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CASP-commons (CASP-COVID): CASP community-wide experiment on modeling SARS-

CoV-2 proteins causing the coronavirus disease;  

EMA: estimates of model accuracy 

TBM: template-based modeling 

FM: free modeling 

  

mailto:zcx@umich.edu
mailto:zhng@umich.edu
mailto:zhengwei@umich.edu


 9 

Abstract 

CASP (Critical Assessment of Structure Prediction) is an organization aimed at advancing the 

state of the art in computing protein structure from sequence. In the spring of 2020, CASP 

lunched a community project to compute the structures of the most structurally challenging 

proteins coded for in the SARS-CoV2 genome. Forty-seven research groups submitted over 

3,000 three-dimensional models and 700 sets of accuracy estimates on ten proteins. The 

resulting models were released to the public. CASP community members also worked 

together to provide estimates of local and global accuracy and identify structure-based 

domain boundaries for some proteins. Subsequently, two of these structures (ORF3a and 

ORF8) have been solved experimentally, allowing assessment of both model quality and the 

accuracy estimates. Models from the AlphaFold2 group were found to have good agreement 

with the experimental structures, with main chain GDT_TS accuracy scores ranging from 63 

(a correct topology) to 87 (competitive with experiment).  
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Introduction. 

The advent of the COVID-19 crisis spurred major efforts to combat the disease from 

biologists all over the world. Key to understanding many aspects of the disease mechanism is 

knowledge of protein structure. Experimental research groups have devoted major effort to 

this task, but progress has been necessarily slow and more than 2,300 amino acids in the 

SARS2 proteins still have no experimental structural coverage. Computed protein structure, 

while until recently not as accurate as experiment 1-5, can nevertheless provide models that 

may aid in the choice of drug targets, development of vaccine strategies, and insights into 

viral mechanisms. Early in the pandemic, a number of leading structure modeling research 

groups, including SWISSMODEL 

https://swissmodel.expasy.org/repository/species/2697049; AlphaFold 

https://deepmind.com/research/open-source/computational-predictions-of-protein-structures-

associated-with-COVID-19; Baker https://www.ipd.uw.edu/2020/02/rosettas-role-in-fighting-

coronavirus; Zhang https://zhanglab.ccmb.med.umich.edu/COVID-19; Feig 

https://github.com/feiglab/sars-cov-2-proteins; and the Xu group, produced sets of computed 

structures of SARS-CoV-2 proteins. Because of earlier experimental work on other viruses, 

particularly SARS, there are homologous structures available for the majority of SARS-CoV-

2 proteins, so that useful models can be produced with straightforward template-based 

methods 6-11. The CASP initiative engaged the broader modeling community with the aim of 

producing the best possible structures for the more demanding cases, those without detectable 

homology to experimentally determined structures, where a community effort was likely to 

have the most impact. The strategy for this CASP-COVID experiment was to collect models 

from as many modeling groups as possible and to also solicit community input on evaluating 

the accuracy of those models, so as to provide the scientific community with the most 

accurate structures currently possible. The strategy built on three things - the existence of a 

closely knit CASP modeling community, extensive previous CASP results on the reliability 

of modeling and accuracy estimation methods 10-17, and the CASP infrastructure 18-22.  

https://swissmodel.expasy.org/repository/species/2697049
https://deepmind.com/research/open-source/computational-predictions-of-protein-structures-associated-with-COVID-19
https://deepmind.com/research/open-source/computational-predictions-of-protein-structures-associated-with-COVID-19
https://www.ipd.uw.edu/2020/02/rosettas-role-in-fighting-coronavirus
https://www.ipd.uw.edu/2020/02/rosettas-role-in-fighting-coronavirus
https://zhanglab.ccmb.med.umich.edu/COVID-19
https://github.com/feiglab/sars-cov-2-proteins
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The CASP-COVID experiment was started on March 9, 2020. The experiment proceeded 

through six stages, followed by the discussion of the results at the CASP14 conference in 

December 2020. The stages were as follows: 1) Selection of targets and their analysis, 2) Call 

for 3D models, 3) Call for accuracy estimates of the models, 4) Community discussion of the 

initial results, 5) Call for revised and refined models and accuracy estimates, and 6) Re-

release of some targets in CASP14, allowing thorough comparison of models with new 

experimental data. In addition, there was a post-CASP follow-up to further assess 

effectiveness of EMA (estimates of model accuracy) methods. 

There was a strong community response to the call for CASP-COVID participation, with 

47 research groups submitting models using a total of 53 3D modeling approaches and 30 

accuracy estimation approaches. All groups who submitted at least five models to CASP-

COVID and submitted an abstract to CASP14 Abstract book (or had a documented history of 

participation in CASP) were invited to contribute their method description to this paper.  

 

Results.  

1. Selection of targets and their analysis 

The CASP organizers analyzed 29 proteins coded for by the SARS-CoV-2 genome23 and 

identified 10 for which part or all of the sequence did not have reliable homologs in the 

structural database 24. These were selected as CASP-COVID targets. Supplementary Table S1 

shows graphical representations of the HHsearch 25 sequence searches against the structural 

database for the selected targets. The targets were analyzed to identify the predicted 

secondary structure and domain composition 26, disorder regions 27, trans-membrane regions 

28 and signal peptides 29. The results of the analysis were posted on the CASP-Commons 

website https://predictioncenter.org/caspcommons/target_analysis.cgi. Target sequence 

information was made also posted https://predictioncenter.org/caspcommons/targetlist.cgi. 

Participants were asked to return their models in three weeks.  

https://predictioncenter.org/caspcommons/target_analysis.cgi
https://predictioncenter.org/caspcommons/targetlist.cgi
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2. 3D Structures 

Over 1,500 3D models were submitted in the first CASP-COVID round. Those included 

models from the most capable research groups as previously assessed in CASP 30-37. Methods 

descriptions provided by authors of this paper are in available in the Supplementary Material 

(‘TS methods’ file). The full list of participants and associated statistics are at 

https://predictioncenter.org/caspcommons/groups_info.cgi.  

All collected models were posted at the Prediction Center Data Archive site 

https://predictioncenter.org/download_area/CASPCOMMONS/2020_COVID-19/ 

immediately after closing the first round of submissions. The models were analyzed for 

structural consensus based on the average pair-wise global and local LDDT 38 and 

GDT_TS 39,40 scores. The results of the analysis allowed identification of consensus regions 

of structure and of groups with structurally similar models. For example, for the SARS-CoV2 

M-protein (target C1906), high local consensus scores in region 1-105 (marked with the black 

box in Fig. 1) suggested the protein has two domains, and that a split into two domain level 

targets in round 2 of the experiment might assist modeling.  

 
Figure 1. Partial screenshot showing part of the consensus table 
(https://predictioncenter.org/caspcommons/models_consensus2.cgi) for the SARS-CoV2 M-

 

https://predictioncenter.org/caspcommons/groups_info.cgi
https://predictioncenter.org/download_area/CASPCOMMONS/2020_COVID-19/
https://predictioncenter.org/caspcommons/models_consensus2.cgi
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protein (target C1906) showing local structural agreement along the sequence of the selected 
model (second column) with the remaining models. The black box shows the region where 
many models agree, suggesting a relatively easy to model domain. 
 

3. Community-wide discussion of the results and second round of modeling 

Following the first round of modeling, the community discussed the results in two Zoom 

conferences and group chat using the Microsoft teams. Consensus analyses helped identify 

consistent domain boundaries within the targets, used in the second modeling round. 

Community members also discussed possible features of models such as membrane regions 

and signal peptides, that could help guide the next stage of modeling.  

The second round ran for two weeks in May 2020, immediately before the start of regular 

CASP14 experiment. The round consisted of 15 domain-level targets derived from the round 

1 analysis, and 7 first-round targets re-released for prediction. 33 groups submitted over 

1,500 3D models, which were again made public immediately after the deadline.  

Second round models underwent the same evaluation procedure as those from round 1.  

 

4. Accuracy estimates 

Each of the submitted models in both rounds of modeling was evaluated by accuracy 

estimation methods developed by the CASP community. Overall, 32 EMA methods were 

used. The list of participated methods and brief descriptions are provided in the ‘EMA 

methods’ Supplementary file. All submitted accuracy estimates are available at 

https://predictioncenter.org/caspcommons/models_QAresults.cgi . 

The overall goal of this step was to identify the best models for each target and to 

estimate their accuracy. This was the first time CASP has addressed this non-trivial task in a 

real-life situation. Previous regular CASP experiments have shown that EMA methods are 

overall effective at ranking models by accuracy, but even the best-performing methods 

cannot identify the most accurate models for all targets 41-43. The CASP-COVID results 

https://predictioncenter.org/caspcommons/models_QAresults.cgi
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showed surprisingly high variation in model rankings: for no target was there unanimous 

agreement on the best 3D model. Rather, for most targets over ten distinct models were 

selected as the best (Supplementary table STQA1), creating a problem in recommending 

which model should be used. To address this issue, the Venclovas group devised a new 

EMA-jury algorithm that identifies which models were most favored by the EMA methods. 

The algorithm is described in detail in the Supplement. Briefly, the method pools the top 1, 

top 2, …, top 10 models selected by each EMA ranking into ten corresponding supersets. If a 

model is selected by more than one EMA method, it is included multiple times, thus 

receiving more weight. A consensus structural similarity score is calculated for every model 

in each superset as an average of CAD-scores44 from the model’s pairwise comparisons with 

other models in the superset (Supplementary figure SFQA1). The maximum of superset-

specific consensus scores for a model is recorded as the EMA-jury consensus score. Note that 

the EMA-jury consensus score quantifies how typical the structure of a model is among the 

top selections made by the EMA methods rather than the expected level of its structural 

similarity to the native structure (as individual EMAs do). The EMA-jury scores together 

with two additional refinement criteria described in the Supplementary Material are used for 

the final selection of models that are most strongly supported by the EMA methods 

(Supplementary table STQA2). 

Comparison of the EMA-jury scores with the overall consensus scores computed on full 

sets of models for each CASP-COVID target shows that the EMA-jury method always selects 

a subset of models that are more structurally similar within the subset than overall (Fig.2). 

This indicates that individual EMA rankings are not random and often agree in favoring some 

structural features.  

The EMA-jury algorithm was also run using the LDDT scoring function (instead of 

CAD-score). The results are presented in the Supplementary Material (figures SFQA2-3, and 

table STQA3). They are very similar to the CAD-score based results with 84% of selected 

CASP-COVID models being the same, and at least one model in common for every target. 
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Figure 2. Maximum consensus scores on CASP-COVID targets (EMA-jury - grey bars; 
overall consensus - black). Targets are ordered by increasing EMA-jury values. The grey bars 
are always longer than black ones, indicating that the EMA-jury method successfully selects 
subsets of models that are more structurally consistent. The vertical dashed line corresponds 
to the consensus level of 0.6, which represents 100th percentile of overall consensus scores 
for all models (Supplementary figure SFQA4). 

 

To assess the effectiveness of the EMA-jury method, we evaluated its ability to select the 

best available model from a set of models. Such an analysis requires knowing actual accuracy 

of models with respect to the target structure. Since only two CASP-COVID targets have 

been solved so far, we tested the EMA-jury on CASP13 set of server models (almost 11,000 

models on 80 targets). Fig. 3 shows that the EMA-jury very often picks the best or nearly the 

best model, and that the EMA-jury selection is better than simple consensus-based selection. 

The mean score of the EMA-jury-selected models (0.622) is just slightly behind the mean of 

the maximum CAD-scores of CASP13 models (0.640) and better than the mean score of 



 16 

models selected with simple-consensus (0.574). The average Z-score (calculated from the 

distribution of individual EMA scores) of Jury-selected models stands at 1.67, almost twice 

the value of the average simple-consensus Z-score (0.87). Of interest is also the fact that the 

relative performance of the EMA-jury with respect to simple consensus becomes even more 

dominant on harder modeling targets. For example, the average EMA-jury Z-score grows 

from 1.67 on all CASP13 targets to 2.02 on FM targets, while the corresponding numbers for 

simple consensus are trending downward: 0.87  0.75. Similar tendencies in scores are 

observed when analyzing the LDDT-based results (Supplementary figure SFQA5).  

 

Figure 3. Selection of the top model by the EMA-jury (top panel) and simple structural 
consensus (bottom panel) on 80 CASP13 targets. Maximum per-target CAD-scores are 
shown as pointing up triangles; the CAD-scores of models selected by the EMA-jury 
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approach (top) and simple structural consensus method (bottom) are shown as pointing down 
triangles. The hardest to predict targets (FM) are in red, others in green. Vertical lines 
between the corresponding triangles represent the error in the selection process. Comparison 
of the top and bottom panels demonstrates that the EMA-jury method selects models closer to 
the best absolute value more often than the simple consensus.  

 

5. Evaluation of ORF3a and ORF8 models. 

Structures of two CASP-COVID proteins - ORF3a (Target ID: C1905) and ORF8 (Target 

ID: C1908) - were experimentally solved by the start of CASP14 conference allowing full 

CASP evaluation of accuracy of the corresponding models against experimental structures.  

Full-length sequences of both solved targets were released for modeling in both rounds of 

CASP-COVID, and ORF3a was additionally released in the second round as domain targets 

C1905-D1 and C1905-D2. Independently, ORF8 was also released in the CASP14 

experiment as target T1064. The number of 3D models and EMA estimates collected in the 

CASP-COVID experiment are summarized in Table 1.  

Table 1. The number of 3D models and accuracy estimates in the CASP-COVID experiment 
for ORF3a and ORF8. Numbers in parentheses show the number of high-accuracy models. 
ORF3a was treated as one target in the first round of CASP-COVID (C1905) and as two 
separate domains in Round 2 (C1905-D1, C1905-D2). 

CASP-COVID Target ID 
ORF3a ORF8 

C1905 C1905-D1 C1905-D2 C1908 

No. 3D models (GDT_TS ≥ 40) 153 (6) 83 (38) 79 (0) 181 (0) 

No. EMA submissions in CASP-COVID 30 19 19 29 

 

Since there was no significant accuracy improvement in models submitted on full-length 

targets in the second round, we report only the first-round results for those.  

 

5.1.Post-CASP experiment 

From the CASP-COVID and CASP14 evaluation of ORF3a and ORF8 targets, it was 

immediately apparent that models from DeepMind’s AlphaFold2 group were by far the most 

accurate, consistent with the broader CASP14 results. An interesting question to check was 
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whether accuracy assessment methods can recognize the high accuracy of these models. 

However, it was impossible to answer this question only with the available data at hand: 

AlphaFold2 did not submit models in the second round of CASP-COVID (thus no domain-

based models for ORF3a), nor did they submit ORF8 models to CASP-COVID (only to 

CASP14). To adjust for that, we added five AlphaFold models to each of the three CASP-

COVID model sets. For ORF8, we added AlphaFold2 (AF2) models submitted on the 

CASP14 T1064 target. For ORF3a domains, we added AlphaFold models submitted to 

CASP-COVID (AF-COV) and a-posteriori split into domains.  

Additional accuracy estimates were solicited on the added AlphaFold models from the 

authors of ten established in CASP EMA methods. We discuss here the results for four (out 

of these ten) that participated both in CASP-COVID and CASP14: ModFOLD8_rank, 

ProQ3D, VoroMQA-dark, and QMEANDisCo. The overall conclusions do not change by 

including all ten post-CASP EMA methods. 

This analysis, aimed at determining whether accuracy estimation methods were able to 

recognize high accuracy of AlphaFold models of the two CASP_COVID targets, is referred 

to here as the post-CASP EMA.  

 

5.2.Results for ORF3a (C1905) 

5.2.1. Round 1 results: models of the full structure 

Among the first-round 3D models of the full structure, only six models have GDT_TS 

scores above 40 (green crosses in Fig. 4a). Five of these models are from AlphaFold (with 

accuracy ranging from 45 to 59 GDT_TS), and the sixth is from FEIGLAB-R, who attempted 

to refine an AlphaFold model resulting in a lower (worse) GDT_TS score of 42. The six top 

models are all monomeric, while the experimental ORF3a structure is dimeric. Overall, the 

best AlphaFold model (AF-COV_2, GDT_TS=59) correctly reproduces ORF3a’s fold 

(Supplementary figure SFQA6a), but loops and orientation of helixes around the dimeric 

interface are less accurate: the average per-residue distance error (as calculated from the 
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optimal LGA model-target superposition) is 3.9 Å for the whole structure, and 4.6 Å for the 

interface region. 

 

Figure 4. Round 1 3D and accuracy estimation results for SARS2 ORF3a (C1905). (a) Each 
green cross represents a 3D model, black squares indicate models selected as high accuracy 
by accuracy estimation methods, and orange circles indicate models selected by the EMA-
Jury method. 3D model accuracy is shown in terms of LDDT (Y axis) and GDT_TS (X-axis). 
Only one accuracy estimation method selected a higher accuracy model. (b) Locally 
inaccurate regions of the highest-scoring model, AF-COV_2, according to the ULR definition 
(left) and as predicted for the same model by the BAKER EMA method (right). The 
superpositions are identical; the crystal structure is in yellow, ULRs and predicted inaccurate 
regions are in red and the rest of the model in green.  

 

In terms of global EMA, BAKER was the only group who selected a reasonable model 

(GDT_TS > 40) as top1. However, it was the sixth-ranked model with the GDT_TS of 42 

rather than the most accurate model with GDT_TS of 59. Other EMA methods selected a 

number of much less accurate models (black squares at low LDDT and GDT_TS), including 

the EMA-Jury method (orange circles), which by its nature selects models preferred by the 

majority of individual EMAs.  

In the evaluation of local accuracy in the post-CASP EMA, the ProQ3D group had the 

best average results, with the ASE score of 85.4 (ASE – Assessment of S-function Errors, see 

the EMA assessment paper 41), AUC of 0.86 (AUC - Area Under the ROC Curve of the 
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prediction of accurate/inaccurate residues), and the ULR-F1 score of 0.4 (ULR-F1 – the F1-

score on Unreliable Local Regions, see papers 41,45) for the best submitted model AF_2 

(C1905TS156_2). AlphaFold’s self-estimate of per-residue distance errors was worse than 

the results of ProQ3D, scoring ASE of 72.7, AUC of 0.78 and ULR-F1 of 0.0. The BAKER 

local EMA method was able to identify some part of the ULRs in the beta sheet domain 

(actual ULRs = 163-198 and 219-235; predicted ULRs = 163-199 and 214-238), but the 

ULRs in the alpha helix domain were identified less precisely (actual ULRs = 40-48, 51-55, 

and 102-104; predicted ULRs = 40-43, 62-68, and 99-101), as illustrated in Fig. 4b. ULRs 

are defined as regions consisting of three or more sequential model residues deviating by 

more than 3.8 Å from the corresponding target residues in the optimal superposition on the 

crystal structure.  

5.2.2. Round 2 results: prediction of the domain structures 

Fig. 5 shows the accuracy distribution of CASP-COVID second round models for the 

two domains of ORF3a separately. The domain structures of the AF-COV models submitted 

in the first round are included (pink stars), and are substantially more accurate that those from 

other groups, especially for domain 2. 

In the post-CASP experiment, three and two out of four EMA groups picked an AF-COV 

model as top1 for domains 1 and 2, respectively (pink squares in Figs 5a and b). Although 

some EMA groups could discriminate AF-COV models from the others, no group was 

successful in predicting the correct raking within the five AF-COV models, although, these 

models are very close.  
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Figure 5. Round 2 3D and accuracy estimation results for two domains of SARS-CoV-2 
ORF3a protein (a) C1905-D1 and (b) C1905-D2. 3D model accuracy is shown in terms of 
LDDT (Y axis) and GDT_TS (X-axis) (green crosses). The panels show both models from 
CASP-COVID and AF-COV models added in the post-CASP EMA experiment (pink stars). 
The models selected by EMA methods as top1 during CASP-COVID are shown as black 
hollow squares; models selected in the post-CASP experiment are in pink hollow squares. For 
domain 1, three out of four EMA groups selected one of the higher accuracy AlphaFold 
models, with many low accuracy models also selected. There is a similar pattern for domain 
2, where two of four methods picked two different AlphaFold models.  

 

5.3.Results for ORF8 (C1908) 

For ORF8, no high-accuracy models were submitted during CASP-COVID (maximum 

GDT_TS=26, AlphaFold not participating) (see green crosses in Figure 6). The protein was 

re-released in the regular CASP14 experiment as target T1064 (without 15 N-term residues 

corresponding to a signal peptide, a feature which almost all CASP-COVID participants 

ignored, one cause of poor models). The AlphaFold2 group submitted five high-accuracy 

predictions for this target. These models (ranging from 64 to 87 GDT_TS) were added to the 

pool of models for the post-CASP analysis (pink stars in Fig. 6). The crystal structure of 

ORF8 was solved as a covalent dimer, while AlphaFold models were monomeric. Despite 

this, the best monomeric model possesses some important structural features needed for 

forming the dimeric assembly. In particular, the model correctly reproduces the sidechain 

orientation of the cysteine involved in covalent chain linkage (Supplementary figure 
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SFQA6b). The average per-residue distance error is similar for the whole structure (1.25 Å) 

and for the interface region (1.46 Å). 

In global accuracy estimation, only VoroMQA-dark could identify AF2 models as 

superior to others (pink squares in Fig. 6). However, this method did not predict the big 

difference in absolute model quality (as quantified by GDT_TS). For example, VoroMQA-

dark assigned the best AF2 model (AF2_1, GDT_TS=87) a global EMA score of 67 (on the 

0-100 scale), while some models by other groups with the GDT_TS<20 were assigned a 

relatively high EMA score of 50+ (all scores are for ORF8 without the signal peptide). It 

should be noted that VoroMQA-dark has a narrow range of values so that a difference of 10+ 

may indicate substantial difference in model accuracy. 

 

Figure 6. Round 1 3D modeling and Accuracy Estimation (EMA) results for SARS-CoV-2 
protein ORF8 (C1908). 3D model accuracy for submissions in terms of LDDT (Y axis) and 
GDT_TS (X-axis) (green crosses) and EMA selections (black squares for CASP-COVID, 
pink squares for post-CASP experiment, orange circles for EMA-Jury). Five AF2 models 
added in the post-CASP experiment are shown as pink stars. Two of the AF2 models are 
impressively accurate. Two post-CASP EMA methods succeeded in selecting those models 
as best.  

 

In the evaluation of local accuracy in the post-CASP EMA, the best results were shown 

again by the ProQ3D, with ASE of 88.5, AUC of 0.89, and the perfect ULR-F1 score of 1.0 
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for the AlphaFold2 model AF2_1 (CASP14 id: T1064TS427_1). AlphaFold2’s self-estimate 

of per-residue distance errors was comparable or better than the results of the best EMA 

method, scoring ASE of 92.7, AUC of 0.96 and ULR-F1 of 1.0. 

All AlphaFold2 models showed local structural differences to experiment near residues 

60-86, which are involved in a crystal contact (Supplementary figure SFQA6c), and residues 

104-110 which have high crystallographic B-factor of ~70 (Supplementary figure SFQA6d). 

ProQ3D could identify the structural deviations in these two loop regions of AF2 models with 

high accuracy, scoring 0.78 with ULR-F1 measure. GraphQA also showed a high 

performance with average ULR-F1 score of 0.68, while AlphaFold2’s self-assessment scored 

0.47. On the other hand, it is not clear that the models have errors in either of these regions 

rather than being a crystal artifact and a crystallographic error respectively. It’s possible that 

the EMA methods are predicting relatively flexible regions of polypeptide, rather than model 

errors.  

Discussion. 

The central goal of CASP is to make assessment of both 3D modeling methods and 

accuracy estimation methods as rigorous possible, by using a blind prediction system and 

comparison with experiment.  In doing so over 14 rounds, CASP has built a strong 

community. Further, recent advances in modeling methods show the field has advanced to the 

point 46-48 where taking on the most challenging structures should yield useful results. In the 

past, CASP has also found that properly balanced consensus models can achieve higher 

accuracy than any of the contributing models 49. So, there was an obvious appeal to drawing 

on this community resource to address one aspect of the COVID-19 emergency. Indeed, there 

was very enthusiastic response and participation from the CASP community.  

From a more pragmatic point of view, the CASP-COVID modeling initiative also 

provided a different, real-world application of the modeling methods. Although CASP strives 
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to be as realistic as possible, assessment is done with knowledge of the experimental answers. 

What can be done when the goal is to generate useful information from models?   

Since we do not yet know most of the experimental structures of the target proteins, 

conventional CASP analysis is limited to just two targets. In both cases, correct folds were 

produced by just one group, AlphaFold2. Based on the most recent CASP14 results 46,48,50, 

we expect better performance overall, with at least the majority of the folds correctly 

predicted by multiple groups. We will have to wait for more experimental results to see if that 

is true.  

The most difficult task in generating recommended models turned out to be estimating 

relative accuracy and beyond that, absolute accuracy of the submissions. CASP has nurtured 

the development of accuracy estimation of methods for more than a decade, and assessment 

against experiment has shown impressive progress, with apparently very useful outcomes 41-

43,45,51-53. However, in the absence of experimental ground truth, initial focus was on 

agreement between methods and this was low. In turn, this prompted the development of a 

new method for obtaining consensus accuracy estimates.  

In spite of these limitations, overall, we regard the experiment as a success, both in terms 

of bringing the community together to tackle an urgent problem, and in producing a set of 

potentially useful models. As noted above it was also valuable in drawing attention to issues 

in real world use that were not apparent in the standard CASP environment. It also once again 

demonstrated the value of community science. In particular, the experiment was particularly 

impactful for undergraduate students just beginning in the field, as they were able to better 

understand the role of their research in a broader scientific context and its potential for 

benefiting society at large. 
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Figure captions 

Figure 1. Screenshot of the model consensus table 
(https://predictioncenter.org/caspcommons/models_consensus2.cgi) showing local and global 
structural agreement of models according to the LDDT (left) and GDT_TS (right) scores. 
Local consensus scores are presented as color-coded bars, while global scores are presented 
by a number to the right of the corresponding local bar.  

Figure 2. Maximum consensus scores on CASP-COVID targets (EMA-jury - grey bars; 
overall consensus - black). Targets are ordered by increasing EMA-jury values. The grey bars 
are always longer than black ones, indicating that the EMA-jury method successfully selects 
subsets of models that are more structurally consistent. The vertical dashed line corresponds 
to the consensus level of 0.6, which represents 100th percentile of overall consensus scores 
for all models (Supplementary figure SFQA4). 

Figure 3. Selection of the top model by the EMA-jury (top panel) and simple structural 
consensus (bottom panel) on 80 CASP13 targets. Maximum per-target CAD-scores are 
shown as pointing up triangles; the CAD-scores of models selected by the EMA-jury 
approach (top) and simple structural consensus method (bottom) are shown as pointing down 
triangles. The hardest to predict targets (FM) are in red, others in green. Vertical lines 
between the corresponding triangles represent the error in the selection process. Comparison 
of the top and bottom panels demonstrates that the EMA-jury method selects models closer to 
the best absolute value more often than the simple consensus.  

Figure 4. Round 1 3D and accuracy estimation results for SARS2 ORF3a (C1905). (a) Each 
green cross represents a 3D model, black squares indicate models selected as high accuracy 
by accuracy estimation methods, and orange circles indicate models selected by the EMA-
Jury method. 3D model accuracy is shown in terms of LDDT (Y axis) and GDT_TS (X-axis). 
Only one accuracy estimation method selected a higher accuracy model. (b) Locally 
inaccurate regions of the highest-scoring model, AF-COV_2, according to the ULR definition 
(left) and as predicted for the same model by the BAKER EMA method (right). The 
superpositions are identical; the crystal structure is in yellow, ULRs and predicted inaccurate 
regions are in red and the rest of the model in green.  

Figure 5. Round 2 3D and accuracy estimation results for two domains of SARS-CoV-2 
ORF3a protein (a) C1905-D1 and (b) C1905-D2. 3D model accuracy is shown in terms of 
LDDT (Y axis) and GDT_TS (X-axis) (green crosses). The panels show both models from 
CASP-COVID and AF-COV models added in the post-CASP EMA experiment (pink stars). 

https://predictioncenter.org/caspcommons/models_consensus2.cgi
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The models selected by EMA methods as top1 during CASP-COVID are shown as black 
hollow squares; models selected in the post-CASP experiment are in pink hollow squares. For 
domain 1, three out of four EMA groups selected one of the higher accuracy AlphaFold 
models, with many low accuracy models also selected. There is a similar pattern for domain 
2, where two of four methods picked two different AlphaFold models.  

Figure 6. Round 1 3D modeling and Accuracy Estimation (EMA) results for SARS-CoV-2 
protein ORF8 (C1908). 3D model accuracy for submissions in terms of LDDT (Y axis) and 
GDT_TS (X-axis) (green crosses) and EMA selections (black squares for CASP-COVID, 
pink squares for post-CASP experiment, orange circles for EMA-Jury). Five AF2 models 
added in the post-CASP experiment are shown as pink stars. Two of the AF2 models are 
impressively accurate. Two post-CASP EMA methods succeeded in selecting those models 
as best.  

 

Table caption 

Table 1. The number of 3D models and accuracy estimates in the CASP-COVID experiment 
for ORF3a and ORF8. Numbers in parentheses show the number of high-accuracy models. 
ORF3a was treated as one target in the first round of CASP-COVID (C1905) and as two 
separate domains in Round 2 (C1905-D1, C1905-D2) 
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