Nutbrown, Rebecca;
(2021)
Two photon interrogation of hippocampal subregions CA1 and CA3 during spatial behaviour.
Doctoral thesis (Ph.D), UCL (University College London).
Preview |
Text
RebeccaNutbrown_Thesis_corrected_Redacted.pdf Download (17MB) | Preview |
Abstract
The hippocampus is crucial for spatial navigation and episodic memory formation. Hippocampal place cells exhibit spatially selective activity within an environment and form the neural basis of a cognitive map of space which supports these mnemonic functions. Hebb’s (1949) postulate regarding the creation of cell assemblies is seen as the pre-eminent model of learning in neural systems. Investigating changes to the hippocampal representation of space during an animal’s exploration of its environment provides an opportunity to observe Hebbian learning at the population and single cell level. When exploring new environments animals form spatial memories that are updated with experience and retrieved upon re-exposure to the same environment, but how this is achieved by different subnetworks in hippocampal CA1 and CA3, and how these circuits encode distinct memories of similar objects and events remains unclear. To test these ideas, we developed an experimental strategy and detailed protocols for simultaneously recording from CA1 and CA3 populations with 2P imaging. We also developed a novel all-optical protocol to simultaneously activate and record from ensembles of CA3 neurons. We used these approaches to show that targeted activation of CA3 neurons results in an increasing excitatory amplification seen only in CA3 cells when stimulating other CA3 cells, and not in CA1, perhaps reflecting the greater number of recurrent connections in CA3. To probe hippocampal spatial representations, we titrated input to the network by morphing VR environments during spatial navigation to assess the local CA3 as well as downstream CA1 responses. To this end, we found CA1 and CA3 neural population responses behave nonlinearly, consistent with attractor dynamics associated with the two stored representations. We interpret our findings as supporting classic theories of Hebbian learning and as the beginning of uncovering the relationship between hippocampal neural circuit activity and the computations implemented by their dynamics. Establishing this relationship is paramount to demystifying the neural underpinnings of cognition.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | Ph.D |
Title: | Two photon interrogation of hippocampal subregions CA1 and CA3 during spatial behaviour |
Event: | UCL (University College London) |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Copyright © The Author 2021. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine |
URI: | https://discovery.ucl.ac.uk/id/eprint/10138073 |
Archive Staff Only
View Item |