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Abstract. Diffusion magnetic resonance imaging is a technique which
has long been used to study white matter microstructure in vivo. Re-
cent advancements in hardware and modelling techniques have opened
up interest in disentangling tissue compartments in the grey matter. In
this study, we evaluate the repeatability of soma and neurite density
imaging in a sample of six healthy adults scanned five times on an ultra-
strong gradient magnetic resonance scanner (300 mT/m). Repeatability
was expressed as an intraclass correlation coefficient (ICC). Our findings
reveal that measures of soma density (mean ICC=.976), neurite density
(mean ICC=.959) and apparent soma size (mean ICC=.923) are highly
reliable across multiple cortical and subcortical networks. Overall, we
demonstrate the promise of moving advanced grey matter microstruc-
tural imaging towards applications of development, ageing, and disease.

Keywords: Grey matter · Microstructure · SANDI · Neurite density ·
Soma density · Soma radius · Repeatability

1 Introduction

Conventional T1-weighted magnetic resonance imaging (MRI) is a useful tool
in determining clinically relevant regional differences in grey matter volume,
cortical thickness, surface area and gyrification. However, these crude macro-
scopic measures do not provide information on which distinct cellular features
(e.g. cell bodies and neurites) and packing configurations drive differences in
macroscopic measures. Diffusion MRI (dMRI) can enhance sensitivity to much
smaller structures by probing water diffusion that is modulated by the presence
of micrometer-scale compartments. Previous studies have applied the commonly
used diffusion tensor imaging (DTI) technique to profile microstructure in the
grey matter [e.g. 1, 2], however biological interpretations are limited as DTI
metrics are non-specific to the aforementioned microstructural compartments.

Progress in acquisition and modelling methods using ultra-strong gradient and

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.08.331595doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.08.331595
http://creativecommons.org/licenses/by-nd/4.0/


ultra-high b-value dMRI [3, 4] hold promise for disentangling and quantifying bi-
ologically meaningful cellular components in vivo [5, 6]. One recent model-based
method to study grey matter microstructure is Soma and Neurite Density Imag-
ing (SANDI)[5], which aims to disentangle microstructural contributions from
cellular projections (neurites: including axons, dendrites and glial processes),
soma (neuronal cell bodies and glia) density and their apparent size, and extra-
cellular space.

The original SANDI paper demonstrated results in humans using ultra-high b-
value data (up to 10,000 s/mm2) [5]. In this study, we utilise a rich repeatability
database of scan-re-scan dMRI data acquired from 6 healthy participants, each
across 5 sessions [7] on an ultra-strong gradient MR scanner [3, 4]. Our primary
aim is to establish whether SANDI metrics are repeatable at lower b-values
(up to 6,000 s/mm2) to establish the translatability and utility of advanced
microstructural imaging in cortical and subcortical grey matter.

2 Methods

2.1 Image acquisition and pre-processing

The data used for this study were previously reported by Koller at al. [7], com-
prising a sample of 6 healthy adults (3 female) aged 24-30 years. This study was
approved by a local ethics board. Each participant was scanned five times in the
span of two weeks on a 3.0T Siemens Connectom system with ultra-strong (300
mT/m) gradients.

Structural data were acquired using a magnetization-prepared rapid acquisition
with gradient echo (MPRAGE, voxel-size = 1×1×1 mm) and multi-shell dMRI
data were collected (TE/TR = 59/3000 ms; voxel size = 2×2×2 mm; b-values= 0
(14 vols), 200;500 (20 dirs), 1200 (30 dirs), and 2400;4000;6000(60 dirs) s/mm2).
dMRI data were acquired in an anterior-posterior (AP) phase-encoding direction,
with additional b=0 s/mm2 images acquired in the PA direction. Pre-processing
involved: noise estimation using Marchenko-Pastur Principles Component Anal-
ysis (MP-PCA) [8] and subsequent denoising in MRtrix3 [9], correction for signal
drift [10], motion, eddy, and susceptibility-induced distortions [11, 12], gradient
non-linearities [13, 14], Gibbs ringing artefacts [15], and bias field [9, 16].

2.2 Image processing and analysis

The SANDI compartment model was fitted to the pre-processed dMRI dataset
for each subject using the machine learning approach described in [5], based on
random forest regression. Four parameters of interest were investigated:

(i.) the intraneurite signal fraction, fintraneurite
(ii.) the intrasoma signal fraction, fintrasoma

(iii.) the soma radius, Rsoma (µm)
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(iv.) the extracellular signal fraction, fextracellular

Additionally, an estimate of model uncertainty was obtained using the quartile
deviation of predictions (QD) from the ensemble of regression trees. To com-
plement the SANDI estimates, diffusion tensor estimation was performed on
the b=1200 s/mm2 shell using an iteratively reweighted linear least squares es-
timator. The tensor-derived parameters fractional anisotropy (FA) and mean
diffusivity (MD) were computed.

T1 data were co-registered to an upsampled b=0 s/mm2 image (1mm isotropic)
and processed through Freesurfer [17] to obtain cortical and subcortical parcella-
tions using the Destrieux atlas [18]. This resulted in 74 cortical regions per hemi-
sphere, alongside subcortical regions. We studied seven different functionally-
defined networks from the Yeo functional network atlas [19] (Figure 1). The
subcortical parcellation was treated as a single sub network, resulting in eight
total subnetworks for each participant for further statistical analysis. Follow-up
analyses of individual subcortical regions were restricted to the amygdala, cau-
date, hippocampus, pallidum and thalamus. Network labels (L) were resampled
to each individual subject’s diffusion space, and we computed the intersection
between the cortical ribbon (R) and resampled network labels (L∩R).

Statistical analyses were performed within R (v3.4.3) and RStudio (v1.2.1335).
The intra-class correlation coefficient (ICC; two-way random effects, absolute
agreement) was computed for assessment of test-re-test repeatability of SANDI
and DTI metrics (Table 1). Summary statistics were computed using an analysis
of variance (ANOVA), and lower and upper estimates of each ICC represent the
bounds of the 95% confidence interval (CI). Based on the number of comparisons
(8 networks x 6 metrics = 48 comparisons) we adjusted our p-value threshold of
significance using a Bonferroni correction to p < .001.

Fig. 1. A representation of the eight cortical and subcortical sub-networks [19] on a
representative participant

3

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.08.331595doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.08.331595
http://creativecommons.org/licenses/by-nd/4.0/


Table 1. Statistics on test-re-test repeatability of DTI and SANDI metrics. Statis-
tics summarise the mean, median absolute deviation (MAD), intra-class correlation
coefficient (ICC) and p-value across all repeated measurements

Network Metric

FA MD (10−3 mm2/s)

Mean MAD ICC p-value Mean MAD ICC p-value

Visual .12 .009 .964 < .001 .90 .015 .991 < .001

Somatomotor .12 .006 .906 < .001 1.00 .072 .997 < .001

Dorsal attention .12 .010 .975 < .001 .99 .069 .999 < .001

Ventral attention .14 .005 .935 < .001 .90 .042 .996 < .001

Limbic .16 .006 .520 .11 .83 .020 .949 < .001

Fronto-parietal .14 .009 .911 < .001 .95 .078 .998 < .001

Default .14 .005 .928 < .001 .94 .065 .996 < .001

Subcortical .23 .014 .879 < .001 .73 .010 .850 < .001

fextracellular fintraneurite

Mean MAD ICC p-value Mean MAD ICC p-value

Visual .41 .014 .984 < .001 .14 .008 .950 < .001

Somatomotor .45 .031 .995 < .001 .12 .007 .954 < .001

Dorsal attention .44 .029 .997 < .001 .11 .008 .962 < .001

Ventral attention .43 .023 .987 < .001 .11 .010 .965 < .001

Limbic .41 .015 .935 < .001 .18 .012 .962 < .001

Fronto-parietal .45 .033 .995 < .001 .11 .004 .934 < .001

Default .44 .023 .992 < .001 .11 .005 .965 < .001

Subcortical .34 .009 .627 .04 .29 .034 .977 < .001

fintrasoma Rsoma (µm)

Mean MAD ICC p-value Mean MAD ICC p-value

Visual .46 .017 .985 < .001 8.81 .110 .934 < .001

Somatomotor .43 .033 .997 < .001 8.75 .130 .983 < .001

Dorsal attention .45 .033 .996 < .001 8.81 .130 .985 < .001

Ventral attention .46 .018 .991 < .001 8.90 .130 .939 < .001

Limbic .42 .015 .891 < .001 8.68 .040 .656 .04

Fronto-parietal .45 .024 .996 < .001 8.86 .130 .974 < .001

Default .45 .020 .996 < .001 8.84 .130 .962 < .001

Subcortical .37 .040 .957 < .001 8.37 .250 .953 < .001

Note: Bonferroni adjusted level of significance was set to p < .001.
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Fig. 2. Spread of values for DTI and SANDI metrics in networks 1-4. Each subject
(on the x-axis) has 5 data points representing each scan. The y-axis represents the
point estimate of each microstructural metric: FA, MD (10−3 mm2/s), fextracellular,
fintraneurite, fintrasoma, and Rsoma (µm)
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Fig. 3. Spread of values for DTI and SANDI metrics in networks 5-8. Each subject
(on the x-axis) has 5 data points representing each scan. The y-axis represents the
point estimate of each microstructural metric: FA, MD (10−3 mm2/s), fextracellular,
fintraneurite, fintrasoma, and Rsoma (µm)

6

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.08.331595doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.08.331595
http://creativecommons.org/licenses/by-nd/4.0/


Fig. 4. Intra-class correlation coefficients (two-way random effects, absolute agreement)
for test-re-test repeatability of a) DTI and SANDI metrics, and b) the quartile devi-
ation of SANDI metrics, in cortical and subcortical grey matter networks. Error bars
represent the bounds of the 95% confidence interval (CI) for each ICC estimate
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3 Results

The results of the repeatability analysis and estimated values for fintraneurite,
fintrasoma, Rsoma, and fextracellular are reported in Table 1. These values were
comparable to previously reported values estimated using ultra-high b-value data
[5]. Intra-subject variability was generally very low for all metrics across all grey
matter networks (Figures 2 & 3), reflected by high ICC values for SANDI met-
rics (mean ICC=.95) and DTI metrics (mean ICC=.93). Regions and metrics
with lower repeatability and greater intra-subject variability included FA in the
limbic network (ICC=.52, p=.11), fextracellular in the subcortical grey matter
(ICC=.63, p=.04) and Rsoma in the limbic network (ICC=.66, p=.04).

Despite high repeatability across both DTI and SANDI metrics in the grey mat-
ter, DTI metrics exhibited larger uncertainty around ICC estimates, indicated
by larger error bars (Figure 4a). In terms of SANDI model uncertainty, ICC
values in the limbic network for all QD estimates had a wide variation indicated
by larger error bars for the bounds of each ICC estimate (Figure 4b), and similar
patterns were observed for fintrasoma in the subcortical grey matter.

The results of the regional subcortical analysis are presented in Figure 5. We ob-
served low repeatability of fextracellular in all regions apart from the left amyg-
dala and left caudate (Figure 5a,b). For Rsoma, only the left amygdala, left
pallidum, and right hippocampus exhibited low repeatability (Figure 5a,b). The
distribution of QD estimates for fintrasoma suggest potential variation in model
fit between regions (Figure 5c).

4 Discussion

Our findings reveal that estimates of grey matter microstructure using soma and
neurite density imaging are highly stable across repeated imaging sessions. We
demonstrate high repeatability in a number of functional networks, known to
share structural covariance [19]. In addition, the soma signal fraction variation
across limbic and visual networks follows the estimated anterior to posterior gra-
dient of cell density in the cortex of human and other primates [20]. Overall, our
findings of high repeatability of dMRI metrics in the grey matter suggest the
increased power to detect group differences in applications of this technique.

The limbic network showed consistently lower repeatability and model uncer-
tainty amongst both DTI and SANDI metrics. Given the anatomical location
of these fronto-temporal structures, it is likely that susceptibility-induced dis-
tortions may detrimentally influence the repeatability of certain diffusion MRI
metrics. The effect of gradient non-linearities and spatiotemporally varying b-
values could impact repeatability, if the subject is placed in a slightly different
position in the scanner. Despite this general observation of the SANDI met-
rics studied here, only soma radius exhibited low repeatability in this network.
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Fig. 5. Regional analysis in subcortical grey matter for the hippocampus, amygdala,
pallidum, thalamus and caudate. A) Spread of fextracellular and Rsoma values in the
left hemisphere; B) Intra-class correlation coefficients (two-way random effects, absolute
agreement) for test-re-test repeatability of fextracellular and Rsoma; C) Distribution of
quartile deviation (QD) estimates for fintrasoma; D) Regions of interest used in the
analysis, obtained using Freesurfer [17] and eroded by 1 mm
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Therefore, Rsoma estimates in fronto-temporal structures should be interpreted
with caution, particularly in populations where these artefacts may be exagger-
ated (e.g. fronto-temporal dementia).

Upon further analysis of individual subcortical regions, the repeatability of
fextracellular was generally low. Tissue properties within subcortical regions are
heterogeneous, as sub-segments can differ in their neurite and soma composition
[21, 22]. These anatomical variations may influence the estimates reported here,
and as such, even finer parcellation of individual subcomponents would be an
important avenue of future research.

Finally, we have demonstrated that SANDI estimates obtained from moderate-
to-high b-values (up to b=6000 s/mm2) are comparable in terms of magnitude to
previous estimates derived from ultra-high b-values (e.g. up to b=10,000 s/mm2).
Whilst a direct comparison between multiple sampling schemes tested on the
same participant across repeated scans would be required to confirm similar
magnitudes of repeatability, based on our findings we are confident that the
repeatability is high enough to be acceptable for research applications using
high b-values. Now that we have established that these novel markers of grey
matter microstructure are stable across repeated sessions, the next step is to
pinpoint the underlying tissue properties driving rapidly changing grey matter
macrostructure, such as that observed in neurodevelopment and neurodegener-
ation.
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