UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Transfer of learned opponent models in repeated games

Guennouni, I; Speekenbrink, M; (2021) Transfer of learned opponent models in repeated games. In: Proceedings of the Annual Meeting of the Cognitive Science Society. Cognitive Science Society Green open access

[thumbnail of qt23b2h05g.pdf]
Preview
Text
qt23b2h05g.pdf - Published version

Download (610kB) | Preview

Abstract

Human learning transfer takes advantage of important cognitive building blocks such as an abstract representation of concepts underlying tasks and causal models of the environment. One way to build abstract representations of the environment when the task involves interactions with others is to build a model of the opponent that may inform what actions they are likely to take next. In this study, we explore opponent modelling and its role in learning transfer by letting human participants play different games against the same computer agent, who possesses human-like theory of mind abilities with a limited degree of iterated reasoning. We find that participants deviate from Nash equilibrium play and learn to adapt to the opponent's strategy to exploit it. Moreover, we show that participants transfer their learning to new games and that this transfer is moderated by the level of sophistication of the opponent. Computational modelling shows that it is likely that players start each game using a model-based learning strategy that facilitates generalisation and opponent model transfer, but then switch to behaviour that is consistent with a model-free learning strategy in the later stages of the interaction.

Type: Proceedings paper
Title: Transfer of learned opponent models in repeated games
Event: 43rd Annual Meeting of the Cognitive Science Society
Open access status: An open access version is available from UCL Discovery
Publisher version: https://escholarship.org/uc/item/23b2h05g
Language: English
Additional information: This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Opponent modelling; Zero-sum games, Learningtransfer; Hidden Markov models
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences > Experimental Psychology
URI: https://discovery.ucl.ac.uk/id/eprint/10138388
Downloads since deposit
4Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item