UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Novel transaminases from thermophiles: from discovery to application

Cárdenas-Fernández, M; Sinclair, O; Ward, JM; (2021) Novel transaminases from thermophiles: from discovery to application. Microbial Biotechnology 10.1111/1751-7915.13940. (In press). Green open access

[thumbnail of Ward_1751-7915.13940.pdf]
Preview
Text
Ward_1751-7915.13940.pdf - Published Version

Download (1MB) | Preview

Abstract

Transaminases (TAs) are promising biocatalysts for chiral amine synthesis; however, only few thermophilic TAs have been described to date. In this work, a genome mining approach was taken to seek novel TAs from nine thermophilic microorganisms. TA sequences were identified from their respective genome sequences and their Pfam were predicted confirming that TAs class I–II are the most abundant (50%), followed by class III (26%), V (16%), IV (8%) and VI (1%). The percentage of open reading frames (ORFs) that are TAs ranges from 0.689% in Thermococcus litoralis to 0.424% in Sulfolobus solfataricus. A total of 94 putative TAs were successfully cloned and expressed into E. coli, showing mostly good expression levels when using a chemical chaperone media containing d-sorbitol. Kinetic and end-point colorimetric assays with different amino donors–acceptors confirmed TAs activity allowing for initial exploration of the substrate scope. Stereoselective and non-stereoselective serine-TAs were selected for the synthesis of hydroxypyruvate (HPA). Low HPA reaction yields were observed with four non-stereoselective serine-TAs, whilst two stereoselective serine-TAs showed significantly higher yields. Coupling serine-TA reactions to a transketolase to yield l-erythrulose (Ery) substantially increased serine conversion into HPA. Combining both stereoselective serine-TAs and transketolase using the inexpensive racemic D/L-serine led to high Ery yield (82%). Thermal characterization of stereoselective serine-TAs confirmed they have excellent thermostability up to 60°C and high optimum temperatures.

Type: Article
Title: Novel transaminases from thermophiles: from discovery to application
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1111/1751-7915.13940
Publisher version: https://doi.org/10.1111/1751-7915.13940
Language: English
Additional information: © 2021 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Biochemical Engineering
URI: https://discovery.ucl.ac.uk/id/eprint/10138019
Downloads since deposit
41Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item