Analysis of 272 Genetic Variants in the Upgraded Interactive FXI Web Database Reveals New Insights into FXI Deficiency

Victoria A. Harris1 Weining Lin1 Stephen J. Perkins1

1 Research Department of Structural and Molecular Biology, University College London, London, United Kingdom
Address for correspondence Professor Stephen J. Perkins, BA, DPhil, Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom (e-mail: s.perkins@ucl.ac.uk).

Abstract
Coagulation Factor XI (FXI) is a plasma glycoprotein composed of four apple (Ap) domains and a serine protease (SP) domain. FXI circulates as a dimer and activates Factor IX (FIX), promoting thrombin production and preventing excess blood loss. Genetic variants that degrade FXI structure and function often lead to bleeding diatheses, commonly termed FXI deficiency. The first interactive FXI variant database underwent initial development in 2003 at https://www.factorxi.org. Here, based on a much improved FXI crystal structure, the upgraded FXI database contains information regarding 272 FXI variants (including 154 missense variants) found in 657 patients, this being a significant increase from the 183 variants identified in the 2009 update. Type I variants involve the simultaneous reduction of FXI coagulant activity (FXI:C) and FXI antigen levels (FXI:Ag), whereas Type II variants result in decreased FXI:C yet normal FXI:Ag. The database updates now highlight the predominance of Type I variants in FXI. Analysis in terms of a consensus Ap domain revealed the near-uniform distribution of 81 missense variants across the Ap domains. A further 66 missense variants were identified in the SP domain, showing that all regions of the FXI protein were important for function. The variants clarified the critical importance of changes in surface solvent accessibility, as well as those of cysteine residues and the dimer interface. Guidelines are provided below for clinicians who wish to use the database for diagnostic purposes. In conclusion, the updated database provides an easy-to-use web resource on FXI deficiency for clinicians.

Keywords
- coagulation factors
- haemostasis
- protein structure/folding
- inherited coagulation disorders
- gene mutations

Introduction
Factor XI (FXI), a coagulation serine protease, is encoded by the F11 gene located on the long arm of human chromosome 4 (4q35). The 23 kb gene comprises 15 exons that translate into a signal peptide, four apple (Ap) domains (Ap1-Ap4) and the catalytic serine protease (SP) domain (►Fig. 1).1,2 The Ap domains in FXI are structurally homologous to each other and to those in human prekallikrein (PK), a zymogen protease involved in the kallikrein-kinin-system (KKS). Together such Ap domains form part of the plasminogen-enzyme-nematode (PAN) domain superfamily.3 Specifically, FXI appeared to arise from the duplication of the PK gene, Klkb1, making FXI and PK paralogs of each other. The four Ap domains in each of FXI and PK form disk-like structures that are comprised of an antiparallel β-sheet attached to an α-helix through disulphide bridges.4,5 FXI is synthesized as a 607 amino acid zymogen, which circulates in plasma in a dimeric
form prior to activation. The dimer comprises two identical 80 kDa subunits, which are held together through non-
covalent interactions between the two single Ap4 domains.
The dimer is further stabilized by a Cys339-Cys339 inter-
chain disulphide bridge between the Ap4 domains. The non-
covalent interactions that stabilize dimer formation include
hydrophobic ones as well as two Glu305-Lys349 and Asp307-
Arg363 salt bridges. The activation of each FXI subunit
involves the cleavage of the Arg387-Ile388 bond and can be
driven by Factor XII (FXIla), thrombin or by FXIa itself in a
process known as autoactivation.\(^1,5,6\) Once activated, FXIa
cleaves zymogenic Factor IX (FIX) into FIXa. Subsequently,
FIXa feeds into the coagulation cascade to promote thrombin
production, aiding fibrin assembly and preventing excess
blood loss.\(^1,7\)

Owing to the importance of FXI in coagulation, genetic
variants that disrupt the native FXI structure and function lead
to bleeding diatheses. Such disorders are most commonly
referred to as FXI deficiency, but have been termed Haemо-
philia C, Rosenthal syndrome or Plasma Thromboplastin An-
tecedent deficiency in the past.\(^8,9\) FXI deficiency occurs at a
frequency of one in a million in the general population with
higher incidence amongst the Ashkenazi Jewish population
(one in 450 individuals).\(^10-12\) Recent genetic variation studies
of F11 showed that FXI deficiency was found to be 2–20 times
more frequent that expected in different ethnic groups.\(^13\)
Specifically, the heterozygous and homozygous frequencies
within the Ashkenazi population are believed to be 9% and
0.22% respectively. In 1953, Rosenthal identified the first case
of FXI deficiency in a Jewish family in the USA.\(^8\) Many sub-
sequent cases were identified in individuals of similar descent,
with the nonsense mutation Glu135\(^+\) (legacy numbering
Glu117\(^+\)) and the missense variant Phe301Leu (legacy num-
bering Phe283Leu) emerging as the founding causative vari-
ants. The most prominent mutations associated with FXI
deficiency in Jewish populations are classified as being one
of Type I-IV. The above point mutations are classified as Type II
(Glu135\(^+\)) and Type III (Phe301Leu) and remain as some of the
most common FXI variants found today. Type I and IV muta-
tions occur more sporadically and interfere with standard pre-
mRNA splicing. Type I is a substitution and Type IV a deletion,
both within intron N.\(^10,11,14,15\) Despite the prevalence of FXI
deficiency amongst the Jewish population, founding FXI vari-
ants have also been identified in other populations. Gln106\(^\ast\)
(legacy Gln88\(^\ast\)) is a founding variant in French Nantes families,
Cys56Arg (legacy Gln38Arg) in French Basques families, and
Cys146\(^\ast\) (legacy Cys128\(^\ast\)) in English families.\(^15-17\) The original
nomenclature refers to FXI variants as having a cross-reacting
material negative (CRM\(^-\)) or cross-reacting material positive
(CRM\(^+\)) phenotype. CRM\(^-\) (presently known as Type I) variants
result in the simultaneous reduction of FXI coagulant activity
(FXI:C) and FXI antigen (FXI:Ag) levels, most likely a result of
the degradation of mutant FXI protein within cells. CRM\(^+\)
(presently known as Type II) variants result in a reduction of
the FXI:C level but do not impact the FXI:Ag level. Such variants
are most likely to be dysfunctional variants that go undetected
by normal cellular quality control systems. FXI:C levels typi-
cally range from 70–150 IU/dL in unaffected individuals, while
moderately deficient individuals have FXI:C levels ranging
between 15–70 IU/dL and severely deficient individuals have
levels <15 IU/dL.\(^2\)

What has been unclear is the lack of correlation between
FXI activity, FXI deficiency and disease severity. To under-
stand this relationship better, we created the first interactive
web database for the coagulation proteins (https://www.
factorxi.org/) in 2003 for users, first published in 2005, and
updated in 2009 to report 183 FXI variants.\(^18,19\) We
are not aware of other current dedicated databases for FXI
mutations in Google searches. Other genetic repositories
include the Exome Aggregation Consortium resource the
Leiden Open-source Variation database (LOVD; http://
www.lovd.nl/3.0/home),\(^20\) the Expert Protein Analysis sys-

tem (ExPASy; https://www.expasy.org/),\(^21\) the ClinVar re-
source (http://www.ncbi.nlm.nih.gov/clinvar/),\(^22\) and the
public release of the Human Gene Mutation Database
(HGMD; http://www.hgmd.cf.ac.uk/ac/index.php).\(^23\) To
date, over 18,000 visits have been recorded on our FXI
Web site. This interactive database has been upgraded it to
include other coagulation proteins such as FIX and others.\(^24\)
These interactive variant databases bring key advantages of
easy-to-use search and genetic and structural analysis tools
for clinicians and scientists. In the present study, we now
update and upgrade our FXI database to include an increased

total of 272 variants in the F11 gene (Fig. 1) and the
improved crystal structure from 2019.\(^25\) The increased num-
ber of known and novel FXI variants clarifies the molecular
basis of FXI deficiency. In particular, by comparisons with
other coagulation proteases, we correlate the predominance
of Type I (CRM\(^-\)) mutations within FXI with changes in
surface solvent accessibilities of the affected residues, and
with the occurrence of variants in cysteine residues. By
focusing on the amino acid accessibilities in the closely-
packed domain structure of the FXI dimer, in comparison
with the extended domain structures in several other coag-
ulation proteases, we explain the notable imbalance between
Type I and Type II variants in FXI. The availability for
clinicians of the upgraded Web site and the interpretation of
deletious variants significantly clarifies the molecular
basis of FXI deficiency.

Methods

Source of the FXI Database

The interactive FXI web database at https://www.factorxi.
org currently holds 272 genetic alterations in F11 that are
associated with FXI deficiency. The database was created at
University College London, the Web site copyright is retained
by S. J. Perkins and University College London, and database
copying is not permitted without explicit permission from
the author. The FXI database was initially populated in 2003
starting from a non-interactive Web site of the F11 gene with
65 variants, together with literature searches of PubMed at
variants were obtained from 32 patient records at the
Haemophilia Centre and Thrombosis Unit at the Royal Free
Hospital in London, as well as additional literature searches,
Fig. 1 Distribution of the 272 variants identified within the F11 gene. The Ap1-Ap4 and serine protease domains are drawn to scale. The number of variants in each of the respective domains and UTR regions is shown in large font above or below the variant lists. Intronic variants are included in their respective domains according to sequence numbering. The residue numbering in HGVS format (starting with 1 at the signal peptide) denotes the amino acids that start and end each domain. N and C represent the N- and C-termini of FXI respectively. Note that the two variants in the 3′UTR do not follow HGVS numbering.
making a total of 183 variants in 2009.19 For the current database, the literature cut-off date was April 2021, giving an overall total of 272 unique variants found in 657 patients. These data were compiled into a spreadsheet and used to update the existing FXI MySQL database, using phpMyAdmin software (https://www.phpmyadmin.net/) as an intermediary platform to the MySQL database. As a quality control, the original literature sources used for the 2005 and 2009 databases were re-consulted to re-validate and correct the original literature sources used for the 2005 and 2009 databases. As a quality control, the software (https://www.phpmyadmin.net/) as an intermediate tool was used to update the existing FXI MySQL database, using phpMyAdmin software (https://www.phpmyadmin.net/) as an intermediary platform to the MySQL database. As a quality control, the original literature sources used for the 2005 and 2009 databases were re-consulted to re-validate and correct the original literature sources used for the 2005 and 2009 databases.

Analysis of FXI Variants

The interactive database records DNA changes in Human Genome Variation Society (HGVS) format, where +1 refers to the A of the ATG initiation codon, at the start of the 18-residue signal peptide. As the default, protein changes are included in the database for protein changes on the web database, with codon +1 referring to the first codon Glu19 of the mature FXI protein.

The original full-length FXI zymogen crystal structure at 0.287 nm structural resolution (PDB ID: 2F83) representing Cys20 to Thr622 (HGVS numbering) was recently superseded by an improved FXI zymogen crystal structure at 0.260 nm resolution (PDB ID: 6I58).25,26 The latter was used here as the three-dimensional protein structural model on which the FXI variant analyses were based. The FXI dimer was created from the 6I58 structure using the Proteins, Interfaces, Structures and Assemblies (PDBePISA) server (https://www.ebi.ac.uk/pdbe/pisa/).27 While all structural analyses were performed using the 6I58 model, 95 additional FXI structures have become available in the protein database (PDB) since 2009 and are listed in our updated database. Of these, 92 crystal structures correspond to truncated FXI structures with only the serine protease domain present, and three are full-length FXI proteins in complexes with ligands. These structures do not show the full FXI zymogen in its native conformation and thus were not used.

The 6I58 crystal structure of unliganded FXI was analyzed using the Definition of Secondary Structure of Proteins (DSSP) tool at https://www3.cmbi.umcn.nl/xsssp/ to determine the secondary structure of each FXI residue.28,29 DSSP was applied both to the intact 6I58 structure as well as to the separated 6I58 domains. By this, residues were individually assigned to one of eight secondary structure types that were found in the crystal structure, namely one of H (α-helix), B (β-bridge), E (extended β-strand), G (310 helix), I (π-helix), T (hydrogen-bonded turn), S (bend) or C (undefined coil region). In addition, DSSP was used to determine the relative surface accessibility of each residue in the FXI crystal structure in Å². The accessibilities were converted into % accessibility by dividing the DSSP output by the theoretical solvent accessible surface area of the amino acid sidechain in question.28–30 The results were simplified as follows. Percentage accessibilities of 0–9% were given the value 0, 10–19% the value 1, 20–29% the value 2, and so on. Residues with accessibilities of 0 or 1 were classified as buried and those with accessibilities of 2–9 were classified as solvent-exposed.

The Ap domain secondary structure was comprised of a five-stranded antiparallel β-sheet with the β-strand topology C-E-D-G-A, a two-stranded B-F β-sheet and a centrally located α-helix (A1). The seven β-strands were labeled alphabetically (A–G) in the order in which they occurred in the sequence. The α-helix A1 and 310-helices G1–G3 were similarly labeled in sequential order.18 The six conserved cysteine residues of the Ap domains were numbered from C1 to C6 in the order they occurred in each Ap sequence. The three disulphide bridges between the α-helix and β-strands were denoted C1–C6, C2–C5 and C3–C4 and stabilized the folded Ap structure.31 The SP domain was comprised of β-strands A–O, α-helices A1–A2 and 310-helices G1–G5. As detailed previously, the Ap2 structure was used to represent the consensus Ap domain, owing to its low average root mean square deviation relative to the other three Ap domains after superimposition using the online secondary structure alignment program SSAP at http://www.cathdb.info/cgi-bin/cath/SsapServer.pl.19,32 The
interactions at the FXI dimer interface and between the Ap1-Ap4 and SP domains also utilized the PDBePISA tool.27

To enable the clinician to assess the disruptive effect of a genetic variant on the FXI protein structure, four distinct substitution analyses were performed within the database on the F11 missense variants. Importantly, these monitor the extent of damage to the protein structure. These analyses were Polymorphism Phenotyping v2 (PolyPhen-2) (http://genetics.bwh.harvard.edu/pph2/), Sorting Intolerant From Tolerant (SIFT) (https://sift.bii.a-star.edu.sg/www/SIFT_seq_submit2.html), Protein Variation Effect Analyzer (PROVEAN) (http://provean.jcvi.org/seq_submit.php) and Grantham analysis, using the Grantham matrix proposed in 1974.33–36 Both the PolyPhen-2 and SIFT algorithms give variants a score ranging from 0.0 to 1.0. When using the PolyPhen-2 algorithm, the closer to 1.0 the prediction score is, the more damaging the variant is likely to be in the FXI protein structure. Conversely, SIFT scores closer to 0.0 predict more damaging variants in FXI and those closer to 1.0 predict those that are more tolerated in the protein. The PROVEAN threshold used was -2.5, thus variants with scores below the threshold were considered deleterious and those above the threshold were neutral. Grantham analysis differs from the other three in that it is not sequence specific, and is purely based on the amino acids

Fig. 3 Secondary structure and accessibility analysis of variants in the FXI crystal structure. The FXI sequence is shown with the secondary structure assignments highlighted in gray boxes. Residues are denoted either H (α-helix), B (β-bridge), E (extended β-strand), G (3_10 helix), I (π-helix), T (hydrogen-bonded turn), S (bend) or C (undefined coil region). β-strands are labeled alphabetically in the order in which they occur. The β-strands in the Ap and SP domains are denoted A-G and A-O respectively. 3_10-helices are denoted G1-G5 and α-helices are denoted A1-A2. The SP catalytic triad His431-Asp480-Ser575 residues (legacy numbering His413-Asp462-Ser557) are highlighted in black. The 24 conserved cysteine residues within the four Ap domains are shown in yellow text. Putative N-glycosylated residues are highlighted in yellow boxes. The positions of 198 point variants found in the F11 gene are highlighted, where 75 red highlights denote Type I mutations, 11 green highlights denote Type II mutations, and 56 orange highlights denote mutations with unknown phenotype. The 13 purple highlights denote non-disease associated polymorphisms and the blue highlight denotes a Gly368 residue (legacy numbering Gly350) associated with both Type I and Type II phenotypes. Note that several highlights correspond to multiple variants at one residue position. All numbering is in HGVS format where the start of the signal peptide is denoted as Met1, rather than as Glu1 at the start of the mature protein.
undergoing substitution. Grantham scores range from 0 (silent variants) to 215, with larger scores indicating more radical amino acid substitutions that are likely to be more damaging to FXI.

Results

Classification of FXI Variants and Polymorphisms in the Updated Interactive Web Database

The interactive FXI web database (https://www.factorxi.org) currently presents information regarding 272 genetic variants (►Fig. 1) from 657 patient records, this being an almost 50% increase of 89 variants compared with the 2009 update, and an increase of 207 variants from the initial 2005 publication.18,19 The 89 newer variants were sourced from 34 new research articles, increasing the literature pool by 30% from that in 2009. As well as the increased number of rare variants, the database has also been updated in terms of its interactive features, to follow our FIX Web site (https://www.factorix.org), where a site map facilitates user navigation.24 The home page features two movies of the dimeric FXI and monomeric FXI structures with its variants, facilitating a three-dimensional visualization of the variant distribution. Allelic frequencies (AF) are also provided for variants when possible using the data supplied by the genome aggregation database (gnomAD) version 2.1.1 at https://gnomad.broadinstitute.org/.37 The gnomAD v2.1.1 dataset spanned 125,748 exome sequences and 15,708 whole-genome sequences and 117 (43%) of the 272 identified FXI variants were found in this. The AF was used as an indication of the relative frequency of a given variant at a specific genetic locus. The AF cut-off was taken as 0.01, thus an AF > 0.01 indicated a commonly-occurring variant. Of the 117 variants available in the gnomAD dataset, only 9 had AF > 0.01, all of which corresponded to known polymorphisms. The remaining 108 variants had AF < 0.01, highlighting that most FXI variants are rare. Using a more stringent AF cut-off of 0.001, only four additional variants occurred more frequently, leaving 104 rare FXI variants within the gnomAD dataset. Additional database features include a multiple sequence alignment of human FXI with other FXI species, to help users understand the phylogenetic history of the F11 gene and the extent of residue conservation in related sequences. It should be noted that Java applets need to be enabled within the browser to permit the mutation map, the multiple sequence alignment and other related features to be seen. An interactive FXI structure is presented onto which missense variants can be mapped and analyzed for clearer structural and functional analysis of their consequence. Lastly, additional FXI structures and literature references provide a more up to date knowledge of FXI research.

Of the 272 variants identified in FXI, 227 are disease-associated (reported in research articles based on coagulation tests), and 45 are non-disease associated polymorphisms. The 272 variants can be classified by genetic event, of which point variants make up 73.53%, polymorphisms 16.54%, deletions 6.99%, duplications 1.47% and insertions 1.47% (►Fig. 2(a)). The point variants can be further subdivided into missense (77.00%), nonsense (13.50%) and silent (1.00%) variants, with the remaining 8.50% of point variants being undefined (►Fig. 2(b)). The variants are uniformly distributed throughout the FXI sequence, with variants found in all five domains and linker regions (►Fig. 2(c)). Of the disease-associated variants, 96 (42.3%) are phenotypically classified as Type I, 12 (5.3%) as Type II and 119 (52.4%) as unknown. Here, Type II variants are characterized by a FXI:C to FXI:Ag ratio < 0.7. The Type I variants are scattered evenly across all domains whereas the Type II variants predominantly cluster in the SP domain.
Analysis of Variants in FXI Deficiency

Harris et al.

The FXI protein structure rationalises the three-dimensional distribution of the variants. The previously used FXI zymogen crystal structure (PDB ID: 2F83) has now been superseded by a much improved one (PDB ID: 6I58). The 6I58 structure showed an improved structural resolution of 0.260 nm compared with that of 0.287 nm for 2F83 and this enabled better visualization and analysis of the distribution of variants in FXI.\(^{25,26}\) When subjected to Ramachandran plot quality analysis (http://www.ebi.ac.uk/pdbsum), the 6I58 model gave an observed goodness-of-fit R-value of 0.216 when compared with the experimental X-ray data, compared with a larger R-value of 0.235 in the 2F83 crystal structure. In the 6I58 structure, 87% of amino acids were categorised in the “most favoured” conformational regions, 13% were in the “additional allowed” regions, and there were no conformational outliers. This outcome was improved compared with the 2F83 structure for which the corresponding figures were 74%, 20% and nine Ramachandran outliers respectively.\(^{25,26,38}\) In Fig. 4, 96 out of the 625 residues showed a different secondary structure assignment in the improved 6I58 structure compared with that in the 2F83 structure, even though the overall secondary structure was unaffected, and the changes affected mostly the loop conformations at the surface of the protein. From Fig. 3 likewise, 209 out of the 625 residues showed changes in surface accessibility of at least 10% when comparing the 6I58 structure to 2F83, and 49 residues showed changes of more than 20%. The improved quality of the newer protein structure thus had clear effects on the analyses of the variants below.

The 6I58 structure was used to display 142 missense variants and 14 polymorphisms found in the FXI zymogen (Fig. 5(a)). The four Ap domains in each monomer were each composed of seven β-strands and an α-helix, which came together to form a five-stranded antiparallel β-sheet C-E-D-G-A, a two stranded B-Fβ-sheet and a central α-helix. This is most clearly seen for the Ap2 domain of Monomer 2 in Fig. 5(a). Ap2, Ap3 and Ap4 also contained short C-terminal 3₁₀-helices (Fig. 3). The SP domain contained 15 β-strands, two α-helices and five short 3₁₀-helices, all arranged as two subdomains, each of which flanked a substrate binding cleft between them (Fig. 3). The catalytic triad of His431-Asp460-Ser557 (legacy His413-Asp462-Ser557) at the outer surface of the dimer is shown for Monomer 2 in Fig. 5(a). In the full 6I58 structure, 322 residues out of 625 had percentage surface accessibilities of 0 or 1 (assigned as buried), 263 residues had accessibilities over 2 (assigned as surface exposed), and 40 residues were absent from the crystal structure and therefore not classified.

Crystal structure analysis of secondary structures and accessibilities

The FXI protein structure rationalises the three-dimensional distribution of the variants. The previously used FXI zymogen crystal structure (PDB ID: 2F83) has now been superseded by a much improved one (PDB ID: 6I58). The 6I58 structure showed an improved structural resolution of 0.260 nm compared with that of 0.287 nm for 2F83 and this enabled better visualization and analysis of the distribution of variants in FXI.\(^{25,26}\) When subjected to Ramachandran plot quality analysis (http://www.ebi.ac.uk/pdbsum), the 6I58 model gave an observed goodness-of-fit R-value of 0.216 when compared with the experimental X-ray data, compared with a larger R-value of 0.235 in the 2F83 crystal structure. In the 6I58 structure, 87% of amino acids were categorised in the “most favoured” conformational regions, 13% were in the “additional allowed” regions, and there were no conformational outliers. This outcome was improved compared with the 2F83 structure for which the corresponding figures were 74%, 20% and nine Ramachandran outliers respectively.\(^{25,26,38}\) In Fig. 4, 96 out of the 625 residues showed a different secondary structure assignment in the improved 6I58 structure compared with that in the 2F83 structure, even though the overall secondary structure was unaffected, and the changes affected mostly the loop conformations at the surface of the protein. From Fig. 3 likewise, 209 out of the 625 residues showed changes in surface accessibility of at least 10% when comparing the 6I58 structure to 2F83, and 49 residues showed changes of more than 20%. The improved quality of the newer protein structure thus had clear effects on the analyses of the variants below.

The 6I58 structure was used to display 142 missense variants and 14 polymorphisms found in the FXI zymogen (Fig. 5(a)). The four Ap domains in each monomer were each composed of seven β-strands and an α-helix, which came together to form a five-stranded antiparallel β-sheet C-E-D-G-A, a two stranded B-Fβ-sheet and a central α-helix. This is most clearly seen for the Ap2 domain of Monomer 2 in Fig. 5(a). Ap2, Ap3 and Ap4 also contained short C-terminal 3₁₀-helices (Fig. 3). The SP domain contained 15 β-strands, two α-helices and five short 3₁₀-helices, all arranged as two subdomains, each of which flanked a substrate binding cleft between them (Fig. 3). The catalytic triad of His431-Asp460-Ser557 (legacy His413-Asp462-Ser557) at the outer surface of the dimer is shown for Monomer 2 in Fig. 5(a). In the full 6I58 structure, 322 residues out of 625 had percentage surface accessibilities of 0 or 1 (assigned as buried), 263 residues had accessibilities over 2 (assigned as surface exposed), and 40 residues were absent from the crystal structure and therefore not classified.
The 6I58 structure revealed 98 variants with percentage surface accessibilities of 0 or 1, indicating sidechain burial, and 50 variants with accessibilities of 2 or more, indicating surface exposure (►Fig. 3). Note that the accessibilities of three variants in the SP domain were undeterminable due to structural limitations. Variant changes in buried positions are likely to interfere with intradomain interactions and overall protein conformation, accounting for the predominance of Type I variants in FXI, due to the high proportion of affected buried residues and the compact domain structure (►Fig. 5). In contrast, variants found at surface exposed locations are more likely to interfere with protein function without disturbing the overall structure. The low number of Type II variants in the Ap domains highlights their importance in maintaining the compact FXI structure, whereas the clustering of Type II variants in the catalytic SP domain indicates its significance in protein function rather than structure.

A consensus Ap domain represents an average of the four Ap domains in FXI. The consensus enables all the Ap1-Ap4 variants to be shown in one view to determine features common to all four domains (►Fig. 6(a)). The predominance of Type I variants (red) in the Ap domains is highlighted in (b) where Type II variants (green) are almost absent. In this representation, Thr51 (legacy Thr33) (in a buried location at the end of the Ap α-helix) and Gly97 (legacy Gly79) (in a buried location at the end of the Ap β-sheet G) represent hotspots that disrupt the Ap domains.
Further analyses focused on specific details of the FXI structure. The most commonly mutated residue in FXI are the Cys residues (►Fig. 4). The covalent links formed by 17 disulphide bridges in a FXI monomer are key to the structure and function of FXI. Each Ap domain possesses three intrachain disulphide bridges C1-C6, C2-C5 and C3-C4 (black highlights in ►Fig. 6(a)), the first of which stabilizes the link between the N-terminus and C-terminus of each Ap domain. There is a free Cys29 residue in Ap1. The SP domain has five bridges (Cys380-Cys500, Cys416-Cys432, Cys514-Cys581, Cys545-Cys560, Cys571-Cys599). The Ap4 domains form an additional interchain disulphide bridge at Cys339-Cys339 to stabilize dimer formation.1,31,39,40 Type I Cys variants disrupt disulphide bridge formation, destabilizing the protein structure and leading to a FXI deficient state. A total of 28 distinct Cys variants have been identified within FXI, 20 of which are in the Ap domains and eight are in the SP domain. Of the 28 variants, 12 have Type I phenotypes (Cys46Phe, Cys56Arg/Trp, Cys136Gly, Cys260Ser/Tyr, Cys230Arg/Ser, Cys274Arg, Cys500Arg/Trp, Cys581-Arg/Phe, Cys599Tyr) (►Fig. 3). The 13 substitution variants that introduce new Cys residues into FXI predominantly possess Type II phenotypes (Trp246Cys, Arg326Cys, Trp425Cys, Arg443Cys, Tyr445Cys, Trp519Cys, Gly596Cys), with only one possessing a Type II phenotype (Arg396Cys in the SP domain) and four with unknown phenotypes (Tyr151Cys, Arg162Cys, Arg268Cys, Tyr521Cys). All individuals with such variants in a homozygous or compound heterozygous form exhibit a severe FXI deficiency. In addition to the Cys residues being Type I mutational hotspots, variants that are adjacent to Cys residues are also able to perturb the disulphide bridge packing within the protein fold (►Fig. 6(c)).

Analysis of Disulphide Bridges and Cys Variants in FXI

The PDBePISA tool was used to identify the 17 Ap4 contact residues involved in FXI dimerization with buried surface area changes of over 5 Å² (Leu302 to Val309, Thr333, Cys339, Asn340, Lys345, Tyr347, Lys349, Thr357, Leu360, Arg363) (green in ►Fig. 6(a)). Speciﬁcally, Cys339 forms an
interchain disulphide bond, which is important for stabilization but is not essential for dimer formation or functionality. There are 36 Ap4 variants in total, yet only three are found at the dimer interface (Ile308Phe/Thr, Cys339Phe), highlighting the importance of the conservation of residues at the dimer interface (►Figs. 6(a) and 6(d)). Ile308Phe/Thr and Cys339Phe are non-disease associated polymorphisms. Given that Ile, Phe, Thr, and Cys have neutral side chains, the Ile308Phe/Thr and Cys339Phe substitutions are unlikely to have a large impact on the non-covalent dimerization interactions.

Comparison of Variant Phenotypes with Damage Analyses and Residue Accessibilities

The observation of a missense FXI variant in the gene of a patient is not necessarily causative of a bleeding disorder. To assist clinical interpretations, the FXI Web site offered guidelines to clarify whether a given variant is likely to disturb the overall protein structure and function. The PolyPhen-2 algorithm predicted that 127 (80.9%) of the 157 missense variants to be damaging, with scores of 0.9 to 1.0 (►Fig. 7(a)). Similarly, SIFT analysis predicted that 139 (88.5%) of the missense variants were damaging (►Fig. 7(b)). Such findings indicate that most FXI variants are causative for FXI deficiency. The PROVEAN and Grantham analyses demonstrated less clear trends in which the predictions of the damaging scores fell across a larger scale with less clear outcomes (►Figs. 7(c,d)). The interactive FXI database thus provided variant-specific PolyPhen-2, SIFT, PROVEAN and Grantham scores for the 157 missense variants, thus providing an easy-to-use clinical support tool to clarify the significance of a variant.

To further examine the relationship between FXI phenotypes and surface accessibilities in the FXI protein structure, the residue surface accessibilities were displayed as a function of phenotype for FXI and the individually separated FXI domains. The high proportion of Type I variants was thus investigated by calculating the surface accessibilities of 142 FXI missense variants and 14 polymorphisms using the PDBePISA tool for the intact FXI protein and the individually separated FXI domains (►Fig. 8). Notably a high 66.7% of Type I variants (42 of 63) showed accessibilities of 0 or 1, highlighting their predisposition to be buried within the FXI protein structure (►Fig. 8(a)). In contrast, Type II variants and polymorphisms appeared at both exposed and buried regions of the FXI structure, with no clear preference for either location. Many variant residues were of unknown phenotype, however interestingly the majority of these showed low accessibilities. In calculations made following domain separation, the resulting changes in accessibility compared with the intact protein enabled the identification of residues that made interdomain contacts. An even higher proportion of 90.5% of Type I variants (57 of 63) were located to residues that showed small accessibility changes after domain separation (►Fig. 8(b)). The same outcome was also seen for Type II variants, polymorphisms and unassigned phenotypes. The predominance of Type I variants (and others) at such sites illustrates that small perturbations in the FXI structure, through the introduction of variants that lead to slight changes in surface accessibility, are sufficient to inactivate the protein and lead to disease states.

For further insight into the above outcome, four individual variant residues were visually highlighted. The FXI Ap domains were tightly packed together to form a compact...
structure with intricate interdomain interactions. Four distinct residues associated with Type I variants were identified, namely (a) Val38Ala, (b) Pro41Leu, (c) Cys110Gly and (d) Arg326Cys (Fig. 9). Following domain separation, the accessibilities of these four residues increased significantly, corresponding to a transition from burial to exposure. These accessibility changes indicated the extent to which the residues are packed together against surrounding domains. Missense variants at such locations will perturb these inter-domain interactions, disrupting the native FXI structure and resulting in premature protein degradation. Thus, we have provided a molecular explanation for the relative abundance of Type 1 variants in FXI in terms of small but significant disruptions to the tightly packed domain structure.

Discussion

The new datasets for FXI in this study have significantly improved the quality of the analyses of variants compared with our previous study, and lead to further clinical insights into the occurrence of FXI disease states. Given the known inability to correlate FXI activity, FXI deficiency, and disease severity, it is unlikely that the updated FXI database will provide a clear answer to this conundrum. Some patients seem to need FXI, while others do not. Specific FXI variants have not been linked to more severe phenotypes. The cause of the variability in symptoms in FXI-deficient individuals may lie outside the FXI protein. Nonetheless the updated FXI database now provides clearer insights into the role played by the variants. This upgrade has benefitted from three main advances: (a) the availability of an additional 50% of reported rare variants from literature sources to make a total of 272 variants (Fig. 1); (b) the significantly improved crystal structure for the FXI zymogen; (c) the upgrade of the previous FXI Web site user interface into that similar to the UCL coagulation Factor IX Web site. The inclusion of the disruption scores from Polyphen-2, SIFT, PROVEAN and Grantham offers new insight into the impact of the variants and will provide the clinician with guidelines on the significance of a variant, based on the surveys of Fig. 8. Most notably, we show that these variants are found across the FXI protein structure, and that accessibility changes in the packing arrangement of amino acid residues in the folded FXI structure by residue substitution is a major cause of FXI deficiency. Accessibility changes as well as the disruption scores may be a good predictor for the damaging changes associated with a variant.

In the coagulation proteases, FXI presents unique features by virtue of its compact protein domain structure. There are other proteins that likewise possess compact domain structures, such as the serine protease Factor I of the complement cascade of immune defense that contains five domains in contact with each other (complement proteins are evolutionarily related to coagulation proteins). Like FXI, Factor I shows that variants are distributed throughout the protein structures, implying that any of these will perturb the correctly folded protein structure. However, Factor I is monomeric and not dimeric as is FXI. In contrast, three-dimensional structures for Factors VII, IX and X (FVII, FIX and FX) present extended domain arrangements based on the four domains termed Gla-EGF1-EGF2-SP. Where the phenotypes are known, FVII, FIX and FX variants show a higher proportion of Type II phenotypes and are associated with functional defects, rather than Type I. This outcome is as expected given that these three proteins have extended domain arrangements. For proteins that are dominantly affected by functional defects, such as Factor H and C3 of
Screenshots of the upgraded FXI website to illustrate the analysis made for the Phe301Leu variant. The upper panel displays the output when residue 301 is inputted on the home page. By clicking “Show” on the patient information, the lower left panel lists genetic information for the 22 patients reported with Phe301Leu variant, of which the first five records are visible, together with the source of the patient record. The sequence alignment is shown underneath with Phe301 highlighted. Clicking “HERE” on the structural interpretation gives the image shown on the bottom right panel. This assesses the buried or exposed accessibility of the variant and its location in the FXI protein structure. A Jmol view of the FXI structure is displayed that can be rotated and zoomed into as desired. The substitution analysis to predict the damaging effects of each missense variant (PolyPhen-2, SIFT, Grantham and PROVEAN) is provided to facilitate clinical diagnosis.
complement, these show tendencies to reveal “hot-spots” where genetic variants accumulate in small but functionally important regions of the protein structure. Certain types of variants do not exist in FXI. There are no variants reported that affect the catalytic residues His431-Asp480-Ser575 that make up the peptide cleavage site in FXI. Likewise, there are no variants reported that prevent FXI from forming dimers. Very few of the contact residues at the dimer interface are associated with variants, and those that do only show minor perturbations to the protein structure.

Specific residue types are becoming more abundant as the number of observed genetic variants increase. In this study, Cys residues were flagged up as being a frequent source of disease-associated variants in FXI (∼Fig. 6(c)). Cys residues are important for the stability and functionality of FXI, and there are 18 disulphide bridges in a FXI monomer. Unsurprisingly the breakage of a Cys-Cys disulphide bridge is expected to impact severely on the FXI protein. The higher frequency of variants at Cys32 and Cys58 was already evident in the consensus Ap domain in 2009 where all six Cys residues were associated with variants.19 In the present study, the involvement of all six Cys residues in variants in the consensus Ap domain was verified (∼Fig. 6(a)). A similar outcome was also recently noted with the consensus short complement regulator domain in the complement proteins, which possesses two conserved disulphide bridges. Initially the Cys residues were not prominent as variant hotspots, but the most recent update of the web database showed that these were prominent with 5–13 occurrences.43,44

Our interactive FXI database will serve as a useful resource for clinicians and scientists to diagnose FXI deficiency and predict variant effects. Database technology becomes required in the light of the large increases in the known genetic variants in FXI, when a simple flat list became no longer adequate to monitor these. The Web site layout is designed to present genetic and structural information on FXI as two distinct but parallel themes, site layout is designed to present genetic and structural information on FXI as two distinct but parallel themes, with FXI, by analogy with the structure of activated plasma kallikrein compared with the FXI zymogen; kallikrein is homologous to FXI.25

What is Known on this Topic

(1) Many more FXI variants have been published in the literature since we last updated our interactive web database at https://www.factorxi.org in 2005 and 2009.
(2) The crystal structure of the FXI zymogen dimer enables an assessment of the damaging effects of FXI missense variants, and these need updating in the light of the significantly improved FXI crystal structure from 2019.

What this Paper Adds

(1) Of the 272 unique variants from 657 case reports that are now in our interactive database from literature searches, 227 are disease-associated, the majority of which are phenotypically classified as Type I, and 45 are non-disease-associated.
(2) We explain the molecular basis of many Type I variants in FXI in terms of the altered surface accessibility of the affected residues, the importance of affected Cys residues in disulphide bridges, and perturbations of the Ap4-Ap4 contacts that form the FXI dimer.
(3) Our interactive FXI Web site was upgraded for improved ease of clinical use, to enable the better utility of sequences and structural modelling to analyze FXI genetic variants and assess their damaging effects.

Research Grants and Financial Support
The authors were supported by grants from the Lister Institute for Preventive Medicine for this work.

Conflict of Interest
None declared

References
3. Tordai H, Bányai L, Pathy L. The PAN module: the N-terminal domains of plasminogen and hepatocyte growth factor are homologous with the apple domains of the prekallikrein family and with a novel domain found in numerous nematode proteins. FEBS Lett 1999;461(1-2):63–67
Analysis of Variants in FXI Deficiency Harris et al.

Barroeta A, van Galen J, Stroo I, Marquart JA, Meijer AB, Meijers JC.

