi-
lepsy types or epilepsy syndromes, including nine studies on idio-
pathic generalized epilepsy (IGE/PGE); [24,28,30,32,37,38,
39,40,41], two studies including both a sample with IGE and a sam-
ple with non-lesional focal epilepsy [42,43], two studies studying
IGE and non-lesional temporal lobe epilepsy (TLE) as a single sam-
ple [31,33], two studies focusing on non-lesional TLE only [22,44],
and one study focusing on cryptogenic focal epilepsy only [45].

Most studies had a single comparator consisting of healthy con-
trols, with the exception of 3 studies including a control group with
Table 2a
Visual summary of results for 20 studies examining group differences between people wit
information.)

Notes: For each study, the frequency bands examined are represented by coloured cel
significant differences with Epilepsy > Control in at least one electrode location; blue in
indicates no significant differences. Values in the cells represent the effect size (Cohen’s d
When more than one value for the effect size d is presented, these refer to different types
aPeople with epilepsy were compared to two control groups: neuropsychiatric or head
minimum to maximum values across the channels examined. For relative power, Cohen’
bThree comparisons are performed: healthy controls compared to 1) patients with genetic
difference); 2) GGE without photosensitivity (mean power d = 0.97; difference not signi
icant). For Mean Frequency values, the three effect sizes d reported refer to the same thr
and standard errors used to calculate Cohen’s d were approximated from Fig. 1.
cWe considered 1) the supplementary analysis 7 (topographic analysis), comparing pe
controls (topographically specific significant differences are observed, but an effect size co
of global alpha power shift between people with IGE and healthy controls, which was ca
(difference not significant: t(63) = �1.04; p = 0.301; d = 0.25; see supplementary analysi
dWe considered the comparison between healthy controls and epilepsy without abnorma
the text are different from the values reported in the tables and reports on statistical sign
comparisons. Colour coding for significant differences refer to the information reported
eMean Power values were approximated from Fig. 3 and means and standard errors for th
reported for Peak Frequency refer to the comparison between healthy controls and wel
fResults for a sub-sample of participants meeting the inclusion criteria for this review (
Appendix 6.
gEffect sizes calculated for average power values across all electrodes (Tables 1 and 2).
hEffect sizes were calculated based on numerical values obtained via personal commun
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neuropsychiatric disorders [27,36] (one of which comprised of
PNES patients exclusively, [22]). Three studies included an addi-
tional control group composed of people with a diagnosis of ten-
sion headache [34,36] or first-degree relatives unaffected by
epilepsy [39].

The average age for the study populations ranged from 19.4 to
48, with participants having a mean age between 20 and 30 years
in 5 studies, between 30 and 40 years in 7 studies, and between 40
and 50 years in 4 studies. For 4 studies, it was impossible to
retrieve information on average age. Studies varied in their propor-
h epilepsy and control, with effect sizes. (See below-mentioned references for further

ls. Cells are left blank for frequencies that were not investigated. Yellow indicates
dicates significant differences in the opposite direction, i.e. Epilepsy < Control. Gray
) for the difference. n/d: not enough data were available to calculate the effect size.
of comparisons carried out by the study; see study-specific notes for further details.
ache controls. For absolute power, reported Cohen’s d values indicate a range of
s d refers to the significant comparison of epilepsy versus neuropsychiatry controls.
generalized epilepsy (GGE) with photosensitivity (mean power d = 2.14; significant

ficant; 3) non-lesional focal epilepsy (mean power d = �0.17; difference not signif-
ee comparisons, and none of the differences are significant for this measure. Means

ople with non-lesional epilepsies (IGE or FE) with poor seizure control to healthy
uld not be calculated as per-channel data were not available)and 2) the comparison
lculated based on individual patient data available on the study’s online repository
s in Appendix 6).
lities on EEG recordings. Note that in this paper, the values descriptively reported in
ificance are also not coherent. We therefore did not calculate an effect size for these
in Table 1.
e two IGE groups were pooled to derive standardized effect sizes. The two values of d
l-controlled IGE, and healthy controls and drug-resistant IGE, respectively.
data obtained via personal communication). For details, see sub-group analysis in

ication (‘‘PRE” condition only was considered for this review).



Table 2c
Visual summary of results for 6 studies examining group differences between people with PNES and control, with effect sizes. (See below-mentioned references for further
information.)

Notes: For colour codes, refer to notes in Table 2a. n/d: not enough data were available to calculate the effect size. When more than one value for the effect size d is presented
within one cell, these refer to different types of comparisons carried out by the study; see study-specific notes for further details.
aEffect sizes are reported for the significant electrodes: In high beta: C3 d = 0.84. In gamma: C3 d = 0.88; P3 d = 0.91.
bFor non-significant results, we report minimum and maximum effect sizes for the 5 density values examined. For Assortativity in beta, reported are Cohen’s d values for the
two significant differences at density of 0.1 and 0.15, respectively. Means and standard errors used to calculate Cohen’s d were approximated from Figs. 2–5 and A2.

Table 2b
Visual summary of results for 20 studies examining group differences between people with epilepsy and control, with effect sizes (continued). (See below-mentioned references
for further information.)

Notes: For colour codes, refer to notes in Table 2a. Note that the range of frequency for each cell in this table differs from the one in Table 2a. This subtle change was made to
reflect the frequency bands examined by the majority of studies in this table. n/d: not enough data were available to calculate the effect size. When more than one value for
the effect size d is presented within one cell, these refer to different types of comparisons carried out by the study; see study-specific notes for further details.
aEffect sizes refer to the comparison between people with IGE and healthy controls. They were calculated based on numerical values obtained via personal communication.
People with IGE were also compared to a group of unaffected relatives. No differences between patients and unaffected relatives were found in any band for any measure
(with d ranging from 0.001 to 0.38).
b Effect sizes were calculated based on numerical values obtained via personal communication. The three values presented for Global Order Parameter refer to effect sizes d
for average, FP1 and F7 channels respectively.
cEffect sizes refer to the comparison between IGE and healthy controls. For Participation Index and Onset Index, we report minimum and maximum effect sizes for the 19
channels examined. These were calculated based on numerical values obtained via personal communication.
dMeasures studied were calculated on the whole frequency spectrum (personal communication).
eResults for a sub-sample of participants meeting the inclusion criteria for this review (data obtained via personal communication). Two comparisons are performed; one
between healthy controls and epilepsy with abnormal EEG (d = 2.26; significant difference); one between healthy controls and epilepsy with normal EEG (d = 0.69; difference
not significant). Comparison is based on entropy values for the two most discriminating channels only, i.e. O1 and O2. For details, see sub-group analysis in Appendix 6.
fEffect sizes were calculated based on numerical values obtained via personal communication (‘‘PRE” condition only was considered for this review).
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tions of males to females, with information on gender not always
reported.

Patients were taking Antiepileptic Drugs (AEDs) in 17/20 stud-
ies, were not on any medications in two studies [30,37] and in
one study a minority of patients were taking other medications
(hypnotics, benzodiazepines, or antidepressants; [27]). People
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included in ‘‘healthy control” groups were not taking any medica-
tions in twelve studies. Five studies did not report any information
on medication use in healthy controls. Headache controls were
taking analgesics or sedatives in one study [34] while they were
not taking any medications in one other study [36]. A minority of
neuropsychiatry controls were taking hypnotics, benzodiazepines,



Table 3
Visual summary of results for 5 studies examining diagnostic accuracy indices for the diagnosis of epilepsy, and for 2 studies examining diagnostic accuracy indices for the
diagnosis of PNES, with sensitivity and specificity values, and values for the decision threshold. (See below-mentioned references for further information.)

Notes: The gradient of green reflects low to high indices of diagnostic accuracy. SD = standard deviation. FC = functional connectivity. Sens = sensitivity. Spec = specificity. n/
s = not specified. LOO = leave one out.
aResults for a sub-sample of participants meeting the inclusion criteria for this review. For details, see sub-group analysis in Appendix 6.
bThreshold values approximated from Fig. 1.
cMeasures studied were calculated on the whole frequency spectrum (personal communication).
dClassification analysis was carried out on features extracted from the alpha band data only (personal communication).
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or antidepressants in one study [27] and were not taking any med-
ications in another study [36]. In one study, information on medi-
cation use for a control group with PNES was not provided [22].

In all studies, resting-state EEG recordings used for the analyses
were normal on visual inspection, i.e., free from abnormalities such
as interictal epileptiform discharges or background slowing. Most
studies investigated resting-state EEG while participants were
asked to remain awake with their eyes closed, except one study
which examined eyes open recordings [41], and one which exam-
ined a mixture of eyes open and eyes closed recordings [35]. For
one study, this information was unclear [28]. In one study, the rest-
ing state was defined as a period of awake recordings during which
participants were not performing any tasks, as assessed by reports
of daily activities, with no information on eye state ([44], personal
communication).

The number of EEG electrodes varied from 8 to 64, with the
majority of studies using 19 electrodes. The amount of EEG data
used across studies vary from 13 s to 20 min (mean: 2.7; SD:
4.85 min), with epoch length ranging from 1 to 30 s (mean: 10.2;
SD: 8.7 s). Discussion on the range of markers and oscillation fre-
quencies examined is provided in the next section.

3.2.2. Results of studies in epilepsy cohorts
Group differences for a total of 26 EEG markers were investi-

gated by 20 studies (Tables 2a, 2b). It should be noted that there
was a degree of variability between studies in the boundaries of
the frequency band examined, and results reported in Tables 2
and 3 are grouped based on approximate boundaries for visual rep-
resentation purposes. Please refer to Table 1 for specific details on
the frequency bands examined by the individual studies.

Measures of power (9 studies). The most investigated were
absolute power and mean power, examined by three and four
independent studies, respectively, from 1991 to 2020. The most
consistent finding identified by 5/5 studies investigating the theta
band (h: 4–8 Hz approximately) was an increased absolute or mean
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theta power in the epilepsy cohorts as compared to controls
[35,37,40,41,44]. This effect was large (Cohen’s d = 0.92–1.20, as
suggested by two studies; Table 2a). Evidence was concordant
despite the five studies varied widely in their methodology and
patient characteristics, including different epilepsy types. One
additional study obtained the same finding for theta power [27],
but this has not been reported in Table 2a because it was not pos-
sible to confirm whether findings applied to the subsample of eli-
gible (i.e., non-lesional) patients specifically as individual patient
data on power was not given. Results are mixed for the delta (d:
1–4 Hz) and alpha (a: 8–13 Hz) bands, with approximately half
of the studies reporting increased power in the epilepsy cohorts
(d = 1.29–2.14), and half reporting no differences (d = 0.17–4.12).
4/5 studies described increased beta power (b: 13–30 Hz;
d = 1.05–1.14), and 2/2 studies described increased gamma power
in epilepsy as compared to control (c: 30–70 Hz; d = 1.61),
although is worth noticing that muscle activity artifacts were not
always excluded from EEG recordings.

Three studies explored ratios of power between different fre-
quency bands (i.e., mean power shift, ratio of high to low power
on the left (PHLL) and right (PHLR), and Relative Power), generally
observing a significant shift of power toward low frequency
rhythms in epilepsy as compared to controls [34,36,43].

Amplitude (1 study). Delta amplitude was examined by one
study, and no differences were detected (d = 0.41; [22]; Table 2a).

Measures of EEG frequency (4 studies). Measures relating to
frequency (i.e., peak frequency, mean frequency/Hjorth Mobility;
Table 2a) were investigated by four studies, with one study observ-
ing that the highest alpha power value (i.e., peak) appears at lower
frequencies in the epilepsy cohort as compared to controls (slowed
dominant frequency, d = �0.69 to �0.99; [40]), one study reporting
decreased mean frequency (as indexed by Hjorth Mobility) in the
epilepsy cohort [34] and two studies reporting no group differ-
ences in mean frequency (d = �0.12 to �0.93; [37,42]).
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Hemispheric differences (2 studies). Two studies focusing on
people with non-lesional epilepsy characterized by focal seizures
examined measures of hemispheric differences and reported
higher power and frequency asymmetry in epilepsy as compared
to controls across a range of frequency bands from delta to beta
([34,44]; Table 2a).

Functional connectivity measures (2 studies). Measures of
functional connectivity were examined by two studies, one report-
ing increased Synchronization Likelihood (SL; non-linear method)
in patients with generalized and partial seizures in the theta band
(d = 0.41; [27]) and one reporting findings in the opposite direc-
tion, i.e., decreased Mean Lagged Coherence (MLC; linear method)
in patients with focal epilepsy in the theta and alpha bands
(d = �0.57 to �1.02; [45]; Table 2a).

Graph theory measures (5 studies). Five studies, three of
which were based on the same cohort of patients and controls
(see Table 1), investigated graph theory metrics. Findings for Mean
Degree, Degree Distribution Variance, Global Order Parameter, Par-
ticipation Index, Onset index, and Escape Time are all based on evi-
dence from single studies (Table 2b). These generally indicate
significantly higher values for the epilepsy cohort as compared to
control in the theta and low alpha bands (d = 0.66–1.07; [39,32]),
with exception of Escape Time (which was significantly increased
also in the beta and gamma bands; [38]), and Participation and
Onset indices (for which no significant differences were detected,
d = 0.02–0.79; [24]).

Two independent studies, one examining people with IGE [39]
and one examining people with cryptogenic focal epilepsy [45],
provided contrasting evidence on measures of Clustering Coeffi-
cient and Path Length. Critical Coupling in the theta and low alpha
bands was reduced in two independent studies on IGE (d = �0.70
to �0.88; [32,24]; Table 2b).

Chaos and information theory measures (2 studies). Mea-
sures based on chaos and information theory were examined by
two studies (Table 2b); one reported increased Hurst Exponent
(d = 0.67) and decreased Approximate and Sample Entropy
(d = �1.21; d = �2.37) in epilepsy as compared to control, indicat-
ing higher predictability (lower complexity) and dependency on
previous values in the epilepsy resting-state EEG [33]. The second
study, on the contrary, reported increased Shannon Spectral
Entropy in epilepsy, indicating lower predictability (higher com-
plexity) in epilepsy, when the alpha band specifically was consid-
ered (d = 2.26; [28]).

Diagnostic accuracy (5 studies). Diagnostic accuracy of 9
groups of measures were explored by five studies, based on three
fully independent study samples (Table 3). Two studies only
focused on exploring diagnostic accuracy of resting-state EEG
markers [30,31], while the other three studies computed these
based on previous exploration of group-level analyses on the same
sample [27,32,33]. Three studies focused on the theta and alpha
bands, reporting poor discriminatory performance for measures
of Power Peak and Mean Degree (sens: 0–0.03 at spec: 1, and spec:
0–0.16 at sens: 1; [30]) and higher performance for network-based
measures such as Critical Coupling Constant (h sens: 0.77, spec:
0.66; a sens: 0.59, spec: 0.65) Local Coupling Constant, (a sens:
0. 57 at spec: 1, and spec: 0.66 at sens: 1), and Global Order Param-
eter (h sens: 0.71, spec: 0.69; a sens: 0.71, spec: 0.82; [30,32]), and
for a measure of functional connectivity, i.e., Synchronization Like-
lihood (h sens: 0.73, spec: 0.82; [27]). Two studies based on the
same sample reported high discriminatory power for measures of
Wavelet Energy (sens: 0.90, spec: 0.99) and complexity measures
(sens: 0.92, spec: 0.90) on examination of the whole frequency
spectrum, and for measures based on chaos/fractal theory (sens:
1, spec: 1), which are independent from frequency information
[31,33]. Caution should be taken when interpreting these results
as none of the studies explored how evidence generalizes to a fully
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independent sample, except [30] in their examination of Power
Peak as based on findings from [29] (which was excluded from this
review due to detected inconsistencies in the analysis methods –
see Section 3.1). It is therefore unknown whether results suggest-
ing high discriminatory performance only reflect sampling charac-
teristics such as narrow inclusion criteria, or analytical factors such
as model overfitting, and how discrimination indices might differ if
tested on novel datasets (i.e., independent from the samples where
group-level analyses are performed to guide marker selection).
Values of the thresholds for discrimination were reported by one
study only and were generally optimized based on the sample
under study.
3.2.3. Studies in PNES cohorts
Six studies based on four independent samples examined

resting-state EEG dynamics in people with PNES as compared to
a control group (Table 2c). These were published between 2011
and 2020. All studies used a case-control design. Four studies
had group-level descriptors as their only outcome [23,46,47,48],
one focused on diagnostic accuracy indices only [49], and one
examined both [50].

Total sample sizes ranged from 20 to 86. In all of the studies, a
group of healthy controls was used as comparator. The average age
for the study populations ranged from 20 to 40. In four studies
(based on two fully independent study samples), a comparable
number of males and females were examined. In two studies, the
patient sample had higher prevalence of females [23,49]. All partic-
ipants were not taking any medications in three studies [23,48,49],
while in the sample shared by the remaining three studies most
patients were taking AEDs, benzodiazepines or antidepressant
medications [46,47,50].

Resting-state EEG recordings used for the analyses appeared
normal on visual inspection in all studies. All examined eyes-
closed EEG recordings, except one which examined a mixture of
eyes-open and eyes-closed recordings [23]. The number of EEG
cap electrodes was 19 or 20 in three studies, and 128 in the
remaining three, for which source analysis was used. The amount
of EEG data used varied from 20 s to 20 min, with epoch length
ranging from 1 to 5 s.
3.2.4. Results of studies in PNES cohorts
PNES and healthy controls did not differ on most of the mea-

sures and frequency bands examined. Results for most measures
are based on single studies, except for Absolute and Relative
Power, Clustering Coefficient and Global Efficiency, each examined
by two studies (Table 2c).

Measures of power and EEG frequency (3 studies). Absolute
power was investigated by two studies; one reported significantly
higher power values in high beta and gamma in PNES as compared
to control (d = 0.84–0.91; [23]), while the other reported no differ-
ences [50]. For Relative Power, higher delta and theta values in
PNES were reported by one study [46], while the other study
reported no differences [23]. One study reported no differences
in Total Spectral Power and Mean Frequency [23].

Hemispheric differences (1 study). No hemispheric asymme-
tries were detected on three indices examined by one study [23].

Functional connectivity and graph theory measures (4 stud-
ies). Various indices of functional connectivity were explored by
four studies, with scattered results [23,46,48,50]. Five measures
based on graph theory were examined by two studies, overall indi-
cating no differences between PNES and controls (d = 0 to �0.88),
with the exception of a report of higher Assortativity Index in beta
in the PNES population (d = 0.63–0.73; [47]), and a report of lower
gamma Clustering Coefficient in PNES as compared to control
(d = �0.90; [48]).



Fig. 2. Graphic overview of the QUADAS-2 evaluation of risk of bias and concerns regarding applicability for 26 original studies on resting-state EEG characteristics in
epilepsy or PNES.

Table 4
Results of the QUADAS-2 evaluation of risk of bias and concerns regarding applicability for 26 original studies on resting-state EEG in people with epilepsy or PNES. (See below-
mentioned references for further information.)
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Diagnostic accuracy (2 studies). Diagnostic accuracy was
explored by two separate studies. Descriptive indices of power
achieved high discriminative performance in one study (acc:
0.81–0.99; [49]), and Lagged Functional Connectivity was reported
to be a good predictor of diagnosis by the second study (sens: 0.67,
spec: 0.67; [50]). As no validation was performed on novel sam-
ples, no information on generalizability of these models is avail-
able. Values of the thresholds for discrimination were not reported.

3.3. Quality assessment

Most studies were affected by high risk of bias related to patient
selection and the index test, as assessed by the QUADAS-2 [20]
(Table 4, Fig. 2). Risk of bias was high or unclear with regard to flow
and timing of patient evaluations for most studies, but generally
low in relation to the reference standard (risk of bias was consid-
ered unclear when lack of reporting prevented evaluation of bias).
Concerns regarding applicability of the index test were high or
uncertain for most studies, while these were generally low regard-
ing patient selection and reference standard. See Appendix 5 for
detailed results for individual studies.

It is important to note that the QUADAS-2 is designed to assess
bias in diagnostic accuracy studies. Here, this has been applied to
all studies, including those examining group differences. In such
cases, an indication for a ‘‘high risk of bias” label does not relate
to their usefulness for the pathophysiological understanding of sei-
zure disorders. Instead, it reflects on the level of concern should the
measures examined be implemented as diagnostic markers or
translated to clinical practice without further validation by diag-
nostic accuracy studies. This is relevant as 10/19 studies exclu-
sively examining differences between groups suggest that the
EEG markers studied have the potential to be applied in clinical
practice to increase the yield of routine EEG examinations, differ-
entiate between disorders, or develop novel treatment strategies.

3.3.1. Patient selection
Risk of bias was high in all studies due to implementation of

case-control designs, and exclusion of ‘‘difficult to diagnose”
patients such as those with suspected disease and no confirmed
diagnosis. These factors lead to overoptimistic estimates of diag-
nostic accuracy, or effect sizes that are inflated as compared to
when cases and controls are sampled from the same population,
which more closely reflects what is encountered in clinical reality
[51–54]. Most studies failed to describe their sampling method.
10/26 studies failed to describe demographic features for patients
and controls, or control for any differences. Age and gender differ-
ences are main confounders in EEG research [55–58].

Concerns regarding applicability were generally low, indicating
confidence that the included patients match the review question in
most cases.

3.3.2. Index test
The main reasons why almost all of the studies scored high on

risk of bias for the index test were incorporation bias (i.e., failure to
implement blinding to diagnosis during selection of EEG epochs for
the analyses [59]), and failure to control for the effect of medica-
tions on the EEG. Six studies included study cohorts that were
not taking any medications, and only three of the remaining
twenty studied medication effects quantitatively to rule out con-
founding. Additionally, measures to prevent or control for daytime
sleepiness or circadian effects were implemented by 4/26 studies
only. These are main confounders in EEG research [60,61]. How-
ever, most of the studies adopted methods for EEG artifact
removal, most commonly selection of non-artifactual epochs by
means of visual inspection.
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There were concerns regarding applicability of the index test,
indicating that the conduct and interpretation of the EEG may
not be up to state-of-the-art standards, mainly due to lack of
reporting on EEG equipment, technical details, and personnel
training.

3.3.3. Reference standard
The diagnostic methods used were likely to classify epilepsy or

PNES accurately in most cases, with epilepsy diagnoses given by
epilepsy specialists according to operational guidelines in most
cases, or a diagnosis of PNES made following observation of a typ-
ical seizure event on video-EEG in the absence of any EEG changes
indicating epilepsy [5]. Therefore, concerns regarding applicability
were also generally low.
3.3.4. Flow and timing
Approximately half of the studies failed to report information

on the period of participants’ recruitment, and whether or not all
people who were recruited were subsequently included in the
analyses. Most studies reported results selectively, meaning that
only a subset of the measures examined was reported, usually
based on their statistical significance. Most of the studies reporting
all results gave graphical representations only, with no numerical
values.
3.4. Meta-analysis results

In accordance with our pre-specified criteria, a meta-analysis
was not performed as no marker was investigated by more than
5 studies within the same diagnostic group, and a high risk of bias
label was assigned to most studies. This field of research is not
mature enough to allow quantitative synthesis.
4. Discussion

This is the first systematic review comprehensively examining
resting-state EEG markers in people with idiopathic epilepsy and
people with psychogenic nonepileptic seizures (PNES). We sum-
marized studies reporting on the group differences and diagnostic
accuracy of quantitative indices computed from interictal EEG
recordings without any abnormalities on visual inspection.

Twenty six relevant studies were identified, 19 of which exam-
ined people with epilepsy, 6 people with PNES, and one compared
these two populations directly. Although some potentially relevant
studies have been excluded due to insufficient information to
determine eligibility (Appendix 7), we consider this to be a repre-
sentative sample of the available evidence relating to our review
question.

Results suggest that resting-state EEG recordings have the
potential to reveal subtle differences in the spontaneous neural
dynamics of the idiopathic epilepsies, with oscillations along the
theta frequency (4–8 Hz) likely playing a relevant role.

The association between epilepsy and the theta band has previ-
ously been identified [62–65]. Studies included in the present
review consistently indicate that the resting-state EEG of people
with idiopathic epilepsy is characterized by (i) increased theta
power, and (ii) a pattern of EEG slowing, as indicated by a shift
of power and power peak toward lower frequencies. These findings
were persistent across a range of conditions including generalized
and focal seizure types, eyes-closed and eyes-open recordings, and
different clinical and experimental settings.

There is also an indication for aberrant functional connectivity
and network organization in idiopathic epilepsy along the theta
band (4–8 Hz), extending into low alpha (6–9 Hz). These findings
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are supported by a lower number of studies and datasets, with con-
flicting findings potentially relating to differences in study meth-
ods and patient characteristics. Nevertheless, consistency in the
frequency bands detected highlight the relevance of these mea-
sures which deserve further investigation. Similarly, measures
based on chaos and information theory hold some promise but
require further study.

Collectively, results suggest that altered resting-state EEG is an
aspect of the pathophysiology of idiopathic epilepsy. Epilepsies of
idiopathic origin are associated to EEG slowing, and to the intensi-
fied presence of a low frequency rhythm occurring interictally with
potentially pathological connectivity and network organization;
these are not necessarily detectable by visual inspection alone
and reflect a continuous underlying pattern of abnormal neuronal
firing and neural communication.

These observations could be explained in the context of the tha-
lamocortical dysrhythmia framework whereby the altering of fine
balances in neuronal electrochemistry generates low frequency
thalamocortical rhythms, abnormal inhibitory patterns, and dis-
rupted signaling to connected regions [66]. The present review
suggests that altered mechanisms could be at work not only before
and during ictal states, but also during interictal periods, in the
absence of interictal epileptiform discharged (IEDs).

The extent to which findings of the included studies are driven
by the effect of AEDs remains to be quantified, as most studies
included people on AED monotherapy or polytherapy. AEDs influ-
ence quantitative EEG indicators, including oscillations along the
theta frequency [67]. However, theta overactivity and EEG slowing
occurred also in studies including unmedicated groups of patients
[37], or after controlling for medication effects [35,43].

In people with psychogenic nonepileptic seizures, neurophysio-
logical alterations appear to be less marked, as most of the mea-
sures examined so far are not significantly different from what is
observed in healthy controls, despite the fact that some changes
have been sparsely reported. The limited evidence available so
far supports the notion that PNES is less likely to have strong neu-
rophysiological origin as detected by resting-state EEG.

The scattered changes described by the included studies would
benefit from replication, and do not closely resemble the pattern
observed in idiopathic epilepsy. This is encouraging as it opens
the possibility of identifying differences (and potentially, diagnos-
tic indicators) between the resting-state EEG of people with epi-
lepsy and people with PNES. This is an unexplored field of
research with evidence from a single study so far [22].

Although general trends can be observed, no quantitative sum-
mary of the available evidence can be presented due to significant
heterogeneity between studies at the level of participant charac-
teristics, EEG and analysis methods. This is in line with a previous
systematic review on resting-state EEG specifically focusing on
network measures in idiopathic generalized epilepsy, where high
heterogeneity was also identified as a factor limiting study compa-
rability [68]. Studies on lesional focal epilepsies have been found to
be less heterogeneous and allow meta-analysis [69].

Importantly, in the present review most of the included studies
were subject to a number of methodological limitations potentially
introducing bias at the level of patient selection and index test pro-
cedures. Lack of appropriate reporting on study populations, meth-
ods, and results was frequent.

We identified numerous challenges that must be addressed for
valid resting-state EEG markers of epilepsy and PNES to be devel-
oped. In order for a marker to be useful, analytical validity, clinical
validity, and clinical utility must be demonstrated [70,71].

Analytical validity refers to a test’s ability to achieve robust and
reproducible technical results. Reproducibility of EEG research is a
well-known, longstanding issue, described as one of the main lim-
itations to clinical implementation of quantitative EEG since 1987
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if not before [72]. This remains true to the present day mainly due
to the variety of approaches that can be implemented to acquire,
process and analyse EEG data, all of which have the potential to
affect results.

Of the 26 studies included in this review, only seven had ade-
quate reporting on the conduct and interpretation of the EEG, as
indicated by our assessment on applicability of the index test. Just
2 articles made their analysis code available [30,43], and 5 made
their dataset publicly available, or available upon request
[24,28,32,39,43]. Only one of the included studies [30] attempted
replication of previous research (i.e. [32,39]).

Collective effort must be made to adhere to best practices of
EEG data acquisition and analysis, to report methods and results
comprehensively and transparently, including making data and
codes publicly available. This would additionally benefit study
comparability and allow meta-analyses. Future research should
comply with the latest recommendations for reproducible EEG
research (to date, [73]). Studies using machine learning algorithms
should make additional efforts to report information such as model
architecture and training parameters (see [74] for reproducibility
guidelines) and to improve model transparency and interpretabil-
ity; methods to assess the predictors’ contribution to a model have
been proposed [75].

In studies assessing the accuracy of EEG markers to identify a
diagnosis, a threshold (i.e., cutoff score) on the predictor is estab-
lished which segregates participants with a diagnosis from those
without. In EEG research, thresholds for discrimination are gener-
ally optimized to the specific population under study to yield the
highest values of sensitivity and specificity, rather than being
pre-specified. Studies should report values of the threshold for test
positivity in order to allow comparability and assess whether any
differences in diagnostic accuracy are to be ascribed to study char-
acteristics rather than threshold variations.

A second step in the development of EEG markers of clinical rel-
evance is establishing their clinical validity. Clinical validity refers
to the accuracy with which a test detects a clinical diagnosis [70].
In order for a test to be clinically valid, it needs to produce accurate
estimates of diagnostic accuracy, such as sensitivity, specificity and
positive and negative predictive values. To this end, it is essential
for studies to control for sources of bias which could lead to
over- or under-estimation of diagnostic accuracy indices. When
selecting the study population, balance between internal validity
and generalizability should be carefully considered. All patients
suspected of having epilepsy or PNES over a specific period of time
should be consecutively enrolled; such a selection would reflect
the population in whom the marker under study would be used
to inform the diagnostic decision-making [53]. On the contrary,
implementing a case-control design whereby a group of patients
with known disease is compared to a control group without the
condition leads to exaggerated estimates of diagnostic accuracy,
especially when cases and controls are sampled from different
source populations [51,53,54]. Case-control designs remain essen-
tial for understanding the pathophysiology of seizure disorders and
to guide future research, but findings should be further validated
on appropriately sampled cohorts in order for valid markers of dis-
ease to be developed.

With regard to the index test, efforts should be made to docu-
ment technical and analytical details and control for common
sources of bias systematically, including EEG artifacts, demo-
graphic differences, medication effects, circadian variation, and
state of alertness [55,56,60,61,76,77]. Additionally, it is important
to ensure independence between the process of selecting and
interpreting the resting-state EEG, and that of establishing a diag-
nosis in order to avoid incorporation bias. This occurs when results
of the index test are explicitly used as part of the diagnostic
decision-making [78]. While this is reasonable in clinical practice,
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especially when a diagnosis is established clinically as in the case
of epilepsy and PNES, this incorporative process can lead to overes-
timation of diagnostic accuracy in research studies [59,78]. Inde-
pendence can be achieved by blinding the investigator who
selects resting-state EEG epochs to the diagnosis.

Only after analytical and clinical validity are achieved, resting-
state EEG markers will hold enough promise for clinical utility to
be assessed. This will involve determining whether the marker’s
ability to identify a disorder is actually useful to inform clinicians
in their diagnostic decision-making and whether it provides any
advantages to the patients’ health outcome over existing diagnos-
tic practices [70].

Identification of EEG markers for the diagnosis of epilepsy or
PNES is a challenging task that will require careful consideration
of the factors discussed in order to advance the field. There is need
for future research to be collaborative in order to bridge the clin-
ical and computational fields. During our full text screening, we
excluded 219 papers claiming to have developed 95–100% accu-
rate classification tools for the diagnosis of epilepsy based on
the Bonn EEG dataset [79]. This is composed of a set of resting-
state scalp EEG data from 5 healthy volunteers, and a set of
intracranial EEG data from 5 people with drug-resistant epilepsy
acquired during pre-surgical evaluations. Such patient sampling,
intermixing of scalp and intracranial data, and sample size are
not appropriate for development of a diagnostic tool; results are
not applicable, nor generalizable to different datasets [80].
Authors with a background in computational sciences should
make an effort to communicate with the medical field to under-
stand the context and reality of clinical practice and avoid over-
promising language which leaves studies vulnerable to being
misinterpreted. Such studies further highlight the importance of
making appropriate databases publicly available. Prospective data
collection consortiums could also be established to combine data
from different research groups and allow mega-analyses and
replication studies.

The present review has a number of limitations. We have only
included studies published in English, Italian, or Spanish. Author
response was a potential source of bias as we excluded 20 studies
that did not have enough information to determine eligibility.
Equally, we included two studies for which authors were able to
provide sub-group data for only a fraction of the total sample eli-
gible for inclusion [27,28] but excluded 11 studies for which
authors where not able to provide individual patient data. Studies
excluded for the aforementioned reasons have been referenced in
Appendix 7.

Remission of seizure disorders was not addressed. A number of
studies included some people who had been off AEDs and
seizure-free for up to 36 years [32,35,38,39]. The question
emerges of whether these people still have epilepsy, and there-
fore meet the inclusion criteria for this review. Criteria for deter-
mining resolution of epilepsy have been proposed and defined as
a 10-year seizure-free period, the last 5 of which should be off
antiepileptic drugs [1]. In this review, we considered epilepsy to
be more than seizure expression, as seizure remission might not
necessarily represent the absence of subtle neurophysiological
alterations that characterize idiopathic propensity to seizures,
nor the absence of cognitive and psychosocial associates of this
condition [81].
5. Conclusion

Numerous studies have explored the potential for resting-state
EEG markers to describe or differentiate between people with sei-
zure disorders and control groups. This is an emerging field of
research, and currently quantitative comparability of studies is
15
not possible. Results highlight the potential for valid quantitative
EEG markers to be identified and eventually, for their clinical util-
ity to be assessed. Collective effort is required in order to improve
transparency and reproducibility of resting-state EEG research, and
to control for sources of bias by addressing shortcomings in study
design. This will allow comparability between studies and poten-
tially identification of valid adjunctive markers of disease.
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