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REVIEW

MRCK: a master regulator of tissue remodeling or another ‘ROCK’ in the epithelial 
block?
Ceniz Zihni

UCL Institute of Ophthalmology, Department of Cell Biology, University College London, London, UK

ABSTRACT
The epithelium forms a smart barrier to the external environment that can remodel whilst main-
taining tissue integrity, a feature important for development, homeostasis, and function. Its 
dysregulation can lead to diseases ranging from cancer to vision loss. Epithelial remodeling requires 
reorganization of a thin sheet of actomyosin cortex under the plasma membrane of polarized cells 
that form basolateral contacts with neighboring cells and the extracellular matrix (ECM). Rho 
GTPases act as spatiotemporal molecular switches in this process, controlling localized actomyosin 
dynamics. However, the molecular mechanisms that control actomyosin dynamics at the apical 
cortex are poorly understood. This review focusses on a growing body of evidence that suggest 
myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) plays a conserved role in mor-
phogenetic signaling at the apical cortex in diverse cell and tissue remodeling processes. The 
possible molecular and mechanistic basis for the diverse functions of MRCK at the apical pole will 
also be discussed.
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Introduction

Epithelial cells polarize by developing distinct cell 
surface domains with different biochemical compo-
sitions and functions1. The apical membrane 
domain in vertebrate epithelia is defined by the 
position of the upmost apical portion of tight junc-
tions. These multiprotein complexes have been 
implicated in a variety of processes in health and 
disease, beyond their tradition barrier function.2,3 

Tight junctions form an apical junctional complex 
with adherens junctions (Figure 1a) and are asso-
ciated with the apicobasal polarity machinery.7 

Invertebrates such as D. melanogaster and 
C. elegans contain adherens junctions as the most 
apical junctional structure2 (Figure 1b,c). The api-
cal junctional complex, contributes to the cytoske-
leton via an F-actin perijunctional belt and, in 
highly apically differentiated epithelia, an F-actin 
rich structural network known as the terminal web 
(Figure 1a).2,3,8 The terminal web is normally 
linked to specialized organ specific brush border 
membranes. Evidence also suggests that similar to 
invertebrate D. melanogaster, vertebrate epithelia 

also contain a subapical domain above the highest 
positioned junctional structure4,5 (Figure 1a,b).

Rho GTPases are critical components, of signal-
ing pathways that regulate the cytoskeleton, to 
guide diverse cellular functions including prolifera-
tion, migration, adhesion, polarization, and specia-
lization of the apical plasma membrane.3 This is 
due to their role as localized molecular switches 
that cycle between active GTP bound and inactive 
GDP bound states to spatiotemporally control cell 
and tissue morphology. The active GTP-bound 
state allows association with an effector protein 
that regulates cytoskeletal reorganization to drive 
cell and tissue morphogenesis.9,10 Effector proteins 
include Neural Wiskott-Aldrich syndrome protein 
(N-WASP), the p21-activated kinase (PAK), Rho- 
associated kinase (ROCK) and closely related 
MRCK. The diverse functions of Rho GTPases, 
despite their relatively low number is due to the 
vast number of their regulators that include gua-
nine nucleotide exchange factors (GEFs) that pro-
mote the exchange of GDP for GTP, and GTPase- 
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activating proteins (GAPs) that stimulate GTP 
hydrolysis. These regulators possess distinct locali-
zation profiles that largely define the molecular 
switch properties of Rho GTPases.

The functions of various Rho GTPase signaling 
pathways at cell-cell and cell-extracellular matrix 

(ECM) adhesions have been extensively 
studied.2,11–13 However, the role(s) and significance 
of Rho GTPase signaling at the apical membrane 
domain, during cell and tissue morphogenesis, is 
poorly understood. Over the past few years, 
a growing body of evidence support a conserved 

Figure 1. Apical junctions across vertebrates and invertebrates. a, In vertebrates tight junctions are positioned apical to adherens 
junctions. b, c, Invertebrate adherens junctions are often the most apically positioned junctional structure. The equivalent structure to 
tight junctions in many invertebrate epithelia, such as D. melanogaster, the septate junction, is positioned basal to the adherens 
junction. Aside from regulating barrier properties apical junctions also play an important role in apicobasal polarity via at least two 
protein complexes formed by the partitioning defective 3 (PAR3)-PAR6-atypical protein kinase (aPKC)-Cdc42 complex and the protein 
crumbs homologue 3 (CRB3)-protein associated with Lin-7 1 (PALS1)-PALS1-associated tight junction (PATJ) complex. In vertebrates 
these complexes have traditionally been associated with tight junctions and their homologues in D. melanogaster associate with 
a subapical region (SAR) apical to adherens junctions. However, an equivalent signaling zone has been proposed in vertebrates.4,5 

Note, the actin cortex, filamentous actin of the perijunctional belt and terminal web are highlighted in blue. The apical junction 
molecule 1 (AJM1)–discs large homologue 1 (DLG1) complex6 in C. elegans is involved in barrier function, similar to tight junctions in 
vertebrates and septate junctions in many invertebrates.

Figure 2. Domain organization of MRCKs and ROCK1/2. a, Homology within the MRCKs is observed over N-terminal kinase domains 
(KD), C-terminal C1, citron homology domain (CH), pleckstrin homology domain (PH) and Cdc42- and Rac-interactive binding domain 
(CRIB). b, The N-terminal kinase domain of ROCK1/2 displays significant homology with the MRCKs and has several common substrates 
(refer to Figure 5). The C-terminal domain of ROCK1/2, that is far less homologous to the MRCKs, includes a Rho-binding domain (RBD), 
cysteine-rich domain (CRD), different spatially organized PH domain, and lacks C1, CH and CRIB domains.
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role for the Cdc42 effector MRCK as an apical 
driver of morphogenesis in different developmental 
and homeostatic contexts.

Structure of MRCK

There are 3 related MRCK proteins MRCKα, β and 
γ that are part of a PKA, G, C (AGC) superfamily14 

(Figure 2a). MRCKα and β, both ubiquitously 
expressed15 (Figure 3), display the most homology 
with 85% amino acid similarity across their kinase 
domains and 61% total amino acid identity (Figure 
2a).16 MRCKγ, which may be restricted to fewer 
tissues16,17 (Figure 3), is closest to MRCKβ with 
72% amino acid identity over its kinase domain 
and 44% identity over the total amino acid sequence 
(Figure 2a).18 Although MRCK proteins were largely 
identified on the basis of their binding properties to 
Cdc42-GTP, subsequent studies have demonstrated 
that MRCKs can act as a Cdc42 and/or Rac effector 
via their Cdc42/Rac interactive binding (CRIB) 
domain.19–21 The Rho effector ROCK1 and 
ROCK2 kinases are related to the MRCKs (Figure 
2a,b), especially the three-dimensional spatial orga-
nization of their kinase domains.22,23 Whilst 
MRCKs carry out their effector functions via their 
CRIB domains, ROCK kinases possess a Rho- 
binding domain (RBD) that act downstream of 
Rho GTPase. In MRCKs the protein kinase 
C conserved region 1 (C1), at least in the case of 

MRCKα and MRCKβ, can bind phorbol esters at 
high affinities24,25 that may promote kinase 
activation24 and/or membrane translocation.25 The 
pleckstrin homology (PH)-like domains of MRCKs 
contain a similar three-dimensional structure and 
are thought to be important for subcellular localiza-
tion via binding to other proteins or lipids. MRCKα, 
β,γ all contain a citron homology (CH) domain that 
lies adjacent to the PH-like domain.26 The spatial 
arrangement of CH-PH domains is conserved and 
suggest a cooperative action in possible functions 
including protein-protein interactions that may 
contribute to subcellular distribution. It has also 
been proposed using in vitro assays that the function 
of Cdc42-GTP may not be to increase kinase activity 
toward myosin light chain (MLC) but membrane 
recruitment, bringing MRCK in close proximity to 
cortical MLC to activate it.19

MRCK as a driver of apical domain organization

A. Apical expansion and brush border induction
Polarization requires the segregation of polarity 
determinants, including partitioning defective 
(PAR) proteins, into distinct domains.29,30 In 
response to Cdc42 activation the Par6-aPKC com-
plex transiently binds to Par3, in epithelial cells, 
dissociating from it to demarcate the apical/lateral 
border, and  segregates into the developing apical 
domain.4,31,32 The apical domain of epithelia often 

Figure 3. Tissue distribution of MRCKs. MRCKα and β are ubiquitously expressed, whereas MRCKγ is restricted to fewer tissues. The 
blood, larynx, and peripheral nervous system are indicated to have the highest levels of MRCKγ expression. Determination of relative 
tissue distributions of MRCKs has been previously described.16
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undergoes a morphogenic transformation leading 
to functional actin-rich structures such as the brush 
border membrane of absorptive epithelia.

In mammalian MDCK kidney epithelial cells, 
full specialization of the apical membrane occurs 
via apical polarity determinants driven by Cdc42 
and its apical GEF Dbl34. A hypothetical model of 
antagonism between Cdc42-driven apical polarity 
determinants, activated by Dbl3, and RhoA- 
ROCK2-driven perijunctional actomyosin 

contractility as a defining step in apical domain 
organization was previously described.3 Recent 
work substantiates this hypothesis and suggests 
a role for MRCKβ as a determinant of apical 
domain organization. Following activation of 
Cdc42 by Dbl3, recruitment of MRCKβ to the api-
cal cortex promotes polarized activation of 
myosinII.27 MRCKβ recruitment is coupled and 
coordinated with Par6-aPKCζ apical recruitment 
to drive a dual effector mechanism (Figure 4a). 

Figure 4. Schematic representation of conserved MRCK activity, at the apical pole. a, Mammalian MDCK epithelial cells require MRCKβ 
at the apical cortex to activate a morphogenetic signaling pathway that works in coordination with another Cdc42 effector Par6, in 
complex with aPKC. Briefly, apical domain development and cell morphogenesis during polarization require aPKC-dependent 
deactivation of junctional actomyosin contractility driven by LULU-2-activated p114RhoGEF(p114RG)/RhoA/ROCK2. aPKC also phos-
phorylates Par3 to apically exclude it, whilst MRCKβ driven apical contractions facilitate separation of Par6-aPKC from junctions into the 
expanding apical membrane domain. Concomitantly, cytosolic concentration of brush border factors at the apical domain promote 
microvilli induction. Thus, apical domain expansion and brush border induction result from an antagonistic relationship between 
MRCKβ and ROCK2 signaling at the apical domain (i). b, In C. elegans internalizing endodermal precursor cells undergo apical 
constriction. MRCK-1 is required for this process, by playing a role generally associated with ROCK, thus substitutes the role of ROCK (ii) 
by promoting contractility at the apical pole, and enrichment of junctional proteins, to drive apical constriction. c, In mammalian 
epithelial cells MRCKα may substitute and/or cooperate with ROCK1 (ii), depending on the cell model to promote epithelial cell 
extrusion via a similar base mechanism to apical constriction. d, Developing D. melanogaster retina require GEK/MRCK during apical 
domain development of photoreceptors. Briefly, in the early eye imaginal disc Rok/ROCK but not GEK/MRCK is required for junctional 
remodeling at line and arc structures. During photoreceptor domain development GEK/MRCK, but not Rok is required for apical 
morphogenesis. e, In the C. elegans embryo LET-502/ROCK is required at the anterior pole for polarity establishment, whereas CDC-42- 
activated MRCK-1 is required for polarity maintenance, and possibly late polarity establishment. Thus, retinal development in 
D. melanogaster and the establishment of polarity by the C. elegans embryo require sequential activation of ROCK and MRCK (iii). 
Note, green, red and blue dashed outlines highlight a proposed antagonistic (i), substitution/cooperative (ii) and sequential (iii) 
spatiotemporal relationship between MRCK and ROCK. Red bars represent MRCK activity and gray bars represent ROCK activity.
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aPKC is recruited to TJ to deactivate the RhoA/ 
ROCK2 activator p114RhoGEF via inhibition of 
LULU-2, and phosphorylate Par3 to apically 
exclude it and define the apical-basolateral 
border.4,27,31–33 Phosphorylation of Par3 by aPKC 
destabilizes the interaction and results in distribu-
tion of Par6-aPKC along an expanding apical mem-
brane domain4 a process that is dependent on 
MRCKβ-activated myosinII.27 Apical domain 
development is concomitant with an apical enrich-
ment of cytosolic components that promote brush 
border induction.27,34

B. Apical constriction
Apical constriction, an opposing process to apical 
expansion, describes a shrinking of the apical cell 
surface and is an important morphogenic event 
during developmental processes such as neural 
tube formation in vertebrates and gastrulation in 

many systems.35 Apical constriction involves 
medio-apical actomyosin networks, positioned at 
the apical cortex, under tension that generate 
force36–38 and perijunctional actomyosin belts that 
contract via a purse-string mechanism.39,40 Since 
medio-apical networks are connected to junctions 
a fundamental question has persisted, as to how 
these two structures are maintained, coupled, and 
coordinated spatially and temporally.

The gastrulation movements in the early 
C. elegans embryo have provided a useful model 
to address this question. Contraction of apical acto-
myosin networks is required for the internalization 
of endoderm precursor cells (EPCs).41,42 For acto-
myosin-based contractile force to drive tissue mor-
phogenesis, the force must be mechanically 
transmitted to adjacent cells. The force-bearing 
bridge between the actomyosin cortices of neigh-
boring cells is the cadherin-catenin complex 

Figure 5. Schematic representation of MRCK and ROCK1/2 signaling. Ligand binding to receptors, such as receptor tyrosine kinases 
(RTKs) and G-protein coupled receptors, activate guanine nucleotide exchange factors (GEFs) that in turn activate Rho GTPases Cdc42 
and RhoA. Their effectors MRCK and ROCK1/2, respectively, can target common substrates that include myosin light chain 2 (MLC2), 
myosin light chain phosphatase (MLCP), LIM domain kinase (LIMK), and ezrin-radixin-moesin (ERM) family of proteins that can regulate 
migration of cancer cells. Note, activation of myosinII by MRCK and ROCK2 can also drive epithelial polarization.3,27 ROCK also targets 
distinct substrates including α-adducin, Na+/H+-Exchanger 1 (NHE-1), vimentin, phosphatase and tensin homolog (PTEN), and tubulin 
polymerization promoting protein 1 (TPPP1).28
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(CCC).43,44 MRCK-1 is required for the activation 
of myosin at the apical cortex of gastrulating cells 
and apical constriction.45 MRCK-1 localizes at the 
apical pole of apically constricting endoderm pre-
cursor cells, activating actomyosin contractility, 
that enriches junctional proteins α-catenin, β- 
catenin, and cadherin45 (Figure 4b). This study 
indicates that MRCK-1 links developmental pat-
terning mechanisms to cytoskeletal force genera-
tion to drive apical constriction.

C. Epithelial cell extrusion
Epithelial cells need to maintain a closed sheet 
during homeostasis. Such a state requires synchro-
nization of the junctional actomyosin belt between 
neighboring cells that control precise removal of 
aged or damaged cells by a process called epithelial 
cell extrusion. Loss of epithelial homeostasis is 
associated with different diseases, for example, 
cancer.3,46

Actomyosin reorganization occurs in both the 
apoptotic cell and neighboring cells that coordinate 
with each other to facilitate removal of the apopto-
tic cell whilst quickly replacing a potential space.47– 

49 Apoptotic cells use the sphingosine-1-phosphate 
(S1P) receptor 2 pathway to mediate their status to 
neighboring cells, resulting in the assembly of 
a basal actomyosin constriction ring.50 However, 
the physical role of apoptotic cells during epithelial 
extrusion was less clear until recently.

Apoptosis is triggered by several pathways that 
converge into a cascade of caspases that drive hall-
mark features including activation of cytoplasmic 
endonucleases, release of immunomodulation pro-
teins, nuclear fragmentation, and the formation of 
blebs and apoptotic bodies.51–54 Although caspases 
were initially proposed to degrade the actin 
cytoskeleton55,56 consequent work indicated that 
the actin cytoskeleton is the main driving force in 
apoptotic cells,57 being responsible for most of the 
associated morphological processes.47,58–61 Evidence 
suggests that ROCK1 kinase activity on myosin light 
chain 2 (MLC2), is increased by caspase 3 driven 
proteolytic cleavage causing contraction of the cor-
tical actomyosin network that drives blebbing.59,62 

A subsequent study demonstrated that epithelial 
extrusion is a biphasic process, involving basal ring 
constriction that is generally preceded by the for-
mation of a dense apical actin structure.48 More 

recently MRCKα has been identified as a key down-
stream kinase of cell morphogenesis in the apoptotic 
pathway, that initiates epithelial extrusion63 (Figure 
4c). During this process MRCKα is constitutively 
activated by proteolytic cleavage at aspartate 478 
residue. MRCKα activity increases MLC2 phosphor-
ylation at the apical pole which drives the formation 
of an extrusion apical actin ring (EAAR) in an 
apoptotic cell. The EAAR structure pulls actin bun-
dles, resulting in cell body compaction and removal, 
by producing cell-autonomous forces as an early 
event of epithelial extrusion. In addition to 
MRCKα, caspase-mediated cleavage irreversibly 
activates ROCK159,62 and MLCK,64 resulting in con-
stitutive phosphorylation of MLC2. Such 
a ubiquitous activation of myosin is thought to 
underly a requirement for a rapid and substantial 
burst of myosin activity.63

MRCKs role in cancer

The importance of Cdc42-MRCK and RhoA- 
ROCK1/2 in both polarity and cell motility 
(Figure 5) place them as important factors in both 
normal cellular processes and cancer. MRCK may 
possess tumorigenic properties due to increased 
kinase activity,65 that may be independent of 
Cdc4219, and/or its overexpression in certain types 
of tumor.28 Additionally, the dysregulation of 
Cdc42 due to overexpression,66,67 or by GEFs, 
may contribute to the tumorigenic properties of 
MRCK. Since Cdc42 GEFs are activated by 
a diverse spectrum of cell surface receptors includ-
ing G-protein coupled receptors, growth factor 
receptors, integrins and cytokines it is not surpris-
ing that several GEFS have been identified to be 
dysregulated in cancer.68 The ability of Cdc42- 
signaling to contribute to cell migration would 
mean that under oncogenic conditions, due to 
other signaling factors, it could potentially behave 
as a tumorigenic factor in the absence of its own 
direct dysregulation. RhoA and its GEFs Vav and 
Trio are also overexpressed in particular cancers 
although, as with Cdc42, its inherent ability to 
function in both migration and polarity means it 
may act as either a tumorigenic factor or tumor 
suppressor.69,70 Rho-ROCK and Cdc42-MRCK- 
signaling have been demonstrated to converge dur-
ing actomyosin-dependent cell motility.71 Rho- 
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ROCK is important for tumor cell migration 
through a three-dimensional matrix with 
a rounded morphology, whereas Cdc42-MRCK co- 
operates with Rho-ROCK to generate and maintain 
elongated morphology and invasion. It is thought 
that proteins that function in tumor cell invasion 
and metastasis also contribute to the growth of 
primary tumors.72 Therefore, the development of 
specific MRCK inhibitors is expected to have ben-
eficial effects on reducing tumor growth and 
progression65

Conclusions and future perspectives

The apical membrane of polarized epithelial cells 
undergo tissue and developmental process-specific 
modifications that rely on actomyosin based forces 
to drive shape changes. In recent years studies from 
a variety of laboratories have identified a conserved 
role for MRCK in yet diverse apical domain orga-
nization processes. The precise role MRCK plays at 
the apical domain may be partly due to structural 
characteristics of the protein variants.

It has been proposed that the carboxyl-terminus 
of MRCK comprised of C1, PH, CH, and CRIB 
domains may specify its membrane localization in 
response to extracellular signals. For instance, vaso-
pressin treatment of kidney cells from the collecting 
duct promotes increased apical plasma membrane 
localization of MRCKβ.73 The bringing of MRCK 
in close proximity to MLC2, by Cdc42-GTP bind-
ing to its CRIB domain,19 may therefore bridge 
localization with functional activity. Since the spa-
tial organization of the carboxyl-terminus CH-PH 
domains is conserved and flanked by a CRIB 
domain in all 3 MRCKs, this may suggest that 
under certain stimuli MRCKs may possess an 
inherent capacity to function as a regulator of the 
apical cortex.16,27,45,63,73 Subtle differences between 
MRCKs may determine functional specificity. For 
instance, during apoptosis both MRCKα and 
MRCKβ are cleaved by caspases at their coil- 
coiled regions.63 However, MRCKα contains addi-
tional cleavage sequences that may increase its sus-
ceptibility to caspase cleavage (Figure 2a), defining 
its distinct role in apoptosis (Figure 4c). 
Intriguingly, apical localization of MRCKα in 
mammalian epithelial cells was functionally 
enhanced toward MLC2 by caspase cleavage and 

removal of its carboxyl-terminus. Thus, additional 
regions of MRCK may contribute to its localization.

Another factor that is likely to define the precise 
role of MRCK at the apical pole is its spatiotem-
poral relationship to ROCK1/2. For instance, both 
MRCKα and C. elegans MRCK-1 regulate apical 
constriction45,63 (Figure 4b,c). MRCKα is impor-
tant for apical constriction during apoptosis,63 

whereas MRCK-1 regulates apical constriction dur-
ing gastrulation.45 In C. elegans MRCK-1 seems to 
function by substituting the role of ROCK, to drive 
actomyosin contractility at the apical pole and the 
enrichment of junctional proteins that may modu-
late force transmission between neighboring cells 
(Figure 4b). During D. melanogaster gastrulation 
polarized myosin activation is due to Rok/ 
ROCK.74,75 In mammalian epithelial cells 
p114RhoGEF was previously reported to drive 
junction assembly, and apical constriction, 
although ROCK was reported to function directly 
at junctions in these cells.33,76 Apical constriction in 
vertebrates during invagination processes is also 
dependent on ROCK.39 During apoptosis of mam-
malian epithelial cells, the precise relationship 
between MRCKα and ROCK1, i.e., cooperative 
and/or one of substitution, needs further investiga-
tion and may depend on the cellular model.63 The 
EAAR structure reported to be mediated by 
MRCKα activation of myosinII, during apoptosis 
(Figure 4c), seems to be a distinct structure from 
apical constriction structures previously 
described.63 The shared localization of the EAAR 
with MRCK and ROCK may suggest that its 
mechanism is derived from the base mechanism 
of apical constriction.

In vertebrate mammalian epithelial cells MRCKβ 
plays an important role in apical morphogenesis 
during apical expansion and brush border induc-
tion through Cdc42-dependent activation of 
myosinII.4,27 The apical distribution of MRCKβ is 
conserved with MRCK-1 in C. elegans and MRCKα 
in mammalian epithelial cells and would be 
expected to drive a similar contractile force- 
generating process that controls apical constriction. 
The key difference in the fate of the apical domain 
seems to be the spatiotemporal relationship 
between MRCK and ROCK. The cooperative or 
substitution role MRCKα and MRCK-1 play with 
ROCK in apoptosis and gastrulation, is contrasted 
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during apical expansion and brush border induc-
tion with an antagonistic one. Such an antagonistic 
behavior may be facilitated by differences between 
the carboxyl-terminus regions of MRCK and 
ROCK77 (Figure 2a,b), which may be important 
for orchestrating spatially distinct actomyosin reg-
ulatory mechanisms via controlling distinct subcel-
lular recruitment. Indeed, as MDCK epithelial cells 
undergo polarization and apical specification, 
MRCKβ is coupled to another Cdc42 effector, com-
plexed Par6-aPKCζ, that downregulates the pro- 
apical constriction LULU-2-p114RhoGEF-RhoA- 
ROCK2 pathway localized at the apical junctional 
complex27,33,78 (Figure 4a). Thus, MRCKβ plays 
a more complex role in apical expansion, both 
facilitating and defining an expanding apical mem-
brane domain through a similar contractile base 
mechanism at the apical pole displayed by 
MRCKα and MRCK-1, yet antagonizing perijunc-
tional contractility. It is notable that both MRCKβ 
and MRCK-1 promote concentration of cytosolic 
brush border and junctional proteins, respectively, 
during their function at the apical domain27,45 

(Figure 4a,b). Although polarization of subcellular 
domains may facilitate cytosolic segregation of 
proteins,79 future work is required to precisely 
understand how apical contractility generated by 
MRCK drives process specific localization of these 
factors.

In D. melanogaster Genghis Khan (GEK), the 
orthologue of MRCK, was demonstrated to localize 
at the apical pole of photoreceptor cells and control 
actomyosin contractility dependent apical 
morphogenesis.27 In early eye discs Rho-1-Rok/ 
ROCK signaling drives junctional remodeling80–82 

before Cdc42-GEK activation leads to 
a reorientation of the actomyosin contractility gra-
dient to control apical morphogenesis27 (Figure 
4d). Future work to understand the precise mode 
by which Rok/ROCK activity is superseded by 
GEK/MRCK activity may provide further insight 
into the underlying mechanisms of apical domain 
organization during photoreceptor development in 
D. melanogaster. A similar conservation of 
a sequential function between RhoA and Cdc42 
signaling is observed during polarization of the 
C. elegans embryo. RhoA orthologue RHO-1 is 
required for the establishment of polarity, whereas 
CDC-42 is required for polarity maintenance 

(Figure 4e). Interestingly, CGEF-1, the orthologue 
of mammalian Dbl3, is the robust activator of 
CDC-42 that together with a GAP at the posterior 
pole, CHIN-1, restricts CDC-42 activity to the ante-
rior pole.83 Furthermore, polarized distribution of 
non-muscle myosinII at the anterior pole during 
the maintenance phase, is achieved by restricting 
CDC-42 activity and thereby the activity of its 
effector MRCK-1 at this position. A more recent 
study indicates that CDC-42 activity at the anterior 
pole increases during the late establishment phase 
of polarity, suggesting that MRCK-1 function may 
be activated during this phase.84 Recent work in 
D. melanogaster hair follicle epithelia has impli-
cated GEK/MRCK as a Cdc42 effector at the apical 
pole. RhoGAP19D, was found to suppress Cdc42 
activity at the lateral domain and exclude it to the 
apical pole.85 The orthologue of RhoGAP19D in 
C elegans, PAC-1, carries out a similar function in 
the early embryo86 and was found to be required for 
polarized activity of MRCK-1 in endodermal pre-
cursor cells.45 In hair follicle epithelia GEK/MRCK 
localized laterally in rho 19d inactive mutant clones 
resulting in increased lateral contractility, apical 
expansion, and epithelial buckling leading to inva-
sion into the adjacent tissue.85 Previous work sug-
gested that myosin phosphorylation at the apical 
cortex is important for follicle cell shape which is 
only partly dependent on Rok.87 Future work is 
required to determine whether GEK/MRCK and 
Rok function cooperatively, for example, in these 
cells.

In summary, an increasing body of evidence 
suggests that MRCK plays a major role in apical 
domain organization and morphogenesis, in dif-
ferent developmental and homeostatic contexts. 
The spatiotemporal functional relationship 
between MRCK and ROCK may be a major 
defining factor in the fate of the apical domain. 
Future work to understand the interplay between 
MRCK and ROCK signaling at the cell cortex, is 
therefore likely to provide insight into control 
mechanisms of cell and tissue morphogenesis. 
For example, it would be of interest to determine 
whether an antagonistic relationship affects ten-
sion gradients at the cortex to control apical 
domain development during epithelial polarity 
establishment and morphogenesis. Another 
important question is whether MRCK plays 
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a role in controlling the apical cortex during 
tissue-specific functions by the mature epithe-
lium. Since, MRCK and ROCK also possess the 
ability to function in both polarity and tumori-
genesis, understanding their complex relation-
ship is likely to provide important insight into 
cancer progression.
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