Morphogenetic biomechanics of mouse hindbrain neuropore closure
E. Maniou*, M. F. Staddon, S. Banerjee, G. L. Galea

Background
• Neural tube defects affect 1:1000 births worldwide.
• Failed hindbrain neuropore (HNP) closure causes fatal exencephaly.

How are the forces required for HNP closure generated?

Methods:
Morphometrics, mouse embryo live-imaging, cell-based physical modelling¹

1. Actin cables withstand high tension
2. SE cells attach on ECM at the HNP rim
3. SE cells crawl inwards
4. Model iterations based on biology
 A. Cable constriction alone produces a circular HNP.
 B. Cell crawling alone produces a ‘slit-like’ HNP.
5. Final model
 Combining cable constriction and crawling reproduces in vivo closure dynamics.

Study significance
• Uncovered cellular mechanisms of mouse HNP closure.
• Biophysical characterisation of a clinically-important developmental process.