Groh, S;
Upchurch, P;
Barrett, P;
Day, JJ;
(2021)
How to date a crocodile – estimation of neosuchian clade ages and a comparison of four time-scaling methods.
Palaeontology
, 65
(2)
, Article e12589. 10.1111/pala.12589.
Preview |
Text
Groh_Palaeontology - 2022 - - How to date a crocodile estimation of neosuchian clade ages and a comparison of four.pdf Download (2MB) | Preview |
Abstract
Clade ages within the crocodylomorph clade Neosuchia have long been debated. Molecular and morphological studies have yielded remarkably divergent results. Despite recent advances, there has been no comprehensive relative comparison of the major time calibration methods available to estimate clade ages based on morphological data. We used four methods (cal3, extended Hedman, smoothed ghost lineage analysis (sGLA) and the fossilized birth–death model (FBD)) to date clade ages derived from a published crocodylomorph supertree and a new neosuchian phylogeny. All time-scaling methods applied here agree on the origination of Neosuchia during the Late Triassic or Early Jurassic, and the presence of the major extant eusuchian groups (Crocodyloidea, Gavialoidea, Alligatoroidea and Caimaininae) by the end of the Late Cretaceous. The number of distinct lineages present before the K/Pg boundary is less certain, with support for two competing scenarios in which Crocodylinae, Tomistominae and Diplocynodontinae either: (1) diverged from other eusuchian lineages before the K/Pg boundary; or (2) evolved during a ‘burst’ of diversification after the K/Pg event. Cal3 and FBD proved to be the most suitable methods for time-scaling phylogenetic trees dominated by fossil taxa. Extended Hedman estimates are substantially older than the others, with larger standard deviations and a strong sensitivity to taxon sampling and topological changes; sGLA has similar problems. We conclude that a detailed understanding of phylogenetic relationships, tree reconstruction methods, and good taxonomic coverage (in particular the inclusion of the oldest taxon in each clade) is essential when evaluating the results of such dating analyses.
Type: | Article |
---|---|
Title: | How to date a crocodile – estimation of neosuchian clade ages and a comparison of four time-scaling methods |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1111/pala.12589 |
Publisher version: | https://doi.org/10.1111/pala.12589 |
Language: | English |
Additional information: | © 2022 The Authors. Palaeontology published by John Wiley & Sons Ltd on behalf of The Palaeontological Association. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
Keywords: | divergence estimation cal3 Crocodylia extended Hedman Neosuchia |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Genetics, Evolution and Environment UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Earth Sciences |
URI: | https://discovery.ucl.ac.uk/id/eprint/10138693 |
Archive Staff Only
View Item |