
ar
X

iv
:2

10
1.

12
28

9v
2 

 [
cs

.D
B

] 
 5

 M
ar

 2
02

1

Probabilistic Data with Continuous

Distributions∗

Martin Grohe1, Benjamin Lucien Kaminski2, Joost-Pieter Katoen1,

and Peter Lindner1

1RWTH Aachen University, Germany
2University College London, UK

Statistical models of real world data typically involve continuous prob-
ability distributions such as normal, Laplace, or exponential distributions.
Such distributions are supported by many probabilistic modelling formalisms,
including probabilistic database systems. Yet, the traditional theoretical
framework of probabilistic databases focuses entirely on finite probabilistic
databases.

Only recently, we set out to develop the mathematical theory of infinite
probabilistic databases. The present paper is an exposition of two recent
papers which are cornerstones of this theory. In (Grohe, Lindner; ICDT
2020) we propose a very general framework for probabilistic databases, pos-
sibly involving continuous probability distributions, and show that queries
have a well-defined semantics in this framework. In (Grohe, Kaminski, Ka-
toen, Lindner; PODS 2020) we extend the declarative probabilistic program-
ming language Generative Datalog, proposed by (Bárány et al. 2017) for dis-
crete probability distributions, to continuous probability distributions and
show that such programs yield generative models of continuous probabilistic
databases.

1 Introduction

Probabilistic databases [20, 21, 22] provide a framework for quantitatively modelling
uncertainty in data. Sources of uncertainty are numerous; common examples are noisy

∗The results presented in this paper were originally published in M. Grohe and P. Lindner: Infinite

Probabilistic Databases, Proc. ICDT 2020 and M. Grohe, B.L. Kaminski, J.-P. Katoen, P. Lindner:

Generative Datalog with Continuous Distributions, Proc. PODS 2020.

1

http://arxiv.org/abs/2101.12289v2


RoomNo Time °C

4108 2021-01-05 08:00 20.2

4108 2021-01-05 14:00 21.8

4109 2021-01-05 08:00 22.1

...
...

...

(a)

RoomNo Time °C

4108 2021-01-05 08:00 N (20.2, ε)

4108 2021-01-05 14:00 N (21.8, ε)

4109 2021-01-05 08:00 N (22.1, ε)
...

...
...

(b)

Figure 1: A relation storing room temperatures: (a) deterministically and (b) with a
normally distributed error

sensor data, data gathered from unreliable sources, and inconsistent data. Formally, a
probabilistic database (PDB) is a probability space over database instances, called the
possible worlds. Traditionally, these probability spaces were limited to be finite. This
implies a closed world assumption where only finitely many facts could possibly be true,
and it rules out any probability distributions with an infinite support. Yet, in many
applications, infinitely, even uncountably infinitely, supported probability distributions
arise naturally, and many real-world statistical phenomena follow infinite probability
distributions such as Poisson distributions, normal distributions, or exponential distri-
butions.

Example 1.1. Suppose we have a relation storing room temperatures, as in Figure 1(a).
The temperature measurements may be noisy, and we may account for this by adding a
normally distributed error with a small variance ε > 0, resulting in a simple probabilistic
relation which may be represented as in Figure 1(b). y

Example 1.2. In this example, consider a particle detector such as the Alpha Mag-
netic Spectrometer (AMS-021) on the ISS. Suppose we record the detected particles in
a relation of schema (Time, Trajectory, Velocity). As in the previous example, the
measurements (of the trajectory and velocity) may be imprecise and best modelled by
a probability distribution. But here we have an additional source of uncertainty: some
particles may go undetected. If we also model this type of error, the number of tuples
in the relation becomes a random variable as well. Then there is no a-priori bound on
the size of the instances in the resulting PDB. Note, however, that every instance is still
finite, because in every time interval only finitely many particles can hit the detector,
and our model should account for that. y

Both examples exhibit probabilistic databases with continuous probability distribu-
tions that cannot be captured by the traditional model of finite probabilistic databases.
Generalising from finite to continuous probability distributions comes with a substantial
mathematical overhead. While PDBs of fixed (or bounded) size, such as those arising
from Example 1.1, are still relatively easy to handle, PDBs of unbounded size such as
the one we saw in Example 1.2 are nontrivial to capture mathematically, let alone to

1See https://ams02.space/.

2

https://ams02.space/


deal with algorithmically. Several PDB systems that have been proposed over the years
[2, 13, 14, 19] handle continuous probability distributions. The flexibility of these sys-
tems reaches as far as providing declarative representations of continuous probabilistic
databases and even continuous-space database-valued Markov processes. Yet, only re-
cently [10, 12], we proposed a general framework for rigorously dealing with probabilistic
databases over continuous domains and provided a sound semantics for standard query
languages such as the relational calculus. We will present this framework in Sections 4
and 5 of this paper. To distinguish them from the traditional “finite” PDBs, we call
PDBs with an infinite sample space infinite PDBs in the following. Note that every
instance in an infinite PDB is just a standard finite relational database instance, it is
only the sample space of all possible instances that is infinite.

A difficult issue when dealing with PDBs is how to efficiently represent them. This
problem already arises for finite PDBs, but is much more fundamental when dealing
with infinite PDBs that do not even allow for a naive representation that explicitly lists
all instances. So we have to rely on implicit representations, which can either be ad-
hoc representations such as the one chosen to illustrate Example 1.1 in Figure 1(b) or
generic formalisms for representing complex probability distributions, such as probabilis-
tic graphical models, deep neural networks, and probabilistic programming languages.
Yet, when dealing with (relational) PDBs, it is desirable to stay within the declarative
framework of relational databases. To this end, Bárány, ten Cate, Kimelfeld, Olteanu,
and Vagena [3] introduced a declarative probabilistic programming language based on
Datalog, which has a generative part enabling to represent complex probability distri-
butions strictly within the framework of relational databases. However, the semantics of
Bárány et al. is only able to handle discrete probability distributions. In [9], we gener-
alised the semantics to continuous distributions. The resulting Generative Datalog can
serve both as a powerful representation language for relational PDBs with discrete and
continuous distributions and as a query language for PDBs. We present this language
in Section 7.

The reader may wonder if it is really necessary to consider continuous probabilistic
databases. After all, they can only be mathematical abstractions of real systems, where
instead of the continuum of real numbers we only see the finite set of 64 bit floating point
numbers. Then aren’t finite probabilistic databases all we need? Well, the history of
computer science has shown us that the right abstractions can be extremely powerful—
just think of the relational database model— and certainly we do not want the semantics
of our query languages depend on whether we use 32 or 64 bit floating-point numbers
to specify probabilities. All of applied mathematics, including statistics, uses the real
numbers as the right abstraction to reason about continuous phenomena. And when
reasoning about uncertain and probabilistic data, we want to have standard tools such
as normal distributions at our disposal.

3



2 Towards Infinite PDBs

Before we delve into the mathematical details, in this section we describe the general
approach on an intuitive level and highlight the technical difficulties we are facing.

We define a probabilistic database to be a probability space whose sample space con-
sists of database instances of some schema τ . In the traditional approach, this probability
space is assumed to be finite; here, we would like to allow it to be infinite. The difficulty
when defining probabilities on uncountable spaces such as the reals is that we cannot
assign a well-defined probability to all subsets of the space, but only to subsets that are
measurable.

Let us ignore this issue for a moment (though it will come back to bite us) and
think about how we can actually define a probability distribution on uncountable sets
of database instances. Let us fix a simple database schema τ consisting of a single
binary relation R of schema (Time, Value), where the attribute Value is real-valued.
Instances are relations of this schema. We can also view them as finite sets (without
duplicates) or finite bags (possibly with duplicates)—depending on the type of semantics
we are interested in—of facts of the form R(t, v), where t is a point in time and v a real
number. If we want to define a finite probability space on the instances, we can simply
pick a finite set D1, . . . ,Dm of instances and assign probabilities p1, . . . , pm ∈ [0, 1] to
them such that

∑

i pi = 1. We can extend this approach to countably infinite spaces,
but not to uncountable spaces, where typically every single instance has probability 0.
This happens, for example, if we assume the Value to be normally distributed at any
Time. We know how to define a probability distribution on the Values (that is, the real
numbers); we only need to specify the probability mass on each interval. But here we
need to define a probability distribution on sets or bags of Time-Value pairs. It is not
at all obvious how to do that, except maybe in simple settings such as the one described
in Example 1.1. We need to draw from the theory of finite point processes [17, 16, 7].
In probability theory, point processes are used to describe probability spaces of finite or
countable sets or bags. Based on the theory of point processes, we will define a very
general framework for infinite PDBs that we call standard PDBs (see Section 4).

Once we have defined our probability spaces, we need to think about querying PDBs.
To define the semantics of queries and views, let us consider a view V mapping instances
of schema τ to instances of schema τ ′. Queries are just specific views where the target
schema τ ′ consist of a single relation schema. We want to define a semantics for this view
V on probabilistic databases, that is, we want to extend it to a mapping from PDBs of
schema τ to PDBs of schema τ ′. Let us assume that we have a PDB D of schema τ , and
we want to define the image V (D), which is supposed to be a PDB of schema τ ′. To do
this, for a set D

′ of instances of schema τ ′ we define the probability of D′ in V (D) to
be the probability of the set V −1(D′) in D:

Pr
V (D)

(D′) := Pr
D

(

V −1(D′)
)

. (A)

Example 2.1. Recall Example 1.1, where we considered PDBs of a schema

τ = {Temp(RoomNo, Time, °C)}.

4



RoomNo Time °C

4108 2021-01-05 08:00 N (20.2, 0.1)

4108 2021-01-05 14:00 N (21.8, 0.1)

4109 2021-01-05 08:00 N (22.1, 0.1)

4109 2021-01-05 14:00 N (22.3, 0.1)

4109 2021-01-06 08:00 N (21.9, 0.1)

Figure 2: A PDB of schema τ = {Temp(RoomNo, Time, °C)}

Entries are room temperatures at various times. Let Q be the query that maps instances
of schema τ to instances of schema τ ′ = {AvTemp(RoomNo, °C)} recording the average
temperature in each room, defined by the SQL-expression

SELECT RoomNo, AVG(°C) FROM Temp GROUP BY RoomNo.

Let us apply this query to the PDB D represented by the relation Temp shown in Figure 2.
Note that in all instances of this PDB, the table Temp has exactly five rows recording the
temperatures in room 4108 at two different times and the temperatures in room 4109
at three different times. For simplicity, we assume that the random variables describing
the entries in the five rows are independent.

In every instance of Q(D), the table AvTemp has exactly two rows recording the average
temperatures in rooms 4108 and 4109. We can easily compute the probabilities in
Q(D). For example, the probability that both rooms have an average temperature in the
range 20–22 degrees equals the probability that the average of two normally distributed
random variables with means 20.2, 21.8 and variance 0.1 is between 20 and 22 times the
probability that the average of three normally distributed random variables with means
22.1, 22.3, 21.9 and variance 0.1 is between 20 and 22. Actually, the table AvTemp in
Q(D) can be represented as follows.

RoomNo °C

4108 N (21.0, 0.05)

4109 N (22.1, 0.033)

The fact that a linear combination of normal distributions is again a normal distribution
enables us to represent Q(D) in such a simple “closed form”. In general, views of PDBs
can be far more complicated than the original PDBs. y

Unfortunately, there is a subtle issue that we have neglected when defining the se-
mantics of views and queries over PDBs. Recall that in uncountable probability spaces,
we cannot define probabilities for all subsets of the sample space, but only for so-called
measurable sets. This means that in the definition (A), we only need to consider measur-
able sets D′ of instances of schema τ ′, but we need to make sure that the set V −1(D′)
is measurable as well, for otherwise the probability on the right-hand side of (A) is not
defined. This means that a view V only has a well-defined semantics on probabilistic
databases if for every measurable set D

′ in the target space the pre-image V −1(D′) is

5



a measurable set in the source space. If this is the case, we call V measurable. Only
measurable views and queries have a well-defined semantics on probabilistic databases.
Fortunately, it turns out that all views defined in standard query languages such as the
relational calculus or Datalog are measurable. But this is a nontrivial result (Theo-
rem 5.1). In [12, Example 8], we give an example of a relatively simple “query” that is
not measurable.

3 Mathematical Background

In this section, we collect some mathematical background underlying our approach to
PDBs. The reader may skip this section and use it as a reference whenever needed later.

Topology

Topology qualitatively captures concepts such as closeness, convergence, and continuity,
and it is the foundation for the measure theory and probability theory we need here.
A topology on a set X is a family O of subsets of X that contains X and the empty set
and is closed under arbitrary unions and finite intersections. We call (X,O) a topological
space and the elements O ∈ O open sets.

Example 3.1. (1) In the standard topology on the reals R, a set O ⊆ R is open if for
every x ∈ O there is an ε > 0 such that (x− ε, x+ ε) ⊆ O. Note that this topology
is generated by the open intervals, which means that every open set is the union
of open intervals.2

(2) For every set X, the power set 2X is a topology on X, the so-called discrete topology.
y

For i = 1, 2, let (Xi,Oi) be a topological space. A function f : X1 → X2 is continuous
(with respect to O1,O2) if f

−1(O2) ∈ O1 for every O2 ∈ O2.
Every metric d on X (that is, a distance function on pairs of elements of X that is

symmetric, satisfies the triangle inequality, and has the property that two points have
distance 0 if and only if they are equal) induces a topology on X where a set O ⊆ X is
open if for every x ∈ O there is an ε > 0 such that {y | d(x, y) < ε} ⊆ O. A topological
space (X,O) is metrisable if it is induced by a metric on X in this way. Obviously, the
standard topology on the reals (Example 3.1(1)) is metrisable. The discrete topology on
an arbitrary set X (Example 3.1(2)) is metrisable as well; as a metric we use the function
d with d(x, x) = 0 and d(x, y) = 1 for all x 6= y, also know as the discrete metric.

A topological space (X,O) is separable if there is a countable subset Y ⊆ X such that
every nonempty open set O ∈ O \ {∅} contains an element from Y (we say that Y is
dense). For example, for the reals with the standard topology, the set Q of rationals is a
dense subset. The discrete topology on a set X is separable if and only if X is countable.
Separability is a very important technical property in our arguments, because it enables
us to work with countable approximations.

2We take the union over the empty family of sets to be the empty set.

6



A final condition we need (though it is less important for us) is completeness: intu-
itively, a metrisable topological space (X,O) is complete if every convergent sequence
(more precisely, Cauchy sequence) converges to a point in X. We omit the formal def-
inition. A Polish space is a complete, separable, metrisable topological space (and its
topology is Polish). The reals with the standard topology, all finite-dimensional Eu-
clidean spaces, and all countable discrete topological spaces are Polish spaces.

It is safe to say that all topological spaces we will ever find in database applications
are Polish spaces.

Measure Theory and Probability

A σ-algebra on a set X is a set A of subsets of X that contains the empty set and is closed
under complementation and countable unions. A pair (X,A), where A is a σ-algebra on
X, is called a measurable space.

Example 3.2. (1) For every set X, the set {∅,X} and the power set 2X are σ-algebras
on X.

(2) Another σ-algebra on X is the set of all Y ⊆ X such that either Y is countable or
X \ Y is countable.

(3) The set of all Lebesgue measurable subsets of the reals is a σ-algebra. y

Let X be a set and S ⊆ 2X. The σ-algebra generated by S is the closure of S

under complementation and countable intersections, that is, the smallest σ-algebra on X

that contains S. Observe that the σ-algebra defined in Example 3.2(2) is the σ-algebra
generated by all singleton sets {x} for x ∈ X.

For any topological space (X,O), the σ-algebra generated by the topology O is called
the Borel σ-algebra on X, and its elements are called Borel sets. A measurable space
(X,A) is a standard Borel space if A is the Borel σ-algebra of some Polish topology on
X. It is not difficult to show that if d is a metric inducing such a Polish topology and
Y is a countable dense subset then A is generated by the countable set of open balls
B1/n(y) := {x ∈ X | d(x, y) < 1/n} for positive integers n and y ∈ Y . This is one of the
reasons making standard Borel spaces very convenient to handle.

For i = 1, 2, let (Xi,Ai) be a measurable space. A function f : X1 → X2 is measurable
(with respect to A1,A2) if f

−1(A2) ∈ A1 for every A2 ∈ A2. If Ai is the Borel σ-algebra
of some topology Oi on Xi, then every continuous function is measurable; the converse
does not always hold. The Cartesian product of (X1,A1) and (X2,A2) is the measurable
space (X1×X2,A1⊗A2), where A1⊗A2 is the σ-algebra generated by the sets A1×A2

for Ai ∈ Ai. If X1 and X2 are disjoint, then the (disjoint) union of the two measurable
spaces is the measurable space (X1 ∪X2,A1 ⊕ A2), where A1 ⊕ A2 is the set of all sets
A ⊆ X1 ∪ X2 such that A ∩ Xi ∈ Ai. It can be shown that if the spaces (Xi,Ai) are
standard Borel spaces then (X1 × X2,A1 ⊗ A2) and (X1 ∪ X2,A1 ⊕ A2) are standard
Borel spaces as well.

Let (X,A) be a measurable space. Ameasure on (X,A) is a functionM from A to R≥0∪
{∞} (the nonnegative reals extended by infinity) that is σ-additive, that is, for every
countable family A1, A2, . . . of mutually disjoint sets in A it holds that M(

⋃

i≥1Ai) =

7



∑

i≥1 M(Ai). A measure M is finite if M(X) <∞, and it is a probability measure (or a
probability distribution) if M(X) = 1. We call (X,A,M) a measure space, or a probability
space if M is a probability measure. X is called the sample space and A the event space
of this probability space.

Example 3.3. (1) Let (X,A) be a measurable space and Y ⊆ X. We define a measure
M by letting M(A) be the cardinality of |A ∩ Y | (either finite or ∞). M is what
we call a counting measure. It is finite if Y is finite.

(2) The normal distribution N (µ, σ) is the unique probability measure P on the stan-
dard Borel space (R,B) with

P
(

(a, b]
)

=
1

σ
√
2π

∫ b

a
exp

(

−(x− µ)2

2σ2

)

dx.

for all a < b. (It can be shown that a probability measure on the Borel σ-algebra
over the reals is determined by its values on the half open intervals.)

(3) If X is a countable set (finite or countably infinite), then we can define a probability
measure P on (X, 2X) by defining the singleton values P ({x}) ∈ [0, 1] such that
∑

x∈X P ({x}) = 1 and letting P (A) :=
∑

x∈A P ({x}) for all A ⊆ X. In fact, every
probability measure on X can be defined this way, regardless of what the σ-algebra
is. So for countable probability spaces, we can always assume that the σ-algebra
is the power set of the sample space X. y

4 Standard PDBs

Let τ be a database schema, and let Uτ , the universe, be the union of the domains of all
attributes occurring in τ . We view database instances as finite sets or bags (a.k.a. mul-
tisets) of facts of the form R(a1, . . . , ak), where R(A1, . . . , Ak) is a relation schema in
τ and for every i the value ai ∈ Uτ is contained in the domain of attributes Ai. Even
if we are only interested in set instances, for technical reasons we need to consider bag
instances as well. We denote the set of all facts over τ by Fτ and the set of database
instances over τ , that is, finite bags of facts in Fτ , by DBbag

τ . Moreover, we denote the
subset of all plain sets of facts, that is, set instances, by DBτ . In all these notations, we
omit the subscript τ if the schema is clear from the context or irrelevant.

Under the most general definition, a probabilistic database is just a probability space
D = (D,A, P ), where D ⊆ DBbag. However, it is very difficult to work with this general
definition. While we may have an intuition about defining the sample space and the
probabilities, it is completely unclear how to define the event space, that is, the σ-
algebra A, which is a set of sets of bags of facts (sic).

Example 4.1. Recall Examples 1.1, 2.1, and let D = (D,A, P ) be the (informally

8



described) PDB shown in Figure 2. The sample space D ⊆ DBτ consists of all instances

{

Temp(4108,2021-01-05 08:00,t1),

Temp(4108,2021-01-05 14:00,t2),

Temp(4109,2021-01-05 08:00,t3),

Temp(4109,2021-01-05 14:00,t4),

Temp(4109,2021-01-06 08:00,t5)
}

,

where t1, . . . , t5 ∈ R. We have seen in Example 2.1 how to calculate the probability of
a set of instances. However, it is not obvious which sets are measurable, that is, have a
well-defined probability and therefore should belong to the σ-algebra A. Intuitively, at
least sets such as those considered in Example 2.1 where the temperatures are in certain
intervals, should be measurable.

In this simple example, we can define a suitable σ-algebra by an ad-hoc product
construction starting from the Borel σ-algebra on the reals, but already in the only
slightly more complicated setting of Example 1.2, where the number of tuples in an
instance is also a random variable that is a-priori unbounded, it becomes difficult to
carry out such a construction. y

The point is: even if we can somehow come up with an ad-hoc construction of a
σ-algebra for every PDB that we want to work with, reasoning about σ-algebras is
definitely not what we want to do when working with probabilistic data. Yet, as we have
seen in Section 2, measurability is an issue when giving queries and views a meaningful
semantics.

A solution to this dilemma is a theoretical framework that gives us a generic con-
struction of σ-algebras only depending on the schema τ and the universe U that is rich
enough to make all sets that we typically want to consider measurable and at the same
time ensures that all reasonable queries and views are measurable. Standard probabilistic
databases, introduced in [12], provide such a framework.

The main technical challenge is to generically construct a sufficiently rich σ-algebra
A = Aτ on DBbag. If the universe U is countable, then the set F of facts and hence
the set DBbag of all finite bags of facts are countable as well, and we can simply let
A = 2DB

bag

(see Example 3.3(3)). But what do we do if the universe is uncountable?
The additional assumption we need to make is that we have a topology on the universe,
in fact a Polish topology. As uncountable universes we may see in typical database
applications are usually derived from the reals in some way, this is no serious restriction.

Example 4.2. Typical domains of database attributes are integers, reals, strings, and
time stamps. So we will have a universe like U = Σ∗ ∪ R for some finite alphabet Σ
(say, UTF8). If by OR we denote the standard topology on the reals, the generic way
of extending it to a Polish topology O on U is to let O be the set of all O ⊆ U such
that O ∩R ∈ OR. It is straightforward to extend this construction to more complicated
universes where we add, for example, a set of (uncountably many) time stamps. y

9



Let us assume in the following that OU is a Polish topology on the universe U. We
assume that this topology is part of the information provided by the schema τ . Let AU

be the σ-algebra generated by OU. Then (U,AU) is a standard Borel space. Using finite
Cartesian products and disjoint unions, we can lift AU to a σ-algebra AF on the set F of
facts. (F,AF) is still a standard Borel space.

The next step will be to lift AF to a σ-algebra C on DBbag. Maybe the most direct
way of doing this is to first lift the σ-algebra to all finite tuples of facts using finite
Cartesian products and a countable disjoint union and then “factor” the resulting σ-
algebra through all permutations to go from tuples to bags. A more elegant way of
defining the same σ-algebra is as follows.3 For every set F ⊆ F of facts and every
instance D ∈ DBbag, we let |D|F be the number of elements of F in D counted according
to their multiplicities. For example, |{{f, f, g, g, g, h}}|{f,g} = 5. For n ∈ N, we let #(F, n)

be the set of all D ∈ DBbag with |D|F = n. Finally, we let C := Cτ be the σ-algebra
generated by all sets #(F, n) for F ∈ CF and n ∈ N. Since C is generated by the counting
events #(F, n), it is called the counting σ-algebra (hence the letter C = “Fraktur C”).
Another way of seeing C is that it is the smallest σ-algebra such that for all measurable
sets F ∈ AF of facts, the function | · |F : DBbag → N is measurable with respect to C

and 2N. We will see that this is enough to guarantee that all queries defined in standard
query languages are measurable as well.

Definition 4.3. A standard probabilistic database is a probability space (DBbag
τ ,Cτ , P )

for some schema τ .

To keep the definition as simple as possible, we let the sample space of a standard
PDB be the set DBbag

τ of all bag instances. As a result, every standard PDB can be
specified by its probability distribution. We could adopt a more liberal definition where
the sample space consists of an arbitrary measurable subset and then restrict the σ-
algebra to this set. That is, we could also admit PDBs of the form (D,C|D, P ), where
D ∈ C and C|D := {C ∩ D | C ∈ C}. But note that this space is essentially the same as
the standard PDB (DBbag,C, P ′) where P ′(C) := P (C∩D) for all C ∈ C. Therefore, it is
safe to view such PDBs with restricted sample spaces as standard PDBs. In particular,
since the set DB of all set instances is measurable, this applies to standard set PDBs of
the form (DB,C|DB, P ).

5 Query Semantics

A view with input schema τ and output schema τ ′ is a mapping V : DBbag
τ → DB

bag
τ ′ . A

query is a view where the output schema consists of a single relation. We call a view
V : DBbag

τ → DB
bag
τ ′ measurable if it is a measurable mapping with respect to Cτ and Cτ ′ .

Such a measurable view V can be lifted to standard PDBs as follows: for every standard
PDB D = (DBbag

τ ,Cτ , P ), let V (D) be the standard PDB (DBbag
τ ′ ,Cτ ′ , P

′) where P ′ is

3It is not obvious that the two constructions indeed lead to the same σ-algebra. This follows from a

theorem from point-process theory.

10



defined by
P ′(C ′) := P

(

V −1(C)
)

for all C ′ ∈ Cτ ′ . Note that this is exactly semantics defined in (A).
Thus a view has a well-defined semantics on standard PDBs if and only if it is mea-

surable. The following theorem, which is the main result of [12], states that this is the
case for a wide class of views.

Theorem 5.1. All queries and views expressible in the relational calculus (with aggrega-
tion) and Datalog as well as variants such as Inflationary Datalog and Least Fixed-Point
Logic (see [1]) are measurable.

Let us remark that this theorem applies to both set semantics and bag semantics.
The proof is a tedious inductive proof that goes through all operators used to define
the different query languages. The most involved steps are basic relational-algebra op-
erators such as Cartesian product or projection. The following example exhibits some
of the arguments in an easy case that nevertheless already illustrates why we want our
underlying topological space to be Polish.

Example 5.2. Let τ = {R(A,B)}, where the attributes A,B have the same domain U.
We consider the equality query Q that maps R to its diagonal, that is, the selection

SELECT A,B FROM R WHERE A = B.

Let d be a metric on U that induces the Polish topology OU we assume to exist, and
let Y ⊆ U be a countable dense set. Let AU be the Borel σ-algebra on U. Then AU is
generated by the open balls B1/n(y) = {x ∈ U | d(x, y) < 1/n} for y ∈ Y and n ∈ N>0.
Let AF be the lifted σ-algebra on F, and ∆ := {R(x, y) ∈ F | x = y} be the diagonal
selected by the query Q.

As a first step, we need to prove that ∆ ∈ AF. This is done by characterising its
complement ∆∁. We identify the space F = {R(x, y) | x, y ∈ U} with the Cartesian
product U × U and AF with the product σ-algebra AU ⊗ AU generated by the sets
A × A′ for A,A′ ∈ AU. Then, ∆ becomes {(x, x) | x ∈ U}. Observe that for (x, x′) ∈
∆∁, there are y, y′ ∈ Y and an n ∈ N>0 such that (x, x′) ∈ B1/n(y) × B1/n(y

′) and
(

B1/n(y)×B1/n(y
′)
)

∩∆ = ∅. Thus

∆∁ =
⋃

y,y′∈Y
B1/n(y)×B1/n(y

′)∩∆=∅

B1/n(y)×B1/n(y
′),

which is a countable union of sets in AU ⊗ AU. Since every σ-algebra is closed under
complementation and countable intersections, it follows that ∆ ∈ AU ⊗ AU.

To prove that the query Q, formally a mapping from DBbag
τ to DBbag

τ , is measurable,
we need to prove that for every C ∈ C the pre-image Q−1(C) is in C as well. As the
counting events #(F, n) for n ∈ N and F ∈ AF generate C, it suffices to prove that the
pre-image of each such counting event is in C. Observe that for every instance D ∈ DBbag

11



we have Q(D) ∈ #(F, n) if and only if D contains exactly n facts R(x, y) ∈ F with x = y
(counted according to multiplicity), or equivalently, R(x, y) ∈ F ∩∆. That is,

Q−1(#(F, n)) = #(F ∩∆, n).

F,∆ ∈ AF imply F ∩∆ ∈ AF and thus #(F ∩∆, n) ∈ C. y

6 Representations

An infinite PDB viewed as a probability distribution over database instances is an ide-
alised mathematical concept that allows us to give semantics to PDBs and queries. It
is not something that we can ever materialise. When designing probabilistic database
systems, we need to think about finite representations of the probability spaces.

The most common model for finite probabilistic databases is that of tuple-independent
(TI) PDBs. We can adopt the notion of TI PDBs to countable PDBs; to represent a
countably infinite TI PDB we only need to represent a function that assigns a proba-
bility to every fact. Countably infinite TI PDBs were studied in [10]. An extension to
uncountable PDBs, called Poisson PDBs, was proposed in [11]. Another basic model,
block-independent disjoint (BID) PDBs, can also be extended to the infinite setting
[10, 11]. Both TI and BID PDBs can only represent very simple probability distribu-
tions. To obtain more sophisticated distributions, we can apply transformations such
as views to such PDBs (views of countable TI and BID PDBs were studied in [6]) or
combine several PDBs into a new one using constructions such as convex combinations
and superpositions (see [11]).

A different and more general approach is to start from a deterministic set of data, feed
it into some generative model, and interpret the output as a probability distribution on
database instances. With this approach, we are free to use all kinds of probabilistic
modelling formalisms, for example, database-valued Markov processes [13], logical for-
malisms such as Markov Logic Networks [18] or ProbLog [8], deep neural network models
such as variational autoencoders [15], or programs in some probabilistic programming
language [4]. The difficulty is to specify such models in a way that the output can be
interpreted as a meaningful probability distribution on database instances. Generative
Datalog (GDatalog), introduced in [3, 9], is a declarative probabilistic programming lan-
guage that remains within the framework of relational databases and therefore avoids
this difficulty; the output of a Generative Datalog program is a PDB by definition.

7 Generative Datalog

Throughout this section, we assume a set semantics for relational databases. For recur-
sive languages like Datalog, a bag semantics is less convenient, because we want to avoid
repeatedly generating new copies of the same fact.

We start by informally reviewing Datalog (see [1] for more background). A Datalog
program is a finite set of rules of the form

R(x)← S1(x1), . . . , Sm(xm), (B)

12



where R,Si are relation symbols and x, xi are tuples of variables of the appropriate
lengths such that all variables in the tuple x appear in one of the tuples xi. The head
of the rule (B) is R(x) and the body is S1(x1), . . . , Sm(xm). The relations appearing
in the head of some rule of a Datalog program are intensional ; all other relations are
extensional. The extensional (intensional) relations form the extensional (intensional,
resp.) schema of the program.

Consider the rule (B). Given an interpretation of all the body relations Si and an
assignment α to the variables xi, the rule is applicable if for all i the fact Si(α(xi)) holds
true under the current interpretation of Si. The application of the rule generates the
new fact R(α(x)).

We run a Datalog program P on a database instance over the extensional schema. The
program iteratively computes interpretations for all the intensional relation symbols.
All intensional relations are initialised to be empty. Then the rules of the program are
applied repeatedly until no more new facts can be generated. It can be shown that the
final relations do not depend on the order in which the rules are applied. Furthermore,
the program (when applied to a finite input instance) always terminates in finitely many
steps and hence the result can be interpreted as a database instance over the intensional
schema. In other words, a Datalog program expresses a view mapping instances over
the extensional schema to instances over the intensional schema.

The following example illustrates these Datalog definitions and then develops the main
ideas of its probabilistic extension GDatalog.

Example 7.1. Let P be the following simple Datalog program with extensional relations
S,E and an intensional relation R:

R(x)← S(x), (C)

R(x)← R(y), E(y, x). (D)

We can interpret instances over the extensional schema as directed graphs with a dis-
tinguished set of source vertices. Then the program computes the set of all vertices
reachable from the source vertices.

Now suppose we do not only want to compute whether a vertex is reachable from a
source, but also how long it takes to reach it. Assume that the edge relation is now
ternary, where we interpret the third, real valued component as a length or traversal
time. Consider the following program:

R(x, 0)← S(x), (E)

R(x, t+ s)← R(y, t), E(y, x, s). (F)

This is no longer a Datalog program in the strict sense. Yet it seems clear what its
semantics is; after executing the program, the binary relation R will contain all pairs
(x, t) such that x is reachable from a source vertex by a walk (that is, a path with
possibly repeated vertices and edges) of length t. There is however a problem with this:
if the graph is cyclic, there may be arbitrarily long walks, and the output relation will
no longer be finite. Therefore, let us assume that the input graph is acyclic.

13



Now assume the traversal time of an edge is not deterministic, but random. Say,
we model it by a log-normal distribution LN (ln s, 1/10) where the parameter s is the
median of this distribution. We may write the following program:

R(x, 0)← S(x), (G)

R(x, t+ LN (ln s, 1/10)) ← R(y, t), E(y, x, s). (H)

The output of this program is supposed to be a random relation that contains pairs
(x, t), where t is a sampled travel time along some walk from a source to x in the input
graph. We can interpret the probability space of all possible output relations as a PDB
of schema {R}. Our GDatalog program applied to an acyclic input graph thus represents
a PDB.

But now another problem with termination pops up, even if the input graph is acyclic.
The intuitive interpretation of an application of rule (H) is that for x, t, s, y matching the
body of the rule, we sample a value r from the log-normal distribution LN (ln s, 1/10)
and then generate the fact R(x, t+r). But if we would apply the same rule again to the
same x, t, s, almost surely we would not sample the same r again, but an r′ 6= r, and
hence generate a new fact R(x, t+r′). We could do this over and over again and would
obtain an infinite relation R, and moreover, the program would never terminate. This
is clearly not what we want. Note that this cannot happen with a deterministic rule like
(F).

Our simple solution to avoid this problem is to stipulate that we can only apply the
rule once to every triple (x, t, s) of parameters. There may, however, be application
scenarios where it is desirable to sample from the distribution more than once. To
accommodate this, we allow the same rule to appear several times in a program. Then for
each instantiation of the rule, we can sample once. A more flexible, but more complicated
way of sampling several times with the same parameter tuple is to introduce another
parameter that serves as an index for the samples. y

Rules (G) and (H) give a typical example of a GDatalog program. To define GDatalog
programs in general, besides the extensional and intensional schema we need to specify
a family Ψ of parametrised distributions. An example is the log-normal distribution
LN (µ, σ) with parameters the real number µ and the positive real number σ. It may
be helpful to think of parameterised distributions as randomised functions mapping the
parameters, such as µ and σ, to values in some range, in the case of LN (µ, σ) the positive
reals. As a second example, consider the simple Bernoulli (coin-flip) distribution B(p)
with parameter p ∈ (0, 1). It takes value 1 with probability p and 0 with probability 1−p.
The functions in Ψ must satisfy some technical measurability conditions to ensure that
they behave well with respect to changes of parameters. Intuitively, we want continuous
changes in the parameters to result in continuous changes of the distribution, whatever
that means technically. As examples, think of a normal distribution N (µ, σ) and a
Bernoulli distribution B(p). We can compose the parameterised distributions and replace
parameters by constants to form more complex terms, but we need to make sure that
the resulting parameterised distributions still satisfy our technical conditions. We call
these Ψ-terms. An example of such a term, with two variables s, t, is the expression

14



t + LN (ln s, 1/10) in rule (H). Deterministic functions such as t + s can be easily
incorporated into the semantics as well. A GDatalog rule over a set Ψ of parametrised
distributions is an expression

R(t)← S1(x1), . . . , Sm(xm), (I)

where the body S1(x1), . . . , Sm(xm) is a list of atoms over the extensional and intensional
schema, just like for normal Datalog rules, and the head R(t) consists of an intensional
relation symbol R and a tuple t = (t1, . . . , tk) of (Ψ-)terms such that all variables of the
ti appear in the body of the rule. Of course we must make sure that the terms are of the
appropriate types, that is, the range of ti is contained in the domain of the ith attribute
of relation R. Note that in particular, all normal Datalog rules are GDatalog rules.

A GDatalog program is a bag of GDatalog rules.
Before even touching upon the intricacies of a formal semantics for GDatalog pro-

grams, let us explain an informal operational semantics for GDatalog rules and pro-
grams. We have already given the intuition in Example 7.1. Consider the rule (I). Let
t = (t1, . . . , tk), and let yi be the tuple of variables of the term ti—we indicate this
by writing ti(yi). Note that for Ψ-terms, ti(yi) is a parametrised probability distribu-
tion: if we instantiate the variables in yi by values of the appropriate type, we obtain a
probability distribution.

Given an interpretation of all the body relations Si and an assignment α to the vari-
ables xi, the rule is applicable if for all i the fact Si(α(xi)) holds true under the current
interpretation of Si. To apply the rule, for all j we sample a value aj from the probability
distributions tj(α(yj)) to generate the new fact R(a1, . . . , ak).

We run a GDatalog program G on a database instance over the extensional schema in
a similar way as a normal Datalog program. All intensional relations are initialised to
be empty. By repeatedly applying the rules as described above, the program generates
(random) facts. All rule applications are stochastically independent. We stipulate that
each rule of the program (or more precisely, each occurrence of each rule—remember
a program is a bag of rules where a rule may occur several times) can only be applied
once for every instantiation of the variables appearing in the head of the rule. The
computation terminates if no more rule can be applied, and the output is the set of
facts generated by the program during the computation, that is, a database instance
over the intensional schema. Because of the sampling of values in the rule applications,
the output is probabilistic. We interpret it as a probabilistic database. Thus, given a
database instance over the extensional schema, a GDatalog program generates a PDB
over the intensional schema.

However, our informal description of the semantics raises several crucial questions:

(1) Does the program always terminate?
(2) How can we be sure that the output is indeed a well-defined probabilistic database?
(3) In which order do we apply the rules, and does this make a difference?

The answer to Question (1) is simply ’no’ (in general). In Example 7.1, we already saw
that even the simple deterministic program (E), (F) may not terminate if the input graph
is cyclic. For probabilistic programs, the notion of termination is more complicated,

15



because a program may terminate for certain random outcomes while it diverges for other
outcomes [5]. We resolve this issue by conditioning the output probability distribution
on termination. That is to say, a GDatalog program defines a sub-probabilistic database
where the probability mass over its defined space may be smaller than 1. It is an open
research question to understand termination criteria for GDatalog programs.

We can answer Questions (2) and (3) by carefully defining a formal semantics for
GDatalog programs. The main results of [9] (in the case of discrete probability distribu-
tions due to [3]) regarding this semantics are (informally) summarised in the following
theorem.

Theorem 7.2. Applying the GDatalog program G to a database instance D over the
extensional schema, defines a standard sub-probabilistic database G(D).
G(D) does not depend on the order in which the rules are applied, as long as the policy

that is used to decide which rules to apply is measurable.

One final remark is that the semantics of GDatalog programs can be lifted to proba-
bilistic databases. That is, if we apply a GDatalog program to a standard PDB over the
extensional schema it defines a standard sub-probabilistic database over the extensional
schema.

8 Concluding Remarks

To enable reasoning about uncertain data with standard statistical models, we need
probabilistic databases to support continuous probability distributions. Providing a
mathematical framework for dealing with a very general class of probability distribu-
tions, we introduced standard PDBs [12]. Furthermore, we extended Generative Datalog
[3], a declarative probabilistic programming language for relational data, to continuous
distributions, thereby providing a flexible formalism for specifying generative models of
standard probabilistic databases.

The focus of our work was on semantical issues. Further research is needed to address
algorithmic and complexity theoretic questions.

Acknowledgements. This research is supported by the German Research Foundation
(DFG) under grant GR 1492/16-1 and the Research Training Group 2236 UnRAVeL.

References

[1] S. Abiteboul, R. Hull, and R. Vianu. Foundations of Databases. Addison-Wesley,
1995.

[2] P. Agrawal and J. Widom. Continuous Uncertainty in Trio. In Proc. VLDB Work-
shop on Management of Uncertain Data, pages 17–32, 2009.

[3] V. Bárány, B. ten Cate, B. Kimelfeld, D. Olteanu, and Z. Vagena. Declarative
Probabilistic Programming with Datalog. ACM Transactions on Database Systems
(TODS), 42(4), 2017.

16



[4] G. Barthe, J.-P. Katoen, and A. Silva, editors. Foundations of Probabilistic Pro-
gramming. Cambridge University Press, 2020.

[5] O. Bournez and F. Garnier. Proving positive almost-sure termination. In RTA,
volume 3467 of Lecture Notes in Computer Science, pages 323–337. Springer, 2005.

[6] N. Carmeli, M. Grohe, P. Lindner, and C. Standke. Tuple-independent representa-
tions of infinite probabilistic databases. ArXiv, 2008.09511, 2020.

[7] D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Pro-
cesses, Volume I: Elementary Theory and Models. Probability and Its Applications.
Springer, 2nd edition, 2003.

[8] L. De Raedt, A. Kimmig, and H. Toivonen. ProbLog: A Probabilistic Prolog and
Its Application in Link Discovery. In Proc. IJCAI 2007, pages 2468–2473.

[9] M. Grohe, B. L. Kaminski, J.-P. Katoen, and P. Lindner. Generative datalog with
continuous distributions. In Proc. PODS 2020, pages 347–360, New York, NY,
USA.

[10] M. Grohe and P. Lindner. Probabilistic Databases with an Infinite Open-World
Assumption. In Proc. PODS 2019, pages 17–31.

[11] M. Grohe and P. Lindner. Independence in infinite probabilistic databases. ArXiv,
2011.00096, 2020.

[12] M. Grohe and P. Lindner. Infinite Probabilistic Databases. In Proc. ICDT 2020,
pages 16:1–16:20, 2020.

[13] R. Jampani, F. Xu, M. Wu, L. Perez, C. Jermaine, and P. J. Haas. The Monte
Carlo Database System: Stochastic Analysis Close to the Data. ACM Transactions
on Database Systems (TODS), 36(3):18:1–18:41, 2011.

[14] O. Kennedy and C. Koch. PIP: A Database System for Great and Small Expecta-
tions. In Proc. ICDE 2010, pages 157–168.

[15] D. P. Kingma and M. Welling. An introduction to variational autoencoders. Foun-
dations and Trends in Machine Learning, 12(4):307–392, 2019.

[16] O. Macchi. The Coincidence Approach to Stochastic Point Processes. Advances in
Applied Probability, 7(1):83–122, 1975.

[17] J. E. Moyal. The General Theory of Stochastic Population Processes. Acta Mathe-
matica, 108:1–31, 1962.

[18] M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62(1–
2):107–136, 2006.

17



[19] S. Singh, C. Mayfield, R. Shah, S. Prabhakar, S. Hambrusch, J. Neville, and
R. Cheng. Database Support for Probabilistic Attributes and Tuples. In Proc.
ICDE 2008, pages 1053–1061.

[20] D. Suciu. Probabilistic databases for all. In Proc. PODS 2020, pages 19–31, 2020.

[21] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic Databases. Synthesis
Lectures on Data Management. Morgan & Claypool, 2011.

[22] G. Van den Broeck and D. Suciu. Query Processing on Probabilistic Data: A
Survey. Foundations and Trends® in Databases, 7(3–4):197–341, 2017.

18


	1 Introduction
	2 Towards Infinite PDBs
	3 Mathematical Background
	4 Standard PDBs
	5 Query Semantics
	6 Representations
	7 Generative Datalog
	8 Concluding Remarks

