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Abstract—There are various inverse problems – including
reconstruction problems arising in medical imaging — where one
is often aware of the forward operator that maps variables of
interest to the observations. It is therefore natural to ask whether
such knowledge of the forward operator can be exploited in deep
learning approaches increasingly used to solve inverse problems.

In this paper, we provide one such way via an analysis
of the generalisation error of deep learning approaches to
inverse problems. In particular, by building on the algorithmic
robustness framework, we offer a generalisation error bound that
encapsulates key ingredients associated with the learning problem
such as the complexity of the data space, the size of the training
set, the Jacobian of the deep neural network and the Jacobian of
the composition of the forward operator with the neural network.
We then propose a ‘plug-and-play’ regulariser that leverages the
knowledge of the forward map to improve the generalization of
the network. We likewise also use a new method allowing us to
tightly upper bound the Jacobians of the relevant operators that
is much more computationally efficient than existing ones. We
demonstrate the efficacy of our model-aware regularised deep
learning algorithms against other state-of-the-art approaches on
inverse problems involving various sub-sampling operators such
as those used in classical compressed sensing tasks, image super-
resolution problems and accelerated Magnetic Resonance Imaging
(MRI) setups.

Index Terms—Deep Learning, Generalization Error, Jacobian,
Inverse Problems, Regularization, Robustness

I. INTRODUCTION

In various signal and image processing challenges arising
in practice – including medical imaging, remote sensing, and
many more – one often desires to recover a number of latent
variables from physical measurements. This class of problems
– generally known as inverse problems – can often be modelled
as follows:

y = Ax+ n (1)

where y ∈ Y ⊂ Rq represents a q-dimensional vector
containing the physical measurements, x ∈ X ⊂ Rp represents
a p-dimensional vector containing the variables of interest, and
n ∈ N ⊆ Rq is a bounded perturbation modelling measurement
noise. The forward operator modelling the relationship between
physical measurements and variables of interests is in turn
modelled (in the absence of noise) using a matrix A ∈ Rq×p.
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This forward operator satisfies certain regularity conditions 1

whereby ∀x1,x2 ∈ X

∥Ax1 −Ax2∥2 ≤ Λa∥x1 − x2∥2 (2)

where Λa represents the maximum singular value of the forward
map A.

Two broad classes of approaches have been adopted to
solve inverse problems: (i) model-based methods and (ii) data-
driven methods. Model-based methods exploit knowledge of
the forward operator and/or the signal/noise model in order to
recover the variables of interest from the measurements [1].
For example, well-known inverse problem recovery algorithms
often leverage knowledge of data priors capturing stochastic
[2] or geometric structure [3].On the other hand, data-driven
methods do not leverage explicitly the knowledge of the
underlying physical and data models; instead, such methods
rely on the availability of various data pairs (x,y) in order to
learn how to invert the forward operator associated with the
inverse problem [4]. The challenge relates to the fact that these
approaches – specially deep learning ones – typically require
the availability of various training examples that are not always
available in a number of applications such as medical image
analysis. This inevitably hinders the applicability of data-driven
approaches to inverse problems arising in various scientific
and engineering use-cases.

In this paper, our overarching goal is to understand using
first-principles how to use knowledge readily available in
various inverse problems in order to improve the performance
of deep learning based data-driven methods. We approach
this challenge by offering new generalization guarantees that
capture how the generalization ability is affected by various
key quantities associated with the learning problem. Such
interplay then immediately leads to an entirely new model-
aware regularization strategy acting as a proxy to import
knowledge about the underlying physical model onto the deep
learning process.

Concretely, our contributions can be summarized as follows:
• We present generalization error bounds for Deep Neural

Networks (DNN) based inverse problem solvers. Notably,
such bounds depend on various quantities including the
Jacobian matrix of the neural network along with the
Jacobian matrix of the composition of the neural network
with the inverse problem forward map.

• We then propose new regularization strategies that are
capable of using knowledge about the inverse problem

1Note that such forward operators encountered in various applications of
interest including Magnetic resonance Imaging (MRI), Computed Tomography
(CT) etc obey some form of regularity constraint such as given in (2).
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model during the neural network learning process via
the control of the spectral and Frobenius norms of such
Jacobian matrices.

� We also showcase computationally ef�cient methods
to estimate the spectral and Frobenius norms of the
aforementioned Jacobian matrices in order to accelerate
the neural network learning process.

� Finally, we demonstrate the empirical performance of
our algorithms on various inverse problems with different
degrees of ill-posednesss. These include the reconstruction
of high-dimensional data from low-dimensional noisy mea-
surements where the forward model is either a compressive
random Gaussian matrix, a decimation operator used to
generate low resolution images from the corresponding
high-resolution version, or a subsampling matrix usually
employed in accelarated Magnetic Resonance Imaging
applications.

The remainder of the paper is organized as follows: After
presenting an overview of the related work in Section II, we
introduce our system setup in Section III. We then present
generalization bounds applicable to neural network based
inverse problem solvers in Section IV, leading up to model-
aware regularizers in Section V. Section VI offers various
experimental results showcasing our model-aware deep learning
approach can lead to substantial gains in relation to model-
agnostic ones. Finally, concluding remarks are drawn in Section
VII. All the proofs are relegated to the appendices.

Notation: We use lower case boldface characters to denote
vectors, upper case boldface characters to represent matrices
and sets are represented by calligraphic font. For examplex is
a vector,X is a matrix andX is a set.NX (�; ` 2) represents
the covering number of a metric space(X ; `2) using balls of
radius� .

II. RELATED WORK

Our work connects to various directions in the literature.

A. Model-based techniques for inverse problems

The main challenge in solving (ill-posed) inverse problems
relates to the fact that – without any prior assumption – it
is not possible to recover the variables of interest from the
observations (even when the forward model is perfectly known).
Classical model-based approaches address this challenge via
the formulation of optimization problems that include two
terms in the objective: (1) a data �delity term and (2) a data
regularization one. The �delity term encourages the solution to
be consistent with the observations whereas the regularization
one encourages solutions that conform to a certain postulated
data prior. There are a large number of model-based approaches
in the literature: Popular variational methods use a regularizer
that promotes smoothness of the solutions [5], [6] whereas
sparsity-driven methods use regularizers that promote sparsity
of the solutions in some transform domain [7], [8], [9]. In
addition to the challenging task of determining a suitable data
prior, these traditional approaches tend to require relatively
complex solvers inevitably restricting their applicability.

B. Data-driven techniques for inverse problems

The recent years have witnessed a surge of interest in
data-driven approaches – with a focus on deep learning ones
– to solve inverse problems [10]. In particular, inspired by
the success of deep learning in classi�cation tasks, such
approaches typically “solve” an inverse problem by using
a neural network that has learnt how to map the model
output to the model input based on a number of input-output
examples [4]. Such approaches have been applied to a large
number of inverse problems such as image denoising [11],
[12], image super-resolution [13], MRI reconstruction [14],
[15], CT reconstruction [16], and many more. However, these
data-driven approaches typically require rich enough datasets
– which are not always available in various domains such as
medical imaging – in order to learn how to solve the inverse
problem [17].

C. Model-aware data driven approaches

In view of the fact that the underlying physical model is
known in various scenarios, there has been an increased interest
in model-aware data-driven approaches to inverse problems.
Some approaches leverage knowledge of the forward model to
provide a rough estimate of the inverse problem solution (e.g.
using some form of pseudo-inverse of the forward operator)
that is then further processed using a neural network [18], [19],
[20].

Another approach that is becoming increasingly popular
relies on algorithm unfolding or unrolling [21], [22], [23].
By starting with a typical optimization based formulation to
tackle the underlying inverse problem – where knowledge of
the physical model is explicitly used – unfolding then maps
iterative solvers onto a neural network architecture whose
parameters can be further tuned in a data-driven manner.

Finally there is also a new suite of techniques that leverage
the knowledge of forward operator as follows: the reconstruc-
tion of the desired data vector given the measurements vector
is carried out using a (regularized) optimization problem using
the underlying model; however, the regularizer within such an
optimization problem is itself learnt directly from a set of data
examples. One such recent (unsupervised) approach relies on
the use of adversarially learnt data dependent regularizers [24].
Another suite of techniques uses instead data representations
learnt directly from data in any underlying model based
optimization problem. For example, in [25], the authors
propose to learn the underlying low dimensional manifold
of the latent signal of interest using a generative adversarial
network (GAN) allowing them to constrain in any optimization
problem the reconstruction of the original data from the data
measurements to conform to such learnt manifold. While this
method yields powerful representations, its training hinges
upon the acquisition of a suf�cient amount of training data
for it to generalize well enough to the test data. A similar
approach which employs the structure of a GAN as an implicit
regularizer was proposed in [26]. The work shows that a hand
crafted network architecture inherently favours solutions that
look like natural images – hence can serve as a suitable prior
in image restoration tasks. Finally there are approaches where



3

a learned denoising autoencoder is treated as a regularization
step in an iterative reconstruction method [27], [28].

Our work departs from these contributions in the sense that –
whereas we also use a deep network to solve an inverse problem
– we leverage knowledge of the underlying forward operator
model via appropriate regularization strategies deriving from a
principled generalization error analysis. The proposed approach
gives rise to a prior which is tailored to a particular inverse
problem.

D. Other related work

There is also a considerable volume of literature offering
analysis of the generalization ability of deep neural net-
works demonstrating that the generalization error of highly
parametrized models can be bounded in terms of certain
parameter norms [29], [30]. However, the majority of these
bounds are applicable to classi�cation problems rather than
regression based ones2.

The fact that enforcing Lipschitz regularity in deep neural
networks endows them with several desirable properties is well
recognized [32]-[43]. Several works in literature have demon-
strated a link between improved generalization performance
and constrained gradient norms of DNN classi�ers [38], [37].
For example, a small Lipschitz constant has also been shown
to result in better generalization error guarantees [44], [30].
However, many of the existing techniques constrain only the
Lipschitz constants of the layer-wise af�ne transformations
in the network [32]-[36]. These approaches do not take into
account the non-linearities in the network and thus under-utilize
the Lipschitz capacity of the network by biasing it to learn
simplistic functions [39].

In this work, motivated by our analysis, we propose to
constrain the spectral norm of the input-output network
Jacobian matrix which serves as a tight upper bound on the
Lipschitz constant of the relevant mapping. We then offer
an algorithm to ef�ciently estimate it without signi�cantly
increasing the computational overhead. The computation of
the Lipschitz constant has been shown to be infeasible in [35].
Therefore, we propose to instead penalize a tight upper bound
approximation – the spectral norm of the Jacobian matrix on
the available training samples. To the best of our knowledge,
our algorithm is the most ef�cient method to achieve this.

III. SETUP

We consider the linear observation model in eq.(1), with
the following additional assumptions: the input spaceX � Rp

is compact with respect to thè2 metric; the noise space
N = f n : knk2 � � g � Rq is also compact with respect
to the `2 metric; and the output space – which is de�ned as
Y = f y = Ax + n : x 2 X ; n 2 N g � Rq – can also be
shown to be compact with respect to the`2 metric. Finally,
we also de�ne the sample spaceD = f s = ( x; y = Ax + n) :
x 2 X ; n 2 N g that is compact with respect to the`2 metric.

Our approach to solve this problem is based on the standard
supervised learning paradigm. We assume access to a training

2Exceptions include [31], but their results suffered from an exponential
dependence on network depth.

set S = f si = ( x i ; y i = Ax i + n i )gi � m consisting ofm
data points drawn independently and identically distributed
(IID) from the sample spaceD according to the unknown data
distribution � , consistent with the forward model in (1).

We use such a training set to learn a hypothesisf S : Y ! X
mapping the measurement variables to variables of interest.
We then use such a hypothesis to map new measurement
variablesy 2 Y to the variables of interestx 2 X that were
not necessarily originally present in the training set.

We restrict our attention to mappings based on feed-forward
neural networks. Such a feed forward neural network can
be represented as a composition ofd layer-wise mappings
delivering an estimate of the variable of interest given the
measurement variable as follows:

f S (y ) = ( f � d � : : : f � 1 ) (y ; �) (3)

wheref S (�) represents the feed-forward neural network,f � i (�)
represents thei -th layerwise mapping parameterized by� i , and
� = f � 1; : : : � dg is the set of tunable parameters in the neural
network. The parameters of the feed-forward neural network
are typically tuned based on the available training set using a
learning algorithm such as stochastic gradient descent [45].

One is typically interested in the performance of the learnt
neural network not only on the training data but also on
(previously unseen) testing data. Therefore, it is useful to
quantify the generalization error associated with the learnt
neural network given by:

GE(f S ) = jlexp(f S ) � lemp(f S )j (4)

wherelexp(f S ) = Es� � [l (f S ; s)] represents the expected error,
lemp(f S ) = 1

m

P
i l (f S ; si ) represents the empirical error, and

the loss functionl : Rp � Rp ! R+
0 — which measures the

discrepancy between the neural network prediction and the
ground truth — is taken to be thè2 distance given by:

l(f S ; s) = kf S (y ) � xk2 (5)

Our ensuing analysis offers bounds to the generalization error
in (4) of deep feed-forward neural networks based inverse
problems solvers as a function of a number of relevant
quantities. These quantities include the covering number of the
sample spaceD, the size of the training setS, and properties
of the network encapsulated in its input-output Jacobian matrix
given by:

J(y ) =

2
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The bounds also depend on quantities associated with the
linear model in eq. (1) such as the forward operator and the
noise bound. Our analysis will therefore also inform how to
import knowledge about the forward-operator associated with
the inverse problem onto the learning procedure in order to
improve the generalization error.
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IV. A NALYSIS: GENERALIZATION ERRORBOUNDS

Our analysis builds upon thealgorithmic robustnessframe-
work in [46].

De�nition 1. A learning algorithm is said to be(K; � (S)) -
robust if the sample spaceD can be partitioned intoK disjoint
sets Kk , k = 1 ; : : : ; K , such that for allsi = ( x i ; y i =
Ax i + n i ) 2 S and all s = ( x; y = Ax + n) 2 D

si ; s 2 K k =) j l (f S ; si ) � l (f S ; s)j � � (S) (6)

This notion has already been used to analyse the performance
of deep neural networks in [38], [36], [41]. However, such
analyses applicable to classi�cation tasks do not carry over
immediately to inverse problems based tasks where – in
addition to exploiting knowledge about the forward operator
associated with the inverse problem for the computation of
� (S) and K – there are some technical complications that
may arise due the fact that the loss functions are typically
unbounded3. We begin addressing these challenges by offering
a simple result that showcases how the distance between the
neural network estimates of the variables of interest depends on
the distance between the variables of interest themselves and,
importantly, the Jacobian of the network, the Jacobian of the
composition of the network with the forward model associated
with the inverse problem, and the noise power associated with
the inverse problem.

Theorem 1. Consider a neural networkf S (�) : Y ! X based
solver of the inverse problem in (1), learnt using a training set
S. Then, for anys1 = ( x1; y1 = Ax 1 + n1); s2 = ( x2; y2 =
Ax 2 + n2) 2 D , it follows that

kf S (y2) � f S (y1)k2 � � f � akx2 � x1k2 + 2 � � f

where� f � a and� f are upper bounds to the Lipschitz constants
of the neural network and the composition of the neural network
and the forward operator respectively, given by:

� f � a = sup
y 2 conv (Y )

kJ (y ) A k2

� f = sup
y 2 conv (Y )

kJ (y ) k2 (7)

Proof. See Appendix.

We now state another theorem – building upon Theorem 1
– articulating about the robustness of a deep neural network
based solver of an inverse problem.

Theorem 2. A neural network trained to solve the inverse
problem in (1) based on a training setS is (K; � (S)) -robust
such that for any� > 0,

K � NX (�; ` 2)

� (S) � 2(1 + � f � a)� + 2� f �

whereNX (�; ` 2) is the covering number ofX .

Proof. See Appendix.

3Existing work applies to uniformly bounded loss function (e.g. [46], [38]).

We now state our main result relating to the generalization
error of a deep neural network trained to solve an inverse
problem.

Theorem 3. A neural network trained to solve the inverse
problem in (1) based on a training setS consisting ofm i.i.d.
training samples obeys with probability1 � � , for any � > 0,
the GE bound given by:

GE(f S ) � 2(1 + � f � a)� + 2� f �

+ M

r
2NX (�; ` 2) log(2) + 2 log ( 1=� )

m

for maxs jl (f S ; s)j � M < 1 and any� > 0.

Proof. See Appendix.

One can derive various insights from this theorem that are
applicable to any differentiable feed forward neural network
along with any linear forward map : (1) �rst, in line with
traditional bounds [29], [47], the generalization error depends
on the size of training setS; (2) second, in line with more recent
bounds [38], [36], [31], the generalization error also depends
on the complexity of the data spaceD; 4 (3) third, although
the `2-loss is unbounded in nature, on a compact sample space,
the DNN is able to predict samples such that the loss is �nite
and therefore the GE is provably bounded; 4)Finally, Theorem
3 also reveals that the operator norm of the Jacobian of the
network and the composite map also play a critical role: the
lower the value of these norms, the lower the generalization
error. More importantly, the proposed generalization bound
is also non-vacuous in the network parameters because as
opposed to the product of the norms of layer-wise weight
matrices appearing in other generalization error bounds such as
[36], [44], [30], the norm of the network Jacobian matrix does
not seem to exhibit exponential dependence on network depth.
This is in sharp contrast with existing generalization bounds
that typically contain a term that deteriorates exponentially
with depth.

It should also be noted that for the linear inverse problems in
imaging, the input spaceX can be assumed to be aCM regular
k-dimensional manifold [48]. The constantCM varies for
different manifolds and represents their “intrinsic” properties.
This is a reasonable assumption for the visual data and has
previously been used to represent such input spaces. The
covering number for such manifolds can be bounded via� 2CM

�

� k
[48], [41].

V. M ODEL-AWARE JACOBIAN REGULARIZATION

Our approach to leverage knowledge about the inverse
problem model onto the learning process involves regularization.
In particular, Theorem 3 suggests that penalizing the spectral
norm of the Jacobian of the neural network and the spectral
norm of the Jacobian of the composition of the neural network
with the inverse problem forward operator, which – as shown
above – also serve as an upper bound to the Lipschitz constants

4The complexity of the sample space – which can be captured via its covering
number – is often small in view of the fact that in various applications data
lies on a manifold with small intrinsic dimension [38].
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of these mappings, should improve the generalization ability
of a neural network based inverse problem solver.

The use of Lipschitz regularization to improve the generaliza-
tion ability of deep neural networks has already been recognized
by various works [36]-[38]. However, the fact that introducing
Lipschitz regularity in the end-to-end mapping involving the
composition of the neural network and the inverse problem
forward map may also control generalization does not appear
to have been acknowledged in previous works. We therefore
propose two model-aware regularization strategies:

Model-Aware Spectral Norm Based Regularization:Our
�rst regularization strategy directly penalizes the operator norm
of the Jacobians for the neural network and for the composition
of the neural network and the forward map.Training in a
minibatch stochastic gradient setup, where the optimization is
carried out over minibatchesB = f s1; s2; : : : ; sjBj g, leads to
the following objective:

1
jBj

jBjX

i =1

l (f S ; si )+ � 1 max
s=( x ;y )2B

kJ(y )A k2+ � 2 max
s=( x ;y )2B

kJ(y )k2

(8)
where� 1; � 2 are hyper-parameters. Note that� 2 = 0 in a noise
free setting.

Model-Aware Frobenius Norm Based Regularization:
Our second regularization strategy stems from the fact that the
Frobenius norm upper bounds the Spectral norm. Regularisation
strategies that punish the Frobenius norm of the network
Jacobian have been associated with signi�cant improvement
in robustness of DNN classi�ers [49], [38], [43]. Therefore,
our cost function in (8) directly gives rise to the following
objective function:

1
jBj

jBjX

i =1

l (f S ; si )+ � 1 max
s=( x ;y )2B

kJ(y )A kF + � 2 max
s=( x ;y )2B

kJ(y )kF

(9)
We, however propose to regularize the following upper bound
on (9) given by:

1
jBj

jBjX

i =1

l (f S ; si ) + � 1

jBjX

i =1

kJ(y i )A k2
F + � 2

jBjX

i =1

kJ(y i )k2
F

(10)
This is mainly because the sum of square of the Frobenius
norm results in simpler gradient computation. Additionally
the regularization terms in (10) can be approximated in a
computationally ef�cient setting as explained in the sequel.

A. Ef�cient Computation of the Norms of the Jacobian Based
Regularizers

The challenge associated with the use of the training
objectives in (8) and (10) relates to the computation of the
Spectral norm and Frobenius norm of bothJ andJA because
computing and storing the Jacobian matrix of deep neural
networks incurs a huge cost. There are already computationally
ef�cient algorithms to approximate the Frobenius and spectral
norm of the Jacobian [43], [39]. Here, for completeness, we
illustrate how to re-purpose these algorithms within our set-
up; we also illustrate that these algorithms lead to ef�cient
approximation.

Algorithm 1: Estimation of thekJA k2
F

Input: Mini-batch B,number of projectionsn.
Output: Square of the Frobenius norm of the JacobianA F .
A F  0
for (y ; x ) 2 B do

i  0
while i < n do

Initialize f zg � N (0; I )
z  z=jj zjj
A F  A F + pkvjp (f (y ); y ; z) � A k2

2=(njBj )

Algorithm 2: Estimation of the spectral norm ofJA
Input: Mini-batch B, number of power iterationsn.
Output: Maximum singular value,� , of the matrixJA .
for (y ; x ) 2 B do

Initialize f ug 2 Rp

i  0
while i < n do

v  A T vjp (f (y ); y ; u)
u  jvp (f (y ); y ; Av )
i  i + 1 .

�  k uk2=kv k2

1) Frobenius Norm Regularization ofJA : The random pro-
jection based method proposed in [43] used to approximate the
square of the Frobenius norm of the network Jacobian matrix
J can be immediately extended to approximate the square of
the Frobenius norm of theJA as shown in Algorithm 1. The
technique leverages the reverse mode automatic differentiation
to compute vector Jacobian product – thevjp (�; �; �) – of
random vector sampled from the unit sphere of dimension
p � 1 with the network Jacobian. It has been shown in [43]
that the proposed technique converges to the true value as
O(n � 1=2 ) wheren is the number of random projections used
for the estimation of the Frobenius norm. The algorithm when
used for regularization, has also been shown to result in only
an inconsequential overhead in compute requirements [43].

2) Spectral Norm Regularization ofJA : In turn, the method
in [39] used to approximate the spectral norm of the network
JacobianJ can also be immediately re-purposed to approximate
the spectral norm ofJA as shown in Algorithm 2. The
procedure leverages the power method [50] to approximate
the spectral norm of the Jacobian based regularization terms
in (8). It starts by choosing (randomly) an initial (nonzero)
approximation of the left singular vectoru in Rp associated
with the highest singular value of the matrixJA . It then
leverages the automatic differentiation to iteratively compute
the Jacobian vector product and vector Jacobian product as
follows:

v  A T
�

df (y )
dy

� T

u; u  
�

df (y )
dy

�
Av

The spectral norm� is then equal toku k2=kv k2 .
The algorithm exploits the reverse and forward mode

automatic differentiation to compute the vector Jacobian
productvjp (�; �; �), and the Jacobian vector productsjvp(�; �; �)
respectively. All major deep learning frameworks offer support
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Algorithm 3: Computation of thejvp .
Input: Mini-batch B, model outputsf (y ), vectorAv .
Output: JAv
Initialize a dummy tensord.
g  vjp (f (y ); y ; d)
u  vjp (g; p; Av )
return u

for the computation of reverse mode vector Jacobian product.
The forward mode Jacobian vector product can easily be
computed via the reverse mode automatic differentiation using
the method described in Algorithm 3 [51].

Note again that the merit of Algorithms 1 and 2 lies in
computing the Frobenius and spectral norms of Jacobians
without explicitly computing the Jacobians themselves that is
prohibitive in high-dimensional settings.

3) Algorithm Accuracy and Complexity:We now study
the ef�cacy offered by Algorithm 2 via a simple experiment
involving the reconstruction of MNIST data from a noisy
versions.

We generate the noisy MNIST data by passing the clean data
through the linear model in(1) with the forward operator set
to be equal to an identity one. We also further contaminate the
MNIST data with a noise sampled uniformly from a`2-sphere
of radius 0:3. We then reconstruct the data from the noisy
version using two neural networks, a 4-layer fully connected
neural network and a 5-layer convolutional neural network.
These networks are trained using ADAM optimizer for300
epochs using thè2 loss function in (5).

Our experiments have two main goals:

1) First, we want to test that Algorithm 2 indeed results in
a faithful estimate of the spectral norm of the network
Jacobian. To this end, we compare the output of the
Algorithm 2 with the spectral norm computed using power
method applied to a Jacobian matrix explicitly computed
using Tensor�ow. It can be seen in Fig. 1 that for equal
number of power iterations(n = 3) the results obtained
using both methods are almost identical.

2) Second, we want to quantify the computational bene�t
afforded to us by Algorithm 2 – owing to its implicit
matrix vector products computation – in contrast to
estimating the spectral norm via explicit matrix vector
products. In particular, Table I compares computation and
memory requirements of the algorithm against alternatives
associated with the training of both the fully connected
and the convolutional neural networks. It can also be
seen that our algorithm provides considerable gains in
relation to the alternatives. It should be noted the time
and memory requirement for the calculation of Jacobian
of the DnCNN – which is a convolutional neural network
– is higher than those of the FC neural network. This is
because all the major machine learning libraries compute
the gradients backwards from the output to the input using
the chain rule of derivatives – leading to an increase in
the compute and memory requirements for CNNs that
have large layerwise activation sizes.

In summary, both for fully connected and convolutional

TABLE I: Time and memory requirements for training a 4-layer
fully connected NN and 5-layer CNN [12] on the full training set of
MNIST with a batch size of 100 andp = q = 784.

4-layer FC NN 5-layer DnCNN

time memory time memory

Vanilla 29m 595Mb 1h8m 1057Mb
Alg. 2 (n = 1 ) 47:5m 659Mb 3h,42m 1825Mb
Alg. 2 (n = 2 ) 1h,1m 787Mb 5h,4m 2849Mb
Alg. 2 (n = 3 ) 1h,13m 787Mb 6h,31m 4897Mb
Alg. 2 (n = 4 ) 1h,18m 787Mb 9h,42m 4897Mb

tf batch J (n = 3 ) 63h,7m 4659Mb �� � 160Gb

Fig. 1: Maximum singular values of the batch Jacobians for a
4-layer fully connected network withp = q = 784.

neural networks, our experiments suggest that regularizing the
network using Algorithm 2, offers considerable computational
gains in comparison to direct computation of the spectral norm.
In fact, the explicit computation of the network Jacobian would
be practically impossible even for a modestly sized network. For
example, for convolutional neural networks, even a minibatch
Jacobian of10 samples occupies16GB of memory making it
infeasible to approximate any norm. In contrast, with Algorithm
2 both jvp andvjp can be computed approximately in linear
time using most major deep learning frameworks.

VI. EXPERIMENTS

We now conduct a series of experiments in order to assess
the ef�cacy of our proposed model-aware deep learning
regularization strategy on range of popular inverse problems.
These include (a) the reconstruction of images from low-
dimensional Gaussian measurements (b) the generation of
high-resolution images from a low-resolution version and (c)
the reconstruction of MRI images from k-space sub-sampled
measurements. These various inverse problems involve different
measurement operators, exhibiting different condition numbers,
enabling us to verify the merit of our proposed regularizers
under various settings.

A. Image Reconstruction in the Presence of Gaussian Mea-
surements

1) Experimental procedure:Our �rst set of experiments
involves the reconstruction of images from noisy compressive
Gaussian measurements. In particular, we consider our linear
model in(1) whereA is a (wide) random Gaussian matrix5 with

5Forward maps generated using these rules ful�l the restricted isometry
property with high probability [52].
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(a)

(b)

(c)

Fig. 2: Reconstruction of MNIST images given Gaussian compressive measurements using a fully connected neural network.
(2a) (Left) SSIM versus number of Gaussian measurements, (Centre) PSNR versus number of Gaussian measurements, (Right)
GE versus number of Gaussian measurements for various regularization strategies such that� = 0 :3 andm = 500. (2b) (Left)
SSIM versus number of training examples, (Centre) PSNR versus number of training examples, (Right) GE versus number of
training examples for various regularization strategies such that� = 0 :3 and q = 160. (2c) (Left) SSIM versus noise level,
(Centre) PSNR versus noise level, (Right) GE versus noise level for various regularization strategies such thatm = 500 and
q = 160.

i.i.d. entries sampled from a Gaussian distribution with mean
zero and variance1=qand the noise is sampled uniformly from
a sphere of radius� 6. We consider28� 28 greyscale images
of handwritten digits taken from the MNIST dataset [53]. We
construct a datasetf x i ; y i gn

i =1 whereby theq-dimensional
measurement vectory i is obtained from thep-dimensional
vectorx i – which is derived by converting a28� 28 greyscale
image onto a784 dimensional vector – via the linear model in
(1). We also scale the pixel values in the images to the range
[0; 1] prior to the application of the linear operator.

For the reconstruction of the original images from the
noisy compressive measurements, we consider a4-layer fully
connected neural network consisting of an input layer of width
equal to the measurement size –q, followed by three layers,
each containing neurons equal to the dimension of the ground
truth – p. All the layers except the last one have an associated
Recti�ed Linear Unit (ReLU) activation function.

The reconstruction network is trained using the ADAM
optimizer for600epochs using various regularization strategies.
These strategies include: (a) model aware Spectral norm
regularization of Jacobian in (8) which is denoted by SJA&SJ

6We generate bounded noise to validate our theory. However, our experiments
(not included in the paper) showcase that the proposed regularization strategies
show gains even when the noise is not strictly bounded.

(� 1; � 2 > 0) or only SJA (� 1; � 2 = 0 ); (b) model-aware
Frobenius norm regularization in (10) which is denoted by
FJA&FA (� 1; � 2 > 0) or only FJA (� 1; � 2 = 0 ); and (c) model
agnostic regularization approaches such as weight decay (WD),
spectral norm regularization of weights (SW) [32], Spectral
norm regularization of Jacobian (SJ) and Frobenius norm
regularization of Jacobian (FJ) [43]. Note that comparing our
regularization strategies with WD, SW, SJ and FJ will allow us
to assess the bene�ts of model-aware regularization since WD,
SW, SJ and FJ do not take into account the presence of the
linear operator. The regularization parameters appearing in the
various strategies (including� 1 and � 2 for our regularizers)
are always �ne-tuned using a grid search method.

To assess the ef�cacy of the proposed regularizers on inverse
problems with different levels of ill-posedness and corruption,
we conduct various experimental studies. Speci�cally, we
look at the performance of networks trained under different
regularized loss functions whenq is varied such that it takes
values in the setf 80; 160; 320; 640g for m = 500 and � �xed
at 0.3. Likewise, we also observe the performance of different
regularizers when the noise level� is gradually increased
from 0 to 0:6 while keepingm and q �xed at 500 and 160
respectively. Finally we also gauge how different regularizers
behave under the training sets of size200; 400; 600 and800
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while keepingq �xed at 160 and � = 0 :3.
The reconstruction performance of the various regularization

schemes is compared in terms of the generalization gap
determined using the generalization error in eq.(4) and other
quality metrics such as Structural Similarity Index (SSIM) and
Peak Signal to Noise Ratio (PSNR).

2) Results:Fig. 2 presents a performance comparison of net-
works regularized with our model aware Jacobian regularizers
and the baseline techniques for various training scenarios.

In Fig. 2a, we plot the test set SSIM, PSNR and GE
of the reconstructed MNIST images versus the number of
measurementsq. It can be seen that our proposed model-
aware strategies lead to performance gains in comparison with
existing ones, where the gains are more pronounced with the
increase in the number of measurements. This shows that –
owing to the explicit exploitation of the forward map – model
aware regularizers are better able to leverage the additional
measurements. The generalization error between the training
and the test set for different measurement sizes also shows
a similar trend with model aware regularizers consistently
outbeating the competing baseline techniques.

In Fig. 2b, we plot the test set SSIM, PSNR and GE of
the reconstructed MNIST images versus number of training
examples. Here again, the regularizers that incorporate the
knowledge of the forward map outperform the regularization
techniques that do not. This result also reinforces the hypothesis
that even in situations where we may only have small number
of training examples, model-aware regularization can result in
a better generalization performance.

Finally, in Fig. 2c, we study the effect of different regularizers
in the presence of different levels of noise. For measurements
with high noise levels, the model agnostic and model aware
regularizers show similar performance. This is because in low
SNR conditions the effect of noise may dominate the effect
of the forward operator. In contrast, for measurements with
low levels of noise, model aware regularizers show superior
performance to the existing model agnostic ones. The GE plot
for these experiments again shows that the proposed regularizers
results in superior generalization behaviour when the noise
levels are low.

It should be noted that SJA&SJA consistently outperforms
FJA&FJ. This is because Frobenius norm regularization min-
imizes the sum of square of all the elements in the matrix –
not taking into account the correlation between the rows of
the Jacobian – and thus is more restrictive than the Spectral
norm regularization.

These results support our analysis that model induced
regularizers improve the performance of neural networks
over model agnostic regularization translating into better
reconstructions.

B. Image Super-resolution

1) Experimental procedure:We now study the performance
of our regularizers on the classical super resolution (SR)
problem involving the recovery of high resolution images
from their low resolution versions. The SR problem can be
mathematically formulated via the linear model in(1) wheren

Algorithm 4: Estimation of the regularization coef�-
cient � for Jacobian regularizer.
Input: magnituder of the regularization term andl of the

loss over Mini-batchB, scaling factor

Output: Value of the regularization coef�cient
�  �oor (log( l=r )) ; // l is the unregularized
empirical loss 1=jBj

P
i l (f S ; si )

�  10 � =
 ; // The values of 10; 20 and 30 were
tested for 
 . 20 usually gave the best
results.

(a)

(b)

Fig. 3: Generalization error Vs number of epoch plots for the
SR problem using different regularization strategies. (3a) GE
plots for EDSR (left) and WDSR (right) when� = 0 . (Top)
p=q = 4 (Bottom) p=q = 2 SR task. (3b) GE plots for EDSR
(left) and WDSR (right) when� = 3 . (Top) p=q = 4 (Bottom)
p=q = 2 .

represents the measurement noise and the forward operatorA
can be de�ned as the product of a blur matrixH 2 Rp� p and
a subsampling matrixL 2 Rp� q. The point spread function
(PSF) of the matrixH can be uniform, Gaussian or bicubic and
is assumed to be known in advance [56]. In our experiments
we sample the noise uniformly from a sphere of radius�
and assume the PSF to be a5 � 5 Gaussian kernel. For
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