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Abstract 
Oligodendrocytes wrap multiple lamellae of their membrane, myelin, 
around axons of the central nervous system (CNS), to improve impulse 
conduction. Myelin synthesis is specialised and dynamic, responsive to 
local neuronal excitation. Subtle pathological 
insults are sufficient to cause significant 
neuronal metabolic impairment, so myelin preservation is necessary 
to safeguard neural networks. Multiple sclerosis (MS) is the 
most prevalent demyelinating disease of the CNS. In 
MS, inflammatory attacks against myelin, proposed to 
be autoimmune, cause myelin decay and oligodendrocyte loss, 
leaving neurons vulnerable. Current therapies target 
the prominent neuroinflammation but are mostly ineffective in 
protecting from neurodegeneration and the progressive neurological 
disability. People with MS have substantially higher levels 
of extracellular glutamate, the main excitatory 
neurotransmitter. This impairs cellular homeostasis to 
cause excitotoxic stress. Large conductance Ca2+-activated K+ 

channels (BK channels) could preserve myelin or allow its recovery by 
protecting cells from the resulting excessive excitability. This review 
evaluates the role of excitotoxic stress, myelination and BK channels 
in MS pathology, and explores the hypothesis 
that BK channel activation could be a therapeutic strategy to protect 
oligodendrocytes from excitotoxic stress in MS. This could reduce 
progression of neurological disability if used in parallel to 
immunomodulatory therapies.
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MS is the most prevalent chronic demyelinating disease 
which affects 2.8 million people worldwide1,2. Its increas-
ing prevalence poses a significant socio-economic burden. The  
aetiology of the disease is not completely understood, but 
demyelination pathology predominates alongside inflam-
mation. In demyelinating diseases, like MS, an initial local  
attack against myelin sheath is proposed to trigger a cascade of 
neuroinflammatory and degenerative pathways causing dam-
age to oligodendrocytes, myelin, and neurons3. This impairs  
CNS conduction. Other less common demyelinating  
conditions such as Neuromyelitis optica (Devic’s disease), 
transverse myelitis, and acute disseminated encephalomyelitis  
all have an inflammatory component4. Demyelinating diseases  
may also have a genetic cause such as adrenoleukodystrophy,  
which is a X-linked genetic disorder where mutation  
in the ABCD1 gene causes a defect in the corresponding  
ABCD1 transporter protein and accumulation of very long 
chain fatty acids in the brain and spinal cord leading to inflam-
mation in the white matter, cerebral demyelination and  
neurodegeneration5. Fragile X syndrome is a genetic disorder 
where transcriptional silencing of the FMR1 gene leads 

to loss of the corresponding fragile X mental retardation  
protein (FMRP). FMRP acts as a RNA transcriptional reg-
ulator affecting the function of hundreds of proteins6.  
Demyelination is an under-recognised feature of fragile 
X syndrome7, in model systems FMRP silencing has been  
found to decrease the degree of myelination8.

MS treatments can be classed as disease modifying thera-
pies, (DMTs), to delay progression, or symptom manage-
ment treatments. Current DMTs are immunomodulatory, 
with some specifically preventing myelin attack, notably by  
blocking peripheral immunity9. Despite positive outcomes 
for neuroinflammation, underlying pathology is still not 
completely targeted (Table 1). B cell directed therapies are  
amongst the most effective treatments; as these reflect the 
emerging disease understanding placing memory B cells at 
the centre of the disease mechanism10. Although disability is 
reduced, neurodegeneration and defects in remyelination and 
repair still occur. Progression to secondary progressive MS  
(SPMS) is often not prevented and therapies successful 
for relapsing remitting MS (RRMS) become ineffective11).  
With the difficulty of finding strategies to prevent neurode-
generation in general and few DMTs for SPMS, new thera-
peutic approaches need to target underlying demyelination, to 
date no remyelination strategies have proved effective12. This 
unmet clinical need has led to the development of some diverse 
approaches using both repurposed drugs and novel therapeutics.  
Some of the most promising ideas are listed in Table 1. It is 
important to consider other targets that may protect mature  
oligodendrocytes from demyelinating pathologies like multiple  
sclerosis. One promising target is the the unfolded protein  
response (UPR). The UPR can work to preserve cell viability  
during periods of endoplasmic reticulum stress, like those 
caused by excessive inflammation, by temporarily halting trans-
lation to allow the re- establishment of protein homeostasis. 

Table 1. Summary of agents showing some promise in preserving myelin or as remyelinators.

Drug: Type: Mechanism of Action: Reference:

Clemastine First generation anti-histamine. Potent activity against a wide range of GPCRs including histamine, 
muscarinic and adrenergic receptors. In the reBUILD trial the drug 
reduced visual evoked potentials latency (VEPs). Sedating and increased 
fatigue in the trial. 

13

Metformin Chemotherapeutic agent, 
approved for diabetes.

Metformin was found to reverse age-related changes, including 
repression of the UPR enabling oligodendrocytes to respond to 
differentiation factors. Currently in clinical trials for MS. (NCT04121468)

14

Bexarotene Approved anti-cancer agent. Retinoid X receptor agonist. Promotes OPC differentiation and 
remyelination. A phase 2a trial failed on the primary outcome measure 
but a statistically significant effect on the magnetization transfer ratio in 
submedial lesions. A poor side effect profile means the drug will not be 
pursued further. 

15

Theophylline Non-selective 
phosphodiesterase inhibitor. 
Approved drug for respiratory 
conditions. 

The acetylated form protein Ac-eEF1A1 interacts with and removes the 
myelination/ remyelination transcription factor Sox10 from the nucleus. 
Theophyline activates the deacetylase HDAC2 to deacetylate eEF1A1 
and restore myelination capacity. Progress to clinic is not yet reported.

16

Bazedoxifene Third generation selective 
estrogen receptor modulator 
(SERM). 

Enhances differentiation and remyelination of OPCs. Acts independently 
of its normal estrogen target. The enzyme 3β-hydroxysteroid-Δ8,  
Δ7-isomerase was identified as the potential target. 

17

           Amendments from Version 1
For reviewer 1. We added a section on the disease association 
with the BK channel subunits.

Reviewer 2. In response to the reviewer comments, we added 
additional information regarding the UPR response and its 
significance for remyelination approaches. We changed the title 
to be more reflective of the review content.

We feel that these changes have enhanced the manuscript.

Any further responses from the reviewers can be found at 
the end of the article
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Pancreatic endoplasmic reticulum kinase (PERK) is impli-
cated in this. Increasing PERK activation in mouse models of  
MS protected myelin, in the presence of MS- related cytokine 
interferon- γ18. This even improved survival of remyelinat-
ing oligodendrocytes and recovery in demyelinated lesions18. 
A later study indicated that the PERK protective pathway 
can be enhanced by nuclear factor κB (NFκB) activation19.  
Oligodendrocytes were rescued only in mice with MOG- induced 
EAE and PERK gene deficiency, whilst healthy oligodendro-
cytes remained unaffected19. This might indicate this UPR 
signalling pathway specifically protects from inflammatory 
and demyelinating pathology. Studies have replicated these  
cytoprotective effects, but also indicated the need for targeted 
activation of NFkB19–21. Excessive generalised activation 
may worsen inflammation by dysregulating immunity and  
promoting autoimmune reactions, possibly leading to adverse  
effects22. 

Alternatively, the leukaemia inhibitory factor (LIF), of the 
IL-6 cytokine family, was also proposed to protect mature  
oligodendrocytes from demyelination. Its levels determine  
growth and differentiation of inflammatory cells, but also  
possibly neural cells. Exogenous LIF protected against demy-
elination in cuprizone induced mouse models of MS with 
knockout endogenous LIF23. Since cuprizone is toxic to  
oligodendrocytes but does not elicit an inflammatory response 
as seen in the EAE model, the authors indicated this method is  
directly cytoprotective23. However, some studies suggest its 
activation might lead to negative effects on neuroinflam-
mation, and state limited ability to cross the BBB when  
administered therapeutically; although its delivery and effec-
tiveness significantly improved when using lentiviral vectors  
for CNS- specific expression in murine models23,24. 

Similarly, agents aimed at attenuating the inflammation were 
also discovered to have independent neuroprotective effects 
which can lead to reduced demyelination. For example repur-
posing the antibiotic minocycline, which is thought to enhance 
anti-apoptotic signalling and was combined with atorvastatin  
to achieve an enhanced reduction in EAE severity25. In a  
randomised controlled trial, taking minocycline within the 
first 6 months of the clinically isolated syndrome significantly 
decreased the risk of developing MS but not after two years, 
which may suggest a delaying instead of disease- modifying  
effect26. The diabetic treatment metformin is known to 
repress the UPR via a miR-132 and PERK-eif2α dependent  
mechanism27. The selective estrogen modulator (SERM) baze-
doxifene has been shown to reduce ER stress and prevent  
activation of the UPR in β cells28. In experimental MS, in 
the cuprizone model, bazedoxifene promotes remyelination  
apparently through activation of the integrated response path-
way. While the mechanism of this agent’s action remains  
unclear it is in trials for MS (Table 1).

Finally, in the MS lesion microenvironment, the excessive 
inflammation and failure of energy metabolism may lead to 
acidosis and subsequent activation of acid sensing ion chan-
nels (ASICs), which were found upregulated in both axons and  
oligodendrocytes in active MS lesions29. These proton 
gated cation channels are activated in similar conditions of  

excitotoxicity as the BK channel. Amiloride or psalmotoxin-1,  
blocking respectively ASICs or ASIC1, protected oligodendro-
cytes from injury related to this acidosis, and the EAE mouse 
model with knockout ASIC1 had increased levels of myelin  
immunostaining compared to wild type29. 

The aims of this review are: to explain the importance of struc-
turally and functionally intact myelin; to address the current 
lack of therapies targeting neurodegeneration particularly in  
MS; to evaluate the role of excitotoxicity in oligodendrocyte 
pathology and to explore the potential for therapeutic use of 
large conductance Ca2+ activated K+ channel activators to pro-
tect oligodendrocytes from excitotoxic stress, ultimately to  
preserve myelination.

Oligodendrocytes and myelin in demyelinating 
disease
Neuronal impulse conduction is formed by action potentials 
(APs). These are generated from a momentary change in the  
ionic gradient across the axon membrane that propagates 
down and is relayed to the next neuron30. Repeated and  
synchronised through billions of neurons, these rapidly transmit  
information across the body. In the CNS oligodendrocytes 
wrap axons with compact lamellae of their membrane  
myelin sheath31. The low capacitance, high lipid content of  
myelin propagates action potentials (APs) directly onto short 
unmyelinated 1-μm axolemma segments, nodes of Ranvier.  
Voltage-gated Na+ channels concentrate here to integrate a 
voltage difference so that APs can “skip” myelin internodes 
through saltatory conduction to increase velocity of impulses.  
The diameter of myelinated axons positively correlates with 
conduction velocity32,33; while myelin thickness inversely 
correlates with capacitance34. Therefore, myelin provides  
an energy saving evolutionary adaptation; also because it 
restricts the number of Na+/K+ ATPases to the nodes, so it 
decreases the chemical energy ATP required to maintain  
resting potential31. By myelinating larger axons, above ~2 μm 
in diameter, myelin allows signals to be transmitted fast over a  
long range31.

The brain expends one-fifth of total body energy output, but 
myelin prevents axons from receiving metabolic support extra-
cellularly, so healthy oligodendrocytes are indispensable for  
axonal support (Figure 1). Although neurons rely on their 
own mitochondria to synthesise ATP, these require glial  
glycolytic products, primarily lactate35. Neuronal death can be 
induced by inhibiting oligodendrocyte glycolysis or neuronal  
mitochondrial respiration, but not by inhibiting neuronal  
glycolysis or oligodendrocyte oxidative phosphorylation36. It 
was found that deleting the lactate transporter protein MCT1 
impaired axons and caused atrophy37. MCT1 being expressed  
relatively specifically by oligodendrocytes, these results indi-
cate oligodendrocytes are important for healthy neuronal 
metabolism. However, other studies found that upon electri-
cal stimulation neurons used their own glucose to synthesise  
energy, which might indicate oligodendrocytes are a primary 
glycolytic source only for neurons at rest38. MCT1 is lost  
in neurodegenerative diseases like amyotrophic lateral scle-
rosis, where motor neuron death at the spinal cord indicates 
impaired axonal lactate supply37. Neurons may depend on  
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oligodendrocytes for metabolic support to survive and function  
properly, but the pathological relationship may cause damage  
before or separate to evident demyelination.

Metabolic support to axons requires astrocytes, which transfer  
glycolytic products to neurons through oligodendrocytes  
(Figure 1). This by way of connexins on astrocytic proc-
esses and on oligodendrocytes which co-localise to form gap  
junctions39. Astrocytes have glycogen stores and upon 
hypoxia or hypoglycaemia glycogen is catabolised into lac-
tate for delivery to neurons40. Furthermore, connexins found 
at paranodes may indicate a cooperation of astrocytes and  
oligodendrocytes in regulating axon electrical properties39,41  
(Figure 1). Astrocytes not only regulate axon activity and 
deliver metabolites; they also regulate BBB passage with astro-
cytic end feet that adjust membrane permeability. Healthy 
myelin preserves axon structure, metabolism and function, and  
potentially improves the general glia–axon relationship.

Demyelination in multiple sclerosis
Demyelination is the erosion of myelin sheaths, which exposes 
nerve fibres leading to failure of impulse conduction. It can 
derive directly from traumatic or ischaemic injury42. Alter-
natively it originates from attack of myelin related proteins  

in autoimmune disease43. Loss of myelin does not necessar-
ily lead to neuronal death, but overburdens axons by decreas-
ing efficiency of energy homeostasis, making it harder for  
neurons to meet metabolic demands. Without myelin for salta-
tory conduction, energy needed to relay impulses increases. 
This eventually leads to increased functional impairment  
and susceptibility to further neurodegeneration.

The “sclerosis” of MS is the fibrotic lesion that forms in the 
brain or spinal cord from gliosis of astrocytes and microglia, 
often located near vasculature. The BBB appears “leaky” as 
shown by gadolinium-enhanced magnetic resonance imaging  
(MRI) from infiltration of blood-borne macrophages, T lym-
phocytes and B cells, which contribute to demyelination43  
(Figure 2). After two temporally and spatially distinct acute 
inflammatory episodes, MS can diagnosed and is classified 
as relapsing–remitting or primary progressive MS depending  
on the disease course4. As lesions become chronic,  
factors determining whether inflammation resolves and  
remyelination occurs are not fully understood. However,  
demyelination may share pathways with ischaemia and viral 
infection4. Persisting inflammation and remyelination failure 
and nerve loss contribute to progressive MS11. Without tissue  
repair, permanent loss of function often ensues.

Figure 1. Oligodendrocytes provide axons with metabolic support, this is activity dependent and requires communication with 
astrocytes. Figure created with BioRender.
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Episodes may resolve incompletely and RRMS invariably 
involves neurological decline. Motor symptoms generally affect 
all patients eventually during disease course, but can involve  
sensory system particularly sight, pyramidal tracts, psycho-
logical aspects, brainstem and autonomic functions46. Spinal  
cord lesions typically cause most of the lower limb disabil-
ity and are both the white and grey matter47, which contribute 

to the atrophy observed. This is observed early in MS  
brain and spinal cord when measured by atrophy using MRI, 
as an indicator of neurodegeneration48. Associated neuroax-
onal damage, measured as serum and notably intrathecal  
neurofilament, correlates with disability severity49. Most patients 
eventually proceed to SPMS, notably those with significant 
early disease activity4. SPMS develops when compensation 

Figure 2. Demyelination may derive from antibody attack. Opsonisation by non-specific IgG activates the cytotoxic complement 
system and ADCC. The emerging importance of B cells is highlighted by recent findings44. Additional roles include possibly secreting anti-
myelin antibodies and acting as APCs to increase T cell activation 45, labelled 1. Cytotoxic CD8+ T cells react against self-antigens expressed 
by oligodendrocytes. Resident microglia or peripheral macrophages phagocytose myelin residues and debris. Reactive astrocytes, activated 
microglia and Th cells activated by APCs drive inflammation by secreting pro-inflammatory cytokines (TNFα, IFNγ, interleukins) and 
neurotoxicity by releasing free radicals (ROS, RNS)43. Subsequently to myelin loss, axons degenerate. Figure created with BioRender.
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pathways becomes exhausted and is notably associated with 
neurodegenerative state with progressive atrophy, enlarging  
lesions, chronic inflammation and remyelination failure.

Preserving myelin 
Oligodendrocytes are limited in their ability to respond to 
damage and at least in part depend on replacement by their 
precursors, OPCs50. In the adult CNS, NG2+ cells, which  
include OPCs and neural progenitors, constitute nearly 9% 
of white matter. Their migration into sites of injury is crucial 
for remyelination, whereby myelin regenerates spontaneously 
around demyelinated axons51. Preserving myelin is important  
because neuroaxonal regeneration is limited. Macrophages 
have a strong influence, and microglia promote this by  
clearing myelin debris52. Underlying demyelination and  
inflammation must resolve before new myelin forms. Remy-
elination may protect axons from inflammation-mediated  
neurotoxicity53 and is observed in both acute and chronic lesions,  
even concomitant to demyelination, and in early MS43.

Successful remyelination depends on sufficient OPC pools, 
their migration and survival, until differentiated into myeli-
nating oligodendrocytes; but this does not guarantee it. In  
MS, OPCs differentiation may arrest before myelin synthesis  
completes42. Axonal density is higher in remyelinated than 
chronic demyelinated plaques. However, demyelination may  
re-occur more frequently in new myelin because newly dif-
ferentiated oligodendrocytes may produce thinner and shorter 
sheaths, possibly from external ischaemic factors of the  
neuroinflammatory environment impairing proper myelination54.  
Additionally, lesion remyelination occurs 20% more often  
in acute than chronic lesions, so remyelination may inversely 
correlate with disease progression or age55. Therefore, preserv-
ing myelin might provide a better neuroprotective strategy  
than remyelination.

Communication between axons and myelin
About one-third of myelin sheath constitutes proteins that deter-
mine myelin architecture. Myelin basic protein (MBP) is a  
final component added to sheaths, responsible for compac-
tion. MBP localises and draws two adjacent membranes 
together at clusters, where it forms a dense fibrillary network56.  
This prevents signal dissipation and makes neurons more 
energy efficient. Downregulation of MBP impairs sheath 
structure in vivo and knockout decreases axonal calibre57,58.  
Conversely, 2’,3’-Cyclic nucleotide 3’-phosphodiesterase 
(CNP) regulates cytoplasm quantity within myelin by main-
taining actin cytoskeleton. This creates channels and directly 
counteracts MBP compaction59. Working antagonistically,  
CNP and MBP can adjust these channel systems, possi-
bly to modulate the type and amount of substrate exchange 
with axons. In mice, knockout of CNP1 and of the function-
ally similar myelin proteolipid protein caused loss of fibres, 
of axonal integrity and axonal swelling by impairing neuronal  
transport58,60. This indicates that intact microstructure is impor-
tant to preserve local support by oligodendrocytes and that 
effective conduction depends on this. Indeed, these proper-
ties of myelin microstructure can vary to preserve diverse  
neural networks, to adjust input latencies in nuclei. A latency 
of about 2 ms remains constant for thalamocortical signals to 

reach the sensory cortex despite fibres of different lengths61. 
Instead of gross insulation, myelin tunes its microstructure  
to local axon requirements.

Electrically-silenced axons myelinate inadequately62. Main-
taining high K+ levels extracellularly reduced myelination by  
increasing depolarisation duration, so APs are a putative channel  
of communication with oligodendrocytes63. Recent advances 
in electron microscopy and myelin preservation revealed struc-
ture of the developed myelin sheath around axons64. It is 
now possible to infer a peri-axonal space, where APs may be  
relayed by neurotransmitter release. Glutamate is the main 
excitatory neurotransmitter of the nervous system. Typically,  
it is released at axon terminals to bind to ligand gated  
ionotropic receptors found post-synaptically on dendrites. 
Types of ionotropic receptors are glutamatergic NMDARs, 
AMPARs and kainate receptors. Upon neurotransmitter binding  
these open voltage-gated channels for selective cation influx, 
for AP relay65. In mature oligodendrocytes, glutamate may 
be released at the axolemma to affect the inner tongue  
of myelin sheath.

Glutamate release from synaptic vesicles along axons can stimu-
late MBP production to promote the insulating properties of 
myelin66. Glutamatergic synapses are a feature of developing  
OPCs, whereby differentiating oligodendrocytes may depend 
on glutamate signalling for myelination67. Activity depend-
ent myelination may promote the migration and differen-
tiation of OPCs. Stimulating the premotor cortex resulted in  
increased OPC migration and myelin thickness only in the  
optogenetically stimulated mouse model. This was associ-
ated with improved motor skills68. Glutamatergic signalling 
downregulation may alter myelin thickness because, in mice, 
reduction of visual stimuli associated with reduced conduction  
velocity69. When tetanus toxin was used to inhibit glutamate 
release from the synaptosome, Ca2+ influx into oligodendrocytes 
did not occur70, supporting mediation by excitatory neurotrans-
mitter release. Although most myelinic ionotropic receptors  
are removed with differentiation, their use in preserving cor-
rect myelination in mature oligodendrocytes might explain the 
few remaining70. NMDARs at the myelin sheath also gauge 
glycolytic delivery in response to axon energy demand71.  
Substrate exchange may be triggered by AMPAR/ NMDAR 
activation, which induced exosome delivery72. Dysregula-
tion of firing frequency would therefore reduce myelinic neu-
ronal support (Figure 1). In pathology this activity dependent  
alteration of myelin architecture may be rendered unrespon-
sive, counterproductive or even toxic to neurons, even before 
overt demyelination. Modulating this glutamatergic signalling  
may preserve myelin and neurons.

Excitotoxic stress
Excessive extracellular glutamate
Excitotoxic stress is caused by excessive or prolonged activa-
tion of glutamatergic receptors causing Ca2+ overload. This 
sustains pro-apoptotic pathways involving enzymes and tran-
scription factors like MAPK and NF-κB, which degrade  
membranes, proteins and intracellular organelles. Increased 
glutamatergic signalling can be triggered by the energy defi-
ciency from the cellular damage in lesions, mitochondrial  
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dysfunction and oxidative stress73,74. The last involves highly  
reactive and damaging free radicals: ROS and RNS. These cause 
mitochondrial membrane damage by lipid peroxidation, which 
exacerbates cellular burden and glutamatergic signalling75.  
At high levels glutamate is thought to induce oxidative stress 
by means of blockade of the glutamate/cystine antiporter 
(XC–Cys/Glu) that prevents uptake of cystine and synthe-
sis of the anti-oxidant glutathione, in a form of cell death  
termed ferroptosis or oxytosis76.

Damage to neurons causes axon swelling, where ion chan-
nels including voltage-gated sodium channels are upregu-
lated to attempt compensation for impaired conduction77,78. 
Excitotoxic damage to myelin may cause this upregulation  
without necessarily causing overt demyelination78. Axon  
swelling impairs network connectivity in MS, where sustained 
glutamatergic activation associates significantly with increased  
neurological disability79.

Glutamate is upregulated in MS CSF (p<0.001) and carrying 
the polymorphism rs794185 that further increases this associ-
ates with neurodegeneration79,80. The major source of gluta-
mate production is difficult to discern, but evidence suggests 
neuroinflammation is important. Pro-inflammatory cytokines  
TNFα and IL-1β cause neurotoxicity by downregulating  
astrocytic glutamate transporter and glutaminase which accu-
mulates glutamate in the extracellular space73,81,82. IL-1β  
but not TNFα are established as significantly upregulated in 

MS CSF82,83. Immune activation upregulated the cystine gluta-
mate exchanger on macrophages and microglia and in MS 
patients84. To synthesise important antioxidant glutathione  
this exchanger releases glutamate extracellularly.

Table 2 describes drugs targeting excitotoxicity in MS,  
highlighting the still unmet clinical need. These therapies are  
inadequate clinically because antagonists of glutamatergic  
pathways can downregulate excitatory CNS conduction, which  
importantly can cause serious adverse events. Selectivity could 
be improved by targeting receptor subunits specific to glial 
cells and that are more permeable to pathological Ca2+ accu-
mulation, like NR1 and NR3 NMDAR subunits85. Sodium  
channel blockers provide an alternative means to control 
excitotoxicity and some benefit has been noted in the more 
recent clinical trials, but they are poorly tolerated leading to  
non-compliance86,87.

Oligodendrocytes are deficient in their response to 
excitotoxic stress
Oxidative damage to proteins and lipids is substantially 
increased in acute demyelinating lesions compared to healthy 
white matter. Hypertrophic astrocytes and foamy macrophages  
are able to limit this damage by upregulating antioxidant 
superoxide dismutase, but not other components of lesion  
tissue including neurons and oligodendrocytes88. Oligodendro-
cytes have a particularly inefficient antioxidant protection.  
These have a reduced ability to synthesise glutathione89 and 

Table 2. List of completed clinical trials to lower excitotoxicity and investigate neuroprotection in MS.

Drug: Action: Primary 
Outcome:

Results: Study 
Reference:

Memantine NMDAR antagonist. Cognitive 
Impairment. 

Stopped due to worsening 
neurological deficits. 

90

Riluzole Inhibits glutamate release from synaptic 
terminals; NMDA and kainate receptors 
modulator; keeps VGCCs inactivated.

Brain atrophy. No significant difference compared to 
placebo (p= 0.065). 

91

Memantine NMDAR antagonist. Spasticity. No significant difference (p= 0.65). 92

Amantadine NMDAR antagonist. Fatigue. Reduced compared with placebo  
(p< 0.05).

93

Amiloride, Riluzole, 
Fluoxetine

Respectively: reduce pro-apoptotic 
axonal Ca2+ overload; glutamate 
mediated excitotoxicity; increases 
astrocytic lactate release to support 
neuronal energy metabolism.

Brain atrophy. No significant difference (p= 0.99). 94

Lamotrigine Sodium channel blocker Cerebral volume 
loss.

At 24 months, no significant 
reduction in cerebral volume loss with 
lamotrigine compared with placebo. 

86

Phenytoin Sodium channel blocker Thickness of 
retinal nerve 
fibre layer.

A 30% reduction in the extent of 
retinal nerve fibre layer loss with 
phenytoin at 6 months compared with 
placebo. 

95

Oxcarbazepine Sodium channel blocker CSF NFL 
reduction.

Oxcarbazepine had no significant 
effect on CSF NFL levels, an effect on 
EDSS and MSWS scores was noted. 

96
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their death positively correlates with concentration of the highly 
reactive lipid peroxidation product 4-HNE97. Oligodendro-
cytes are also the main cells that store iron in a balance that 
is susceptible to conversion to its oxidative divalent form98.  
Their susceptibility to excess glutamate activation specifi-
cally is supported by in vitro studies. Only upon inhibition of  
glutamatergic receptors in oligodendrocytes-only cultures were 
the apoptotic indicators DNA fragmentation and caspase-3  
abolished82,99.

Experimental autoimmune encephalomyelitis (EAE) is 
an established MS model induced by adoptive transfer of  
anti-myelin protein T cells. In EAE mice, 60% more of 
the oligodendrocytes population was preserved with the  
AMPA/kainate receptor inhibitor NBQX compared with 
administering phosphate buffered saline (PBS) only, which 
also improved neurologic impairment score (p <0.01)100.  
AMPAR-mediated Ca2+ influx activates a sustained phos-
phorylation of ERK1/2 to activate proapoptotic pathways in  
oligodendrocytes and mitochondrial impairment in a manner 
similar to ischaemia74. Ca2+-permeable AMPARs are upregulated  
only at MS lesions, but not in regions of healthy tissue101,  
so Ca2+ permeability might indicate upregulation of excito-
toxic responses with demyelination. Considering the complex  
pathological microenvironment of lesions, glutamatergic  
receptor inhibition alone might not prevent cytotoxicity  
locally in MS. Pro-inflammatory damage spreads centrifugally  
from the lesion centre4, so inhibition might instead prevent  
spread of excitotoxins.

AMPAR/kainate receptors are mainly expressed on oligodendro-
cytes soma, while myelin mainly expresses NMDARs102.  
Excitotoxic stress to myelin can cause decompaction of  
myelin sheath103, which can impair neuronal metabolism before  
overt demyelination. Since damaged or degraded mye-
lin sheaths increase neuronal metabolic burden and expose 
axons to inflammation related toxins, this suggests thera-
peutically protecting myelin from excitotoxic stress may be  
neuroprotective in MS. A characteristic feature of MS is a 
dying back oligodendrogliopathy which, in a similar way 
to complement activation by direct antibody attack4, might 
also be caused by activation of catalases and mitochondrial 
redox damage at myelin processes which retrogradely affects  
oligodendrocytes.

NMDARs induce weaker Ca2+ currents compared with  
AMPARs but sustain these for longer65. The small cytosolic 
compartment of myelin may quickly accumulate Ca2+ con-
centrations sufficiently high to be toxic. All compartments  
needed for NMDARs to be functional have been detected with 
immunoblotting: NR1, NR2 and NR3102. These require acti-
vation by both glutamate and its co-agonist glycine. Release 
of only glutamate from myelinated axolemmas has been  
established70. The Mg2+ block characteristic of NMDARs 
can be released by a slight depolarisation65, which may  
justify the expression of AMPARs on myelin at lower concen-
trations. Especially because AMPARs inhibitors only partially 
abolished the Ca2+ current through myelin, but completely at  
oligodendrocytes soma, while non-selective ionotropic receptor 

inhibitor completely abolished at both locations102. This suggests  
a mediating effect by AMPAR.

However, no significant decrease of NMDAR mediated Ca2+ 
into oligodendrocytes when their inhibitors, NBQX or D-AP5  
respectively, were added after ischaemia103. The authors  
proposed excitotoxicity does not derive directly from glutama-
tergic Ca2+ influx, but from the resulting K+ and H+ increase 
because the NMDA evoked current correlated with K+  
increase. The resulting decrease in pH (from K+ and from 
the hypoxic cell) might activate H+-gated TRP channels 
which then caused about 70% of the Ca2+ rise103. TRP block  
reduced myelin decompaction, so it is possible these chan-
nels are more responsible for the ischaemic excitotoxicity to 
oligodendrocytes than direct ionotropic receptor activation.  
Alternatively, the majority of Ca2+ may derive from a sec-
ondary source, such as from subsequently activated voltage  
gated calcium channels (VGCCs) or the reversal of the  
Na+/Ca2+ exchanger which can occur in conditions of excessive  
depolarisation101.

Dying oligodendrocytes release high levels of Fe2+ which 
directly contributes to oxidative injury to neurons98. This accu-
mulates at acute demyelinating lesions, phagocytosed and 
released through oxidative burst. Ferrous iron, Fe2+, is a media-
tor of the Fenton reaction that synthesises hydroxyl and H

2
O

2
  

radicals98. Excitotoxic stress will damage oligodendrocytes, 
which will in turn release more oxidative stress, although con-
tribution of oligodendrocytes excitotoxicity is still unclear  
because complex to quantify.

BK channels reduce excitotoxic stress
BK channels
Large conductance calcium-activated, voltage gated potas-
sium channels (BK channels) are the most diverse within 
the family of transmembrane protein channels, which also 
includes small and intermediate K+ conductance (SK and IK)  
channels104. These are activated by thresholds of volt-
age or Ca2+ transients and accordingly control membrane 
potential by mediating efflux of the required amount of  
hyper-polarising K+105. They can also be activated by other metal 
ions such as Mg2+, but also by pH, arachidonic acid and nitric 
oxide. Encoded by the KCNMA1 (or SLO) gene, BK channels  
constitute a heterodimer of pore-forming α-subunits and a 
monomer comprising a voltage-sensing and a calcium-sensing  
module106. Ubiquitous, BK channels are overexpressed in  
regions of high Ca2+ concentrations107. By mediating K+  
transients out of cells, BK channels can also regulate K+  
homeostasis, cell volume, and therefore have various func-
tions including neuronal excitability, smooth muscle relaxation,  
blood pressure control and electrical tuning of cochlear  
hair cells108.

The highly dynamic physiological properties of BK chan-
nels are partly due to the numerous α-subunit splice variants, 
which makes their translated protein structure highly versatile 
physiologically. For example, a cysteine-rich 59-amino-acid  
insert between RCK domains called STREX variant can be 
added to the C-terminus109, resulting in increased sensitivity 
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to activation, inducing higher neuronal firing frequencies.  
Additionally, BK channels assemble auxiliary subunits, such  
as β subunits (β1–4)110. These can modify activity, including  
modifying sensitivity to its activators, voltage or Ca2+, or  
by activating protein kinases111. Furthermore, the association  
with γ subunits, which are leucine rich repeat containing  
proteins, can increase stimulability of the BK channel by  
decreasing the negative voltage difference threshold112. Ulti-
mately, this increases the range of pharmacological applications  
of these channels.

BK channels regulate neuronal excitability
In the CNS, BK channels are abundantly expressed on 
axons, dendrites, soma and synaptic terminals in widespread  
CNS regions. Here, these can control the fast phase of  
after-hyperpolarisation. Additionally, these can control AP 
output by changing the magnitude and duration of incoming  
Ca2+ spikes at dendrites113. This will determine AP dura-
tion and firing frequency114. BK channels can mediate their  
activities and their responses specifically for their cellular loca-
tion and type of neuronal cell by co-localising with function-
ally distinct VGCCs114. BK channels have been shown to  
co-localise with L-/, P/Q-, or N-/ types of VGCCs115,116. 
Depending on the frequency of basal firing, the BK chan-
nels at that neuronal cell will typically provide the opposite 
effect to modulate and re-set the phase, ultimately to flatten the  
frequency-current curve and control neuronal excitability.  
This would occur in a manner similar to hyperpolarisation  
activated by cyclic nucleotide gated channels, that set the 
“pacemaker” firing frequency in the brain117. Overall, studies  
of BK channels indicate these tune the neuronal signal by 
amplifying it if weak or reducing it if too strong, rather than  
stringently enhance inhibition or excitation118–120. 

BK channels also have an important role in directly medi-
ating neurotransmitter release, this is supported by their  
co-localisation to VGCCs with those of the P/Q-type being 
most frequently observed. This co-localisation occurs pre-
dominantly at dendrites where it regulates dendritic spike  
generation relative to neurotransmitter release121. This is con-
sistent with localisation of the BK α subunits at presynap-
tic terminals in functionally important axon tracts122. At these  
locations, BK channels limited the Ca2+ mediated neurotrans-
mitter release by decreasing presynaptic APs duration122. 
Indeed, release of neurotransmitter from vesicles is triggered  
by Ca2+ elevated locally through VGCCs, once the propagated  
AP reaches the terminal123. Typically, BK channels would 
reduce neurotransmitter release, because these are able to 
reduce the amplitude of the presynaptic AP. An important  
demonstration of this is the effect on neurotransmitter release by  
CA3 hippocampal neurons and associated APs upon addition  
of BK channel blockers. The resulting spontaneous EPSCs 
increased in amplitude and frequency122. This inhibition  
ultimately reduces release of glutamate, but does not occur for 
inhibitory neurotransmitter GABA124. Therefore, BK channels  
are key to avert overexcitation of the post synaptic neuron.

Mediators of excitotoxic stress
Physiologically, BK channels can prevent too much neuro-
transmitter from causing excessive depolarisation and Ca2+ 

accumulation post-synaptically. In mice where acute focal cer-
ebral ischemia was induced by middle cerebral artery occlusion,  
the neurological symptoms were significantly higher with 
knockout of the BK α subunit compared to wild type125.  
This may imply glutamate-induced oxidative stress, and con-
sequences for acute and chronic neurodegeneration. This 
negative feedback by BK channels might only occur if propa-
gated APs are high enough to induce levels of intracellular  
Ca2+ and neurotransmitter similar to those observed in  
pathological conditions. For example, only upon addition 
of 4-AP, a non-specific inhibitor of voltage gated K+ chan-
nels, were BK channels activated to decrease AP amplitude  
post-synaptically and decrease neurotransmitter release126.  
No amplified repolarisation or reduced neurotransmitter release 
by BK channels was observed without 4-AP. This is specific 
to excitatory neurotransmitter release, because a concentration 
dependent reduction in ischaemia mediated by NMDAR cor-
related with increased opening of BK channels by the activa-
tor NS1619127. By creating a negative feedback control to dis-
proportionate neurotransmitter release, BK channels may be an 
emergency break to prevent hyperexcitability and subsequent  
toxicity.

Based on the reviewed evidence, there is an association of 
BK channel subunits with disease. BK channel activation is  
neuroprotective in animal models of spinal cord injury,  
ischaemia and excitotoxic stress45,125,127,128, which share some 
pathological similarities with MS. This is confirmed by allele 
knockout or blockage with the antagonists iberiotoxin and/or 
paxilline that exacerbated injury125,127. The agonist isopima-
ric acid targeted the α subunit to improve motor function in  
rats with spinal cord injury45. Similarly, NS1619 activated 
subunit α1 to effectively increase neuroprotection in rat and 
mouse cortex when used with leptin127. Certain subunits may 
only be activated and therefore effectively targeted in the pres-
ence of cellular injury or excitotoxic conditions126,128, a quality  
which could arguably improve specificity of an agent to injured 
tissue. However, these studies focused on neuron expres-
sion of BK channels and axon rather than oligodendrocyte 
integrity as outcome. In clinical trials, BMS-204352 acti-
vates KCNMA1, but also activates another potassium channel  
KCNQ. This was trialled as a safer neuroprotective agent to 
reduce intracellular Ca2+ levels in acute ischaemic stroke, but 
did not significantly improve outcome in this study129. Andolast 
has been shown to significantly improve asthma symptoms 
compared to placebo, but its subunit targets have not yet 
been investigated130. The anti- glaucoma agent unoprostone  
isopropyl activated iberiotoxin resistant BK channels, there-
fore likely successfully targeted the β2, or β3, subunits131. 
The β regulatory subunit is generally quite tissue specific 
and therefore arguably a better target for an agonist than the  
α- subunit132. In the CNS, KCNMB4 and KCNMB2 are the 
main regulatory subunits expressed133. VSN16R, which is 
thought to target preferentially the β4 subunit, has shown 
promise in reducing spasticity at higher doses with few side 
effects133,134. Notably, KCNMB4 is expressed in human mature 
oligodendrocytes (Figure 3) and is possibly more abundant in  
chronic inactive MS lesions135. Evidence is needed to  
ascertain whether an agonist to KCNMB4, or to another  
regulatory subunit, changes outcome in MS pathogenesis by  
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Figure 3. Oligodendrocyte expression of BKCa channels in humans and mice. The expression of: BK channels; platelet-derived 
growth factor receptor alpha (PDGFRA) and chondroitin sulphate proteoglycan four (CSPG4/NG2) as markers for oligodendrocyte precursor 
cells (OPC) and committed oligodendrocyte precursors ((COP); myelin oligodendrocyte glycoprotein (MOG) and proteolipid protein one 
(PLP1) as markers of mature oliogdendrocytes (OL); human glutamatergic neurons (Neuro2 GAD2 0.02, SLC17A7 2.11 ( Jäkel et al. 2019); 
and aquaporin 4 (AQP4) and glial fibrillary acidic protein (GFAP) as markers for astrocytes channels was extracted from public data bases 
(A) Expression of BK channels in human cells in human white matter tissues extracted from the oligointernode (https://ki.se/en/mbb/
oligointernode135. (B) Expression of human and mouse BK channels from cortical brain tissue using 10X single cell RNAseq from the Allen 
Brain Atlas (www.portal.brain-map.org) (C) BK expression in OPC and mature oligodendrocytes from RNAseq data from the Oligointernode 
portal136 and the Brain RNA-Seq portal (www.brainrnaseq.org137). Data is expressed as fragments per kilobase of transcript per million 
mapped reads (FPKM). * = data values reduced 10 times ** = data values reduced 100 times.
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targeting oligodendrocytes and by preserving myelin. Recently 
Fragile X syndrome the major genetic cause of intellectual  
disability has been shown to have a demyelinating compo-
nent. BK channel activation (specifically α1β4) has been 
shown to restore both electrophysiological and behavioural  
functions in experimental Fragile X.

Activating BK channels to protect oligodendrocytes
Much of the available evidence relates to neurons, but if there 
is a functional link between the role of BK channels and oli-
godendrocytes in mediating this excitotoxic stress, targeting 
this could possibly provide an avenue for disease modifying  
therapy in MS.

Although BK channels, notably KCNMB4 isoforms are neu-
ronally expressed138, it is evident that KCNMB4 is also 
present and differentially expressed by oligodendrocytes135,139. 
OPCs were associated with high expression of KCNMA1 and  
KCNMB2 (Figure 3A. 3B), at a time when they express many ion  
channels perhaps as part of the pre-myelination glial-neuronal  
synapse140. However, it is evident that oligodendrocyte  
maturation and myelination was associated with their relative  
loss and the upregulation of the KCNMB4 BK isoform  
(Figure 3A, 3B). In addition transcriptomic expression of  
KCNMA1 and KCNMB4 in NG2+ cells has been found141.

Human KCNMB4 expression increases as OPCs mature 
into oligodendrocytes and was increased in myelinating  
oligodendrocytes (Figure 3A). This is perhaps consistent with  
elevated KCNMB4 expression in chronic inactive multiple 
sclerosis lesions135. In contrast mouse OPC and oligodendro-
cytes do not seem to express much Kcnmb2 (Figure 3B, 3C). 
However, as occurs in humans, Kcnma1 is most marked in  
the OPC and is down-regulated as oligodendrocytes mature 
and myelinate (Figure 3C). Likewise, Kcnmb4 can sometimes  
be found at higher levels in OPCs, but persists in mature  
oligodendrocytes to be the dominant BK channel isoform  
(Figure 3B, 3C). Kcnmb4 is expressed on the cell membrane 
and is also expressed in mitochondria132. Loss of Kcnma1  
message during development is consistent with protein  
expression and functional calcium-induced signalling activity139 
and may play a role in oligodendrocyte differentiation.

Additionally, electrophysiological recordings of increased 
oligodendrocytes depolarisation corresponded to the 
increased intracellular fluorescence from labelled Ca2+ upon  
glutamate-induced stimulation; which occurred only when the 
BK channel blocker iberiotoxin was added139. This suggests  
a role of BK channels to regulate Ca2+ influx to protect  
oligodendrocytes from excitotoxic stress. Other evidence indi-
rectly supports this. As such the fundamental subunits of the  
NMDARs, NR1, NR2 and NR3 co-localise with myelin pro-
tein from primary optic nerve oligodendrocytes upon immu-
nohistochemical staining102. Blocking NMDARs substantially  
blocked myelin damage upon chemically induced ischae-
mia in vitro102. This was the first evidence of axo-myelinic  
signalling, indicating that glutamate released from the axon  
can cause Ca2+ to enter oligodendrocytes through the myelin 

sheath. Importantly, it has been found that mature oligodendro-
cytes express NMDARs, and that small quantities of excitatory  
neurotransmitters diffusing between axon and myelin could 
form sufficiently high concentrations to give rise to large  
Ca2+ transients within mature oligodendrocytes142. In health, 
oligodendrocytes already communicate with axons through  
NMDAR for trophic support71 and BK channels form com-
plexes with this receptor143. Therefore, when activated, BK 
channels could protect oligodendrocytes from axon-induced  
excitotoxicity by increasing hyperpolarisation. Prolonging  
APs may increase the duration of the desensitised state of  
ionotropic channels and VGCCs to limit Ca2+ influx. In  
demyelinating pathology, the excessive excitotoxicity could 
inhibit the endogenous protection by BK channels to oli-
godendrocytes. The addition of an activator could re-open  
these, re-establishing protective effects. A counter argument 
is that high extracellular potassium is primarily responsible 
by increasing length of neuronal depolarised state. Damaged  
oligodendrocytes may have a dysfunctional inward rectifier  
potassium channel, so K+ clearance is faulty144. Large levels 
of excitatory stimulation of myelin may result because when  
neurons are demyelinated or damaged they upregulate sodium 
channels, and subunits which maintain the depolarised  
state77. In this scenario, BK channel activators might be  
counter-productive by increasing extracellular K+, but possibly  
only if K+ clearance is faulty.

BK channel activators could be used therapeutically to pre-
serve function in demyelinating diseases, particularly MS. 
As described above, currently the standard treatment for MS  
targets inflammation, but curbing the pathological attack by 
the immune system does not protect from demyelination or 
excitotoxicity. Therefore, it does not prevent neurodegen-
eration or restore functionality lost11. In MS, BK channels  
are expressed in both myelin and the axons it covers. Crucially,  
in chronically injured white matter, their activation upon  
Ca2+ influx was observed only upon axon exposure subse-
quent to chronic spinal cord injury128. Addition of the BK  
channel activator isopimaric acid preserved myelination after 
spinal cord injury in rats45, where functionality correlated with 
preserved myelinated tracts. This suggests that a BK channel  
activator could target demyelination to preserve functionality  
in MS.

Only a few BK channel activators have been studied in the 
clinic, BMS-204352 (Maxipost) was developed for stroke 
while andolast is reported to be in phase III for asthma129,130.  
Unoprostone isopropyl is an atypical prostanoid used topically  
in the treatment of glaucoma131. VSN16R was recently tri-
alled in people with MS for muscle spasticity133,134,138.  
This trial focussed on spasticity endpoints up to a week after 
administration of the drug and no remyelination parameters  
were studied134. 

Conclusion
There are numerous ways excessive glutamate may cause 
oligodendrocytes toxicity in demyelinating pathology.  
Neuroinflammation increases neuronal signalling which will 
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damage neurons, that will release even more glutamate. The 
vicious cycle of damage by oxidative stress to cellular metabo-
lism will exacerbate pathology. Close proximity to neurons, 
glutamatergic receptor expression and high vulnerability to 
oxidative stress makes oligodendrocytes particularly suscep-
tible to excitotoxicity compared to other lesion tissue73,74.  
Oligodendrocytes perivascular location, as part of white  
matter, further increases this susceptibility, especially in 
MS where neuroinflammatory oxidative stress is central to  
demyelination.

BK channels can modulate cellular excitability and are even 
proposed to protect cells from release of excessive levels 
of excitatory neurotransmitters, by pairing with ionotropic  
glutamate receptors and VGCCs. It is plausible that BK  
channels could protect oligodendrocytes from excitotoxicity,  
supported by their expression in these cells139. With high  
levels of glutamate BK channels become inactivated, pos-
sibly explaining their inability to protect cells in models of  
demyelination45. It is therefore feasible that BK chan-
nel activators might protect pathological oligodendrocytes 
from excitotoxic stress. Considering oligodendrocytes pri-
mary function is axon myelination, then if BK channels pre-
serve oligodendrocytes integrity myelination would also be  
preserved.

There is still little evidence of the functions of BK channels 
on oligodendrocytes and the involvement of BK channels in  
MS is an angle of research that has yet to be explored exten-
sively. Therefore, in vitro tests are fundamental to establish 
a first functional link between BK channels, oligodendro-
cytes, oxidative stress and myelin preservation to verify the  
importance of conducting these investigations and possibly 
prompt more. Crucially, it is important to determine whether 
BK channels are expressed by oligodendrocytes, whether 
this expression depends on developmental stage, but also  
effects of glutamate-induced excitotoxicity in the context of 
myelination and the ability to target BK channels in vivo. This 
would define whether increasing the open conformation of BK 
channels with activating agents is a promising neuroprotective 
therapy to be used in parallel to immunosuppressive agents for  
the treatment of MS. 
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The authors stated that "preserving myelin might provide a better neuroprotective strategy 1. 
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than remyelination". In fact, this manuscript concentrates on demyelination, rather than 
remyelination. It could be better to replace remyelination with demyelination in the title. 
 
This manuscript concentrates on demyelination, particularly in MS. It is important to 
summarize the current literature on mechanisms governing mature oligodendrocyte 
viability in MS and its animal models. Recent studies demonstrate the critical roles of PERK, 
NF-kB, among other signaling pathways in modulating oligodendrocyte viability and 
demyelination in MS and its animal models. These studies should be cited and discussed.

2. 

 
Is the topic of the review discussed comprehensively in the context of the current 
literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Yes
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expertise to confirm that it is of an acceptable scientific standard, however I have 
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We would like to thank Prof Lin for his careful reading of the manuscript and useful 
comments. 
 
Pt 1. The reviewer asks if replacing “remyelination” with “demyelination” in the title would 
be more reflective of the review. The reviewer is correct in ascribing much of the review 
subject to demyelination, however, using “demyelination” in the title would make an 
association of demyelination with BK channels that would not be correct and we would not 
wish to do this. We think the modified title “Oligodendrocytes, BK channels and the 
preservation of myelin” could be a better reflection of the subject and aims of the review. 
 
 
Pt 2. It is important to consider other targets that may protect mature oligodendrocytes 
from demyelinating pathologies like multiple sclerosis. This is to establish whether BK 
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channel activators could be a valid alternative or complement existing approaches. 
 
Another strategy could modulate the unfolded protein response (UPR) to preserve cell 
viability during periods of endoplasmic reticulum stress, like those caused by excessive 
inflammation, by temporarily halting translation to attempt re-establishing protein 
homeostasis. We will insert the text below into the final version of the manuscript. 
 
Pancreatic endoplasmic reticulum kinase (PERK) is implicated in this. Increasing PERK activation 
in mouse models of MS protected myelin, in the presence of MS- related cytokine interferon- γ 
(133). This even improved survival of remyelinating oligodendrocytes and recovery in 
demyelinated lesions (133). A later study indicated that the PERK protective pathway can be 
enhanced by nuclear factor κB (NFκB) activation (134). Oligodendrocytes were rescued only in 
mice with MOG- induced EAE and PERK gene deficiency, whilst healthy oligodendrocytes remained 
unaffected (134). This might indicate this UPR signalling pathway specifically protects from 
inflammatory and demyelinating pathology. Studies have replicated these cytoprotective effects, 
but also indicated the need for targeted activation of NFkB (135, 136, 134). Excessive generalised 
activation may worsen inflammation by dysregulating immunity and promoting autoimmune 
reactions, possibly leading to adverse effects (137). 
 
Alternatively, the leukaemia inhibitory factor (LIF), of the IL-6 cytokine family, was also proposed 
to protect mature oligodendrocytes from demyelination. Its levels determine growth and 
differentiation of inflammatory cells, but also possibly neural cells. Exogenous LIF protected 
against demyelination in cuprizone induced mouse models of MS with knockout endogenous LIF 
(138). Since cuprizone is toxic to oligodendrocytes but does not elicit an inflammatory response 
as seen in the EAE model, the authors indicated this method is directly cytoprotective (138). 
However, some studies suggest its activation might lead to negative effects on 
neuroinflammation, and state limited ability to cross the BBB when administered therapeutically; 
although its delivery and effectiveness significantly improved when using lentiviral vectors for 
CNS- specific expression in murine models (139, 138). 
Similarly, agents aimed at attenuating the inflammation were also discovered to have 
independent neuroprotective effects which can lead to reduced demyelination. For example 
repurposing the antibiotic minocycline, which is thought to enhance anti-apoptotic signalling and 
was combined with atorvastatin to achieve an enhanced reduction in EAE severity (140). In a 
randomised controlled trial, taking minocycline within the first 6 months of the clinically isolated 
syndrome significantly decreased the risk of developing MS but not after two years, which may 
suggest a delaying instead of disease- modifying effect (141). 
Finally, in the MS lesion microenvironment, the excessive inflammation and failure of energy 
metabolism may lead to acidosis and subsequent activation of acid sensing ion channels (ASICs), 
which were found upregulated in both axons and oligodendrocytes in active MS lesions (142). 
These proton gated cation channels are activated in similar conditions of excitotoxicity as the BK 
channel. Amiloride or psalmotoxin-1, blocking respectively ASICs or ASIC1, protected 
oligodendrocytes from injury related to this acidosis, and the EAE mouse model with knockout 
ASIC1 had increased levels of myelin immunostaining compared to wild type (142). 
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Is the topic of the review discussed comprehensively in the context of the current 
literature? 
 
In the review by Rupnik et al., the role of excitotoxicity in oligodendrocytes was approached 
through a physiological, clinical, and biophysical perspective, which allows the reader to 
understand the basics on the origin, progression, and possible therapies for diseases associated 
with demyelination. 
 
Are all factual statements correct and adequately supported by citations? 
 
In the manuscript by Rupnik et al., the statements were adequately supported by citations which 
included some classic works (Hursh, 19391; Waxman et al., 19772; Waxman et al., 19843) and 
articles published in the last ten years. 
 
Is the review written in accessible language? 
 
The review was written fluently, clearly and the topics were discussed deeply enough. The 
structure of the paper was clearly defined at the beginning of the text (page 3). 
 
Are the conclusions drawn appropriate in the context of the current research literature? 
 
The authors summarized the causes and effects of oligodendrocytes toxicity and proposed an 
alternative therapy to treat pathologies associated with demyelination. One strategy involves 
modulation of the large conductance, Ca2+ and voltage-activated BKCa channel, which activation 
might prevent Ca2+ overload to protect oligodendrocytes from excitotoxic stress. Of note,  a 
similar mechanism has been observed in cardiac mitochondria in rodents, where the BKCa 
channel expresses and its activation reduces the driving force for Ca2+, preventing overload and 
cell death (Singh et al., 20134; Balderas et al., 20195). Moreover, as observed in cardiac 
mitochondria, the functional association of mitoBKCa with regulatory subunits β1 broadens the 
spectrum of molecular targets suitable for the development of new and more directed therapies.   
Targeting the pore forming BKCa channel α-subunit with current and novel drugs needs to 
overcome the broad localization of the channel in brain cells. Considering that BKCa is expressed 
ubiquitously in brain cells it is essential to establish the differential and perhaps localized 
expression of BKCa channels and/or its regulatory subunits (β1-4; γ1-4) in oligodendrocytes. This 
would allow designing a more specific therapy alternative to immunosuppressive agents. 
 
 
In summary, the review presented by Rupnik and coworkers represents a good collection of most 
recent information in the field of oligodendrocytes and the pathologies associated with 
demyelination, highlighting a possible role of the BKCa channel in preventing Ca2+ overload and 
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reducing excitotoxic stress.  
Our main suggestion would be to include a comment on the importance of the expression and 
association with BKCa-regulatory subunits and their possible use as novel targets for future 
therapies. 
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and respond below.  A new paragraph expressing some of these points will be added to the 
final manuscript. 
 
Based on the reviewed evidence, there is an association of BK channel subunits with 
disease. BK channel activation is neuroprotective in animal models of spinal cord injury, 
ischaemia, and excitotoxic stress (50, 113, 115, 125), which share some pathological 
similarities with MS. This is confirmed by allele knockout or blockage with the antagonist's 
iberiotoxin and/ or paxilline that exacerbated injury (113, 115). The agonist isopimaric acid 
targeted the α subunit to improve motor function in rats with spinal cord injury (50). 
Similarly, NS1619 activated subunit α1 to effectively increase neuroprotection in rat and 
mouse cortex when used with leptin (115). Certain subunits may only be activated and 
therefore effectively targeted in the presence of cellular injury or excitotoxic conditions 
(114, 125), a quality which could arguably improve the specificity of an agent to injured 
tissue. However, these studies focused on neuron expression of BK channels and axon 
rather than oligodendrocyte integrity as an outcome. In clinical trials, BMS-204352 activates 
KCNMA1 also activates another potassium channel KCNQ. This was trialed as a safer 
neuroprotective agent to reduce intracellular Ca2+ levels in acute ischaemic stroke but did 
not significantly improve the outcome in this study (128). Andolast has been shown to 
significantly improve asthma symptoms compared to placebo, but its subunit targets have 
not yet been investigated (129). The anti-glaucoma agent unoprostone isopropyl activated 
iberiotoxin resistant BK channels, therefore likely successfully targeted the β2, or β3, 
subunits (130). The β regulatory subunit is generally quite tissue-specific and therefore 
arguably a better target for an agonist than the α- subunit (121). In the CNS, KCNMB4 and 
KCNMB2 are the main regulatory subunits expressed (131). VSN16R, which is thought to 
target preferentially the β4 subunit, has shown promise in reducing spasticity at higher 
doses with few side effects (131, 132). Notably, KCNMB4 is expressed in human mature 
oligodendrocytes (figure 3) and is possibly more abundant in chronic inactive MS lesions 
(117). Evidence is needed to ascertain whether an agonist to KCNMB4, or to another 
regulatory subunit, changes outcome in MS pathogenesis by targeting oligodendrocytes 
and by preserving myelin. Recently Fragile X syndrome the major genetic cause of 
intellectual disability has been shown to have a demyelinating component. BK channel 
activation (specifically alpha1beta4) has been shown to restore both electrophysiological 
and behavioural functions in experimental Fragile X. A clinical evaluation should examine if 
remyelination is a component of the response to BK activator therapy.  
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