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Abstract

Reinforcement Learning (RL) formalises a problem where an intelligent agent

needs to learn and achieve certain goals by maximising a long-term return in an en-

vironment. Multi-agent reinforcement learning (MARL) extends traditional RL to

multiple agents. Many RL algorithms lose convergence guarantee in non-stationary

environments due to the adaptive opponents. Partial observation caused by agents’

different private observation introduces high variance during the training which ex-

acerbates the data inefficiency. In MARL, training an agent to perform well against

a set of opponents often leads to bad performance against another set of opponents.

Non-stationarity, partial observation and unclear learning objective are three crit-

ical problems in MARL which hinder agents’ learning and they all share a cause

which is the lack of knowledge of the other agents. Therefore, in this thesis, we

propose to solve these problems with opponent modelling methods. We tailor our

solutions by combining opponent modelling with other techniques according to the

characteristics of problems we facing. Specifically, we first propose ROMMEO,

an algorithm inspired by Bayesian inference, as a solution to alleviate the non-

stationarity in cooperative games. Then we study the partial observation problem

caused by agents’ private observation and design an implicit communication train-

ing method named PBL. Lastly, we investigate solutions to the non-stationarity and

unclear learning objective problems in zero-sum games. We propose a solution

named EPSOM which aims for finding safe exploitation strategies to play against

non-stationary opponents. We verify our proposed methods by varied experiments

and show they can achieve the desired performance. Limitations and future works

are discussed in the last chapter of this thesis.



Impact Statement

Multi-agent reinforcement learning (MARL) studies decision-making problems

where multiple agents interact with each other in an environment. It has great po-

tential and impact on our life because there are plenty of possible applications for

MARL such as traffic control, electricity distribution, pandemic prevention, educa-

tion, robotic rescue and so on. This thesis studies the non-stationarity, partial ob-

servation and unclear learning objective problems in MARL. They are all important

challenges for the community because many real-world problems that researchers

wish to solve for by MARL share some similarities with these challenges. For ex-

ample, a successful autonomous driving algorithm is expected to be able to adapt

to different driving behaviours of vehicles nearby, infer the intention of pedestrians

and have a good balance between efficiency and safety. These skills can be seen

as solutions to realisations of those abstract challenges listed above in the driving

scenario respectively. Hence, studying and solving these challenges will help the

landing of MARL research on real-life applications. We focus on opponent mod-

elling based approaches to these challenges as we observe that a common cause

of these problems comes from the lack of knowledge of opponents in the environ-

ment. In this thesis, we proposed three novel methods to solve one of or a combina-

tion of the above problems under different settings and the empirical results show

that our methods can achieve greater performance than many popular or classical

baselines. This highlights the importance of opponent modelling based methods in

MARL when we need to solve the aforementioned problems. Furthermore, none

of the assumptions or restrictions considered in the thesis limit the application of

the proposed methods to real-life problems. For example, our PBL algorithm as a
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solution to partial observation problem has been examined in a specialised version

of contract bridge, a popular card games for human players. Though to a limited

extent, we believe our work assists the MARL community in developing artificial

intelligence for solving real-life decision-making problems.
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Chapter 1

Introduction

1.1 Reinforcement Learning

Machine learning is a study which enables machines to identify patterns and rules

from data, build models to explain observations and learn without being explicitly

programmed. Those functionalities are core aims of artificial intelligence (AI) and

machine learning has become the driver of recent AI’s developments. Within the

broad area of machine learning, reinforcement learning (RL) is a crucial part and

has gained increasing attention from both industry and academia. It is a study of de-

cision making and optimal control in real or simulated environments. In a standard

RL problem, an agent selects an action from its policy given the current obser-

vation, then it receives the corresponding reward and the next observation. This

process may repeat for many times depending on the nature of the problem.

If we consider supervised learning (SL) as strong signal learning where human

experts tell machines exact expected outputs given inputs and unsupervised learning

(UL) as no signal learning where machines need to identify patterns from and learn

representations of observed data, RL can be regarded as delayed weak signal learn-

ing where an action is accessed by some scalar values only few or many steps after

that action being taken. This is challenging as RL algorithms aim at finding optimal

policies which an agent uses to make decisions but delayed weak feedback makes it

difficult to assign credits to correct actions, a problem called the credit assignment

problem in (Minsky, 1961).
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Learning and planning are two fundamental problem-solving techniques ly-

ing at the two extreme ends of the RL continuum. Though they originated from

different times and fields, they were integrated by modern RL researchers in the

1980s (Werbos, 1987; Watkins, 1989). The essential idea behind the learning tech-

nique is trial and error which stemmed from psychology and was first succinctly

discussed in (Thorndike, 1911). The learning technique aims at optimising the pol-

icy for decision making by reinforcing the training agent’s behaviours with expe-

riences collected from the agent’s real interactions with the environment. Namely,

the probability of selecting an action is increased if the action incurs a positive re-

ward and is decreased otherwise. On the other hand, the planning technique began

in control theory and methods known as dynamic programming (DP) which was

first introduced in (Bellman and Corporation, 1957) were typical representatives of

planning technique. The planning technique can plan an optimal policy for deci-

sion making. The “planning” term emphasises the fact that it does not require real

interactions with the environment in contrast to the learning technique which can

potentially save the simulation cost. However, the planning method requires the full

knowledge of the environment.

A distinctive class of approaches known as temporal difference (TD) learning

lies in between learning and planning. It aims at learning an estimate of certain

quantities, e.g., the values of actions. It retrieves learning signals from data col-

lected by interacting with the environment (the learning technique side) and correct

its current estimates as DP methods (the planning side). TD learning firstly ap-

peared in (Samuel, 1959) and was further studied and developed by Klopf (Klopf,

1972), Sutton and Barto (1981; 1982) and many other RL researchers. A mature RL

method following the prior works known as Q-learning was proposed by Watkins

and Dayan (1992) and an enormous amount of classical RL methods in modern RL

have been proposed since then.

Classical RL methods often suffer from the curse of dimensionality problem

where the computation cost increases exponentially with the complexity of games,

e.g., the number of states in a game. Therefore, RL methods were mainly studied on
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tabular problems (Gronauer and Dieopold, 2021). The revival of neural networks

(NNs) (Schmidhuber, 2015) empowered by the significant improvement in graphics

processing units (GPUs) computation speed led to the emergence of a plethora of

deep RL (DRL) works. As powerful function approximators (Arulkumaran et al.,

2017), deep NNs enabled efficient and automatic representation learning. This fa-

cilitated state abstraction which is a common dimension reduction approach used in

RL but often required human expertise before the advent of DNNs. Consequently,

we saw successful applications of DRL works on game playing (Mnih et al., 2015;

Silver et al., 2016, 2017, 2018), robotics (Levine et al., 2015; Lillicrap et al., 2015)

and biology (Senior et al., 2020).

1.2 Multi-Agent Reinforcement Learning

Multi-Agent System (MAS) generalises the classical decision-making problems by

considering multiple intelligent agents in one system (Weiss, 2000). In MAS, each

agents has its own observations at each time step. Given their observations, agents

need to take actions stochastically or in turns. Then the system will transfer to

another state and distribute rewards to each agent based on the joint actions of agents

and its current state. In the new state, agents will receive their own new observations

and the dynamic repeats. Agents can have the same goal or conflict of interest

depending on the nature of the problem and each agent is assumed to maximise its

own long-term cumulative rewards. Multi-agent reinforcement learning (MARL) is

a branch of RL which focuses on MAS problems.

The origin of the MAS community can date back to the first workshop on dis-

tributed artificial intelligence held in June 1980 (Davis, 1980). Although MARL

research has been overshadowed by single-agent RL (SARL) since its birth, ef-

forts to address the aforementioned issues have never been stopped (Zhang et al.,

2019). Recently, this domain has experienced a resurgence of interest and we

have witnessed many significant successes in multi-agent games such as StarCraft

II (Vinyals et al., 2017, 2019), Dota2 (OpenAI, 2018) and Texas hold’em (Moravčı́k

et al., 2017; Brown and Sandholm, 2018, 2019). These games are all currently pop-
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ular multiplayer games with professional tournaments held every year world-wide.

Unsurprisingly, the advance in MARL is also accompanied with the development

of DNNs due to its strong performance in terms of function approximation. The

ongoing resurgence of MARL has not reached an imminent end and significant

achievements beyond games are expected to come soon.

1.3 Why Opponent Modelling?

Though MARL studies decision-making problems in a similar vein as SARL,

adding extra agents into the environment makes the problem much more challeng-

ing in several ways. Firstly, agents’ observations normally contain some informa-

tion about the environment, the history of the play and the opponents but rarely the

full knowledge of the whole game including other players. In many cases agents

do not share their observations and thus, one agent can have some information that

other agents don’t. For example, in Poker games, each agent cannot observe others’

cards in their hands (Mealing and Shapiro, 2017). Therefore, partial observation

problem often comes with the introduction of extra agents. When an agent’s can not

distinguish two states in an environment due to its partial observation, the training

feedback will become noisy as the different feedback gained by taking the same

action in the two different states will be regarded as the same feedback with noise.

This directly increases the variance in the training and cost the agent more samples

but only learns a sub-optimal policy.

In addition, an agent’s opponents or teammates are often adaptive which means

that they will adjust their strategies to play given their interacting experiences with

the environment and other players. Consequently, an agent who takes the same

action at the same state but at different time steps can receive very different re-

wards and observations on expectation due to the changes in other players’ be-

haviour patterns, a problem known as non-stationarity in MARL (Hernandez-Leal

et al., 2017). Many classical value-based methods are popular in RL communities

because of their convergence properties and sample efficiency as they could reuse

past trajectories for training (Sutton and Barto, 2018). However, in non-stationary
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environments, these methods lose their convergence properties and it is difficult to

reuse the past trajectories due to the changing environments. Non-stationarity also

challenges policy-based algorithms as it requires them to learn a good policy before

the environment changes.

Finally, an agent can encounter different types of opponents or teammates

in different tournaments. A strategy that wins against/with one type of oppo-

nents/teammates cannot guarantee wins when the agent is facing different types of

players. With the concern of not knowing the future opponents/teammates, a safe

strategy is to learn a robust policy which can performs not badly with regardless to

who the opponents/teammates are. This is effectively the Nash equilibrium solution

concept from game theory. However, this safe strategy will forego potential profits

if we actually know our opponents/teammates. Hence, defining a suitable learning

objective for an agent becomes non-trivial (Shoham et al., 2003).

The above challenges induced by the existence of other intelligent agents in

the system (partial observation, non-stationarity, unclear learning objective) are

deeply related. One critical cause of these issues is that the training agent normally

has very little knowledge of its opponents1. Specifically, partial observation in

a MAS is often the direct consequence of the training agent having no or partial

knowledge about the observations of its opponents. As for the second problem,

it is because the training agent cannot know actions taken by its opponents that

the environment it perceives becomes non-stationary. Also if we had a powerful

oracle foretelling the training agent all the information about the opponents in every

tournament, then the unclear learning objective would become clear. Namely, the

training agent only needs to learn how to take the best actions given the prediction

from the oracle. Then, an intuitive way to address these problems will be to help

the training agent gain more knowledge about its opponents. Following the example

above, an accurate oracle which can predict all information about opponents in fact

renders the learning problem a single-agent optimisation which can be solved by

typical reinforcement learning.

1Hereafter, we will refer to the other players excluding our training agents as opponents regard-
less of the nature of the games.
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In reality, however, there rarely exists such an oracle. Nonetheless, we could

learn to build a model which can approximate the oracle’s prediction. Opponent

modelling is a process where a model is constructed to predict information about

the training agent’s opponents. A model in this context is essentially a function

that takes as input some information observable by the training agent and outputs a

prediction of some properties of its opponents including but not limited to the oppo-

nents’ private information, actions, preferences, goal, etc. This approach is common

in the real world. For example, players in many professional sports matches often

need to collect information about their opponents in advance to better understand

their opponents and be able to predict their strategies (Knottenbelt et al., 2012;

Laviers et al., 2009). Sun Tzu, a famous general in Imperial China, has said “If

you know both yourself and your enemy, you can win a hundred battles without a

single loss.” (Tzu, 2002). This highlights the importance of opponent modelling in

warfare and the long history of opponent modelling.

In this thesis, we will focus on solving the above problems with opponent

modelling based algorithms. Specifically, we propose three novel methods to solve

(1) non-stationarity, (2) partial observation in cooperative environments and (3)

non-stationarity and the unclear learning objective in competitive environments

respectively. We examined our methods on different scales of games and show that

they all achieve the expected performance and outperforming strong baselines.

1.4 Games as a test bed for algorithms

Formally, a game is a domain of conflict or cooperation between multiple entities

including players and the environment. In a game, a player needs to apply an action

in one state and then is transferred to another state depending on its current state

and the action it chooses. Such a transition can continue for infinitely long or ter-

minate when the player reaches a certain state. In addition to the state transitions,

an action often incurs a (delayed) reward and the player’s goal is to maximise its

long-term cumulative rewards. In this thesis, we characterise games as the dynamic

environments which has well pre-defined reward functions and relatively low cost
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of simulation.

The dynamics where an agent or a group of agents making a sequence of deci-

sions, being transferred to different states and receiving consequences of their deci-

sions can also be seen in many real world problems such as business negotiations,

epidemic prevention and control, financial investment, and education, etc. These

problems share the same properties with complex games such as high-dimensional

state and action space, unknown world dynamics models, delayed feedback and

multiple interacting entities. In contrast to real world problems, however, games are

normally more cost efficient to simulate, bear less risk and have well-predefined re-

ward functions. Therefore, we mainly investigate the effectiveness of our methods

by testing them on games.

1.5 Overview
In this section, we first briefly introduced RL and MARL. We listed three main

challenges the MARL community faces and motivated opponent modelling as a

solution for them. The language presented in this section may not be mathematically

formal but intuitive for an induction purpose. In the following parts of the thesis, we

will formally introduce some necessary mathematical preliminaries, survey related

works and present a sequence of approaches to address the challenges mentioned

above. Specifically, the rest of this thesis is organised as follows:

• In Chapter 2, we review the key concepts of reinforcement learning and multi-

agent reinforcement learning.

• In Chapter 3, we provide literature review of challenges in multi-agent rein-

forcement learning, opponent modelling and relevant techniques we used.

• In Chapter 4, we focus on the non-stationarity in cooperative games. Specif-

ically, we formalise the classical multi-agent coordination as a Bayesian in-

ference problem and derive a maximum entropy objective with regularised

opponent modelling by variational inference. We propose two off-policy al-

gorithms for optimising this objective and show that they outperform other

strong baselines in both tabular and approximate settings.
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• In Chapter 5, we consider the partial observation problem in cooperative

games and assume that agents cannot communicate explicitly. Therefore, we

propose an iterative learning style algorithm PBL which can train agents to

communicate implicitly by actions. We evaluate our method on simple matrix

game and complex non-competitive bridge bidding problems and a modified

multi-agent particle environment.

• In Chapter 6, we study the non-stationarity and unclear learning objective

problems in zero-sum games. We propose an algorithm named EPSOM

which learns to safely best respond to the predictions of its opponent model

and we build the opponent model by Dirichlet process such that we can for-

malise an opponent’s learning process as transitions among different policies.

• In Chapter 7, we discuss common limitations of works present in this thesis

and potential solutions for these limitations as our future work. Finally, we

briefly discuss why we should continue the study of opponent modelling.

These chapters are based on the following papers and pre-prints:

1. Chapter 4: Zheng Tian, Ying Wen, Zhichen Gong, Faiz Punakkath, Shihao

Zou, and Jun Wang. A regularized opponent model with maximum en-

tropy objective. In Proceedings of the 28th International Joint Conference

on Artificial Intelligence, IJCAI’19, page 602–608. AAAI Press, 2019. ISBN

9780999241141.

2. Chapter 5: Zheng Tian, Shihao Zou, Ian Davies, Tim Warr, Lisheng Wu,

Haitham Bou Ammar, and Jun Wang. Learning to communicate implicitly by

actions. Proceedings of the AAAI Conference on Artificial Intelligence, 34:

7261–7268, 04 2020. doi: 10.1609/aaai.v34i05.6217

3. Chapter 6: Zheng Tian, Hang Ren, Yaodong Yang, Yuchen Sun, Xiaohang

Tang, Ian Davies, Ziqi Han, and Jun Wang. Learning to safely exploit a non-

stationary opponent. submitted to AAAI 2022 for review, 05 2021



Chapter 2

Background

In this section we will introduce a shared mathematical foundation across works

presented in the thesis. Some preliminaries and formulations specific to a work will

be postponed to the chapter where that work is introduced for easier reference and

better reading experience.

2.1 Markov Decision Process
Most RL algorithms focus on solving problems which can be formulated as Markov

Decision Processes (MDPs) or its variants (Sutton and Barto, 2018).

Definition 1. An MDP (Bellman, 1957; Puterman, 1994) defines a tuple

(S,A,T ,R, p0,γ), where:

• S is a finite set of states;

• A is a finite set of actions;

• T :S×A×S→∆(S), is a state transition function, a probability distribution

over possible next states and ∆(·) denotes a probability simplex;

• R : S×A→R, is a reward function, determining the step reward distributed

to an agent at a state s ∈ S taking an action a ∈ A;

• p0 specifies the probability distribution of the initial state s0;

• and γ ∈ [0,1] is a discount factor.
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At each time step t, an acting agent takes an action at at state st , receives a

reward rt(st ,at) =R(st ,at) and is transited to st+1 following the transition proba-

bility Pr(st+1|st ,at) = T (st ,at ,st+1). In this thesis, we only consider a MDP with

bounded rewards. Namely, we always re-scale the rewards to [−1,1].

A policy π : S → ∆(A) is a mapping from state space S to a distribution over

action spaceA, describing the probability Pr(at |st) = π(at |st) of the agent selecting

an action at ∈ A at a state st ∈ S. We define the sum of discounted rewards across

time the discounted return: Rt = ∑ j=t γ tr j. The goal of a training agent is to learn

an optimal policy π∗ maximising the expectation of the discounted return: π∗ =

argmaxπ Eπ,T [Rt ], where the expectation is with respect to the stochasticity from

the environment and the training agent’s policy.

Discounting the future rewards when we calculate the return matches the eco-

nomic concept that present rewards are valued more than future rewards. How-

ever, more importantly, the use of discount factor in MDP is related to the concern

with regard to the length of a MDP. We call a MDP episodic if the MDP termi-

nates with a finite number of steps. An episodic MDP can either terminate when

an agent reaches some special state we call terminal state or the number of time

steps reaches a predefined limit. We define an episode as a sequence of interactions

between the agent and the environment starting from the initial state till the cur-

rent MDP terminates. In episodic MDPs, we are guaranteed to have a finite return

Rt = ∑
T
j=t γ tr j where the time of termination T can be a random variable whose

value varies from an episode to another. However, besides episodic MDPS, we also

have the infinite-horizon MDP where interactions between the agent and the en-

vironment never terminates. Without discounting the future rewards, we can see

that the return Rt = ∑
∞
j=t r j in the infinite-horizon MDP will be infinite which is

problematic as the training agent’s goal is to maximise the return.
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2.1.1 Value Functions

We say a training agent’s objective is to maximise the expectation of return in a

MDP which can been seen as a function of the agent’s policy:

η(π) = Eπ,T [Rt ].

Before taking actions, then an intelligent agent with the mindset of maximising the

return may ask questions such as “How good is a state s which I will be transited

to?” or “How good is an action a given my current state s?”. In RL, we use values

functions to answer these questions which can help a training agent make decisions.

We first define the sate value function as:

V π(s) = E1
π [Rt |st = s],

= Eπ [rt + γRt+1|st = s].

It essentially measures the expectation of return an agent can obtain if it starts from

the state s and follows the policy π in the MDP. Similarly, we can also define the

state-action value function as:

Qπ(s,a) = Eπ [Rt | st = s,at = a] .

It measures the expectation of return an agent obtain if it selects an action a at a

state s and then follows the policy π in the MDP.

Recall that we denote an optimal policy π∗ as a policy which maximises the

expected return from every state in a MDP. Similarly, we can denote value functions

1In this thesis, we may omit some super/sub-scripts in notations we have defined before (e.g. T
in Eπ,T [Rt ]) for concise presentation if its absence does not cause ambiguity.
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associated with the optimal policy as optimal value functions:

V ∗(s) = Eπ∗[Rt |st = s],

= max
π

Eπ [Rt |st = s];

Q∗(s,a) = Eπ∗[Rt |st = s,at = a],

= max
π

Eπ [Rt |st = s,at = a].

2.1.2 Bellman Equation

The Bellman equation (Bellman and Corporation, 1957) is a critical part of RL and

it helps RL researchers to find optimal policies and value functions. Specifically,

it decomposes values functions into step rewards and discounted future value func-

tions so that the complex problem of calculating value functions can be divided into

simpler and recursive sub-problems. In MDP, a state value V π(s) has a Bellman

equation as:

V π(st) = Eπ [rt + γV π(st+1))].

Equivalently, for state-action value functions, we have:

Qπ(st ,at) = Eπ [r(st ,at)+ γQπ(st+1,at+1))].

2.2 Value-Based Reinforcement Learning
If an agent knows how good a state s is or how good taking an action a at each state

s is for any s ∈ S and a ∈ A in a MDP given its current policy, it can select the

best actions in terms of obtaining the greatest expected return. If the new policy

resulting from this greedy selection behaviour is different from the agent’s current

policy, then the agent learns a new policy which is better than the current one. And

the process can repeat many times until the agent cannot learn a better policy. This

is essentially the intuition behind value-based RL.

Specifically, most value-based RL consists of two parts: policy evaluation and
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policy improvement (Sutton and Barto, 2018). The former estimates the V π(s) and

Qπ(s,a) for any s ∈ S and a ∈ A in a MDP given its current policy π . The latter

improves the current policy by greedily selecting actions with respect to the new

value functions. The improvement of the policy is guaranteed by:

Theorem 1. Policy Improvement Theorem (Bellman and Corporation, 1957): Sup-

pose π and π ′ are two policies such that:

Ea∼π ′ [Q
π(s,a)]≥V π(s)∀s ∈ S.

, then we have:

V π ′(s)≥V π(s)∀s ∈ S.

The value functions can be updated in a full backup or a sample backup fashion

depending on the training agent’s accessibility to the environment model. At each

iteration, the former updates the value functions for all possible states and actions

where each update performs a full-width lookahead. As full-width lookahead relies

on the knowledge of the transition T and reward R functions, the full backup re-

quires the training agent to have the model of the environment and thus, we call this

type of approaches model-based RL. Without the environment model, we replace

the full-width lookahead with sampled interactions from a MDP (including agent’s

action a, current state s, transited next state s′ and reward r(s,a)) and update the

value functions for states and actions we have visited.

Dynamic programming (DP) was first proposed for solving optimal control prob-

lems (Bellman, 1952). Now it has become a general method for solving a complex

problem by breaking it into simpler sub-problems and solving these sub-problems in

recursive a manner. In RL, full-width update of value functions satisfying Bellman

equations is essentially a form of DP. For example, in policy iteration (PI) (Howard,
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1960), to evaluate a given policy π , we define the Bellman operator Bπ as:

Bπ(V )(s) = ∑
a

π(a|s)∑
s′
T (s,a,s′)[r(s,a)+ γV (s′)].

Then we can repeatedly apply the operator on our current estimate of value func-

tions till convergence. The above process provides us with a way to evaluate a given

policy π which can stand alone by serving as a means to predict how good the pol-

icy π is. However, more frequently than PI, the policy evaluation is followed by

the policy improvement where we define a greedy operator G to return an improved

policy given the current value functions:

G(V )(s) = argmax
a

∑
a

π(a|s)∑
s′
T (s,a,s′)[r(s,a)+ γV (s′)].

Alternatively, value iteration (VI) (Bellman and Corporation, 1957) combines these

two steps into one and directly solves the MDP for the optimal value functions

where we have an optimal bellman operator B∗ defined as:

B∗(V )(s) = max
a

π(a|s)∑
s′
T (s,a,s′)[r(s,a)+ γV (s′)].

Monte Carlo value estimation (MCVE) considers the situation where an agent

does not have the environment model thus DP is infeasible. Therefore, we replace

the full backup with sample backup. Together with some other approaches intro-

duced later, MCVE is classified as a model-free RL method which does not require

an environment model. Recall the state value function Vπ(s) given a policy π is the

expected return for an agent starting from state s and then following the policy π:

V π(s) = Eπ [Rt |st = s].

MCVE methods replace the expectation with empirical average over a set of sam-

ples which are often simulated from the environment. Mathematically, given a set
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of samples over N steps which can spanning multiple episodes, we have:

V̂ (s) =
∑

N
t=0 Rt1st=s

∑
N
t=01st=s

,

where 1X=x takes value 1 if X = x and 0 otherwise. Therefore, the numerator calcu-

lates the sum of all the (discounted) returns resulting from visits to the state s, while

the denominator counts those visits. Similarly, for state-action value function, we

have:

Q̂(s,a) =
∑

N
t=0 Rt1st=s,at=a

∑
N
t=01st=s,at=a

.

The above equations assume we have a complete set of training data which

often span over many completed episodes before conducting the estimations. How-

ever, a more efficient way would be to update these value functions whenever the

training agent completes one episode by maintain a running average:

V̂ (st) := V̂ (st)+α
(
Rt−V̂ (st)

)
, (2.1)

where α ∈ [0,1] is a learning rate.

Temporal difference (TD) learning is an alternative model-free method to

MCVE (Samuel, 1959; Sutton, 1988). It is an application of bootstrapping on

value functions estimations. The core idea of bootstrapping is to update an esti-

mate from another estimate so that a training agent can conduct updates before the

current episode completes. This is also particularly helpful in terms of variance

reduction as lengthy episodes starting from the same state are likely to have dra-

matically different results due to the randomness from the player’s policy and the

environment transitions. A basic form of TD learning is TD(0) where we update

the state value at the current state st as:

V̂ (st) := V̂ (st)+α
(
rt + γV̂ (st+1)−V̂ (st)

)
.
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Comparing the above equation with Equation 2.1, we can see that the Monte Carlo

return Rt is replaced with the sum of one-step reward rt and the discounted estimate

of state value for the next state in TD(0). We could regard “0” in TD(0) stands

for “no further simulated steps required”. Therefore, we have a general recipe for

TD(K) as:

V̂ (st) := V̂ (st)+α
(
V̂K−V̂ (st)

)
,

where V̂K = ∑
K
k=0 γkrt+k + γK+1V̂ (st+K+1) and K ∈ {0,1,2,3, . . . ,T} represents “K

extra simulated steps required” for updating the value functions. However, any

TD(K) method only considers a fixed value of K ∈ {0,1,2,3, . . . ,T} when calcu-

lating the update target V̂K . TD(λ ) (Sutton, 1988) proposed to consider a weighted

average target as:

V̂λ =
1

1−λ T

K

∑
k=0

(1−λ )λ KV̂K,

where λ ∈ [0,1]. The above setting ensures that the recent values are weighted more

than the future values and the weights sum to 1.

2.3 Deep Reinforcement Learning
In the above sections, we treat an agent’s value functions as look-up tables such that

for each state s or state-action combination (s,a) there is an entry which represents

its corresponding value. However, in large or continuous environments, it is not

possible to maintain a table for each state or state-action combination. Feature ex-

traction and selection (Sutton, 1996; Keller et al., 2006; Parr et al., 2007) consider

representing a high-dimension state s with a (combination of) state feature(s) φ(s)

such that the latter dimension is much smaller than the former. State abstraction

is another common technique to reduce the state dimension by grouping together

similar states while not changing the underlying problem (Bertsekas and Castanon,

1989; Singh et al., 1999; Li et al., 2006). Though these two approaches are similar,

one subtle difference is that some different states will have the same state represen-
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tation in state abstraction but this is not necessarily true in feature extraction and

selection.

The above methods, however, normally require domain knowledge or extra

training process for obtaining state representations with lower dimensions than the

original states. This makes the training of the RL agent economically or timely ex-

pensive. The revival of neural networks (NNs) (Schmidhuber, 2015) empowered by

the significant improvement in graphics processing units (GPUs) computation speed

significantly changed the situation. As powerful function approximators (Arulku-

maran et al., 2017), deep NNs enabled end-to-end efficient and automatic feature

engineering and state abstraction. Consequently, we saw successful applications of

DRL works on game playing (Mnih et al., 2015; Silver et al., 2016, 2017, 2018),

robotics (Levine et al., 2015; Lillicrap et al., 2015) and biology (Senior et al., 2020).

2.4 Policy Gradient Reinforcement Learning

The methods introduced in the previous section are classified as value-based RL

methods because they rely on value functions for deriving the optimal policies. As

our ultimate goal is the optimal decision-making strategy, we can directly solve

for the optimal policy. Policy gradient (PG) reinforcement learning optimises a

parameterised policy πθ to maximise the cumulative returns by gradient descent:

∇θEπθ
[R(τ)] = Eπθ

[
∑

a,s∈τ

R(τ)∇θ log(πθ (a | s))
]
,

where R(τ) is the return of the interaction trajectory τ induced by the policy πθ in

the current environment. As we assume no knowledge of the model of the environ-

ment, we again use Monte-Carlo samples to replace the expected return Eπθ
[R(τ)].

However, this gives us a gradient estimate with high variance. In addition, once the

policy is updated, the corresponding trajectory data cannot be easily reused for fu-

ture training. Therefore, PG methods normally have low data efficiency (Marbach

and Tsitsiklis, 2003).

To reduce the variance and improve the data efficiency, REINFORCE (Williams,
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1992) proposed to subtract the Monte Carlo return by a baseline b(s) which is a

function of the current state s but does not depend on the action a:

∇θEπθ
[R(τ)] = Eπθ

[
∑

a,s∈τ

(R(τ)−b(s))∇θ log(πθ (a | s))
]
.

Similarly, as in value-based RL, we can also replace the high variance Monte Carlo

estimate with (estimates of) value functions (Sutton et al., 1999) and have:

∇θEπθ
[R(τ)] = Eπθ

[
∑

a,s∈τ

(Qπ(s,a)−b(s))∇θ log(πθ (a | s))
]
.

This type of methods is commonly known as ACTOR-CRITIC algorithms as the pol-

icy acts as an actor selecting actions and the value function acts as critic which

evaluates how good the action selected by actor is.

Among many types of RL algorithms, PG is a natural candidate which closely

matches the trial and error training scheme as it essentially increases the proba-

bility of selecting an action if it causes high returns and decreases the probability

otherwise. In addition to its straightforward motivation, PG has advantages of: 1.

learning stochastic policies; 2. better convergence property; and 3. learning in con-

tinuous state and action spaces. As the policy in PG is effectively a parameterised

function, DNNs are a natural candidate. The advantages of applying DNNs into

value-based RL algorithms are also maintained in PG methods.

2.5 Multi-Agent Markov Decision Process
We consider a set of agents, denoted by N = {1,2, . . . ,N}, interacting with an en-

vironment by executing actions from a joint set A = {A1, . . . ,AN}, with Ai de-

noting the action space of agent i, and N the total number of agents. To enable

models that approximate real-world scenarios, we assume private and public in-

formation states. Private information states space, jointly (across agents) denoted

by X = {X 1, . . . ,XN} are a set of hidden information states where X i is infor-

mation set only observable by agent i, while public states in o ∈ O set are ob-

served by all agents. We assume that hidden information states at each time step
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are sampled from a distribution px : X → [0,1], while public states evolve from

an initial distribution po : O → [0,1], according to a stochastic transition model

T : O×X ×A1×·· ·×AN ×O → [0,1]. Having transitioned to a successor state

according to T , agent i receive rewards fromRi : S×A1×·· ·×AN→R, where we

have used S = O×X to denote joint state descriptions that incorporate both pub-

lic and private information. Finally, rewards are discounted over time by a factor

γ ∈ (0,1]. With this notation, our problem can be described succinctly by the tuple:〈
N ,A,O,X ,T ,{Ri}i∈N , px, po,γ

〉
, which we refer to as an imperfect-information

Markov decision process (I2MDP). To resolve issues resulting from partial observ-

ability, one could use the history of a game hi
t = {oi

1:t ,x
i
1:t ,a

i
1:t−1,a

−i
1:t−1} so far from

time step t as the input to a policy π i(ai|hi). The observable history hi
t by agent i

defined above is general as it contains all possible information agent i can observe

and recall in a distributed setting. However, one could redefine the history hi
t by

only including parts of the information.

When agents have full observation of the environment, I2MDP recovers to the

N-agent stochastic game (Shapley, 1953), which formally extends MDP to multi-

ple agents. As stochastic game is a classical formulation of MARL problems, we

introduce it formally as bellow.

Definition 2. An N-agent stochastic game is defined as a tuple (N ,S,A,T ,{Ri}i∈N , p0,γ),

where:

• N is a finite set of N agents;

• S is a finite set of states;

• Ai is the action space for agent i ∈N , andA=×Ai is the joint action space

of all agents;

• T :S×A×S→∆(S), is a state transition function, a probability distribution

over possible next states;

• Ri : S ×Ai→ R is the reward function for agent i ∈N ;

• p0 specifies the probability distribution of the initial state s0;
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• and γ ∈ [0,1] is a discount factor.

Agent i chooses its action ai ∈Ai according to the policy π i(ai|s) conditioning

on some given state s∈S. We denote the joint policy (the product of all agents’ poli-

cies) as π = π1×π2× . . .×πN and agent i’s opponents joint policy as π−i(a−i|s),
where a−i is the joint action of all agents except agent i. As in a single-agent MDP,

agent i’s objective is to find the optimal policy which maximises its expected long

term return defined as:

max
π i

η(π i) = max
π i

Eπ,T [Ri
t ].

However, the difference is that the state transitions T and the expected return are

both affected by the joint policy π−i of i’s opponents.



Chapter 3

Literature Review

As propose in Chapter 1, we focus on opponent modelling based approaches to solv-

ing non-stationarity, partial observation and unclear learning objective in MARL.

To have a deeper insight into the current progress in related topics, we conduct lit-

erature review on these problems and opponent modelling methods in this chapter.

Based on our observation of the above problems in different settings, we customise

our solutions by combining opponent modelling with different techniques such as

Bayesian inference, maximum entropy objective and multi-agent communication

etc. Therefore, before we introducing our novel methods, review about related prior

works is also provided in the remaining of this chapter.

3.1 Challenges in Multi-Agent Systems
By the nature of the game, we can classify multi-agent problems into purely co-

operative games, purely competitive games and mixed games. In purely coopera-

tive games, all agents either share the same reward functions Ri = R ∀i ∈ N or

joint optimal policies argmaxπ η(π i) = argmaxπ η(π j) ∀i, j ∈N and i 6= j. There-

fore, agents are incentivised to communicate in some ways for sharing their pri-

vate information or coordinate their actions during the training and execution. The

term “execution” specifically refers to the period that the training agents’ policies

are fixed and expected to perform well without further training. In purely com-

petitive games, agents have conflicting goals such that agent i’s maximal return is

obtained at the cost of all other agents’ returns being minimised argmaxπ η(π i) =
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argminπ η(π j) ∀i, j ∈N and i 6= j. In contrast with purely cooperative games, play-

ers in purely competitive games are incentivised to exploit their opponents.

Games which are neither purely cooperative nor purely competitive are clas-

sified as mixed games. In these games, not all players have conflicting goals but

they do not share the joint optimal policies either. Therefore, a coalition with pun-

ishment for cheating between players may be established to guarantee participants

with satisfying but not optimal returns. Though each type of game has its own char-

acteristics and assumptions, they all suffer from some common problems due to

the existence of extra agents in the environment, among which partial observation,

non-stationarity and unclear learning objective are three critical issues (Gronauer

and Dieopold, 2021; Nguyen et al., 2018).

Partial observation is a common issue in many real-world decision-making prob-

lems where an agent can only have partial observation ot of the full environment

state st . As the agent’s partial observation does not contain the full information of

the current environment state, the environment perceived by the agent is no longer

Markovian (Gronauer and Dieopold, 2021), which means the system’s future dy-

namics is irrelevant to the history once the current state is given. The Markov

property is critical as it guarantees that a current state st in a MDP problem is suffi-

cient to make the optimal decision. To recover the property in partially observable

problems, an agent has to maintain the entire history of observations. Therefore, a

common approach to this issue is to equip agents with memory such that all history

information observed by the agent is stored for future decision making (Hausknecht

and Stone, 2015). Research works of applying recurrent neural networks (RNN) on

partial observable problems have seen some successes (Omidshafiei et al., 2017; Fo-

erster et al., 2017b; Dibangoye and Buffet, 2018; Gupta et al., 2017). In multi-agent

settings, partial observation can arise from non-shared observations of agents. A

typical example is the poker game where each agent’s hand is only observable to

itself and the union of all agents’ hands (plus some other public information) forms

the environment state (Mealing and Shapiro, 2017). As each player cannot observe

other players’ hands, Partial observation occurs. In this setting, when agents intend
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to cooperate or form a coalition, an alternative to memory-based approaches is for

agents to communicate their own private information such that all agents will have

the full environment state st before making any decisions (Goldman and Zilberstein,

2011).

Non-stationarity 1 is another major problem caused by the existence of multiple

adaptive agents interacting in a shared environment (Hernandez-Leal et al., 2017).

In contrast to the single agent setting, an agent’s rewards and the environment

transitions depend not only on the current environment state and the agent’s ac-

tion but also the actions of others. When the actions of others are not observed,

the adaptation and learning of other agents therefore induces non-stationarity in

the environment dynamics from the perspective of a single agent. Specifically,

before and after its opponents update their policies, an agent may face differing

transition dynamics and reward functions despite the environment remaining un-

changed. This non-stationarity can pose serious problems for value function-based

algorithms whose convergence usually relies on the assumption of a stationary en-

vironment (Hernandez-Leal et al., 2017; Laurent et al., 2011). Policy search al-

gorithms also struggle in multi-agent settings due to the high variance of policy

training induced by the changes in opponents’ behaviours over time. Centralised

training decentralised execution (CTDE) is the most common solution where infor-

mation restriction is loosened so that each agent can observe more information to

stabilise its training (Iqbal and Sha, 2019; Bono et al., 2019). For example, other

agents joint actions a−i
t may be revealed to the training agent i before the agent de-

ciding its optimal action given the current state: ai∗
t = argmaxai

t
Q(st ,ai

t ,a
−i
t ) (Lowe

et al., 2017).

Unclear learning objective concerns how to define the optimal policy for a training

agent in multi-agent problems. Recall that in single-agent case, an optimal policy is

the one which maximises the expected long term return as:

π
∗ = argmax

π

Eπ,T [Rt ].

1Generally, non-stationarity refers to the environment’s dynamics changes over time.
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If we rewrite the above formula in multi-agent problems, we will have:

π
i∗ = argmax

π i
Eπ,T [Ri

t ],

= argmax
π i

Eπ i,π−i,T [R
i
t ].

The optimal policy π i∗ defined above in MAS depends on the opponents’ joint pol-

icy π−i, so different π−i will lead to different optimal policies π i∗. The changes in

π−i can be caused by (1). different opponents in different episodes; (2) updated poli-

cies by the same group of opponents. Therefore, training an agent with the above

objective can either lead to poor performance during execution or non-converged

policy. Hence, finding a reliable learning objective and evaluation method becomes

non-trivial (Balduzzi et al., 2019; Czarnecki et al., 2020; Omidshafiei et al., 2019;

Yang et al., 2020).

3.2 Opponent Modelling

Though there are other issues unsolved in MAS such as scalability (Zhang et al.,

2019; Yang and Wang, 2020), we will focus on methods solving the 3 challenges

introduced in the previous section. These challenges are closely related and share a

common cause which is the lack of knowledge of opponents. Therefore, the capabil-

ity of reasoning about other agents’ belief, private information, behaviour, strategy

and other characteristics is crucial. A reasoning model can be used in many differ-

ent ways, but the most common case is where an agent utilises its reasoning model

to aid it decision making (Brown, 1951; Heinrich and Silver, 2016; He et al., 2016;

Raileanu et al., 2018). Normally, this reasoning is built on observation of modelled

agents’ past actions. In machine learning, we define the process of a modelling

agent building a reasoning model to predict information relevant to modelled agents

as opponent modelling.

There have been plenty of applications of opponent modelling across different

AI problems which demonstrates the significant role of it in AI. For instance, inten-

tions and plans of users need to be understood and predicted in dialogue systems
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(Grosz and Sidner, 1986; Litman and Allen, 1984); intelligent tutoring systems can

use opponent modelling to identify students’ misconceptions (Iida et al., 1996; Mc-

Calla et al., 2000; Anderson et al., 1990); user experience can be improved by sys-

tem with user models (McTear, 1993; Oh et al., 2011); autonomous vehicles need to

predict and reason about behaviours of other vehicles or pedestrians (Buehler et al.,

2009).

Opponent modelling has a long history and dates back to the beginning of

game theory where opponent models were used in analysing equilibrium solutions

of games. A typical example is fictitious play where an agent estimates its op-

ponent’s strategy from past experience and uses this estimation to choose its best

response in the future (Brown, 1951). In early works, because adversarial games

were the major focus of relevant research, the term opponent modelling became

more well known. Therefore, we use the word “opponents” when referring to other

agents in an environment irrespective of the environment’s cooperative or adver-

sarial nature. Equipped with the rich representation power of Neural Networks

(NNs), recent works have obtained some progress in opponent modelling. It has

been shown empirically that using opponents’ features implicitly in one’s decision

process, parameterised by an NN, improves the performance of a trained agent (He

et al., 2016). Also, opponent modelling has been used to handle non-stationary

transitions caused by other learners in MARL (Foerster et al., 2017a). The ability

of modelling different types of opponents is important in real human society, and

some initial research has been conducted in (Rabinowitz et al., 2018).

Opponent modelling has been an active research topic and well docu-

mented (Rubin and Watson, 2011; Bakkes et al., 2012; Albrecht and Stone, 2018;

Hernandez-Leal et al., 2017). Plenty research works in opponent modelling are con-

ducted in different underlying assumptions and domains, attending various needs

in different problems. We list some major factors below which greatly affect how

an opponent model is built.

• Modelled opponents’ policies: When an agent follows a deterministic pol-

icy, one can easily predict its action based on the observed trajectory so far
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if the same trajectory has been encountered in past experience. In this case,

we could use deterministic structures such as decision trees and determinis-

tic state automata for modelling opponents’ behaviours (Albrecht and Stone,

2018). However, if an agent takes actions from a stochastic policy, it is more

difficult to predict the next action it will take and requires more data to build

an accurate model.

• Learning process of the modelled agent: Early works in opponent

modelling often assume the modelled opponents policies are station-

ary (Hernandez-Leal et al., 2017). However, opponents in many real-world

problems often learn and adapt their behaviours while interacting with others

in the environment. Therefore, building opponents’ models which assumes

opponents’ policies stationary can lead to poor performance.

• Number of modelled agents in one environment: If there is more than one

opponent to be modelled in the same environment, the assumption about if

those opponents are independent or dependent will greatly affect the approach

of constructing models for each of them. Many existing opponent modelling

methods assume modelled opponents are independent and thus build models

of those agents independently (Wen et al., 2019). However, this is less often

the case in real-world problems. When agents interact with each other, one

has to take into account this dependency when modelling those opponents.

• Environmental factors: Some properties of the environment can also affect

the underlying assumptions, such as if agents take turns to play or they make

actions simultaneously; if the state space and action space are discrete or

continuous respectively; and if the modelling agent has full observation about

the modelled agent except the one that is to be predicted (Albrecht and Stone,

2018).

Policy prediction is the most common type in opponent modelling which trains

a model to predict the probability distribution of actions modelled agent will take

given some observed history in an episode. The predicted distribution is normally
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used as extra information for the modelling agent’s decision making. The classical

example of policy prediction is fictitious play (Brown, 1951) where agents model

each other by a distribution over actions other agents may take. The probability of

an action being chosen by a modelled agent is simply the empirical frequency of that

action taken by the modelled agent in history. This simple approach has been proven

to converge in matrix games (Fudenberg, 1998). However, it is difficult to have an

accurate model when modelled agent strategy/policy becomes complex. To make

a model more representative, one can use a conditional distribution to predict the

modelled agent’s policy. This distribution can be conditioned on information such

as recent actions which have been taken by the modelled agent (Davison and Hirsh,

1998), recent states which have been visited by the modelled agent or other related

features or abstractions of the modelled agent (Chakraborty and Stone, 2013). Tab-

ular style model is not scalable and hard to generalise to unseen situations. Other

model representations have been explored to solve these problems such as decision

trees (Barrett et al., 2013) or neural networks (Davidson, 1999; Davidson et al.,

2000; Anthony et al., 2017), where a model is trained to fit the observed data.

Private information prediction : Information greatly affecting an agent’s decision

making in multi-agent systems is often private; i.e., not observable by others. This

motivates private information prediction modelling. Private information can be in

the form of the modelled agent’s type (e.g. if the agent is aggressive or defensive?),

preference (e.g. if the agent prefers short term reward to long term ones?), goal (e.g.

if the agent is heading north or south?) or observation of the world state exclusive to

the modelled agent (e.g. the modelled agent’s hand in poker games), etc (Albrecht

and Stone, 2018).

Type based reasoning can help an agent to identify its opponent or partner’s

type in the early stage of a game. Therefore the agent can choose corresponding

pre-trained policy to better exploit its opponent or cooperate with its partner. This

approach normally assumes that there is a fixed number of types of opponents or

partners an agent will encounter (Schillo et al., 2000). However this is hardly true

in real cases (Rovatsos et al., 2003). However, if the true type of current modelled
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agent is in the set of considered type, modelling agent can often identify the mod-

elled agent’s type and adapt its behaviour to that type quickly. This approach started

from game theory (Harsanyi, 1967), but it also has gained interest in the machine

learning community. In (Lockett et al., 2007), a neural network is trained to pre-

dict a mixture of opponent’s types; in (He et al., 2016), several expert networks

corresponding to different agent types are used.

The preferences of a modelled agent is often in the form of a utility function

or reward function. The motivation of modelling an agent’s preferences is that

assuming the modelled agent is rational (always tries to maximise its utility/reward),

one can infer its action based on the modelled preferences. An advantage of this

approach is that when an agent preference is known, one can infer that agent’s

action in the state even if the state is not explored before in history. In (Carmel

and Markovitch, 1993, 1996b), a linear function of features is used to model an

opponent’s utility function in extensive form games. A human player’s utilities are

estimated by a linear function of social factors such as fairness and social welfare

in (Gal et al., 2004).

Knowledge of an agent’s goal can be useful when one interacts with that agent.

For instance, a user interface can provide more relevant options and information

when it better knows the user’s intention (Oh et al., 2011; McTear, 1993) and an

intrusion detection system can take countermeasures if it can recognise an agent’s

intention to attack (Geib and Goldman, 2001). Recently, Raileanu et al. (2018)

uses an agent’s policy parameterized by a neural network to infer the other agent’s

goal and update its belief in an online manner. Modelling of an opponent’s private

observation is also often studied in work on poker (Billings et al., 1998; Korb et al.,

2013; Southey et al., 2012). Among these works, either some evaluations of how

strong the opponent’s hand is or the actual opponent’s hand is modelled given the

opponents’ play.

Recursive reasoning: When an agent models its opponents, the opponents can also

model the agent and take into account the fact that they are modelled by the agent

when they build their models. This nesting of beliefs can lead to a possibly infi-
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nite reasoning process of the form ”I believe that you believe that I believe . . .”.

The nested beliefs problem is proposed and addressed in game theory (Harsanyi,

1962, 1967) with an assumption that each agent’s private information is sampled

from a known distribution by all agents. However, this assumption is strong. In-

stead, to resolve this infinite recursion without the strong assumption, recursive

reasoning assumes this belief nesting is down to a fixed recursion depth (Carmel

and Markovitch, 1996a). The restriction in recursive reasoning can be further re-

duced by removing the assumption that each agent knows about other agents’ re-

cursion depth, which leads to the Interactive POMDP (I-POMDP) (Gmytrasiewicz

and Doshi, 2005). In I-POMDP, an agent not only has belief about the environment

state but also belief about models of other agents. One agent’s different models

mainly vary in the recursion depth. Many solutions to I-POMDP have been stud-

ied, including methods based on model equivalence (Rathnasabapathy et al., 2006),

value iteration (Doshi and Perez, 2008), policy iteration (Sonu and Doshi, 2015),

structural problem reduction (Hoang and Low, 2013) and deep reinforcement learn-

ing (Wen et al., 2019, 2020).

In this subsection, we provide a general and brief survey of opponent mod-

elling methods based on our understanding and other related surveys (Rubin and

Watson, 2011; Bakkes et al., 2012; Albrecht and Stone, 2018; Hernandez-Leal et al.,

2017). We aim to give readers a general idea of opponent modelling, its applica-

tions, common assumptions and types. In the following chapters, we will show how

to combine opponent modelling with different techniques so that we could solve the

three challenges under different conditions. In the remaining part of this chapter,

therefore, we will also review related works to techniques we used in the following

chapters.

3.3 Control as Bayesian Inference

The Bayesian method is an important approach to decision making problems. It

can capture the uncertainties regarding the transition probabilities, the reward func-

tions in the environment or other agents’ policies. This distributional information
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can be used to formulate a more structured exploration/exploitation strategy than

those commonly used in classical RL, e.g. ε-greedy. The estimation of gradient

performance with respect to parameters of value function and policy can also be

done more accurately while using less data. Knowledge and the explicit formula-

tion of domain assumptions can also be naturally encoded in Bayesian approaches

as priors.

There have been a plethora of works applying Bayesian inference to solve

issues such as partial observation (Furmston and Barber, 2010), data inefficiency

(Abdolmaleki et al., 2018) and trade-offs between exploration and exploitation

(O’Donoghue et al., 2017). Casting decision making and optimal control as an infer-

ence problem has a long history, which dates back to (Kalman, 1960) where Kalman

smoothing is used to solve optimal control in linear dynamics with quadratic cost. A

common approach in many works for framing RL as an inference problem is by in-

troducing a binary random variable o which represents “optimality” (Toussaint and

Storkey, 2006; Rawlik et al., 2013; Levine and Koltun, 2013; Abdolmaleki et al.,

2018). However, the literature of Bayesian methods in MARL is limited. Among

these are methods performing on cooperative games with prior knowledge on dis-

tributions of the game model and the possible strategies of others (Chalkiadakis and

Boutilier, 2003) or policy parameters and possible roles of other agents (Wilson

et al., 2010).

3.4 Maximum Entropy Objective in MARL

In many single-agent works, maximising entropy is part of a training agent’s ob-

jective for resolving ambiguities in inverse reinforcement learning (Ziebart et al.),

improving the diversity (Florensa et al., 2017), robustness (Fox et al., 2015) and the

compositionality (Haarnoja et al., 2018a) of the learned policy. In works where VI is

applied, it often presents in the evidence lower bound (ELBO) for the log likelihood

of optimality (Haarnoja et al., 2017; Schulman et al., 2017; Haarnoja et al., 2018b),

commonly known as maximum entropy objective (MEO), which encourages the

optimal policy to maximise the expected return and long term entropy. The idea of
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preference over the distribution with maximum entropy originates from statistical

modelling, and the reasoning behind it is that maximum entropy models have the

least assumptions about the unknowns while still matching the observations.

In early works, the maximum entropy principle has been used in policy search

in linear dynamics (Todorov, 2010; Toussaint, 2009; Levine and Koltun, 2013) and

path integral control in general dynamics (Kappen’, 2005; Theodorou et al., 2010).

Recently, off-policy methods (Haarnoja et al., 2017; Schulman et al., 2017; Nachum

et al., 2017) have been proposed to improve the sample efficiency in optimising

MEO. However, in a continuous environment, the complex approximate inference

may be needed for sampling actions. To avoid the complex sampling procedure,

training a policy in supervised fashion is employed in (Haarnoja et al., 2018b).

Variants of these off-policy methods (Wen et al., 2019; Wei et al., 2018; Grau-Moya

et al., 2018) haven been applied for solving different problems in MARL. However,

they are not derived from MARL problems but simple modifications of methods in

single agent problems.

3.5 Multi-Agent Communication

In collaborative multi-agent systems, communication is essential for agents to learn

to behave as a collective rather than a collection of individuals. This is particu-

larly important in the imperfect-information setting, where private information be-

comes crucial to success. In such cases, efficient communication protocols between

agents are needed for private information exchange, coordinated joint-action explo-

ration, and true world-state inference. In typical multi-agent reinforcement learning

(MARL) settings, designers incorporate explicit communication channels hoping

to conceptually resemble language or verbal communication which are known to

be important for human interaction (Baker et al., 1999). Though they can be used

for facilitating collaboration in MARL, explicit communication channels come at

additional computational and memory costs, making them difficult to deploy in de-

centralised control (Roth et al., 2006).

Environments where explicit communication is difficult or prohibited are com-
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mon. These settings can be synthetic such as those in games, e.g., bridge and Han-

abi, but also frequently appear in real-world tasks such as autonomous driving and

autonomous fleet control. In these situations, humans rely upon implicit communi-

cation as a means of information exchange (Rasouli et al., 2017) and are effective in

learning to infer the implicit meaning behind others’ actions (Heider and Simmel,

1944). The ability to perform such inference requires the attribution of a men-

tal state and reasoning mechanism to others. This ability is known as theory of

mind (Premack and Woodruff, 1978). In this work, we develop agents that benefit

from considering others’ perspectives and thereby explore the further development

of machine theory of mind (Rabinowitz et al., 2018).

Recently, there has been a surge of interest in using reinforcement learning

(RL) approaches to learn communication protocols (Foerster et al., 2016; Lazari-

dou et al., 2016; Mordatch and Abbeel, 2017; Sukhbaatar et al., 2016). Among

these works, Mordatch and Abbeel (2017) observe the emergence of non-verbal

communication in collaborative environments without an explicit communication

channel, where agents are exclusively either a sender or a receiver. Similar re-

search is also conducted in (de Weerd et al., 2015). We will show in our setting in

Chapter 5, we do not restrict agents to be exclusively a sender or a receiver of com-

munications – agents can communicate mutually by actions. Knepper et al. (2017)

propose a framework for implicit communication in a cooperative setting and show

that various problems can be mapped into this framework.

Dragan et al. (2013) consider how to train agents to exhibit legible behaviour

(i.e. behaviour from which it is easy to infer the intention). Their approach is

dependent on a hand-crafted cost function to attain informative behaviour. Mutual

information has been used as a means to promote coordination without the need for

a human engineered cost function. Strouse et al. (2018) use a mutual information

objective to encourage an agent to reveal or hide its intention. In a related work,

Jaques et al. (2019) utilise a mutual information objective to imbue agents with

social influence. While the objective of maximal mutual information in actions can

yield highly effective collaborating agents, a mutual information objective in itself
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is insufficient to necessitate the development of implicit communication by actions.

Eccles et al. (2019) introduce a reciprocity reward as an alternative approach to

solve social dilemmas.

3.6 Exploitability and Exploitation

In single agent reinforcement learning (SARL), an agent learns to act by iteratively

interacting with an environment. In such a setting, an agent’s learning objective and

its performance evaluation are normally clear and straightforward, e.g., its long-

term cumulative rewards gained from the environment. However, in multi-agent

reinforcement learning (MARL), one agent’s performance greatly depends on the

behaviour of other agents. Hence, finding a reliable learning objective and eval-

uation method become non-trivial (Balduzzi et al., 2019; Czarnecki et al., 2020;

Omidshafiei et al., 2019; Yang et al., 2020). Naive solutions of the problem us-

ing SARL generalise badly (Lanctot et al., 2017) and optimising the joint policy of

all agents does not scale. Recent approaches combining game theoretical analysis

with deep RL have seen some success in large zero-sum games (Berner et al., 2019;

Vinyals et al., 2019).

Game theory offers a mathematical framework to model strategic interactions

among players (Morgenstern and Von Neumann, 1953). Under perfect rational-

ity (Fudenberg and Tirole, 1991), a central solution concept is Nash equilibrium

(NE) where no player benefits from deviating from their equilibrium strategy. In

a two-player zero-sum game without any inherent advantage for either player (e.g.

as a first mover), an NE is a safe strategy to play (i.e., playing not to lose) – NE

guarantees a tie in the worst case in expectation.

It is well known that finding an NE is PPAD-hard even in two-player

games (Chen and Deng, 2006). An exception are two-player zero-sum games where

the NE can be tractably solved by a linear program (LP) in polynomial time (van den

Brand, 2020). However, in games with extremely large action spaces, approximate

NE solutions, such as fictitious play (FP) (Brown, 1951) and counterfactual regret

minimisation (CFR) (Zinkevich et al., 2007b), have to be used. An important design
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principle that underpins NE approximation is the iterative best-response dynamics.

Two representative methods are Double Oracle (DO) (McMahan et al., 2003) and

Policy Space Response Oracle (PSRO) (Lanctot et al., 2017). In the dynamics of

DO (McMahan et al., 2003), players are initialised with restricted strategy sets;

then at each iteration, a NE will be computed over the current restricted sets. These

sets will be expanded by adding the best-response strategy to the NE computed

over the full strategy sets. The iterative process continues until the best response is

in the restricted strategy pool. PSRO approximates DO by interleaving empirical

game-theoretic analysis (EGTA) with deep RL. In contrast with DO, the game with

restricted strategy sets has to be estimated through simulation. Furthermore, the ex-

act analytical best-response oracle is replaced in PSRO by a deep RL oracle which

calculates an approximate best response. PSRO is a general self-play framework

for MARL and many approaches built upon it have been proposed to improve its

performance (McAleer et al., 2020; Muller et al., 2020; Nieves et al., 2021; Smith

et al., 2021).

However, NE is not the most profitable strategy in many cases. In complex

competitive games, such as poker, it is common that agents encounter opponents

with bounded rationality, in the sense that they may at best play an approximate

Nash equilibrium strategy and often play dominated actions (Billings et al., 2003;

Ponsen et al., 2014). Therefore, playing a NE can potentially forego significant

rewards against sub-optimal opponents. This incentivizes players to deviate from

the NE and exploit their opponents’ weakness (i.e., playing to win). However, the

resulting strategy could render itself exploitable should it overfit to the current oppo-

nent. Playing to win can therefore lead to exploitation by other opponent strategies.

In the case of deceptive opponents such exploitation is known as the “get taught and

exploited” problem (Sandholm, 2007).

To better balance the trade-off between playing to win against the current oppo-

nents (exploitation) and not losing to unknown opponents (exploitability), Johanson

et al. (2008) proposed a solution concept, named Restricted Nash Response (RNR).

RNR and its variants (Johanson and Bowling, 2009; Johanson et al., 2008; Ponsen
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et al., 2014; Bard et al., 2013) assume stationary opponents, i.e., the strategies they

learn to exploit are unknown but fixed. However, in many real-world applications,

opponents may adapt and change their strategies on an ongoing basis. For example,

in Rock-Paper-Scissors when a player learns to best respond by playing Rock to

an opponent’s strategy which always plays Scissors, the opponent may then learn

to best respond to your best response by playing Paper. Furthermore, prior RNR

approaches only provide one-off solutions in the sense that whenever we need to

re-adjust the trade-off between exploitation and exploitability or the opponent uses

a new fixed policy, we need to re-solve the updated game from scratch.

3.7 Dirichlet Process Opponent Modelling

A fundamental ability of an effective AI agent is the capacity to interact with other

intelligent agents. Therefore, the capability of reasoning about other agents is cru-

cial. Classical solutions to resolve the issue of non-stationarity include centralised

training (Lowe et al., 2017), self-play (Vinyals et al., 2019), meta-learning (Al-

Shedivat et al., 2017) and opponent modelling (Albrecht and Stone, 2018). When

specifically applied to the issue of non-stationarity, most previous works focusing

on opponent modelling which switches between different opponent models when a

change in opponent(s) is detected. A switch of model may be triggered by a drop

in opponent model prediction accuracy (Everett and Roberts, 2018) or when per-

formance in terms of reward received for a fixed policy drops (Hernandez-Leal and

Kaisers, 2017). Deep BPR+ (Zheng et al., 2018) combines a measure of opponent

model accuracy and reward tracking to decide when to learn a new policy. Signif-

icantly, most of these works limit the opponents’ non-stationarity to periodically

changing their policies within a finite pre-defined set of stationary policies.

In this work, we consider non-stationarity during the training stage arising from

the opponents’ concurrent learning dynamics, rather than drawing stationary oppo-

nents from a pre-defined set. The entire lifetime of an opponent can generally be

modelled as a mixture of an unknown (possibly infinite) number of policies. This

motivates the usage of a Dirichlet Process (DP) mixture model (Blei et al., 2006;
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Teh, 2010) which can infer the number of mixture components from data and pro-

vide incremental model capacity on demand. Various approximate inference meth-

ods are reported for DP mixture models, such as Markov chain Monte Carlo (Ish-

waran and James, 2001) and variational inference (Blei et al., 2006; Hughes and

Sudderth, 2014; Wang and Blei, 2012). However, these inference methods either

do not adapt to an online setting or truncate the number of clusters to a finite value.

Recently proposed streaming inference algorithms (Lin, 2013; Tank et al., 2015)

enable the DP mixture model to solve online non-stationary problems in a truly

non-parametric way. Applications have been reported in task-free continual learn-

ing (Lee et al., 2020) and model-based reinforcement learning (Xu et al., 2020). In

this work, we adopt this approach to model and simulate a non-stationary opponent

for MARL.



Chapter 4

Non-Stationarity in Cooperative

Games

One challenge listed in the previous section is the non-stationarity in Multi-agent

systems where we have adaptive opponents learning and updating their policies

as our agent does. This is generally a difficult problem, but simplification can be

obtained if we consider cooperative problems. Though we often will not know

exactly how the opponents will update their policies, we can reasonably assume

that they update their policies towards maximising the same long-term return shared

by all agents in a cooperative game. This observation can help us to build a more

accurate opponent model of adaptive opponents and alleviate the non-stationarity

problem.

In this chapter, we consider applying Bayesian inference to incorporate the ob-

servation as a prior when we learn our opponent model. We redefine the binary

random variable o in a multi-agent setting and formalise multi-agent reinforcement

learning (MARL) as probabilistic inference. We derive a variational lower bound of

the likelihood of achieving optimality and name it as Regularised Opponent Model

with Maximum Entropy Objective (ROMMEO). From ROMMEO, we present a

novel perspective on opponent modelling and show how it can improve the perfor-

mance of training agents theoretically and empirically in cooperative games. To

optimise ROMMEO, we first introduce a tabular Q-iteration method ROMMEO-

Q with proof of convergence. Then, we extend the exact algorithm to complex
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environments by proposing an approximate version, ROMMEO-AC. We evaluate

these two algorithms on the challenging iterated matrix game and differential game

respectively and show that they can outperform strong MARL baselines.

4.1 A Variational Lower Bound
In this work, we consider fully cooperative games where different agents have the

same reward function Ri(s,ai,a−i) = R−i(s,ai,a−i),∀i ∈ 1, . . . ,n. Our approach

can also be extended to the case where agents do not share the same reward function

but the same optimal policy, i.e. π i∗ = π−i∗. However, for simplifying the notation,

we derive our method in the former setting. Therefore, each agent’s objective is to

maximise the shared expected return:

max η
i(π) = E

[
∞

∑
t=1

γ
tR(st ,ai

t ,a
−i
t )

]
, ∀i ∈ 1, . . . ,n, (4.1)

where (ai
t ,a
−i
t ) is sampled from π = π i× π−i. In addition, we assume that the

solution to the above optimisation objective is unique.

We transform the control problem into an inference problem by introducing a

binary random variable oi
t which serves as the indicator for “optimality” for each

agent i at each time step t. In single agent problem, reward R(st ,at) is bounded,

but the achievement of the maximum reward given the action at is unknown. There-

fore, in the single-agent case, ot indicates the optimality of achieving the bounded

maximum reward r∗t . It thus can be regarded as a random variable and we have

P(ot = 1|st ,at)∝ exp(R(st ,at)). Intuitively, this formulation dictates that higher re-

wards reflect a higher likelihood of achieving optimality, i.e., the case when ot = 1.

In cooperative multi-agent reinforcement learning (CMARL), a single agent’s

“optimality” oi
t cannot imply that it obtains the maximum reward because the reward

depends on the joint actions of all agents (ai,a−i). In CMARL, to define agent i’s

optimality oi
t , we first introduce the definition of optimum and optimal policy:

Definition 3. In cooperative multi-agent reinforcement learning, optimum is a strat-

egy profile (π1∗, . . . ,πn∗) such that no other strategy profiles can obtain higher re-
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turn:

Es∼ps,ai∗
t ∼π i∗,a−i∗

t ∼π−i∗

[
∞

∑
t=1

γ
tR(st ,ai∗

t ,a
−i∗
t )

]

≥ Es∼ps,ai
t∼π i,a−i

t ∼π−i

[
∞

∑
t=1

γ
tR(st ,ai

t ,a
−i
t )

]
∀π ∈Π, (4.2)

where π = π i×π−i and Agent i’s optimal policy is π i∗.

An individual agent cannot obtain the maximum reward alone without coor-

dination of other agents in CMARL, but it can individually play its optimal policy

alone. Therefore, we define oi
t = 1 only indicating that agent i’s policy at time step

t is optimal. This definition of “optimality” is subtly different from the one in the

single-agent case, but given other players actions a−i
t , the posterior probability of

agent i’s optimality is still proportional to its exponential reward:

P(oi
t = 1|st ,ai

t ,a
−i
t ) ∝ exp(R(st ,ai

t ,a
−i
t )). (4.3)

This assumption is valid because given (st ,ai
t ,a
−i
t ), a higher reward can indicate a

higher probability that agent i’s current policy is optimal. Furthermore, with this

new definition, we have that the posterior probability of agent i’s optimality given

its action ai
t is the probability that the action is sampled from the optimal policy:

P(oi
t |ai

t) = P(ai
t ∼ π

i∗|ai
t) ∝ π

i∗(ai
t). (4.4)

For cooperative games, if all agents play optimally, then agents can receive the

maximum return, which is the optimum of the game. Given other agents playing

their optimal policies o−i
1:T = 1, the probability that agent i also plays its optimal

policy P(oi
1:T = 1|o−i

1:T = 1) is the probability of obtaining the maximum return

from agent i’s perspective. Therefore, agent i maximising P(oi
1:T = 1|o−i

1:T = 1) is

equivalent to agent i’s objective defined in Equation 4.1 and we define this new

objective as:

max J ∆
= logP(oi

1:T = 1|o−i
1:T = 1). (4.5)
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Maximising the above probability conditioning on the assumption that opponents

are playing optimally can help us to take into account opponents’ adaptive be-

haviours when we learn our opponent model. This benefit will become more explicit

in our following derivation.

As the optimality variables oi
t indicate whether player i is playing optimally at

step t, we assume it is affected by the current state st , player’s action ai
t and also

opponents’ actions a−i
t . Therefore, by the Law of Total Probability, we can expand

Equation 4.5 as:

logP(oi
1:T |o−i

1:T ) = log ∑
ai

1:T ,a
−i
1:T ,s1:T

P(oi
1:T ,a

i
1:T ,a

−i
1:T ,s1:T |o−i

1:T ),

= log ∑
ai

1:T ,a
−i
1:T ,s1:T

P(oi
1:T |ai

1:T ,a
−i
1:T ,s1:T ,o−i

1:T )P(a
i
1:T ,a

−i
1:T ,s1:T |o−i

1:T ).

(4.6)

Note we can factorise P(ai
1:T ,a

−i
1:T ,s1:T |o−i

1:T ) as :

P(ai
1:T ,a

−i
1:T ,s1:T |o−i

1:T ) = P(s1)∏
t

P(st+1|st ,at)P(ai
t |a−i

t ,st ,o−i
t )P(a−i

t |st ,o−i
t ),

(4.7)

where P(s1) is the initial state distribution and P(st+1|st ,at) is the state transition

function. P(ai
t |a−i

t ,st ,o−i
t ) is the conditional policy of agent i when other agents

−i achieve optimality. In our model we do not presume how an action ai
t being

affected by (a−i
t ,st ,o−i

t ), so we set P(ai
t |a−i

t ,st ,o−i
t ) ∝ 1 which is effectively a uni-

form distribution assuming minimum prior knowledge. Because we have no knowl-

edge of the optimal policies and the model of the environment, we treat them as

latent variables. To optimise the observed evidence defined in Equation 4.5, we use

variational inference (VI) with an auxiliary distribution over these latent variables

q(ai
1:T ,a

−i
1:T ,s1:T |oi

1:T = 1,o−i
1:T = 1). Without loss of generality, we here derive the

solution for agent i.

We factorise q(ai
1:T ,a

−i
1:T ,s1:T |oi

1:T = 1,o−i
1:T = 1) so as to capture agent i’s con-

ditional policy on the current state and opponents actions, and beliefs regarding
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opponents actions. This way, agent i will learn optimal policy, while also possess-

ing the capability to model opponents actions a−i. Using all modelling assumptions,

we may factorise q(ai
1:T ,a

−i
1:T ,s1:T |oi

1:T = 1,o−i
1:T = 1) as:

q(ai
1:T ,a

−i
1:T ,s1:T |oi

1:T = 1,o−i
1:T = 1)

= P(s1)∏
t

P(st+1|st ,at)q(ai
t |a−i

t ,st ,oi
t = o−i

t = 1)

×q(a−i
t |st ,oi

t = o−i
t = 1)

= P(s1)∏
t

P(st+1|st ,at)π(ai
t |st ,a−i

t )ρ(a−i
t |st),

where we have assumed the same initial and states transitions as in the original

model. With the above factorisation, we derive a lower bound on the likelihood of

optimality of agent i:

logP(oi
1:T = 1|o−i

1:T = 1)

≥ J (π,ρ) ∆
= ∑

t
E(st ,ai

t ,a
−i
t )∼q[R(st ,ai

t ,a
−i
t )

+H(π(ai
t |st ,a−i

t ))−DKL(ρ(a−i
t |st)||P(a−i

t |st))] (4.8)

= ∑
t
Est [Eai

t∼π,a−i
t ∼ρ

[R(st ,ai
t ,a
−i
t )+H(π(ai

t |st ,a−i
t ))︸ ︷︷ ︸

MEO

]

−Ea−i
t ∼ρ

[DKL(ρ(a−i
t |st)||P(a−i

t |st))]︸ ︷︷ ︸
Regularizer of ρ

]. (4.9)

Written out in full, ρ(a−i
t |st ,o−i

t = 1) is agent i’s opponent model estimating optimal

policies of its opponents, π(ai
t |st ,a−i

t ,oi
t = 1,o−i

t = 1) is the agent i’s conditional

policy at optimum (oi
t = o−i

t = 1) and P(a−i
t |st ,o−i

t = 1) is the prior of optimal

policy of opponents. In our work, we set the prior P(a−i
t |st ,o−i

t = 1) equal to the

observed empirical distribution of opponents’ actions given states. As we are only

interested in the case where (oi
t = 1,o−i

t = 1), we drop them in π,ρ and P(a−i
t |st)

here and thereafter. H(·) is the entropy function.
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4.2 The Learning of Opponent Model

Our work provides a natural perspective on opponent modelling in coordination

problems: biasing one’s opponent model towards the optimum from its perspective

but regularising it with the empirical distribution of opponent’s real behaviour. It is

closely related to a series of recent works focusing on maximum entropy objective

(MEO) and ROMMEO is an extension of MEO to MARL.

4.2.1 Regularised Opponent Model with Maximum Entropy

Objective

For our work, We can further expand Equation 4.8 into Equation 4.9 and we find

that it resembles the MEO introduced above. We denote agent i’s expectation of re-

wardR(st ,ai
t ,a
−i
t ) plus entropy of the conditional policy H(π(ai|s,a−i)) as agent i’s

maximum entropy objective (MEO). In the multi-agent version, however, it is wor-

thy of noting that optimising the MEO will lead to the optimisation of ρ . This can

be counter-intuitive at first sight as opponent behaviour models are normally trained

with only past state-action data (s,a−i) to predict opponents’ actions. However, re-

call that ρ(a−i
t |st ,o−i

t = 1) is modelling opponents’ optimal policies in our work.

Given agent i’s policy π i being fixed, optimising MEO with respect to ρ updates

agent i’s opponent model in the direction of the higher shared reward R(s,ai,a−i)

and the more stochastic conditional policy π i(ai|s,a−i), making it closer to the real

optimal policies of the opponents.

Without any regularisation, at iteration d, agent i can freely learn a new oppo-

nent model ρ i
d+1 which is the closest to the optimal opponent policies π−i∗ from

its perspective given π i
d(a

i|s,a−i). Next, agent i can optimise the lower bound with

respect to π i
d+1(a

i|s,a−i) given ρ i
d+1. Then we have an EM-like iterative training

and can show it monotonically increases the probability that the opponent model ρ

is optimal policies of the opponents. Then, by acting optimally to the converged

opponent model ρ i∞, we can recover agent i’s optimal policy π i∗.

However, it is unrealistic to learn such an opponent model. As the real oppo-

nents have no access to agent i’s conditional policy π i
d(a

i|s,a−i), the learning of its
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policy can be different from the one of agent i’s opponent model. Then the actual

opponent policies π
−i
d+1 can be very different from agent i’s converged opponent

model ρ i∞ learned in the above way given agent i’s conditional policy π i
d(a

i|s,a−i).

Therefore, acting optimally to an opponent model far from the real opponents’ poli-

cies can lead to poor performance.

The last term in Equation 4.9 can prevent agent i building an unrealistic oppo-

nent model. The Kullback-Leibler (KL) divergence between opponent model and a

prior DKL(ρ(a−i
t |st)||P(a−i

t |st)) can act as a regulariser of ρ . By setting the prior to

the empirical distribution of opponent past behaviour, the KL divergence penalises

ρ heavily if it deviates from the empirical distribution too much. As the objective in

Equation 4.9 can be seen as a Maximum Entropy objective for one agent’s policy and

opponent model with regularisation on the opponent model, we call this objective

Regularised Opponent Model with Maximum Entropy Objective (ROMMEO).

4.3 Multi-Agent Soft Actor Critic
To optimise ROMMEO in Equation 4.9 derived in the previous section, we propose

two off-policy algorithms. We first introduce an exact tabular Q-iteration method

with proof of convergence. For practical implementation in a complex continuous

environment, we then propose the ROMMEO actor critic ROMMEO-AC, which is

an approximation to this procedure.

4.3.1 Regularised Opponent Model with Maximum Entropy

Objective Q-Iteration

In this section, we derive a multi-agent version of Soft Q-iteration algorithm pro-

posed in (Haarnoja et al., 2017) and we name our algorithm as ROMMEO-Q. The

derivation follows from a similar logic to (Haarnoja et al., 2017), but the extension

of Soft Q-learning to MARL is still nontrivial. From this section, we slightly mod-

ify the objective in Equation 4.9 by adding a weighting factor α for the entropy term

and the original objective can be recovered by setting α = 1.

We first define multi-agent soft Q-function and V-function respectively. Then

we can show that the conditional policy and opponent model defined in Equa-
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tion 4.12 and 4.13 below are optimal solutions with respect to the objective defined

in Equation 4.9:

Theorem 2. We define the soft state-action value function of agent i as

Qπ∗,ρ∗

so f t (st ,ai
t ,a
−i
t ) = rt +E(st+l ,ai

t+l ,a
−i
t+l ,...)∼q[

∞

∑
l=1

γ
l(rt+l

+αH(π∗(ai
t+l|a−i

t+l,st+l))−DKL(ρ
∗(a−i

t+l|st+l)||P(a−i
t+l|st+l))],

(4.10)

and soft state value function as

V ∗(s) = log∑
a−i

P(a−i|s)
(

∑
ai

exp(
1
α

Q∗so f t(s,a
i,a−i))

)α

, (4.11)

Then the optimal conditional policy and opponent model for Equation 4.8 are

π
∗(ai|s,a−i) =

exp( 1
α

Qπ∗,ρ∗
so f t (s,ai,a−i))

∑ai exp( 1
α

Qπ∗,ρ∗
so f t (s,ai,a−i))

, (4.12)

and

ρ
∗(a−i|s) =

P(a−i|s)
(

∑ai exp( 1
α

Q∗so f t(s,a
i,a−i))

)α

exp(V ∗(s))
. (4.13)

Proof. We first show that the objective in Equation 4.9 can be rewritten in terms of

the soft-Q functions. We define the soft state-action value function Qπ,ρ
so f t(s,a,a

−i)
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of agent i in a stochastic game as:

Qπ,ρ
so f t(st ,ai

t ,a
−i
t )

= rt +E(st+l ,ai
t+l ,a

−i
t+l ,...)∼q[

∞

∑
l=1

γ
l(rt+l +αH(π(ai

t+l|a−i
t+l,st+l))

−DKL(ρ(a−i
t+l|st+l)||P(a−i

t+l|st+l))]

= E(st+1,ai
t+1,a

−i
t+1)

[rt + γ(αH(π(ai
t+1|st+1,a−i

t+1))

−DKL(ρ(a−i|st+1)||P(a−i|st+1))+Qπ,ρ
so f t(st+1,ai

t+1,a
−i
t+1))]

= E(st+1,a−i
t+1)

[rt + γ(αH(π(·|st+1,a−i
t+1))−DKL(ρ(a−i|st+1)||P(a−i|st+1))

+Eai
t+1∼π

[Qπ,ρ
so f t(st+1,ai

t+1,a
−i
t+1)])]

= E(st+1)[rt + γ(Ea−i
t+1∼ρ,ai

t+1∼π
[αH(π(ai

t+1|st+1,a−i
t+1))]

−DKL(ρ(·|st+1)||P(·|st+1))]+Ea−i
t+1∼ρ,ai

t+1∼π
[Qπ,ρ

so f t(st+1,ai
t+1,a

−i
t+1)])], (4.14)

Then we can easily see that the objective in Equation 4.9 can be rewritten as:

J (π,φ) = E(st ,ai
t ,a
−i
t )∼(ps,π,ρ)

[Qπ,ρ
so f t(st ,ai

t ,a
−i
t )+αH(π(ai

t |st ,a−i
t ))

−DKL(ρ(a−i
t |st)||P(a−i

t |st))], (4.15)

by setting α = 1.

Now, we introduce two extra theorem before completing the proof of Theo-

rem 2.

Theorem 3. (Policy improvement theorem) Given a conditional policy π and oppo-

nent model ρ , define a new conditional policy π̃ as

π̃(·|s,a−i) ∝ exp(
1
α

Qπ,ρ
so f t(s, ·,a−i)),∀s,a−i. (4.16)

Assume that throughout our computation, Q is bounded and ∑ai Q(s,ai,a−i)

is bounded for any s and a−i (for both π and π̃). Then Qπ̃,ρ
so f t(s,a

i,a−i) ≥
Qπ,ρ

so f t(s,a
i,a−i)∀s,a.

Theorem 4. (Opponent model improvement theorem) Given a conditional policy π
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and opponent model ρ , define a new opponent model ρ̃ as

ρ̃(·|s) ∝ exp(∑
ai

Qπ,ρ
so f t(s,a

i, ·)π(ai|·,s)+αH(π(s))+ logP(·|s)),∀s,ai. (4.17)

Assume that throughout our computation, Q is bounded and

∑
a−i

exp(∑
ai

Q(s,ai,a−i)π(ai|s,a−i))

is bounded for any s and ai (for both ρ and ρ̃). Then Qπ,ρ̃
so f t(s,a

i,a−i) ≥
Qπ,ρ

so f t(s,a
i,a−i)∀s,a.

The proof of Theorem 3 and 4 is based on two observations that:

αH(π(·|s,a−i))+Eai∼π [Q
π,ρ
so f t(s,a

i,a−i)]

≤ αH(π̃(·|s,a−i))+Eai∼π̃ [Q
π,ρ
so f t(s,a

i,a−i)], (4.18)

and

Ea−i
t+1∼ρ,ai

t+1∼π
[αH(π(ai

t+1|st+1,a−i
t+1))]−DKL(ρ(·|st+1)||P(·|st+1))]

+Ea−i
t+1∼ρ,ai

t+1∼π
[Qπ,ρ

so f t(st+1,ai
t+1,a

−i
t+1)]

≤ Ea−i
t+1∼ρ̃,ai

t+1∼π
[αH(π(ai

t+1|st+1,a−i
t+1))]−DKL(ρ̃(a−i

t+1|st+1)||P(·|st+1))

+Ea−i
t+1∼ρ̃,ai

t+1∼π
[Qπ,ρ

so f t(st+1,ai
t+1,a

−i
t+1)]. (4.19)

First, we notice that

αH(π(·|s,a−i))+Eai∼π [Q
π,ρ
so f t(s,a

i,a−i)]

=−αDKL(π(·|s,a−i)||π̃(·|s,a−i))+α log∑
ai

exp(
1
α

Qπ,ρ
so f t(s,a

i,a−i)). (4.20)

Therefore, the LHS is only maximised if the KL-Divergence on the RHS is min-

imised. This KL-Divergence is minimised only when π = π̃ , which proves the

Equation 4.18.
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Similarly, we can have

Ea−i∼ρ,ai∼π [αH(π(ai|s,a−i))]−DKL(ρ(·|s)||P(·|s))])+Ea−i∼ρ,ai∼π [Q
π,ρ
so f t(s,a

i,a−i)]

=−DKL(ρ(·|s)||ρ̃(·|s))+ log∑
a−i

exp(∑
ai

Qπ,ρ(s,ai,a−i)π(ai|s,a−i)

+αH(π(·|s,ai))+ logP(a−i|s)), (4.21)

which proves the Equation 4.19.

With the above observations, the proof of Theorem 3 and 4 is completed by as
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follows:

Qπ,ρ
so f t(st ,ai

t ,a
−i
t )

= E(st+1,ai
t+1,a

−i
t+1)

[rt + γ(αH(π(ai
t+1|st+1,a−i

t+1))

−DKL(ρ(a−i
t+1|st+1)||P(a−i

t+1|st+1))+Qπ,ρ
so f t(st+1,ai

t+1,a
−i
t+1))]

= E(st+1,a−i
t+1)

[rt + γ(αH(π(·|st+1,a−i
t+1))−DKL(ρ(a−i

t+1|st+1)||P(a−i
t+1|st+1))

+Eai
t+1∼π

[Qπ,ρ
so f t(st+1,ai

t+1,a
−i
t+1)])]

≤ E(st+1,a−i
t+1)

[rt + γ(αH(π̃(·|st+1,a−i
t+1))−DKL(ρ(a−i

t+1|st+1)||P(a−i
t+1|st+1))

+Eai
t+1∼π̃

[Qπ,ρ
so f t(st+1,ai

t+1,a
−i
t+1)])]

= E(st+1)[rt + γ(Ea−i
t+1∼ρ,ai

t+1∼π
[αH(π̃(ai

t+1|st+1,a−i
t+1))]

−DKL(ρ(·|st+1)||P(·|st+1))+Ea−i
t+1∼ρ,ai

t+1∼π
[Qπ,ρ

so f t(st+1,ai
t+1,a

−i
t+1)])]

≤ E(st+1)[rt + γ(Ea−i
t+1∼ρ̃,ai

t+1∼π
[αH(π̃(ai

t+1|st+1,a−i
t+1))]

−DKL(ρ̃(·|st+1)||P(·|st+1))+Ea−i
t+1∼ρ̃,ai

t+1∼π
[Qπ,ρ

so f t(st+1,ai
t+1,a

−i
t+1)])]

= E(st+1,ai
t+1,a

−i
t+1)∼q̃[rt + γ(αH(π̃(ai

t+1|st+1,a−i
t+1))

−DKL(ρ̃(a−i|st+1)||P(a−i|st+1))+ rt+1)+ γ
2E(st+2,a−i

t+2)
[αH(π(·|st+2,a−i

t+2))

−DKL(ρ(a−i
t+2|st+2)||P(a−i

t+2|st+2))

+Eai
t+2∼π

[Qπ,ρ
so f t(st+2,ai

t+2,a
−i
t+2)]]]

≤ E(st+1,ai
t+1,a

−i
t+1)

[rt + γ(αH(π̃(ai
t+1|st+1,a−i

t+1))

−DKL(ρ̃(a−i|st+1)||P(a−i|st+1))+ rt+1)+ γ
2E(st+2,a−i

t+2)
[αH(π(·|st+2,a−i

t+2))

−DKL(ρ(a−i
t+2|st+2)||P(a−i

t+2|st+2))

+Eai
t+2∼π̃

[Qπ,ρ
so f t(st+2,ai

t+2,a
−i
t+2)]]]

... (repeating the above process for the next time steps)

≤ rt +E(st+l ,ai
t+l ,a

−i
t+l ,...)∼q̃[

∞

∑
l=1

γ
l(rt+l +αH(π̃(ai

t+l|a−i
t+l,st+l)) (4.22)

−DKL(ρ̃(a−i
t+l|st+l)||P(a−i

t+l|st+l))]

= Qπ̃,ρ̃
so f t(st ,ai

t ,a
−i
t ).
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With Theorem 3 and 4 and the above inequalities, we can see that, if we start

from an arbitrary conditional policy π0 and an arbitrary opponent model ρ0 and we

iterate between policy improvement as

πt+1(·|s,a−i) ∝ exp(
1
α

Qπt ,ρt
so f t (s, ·,a−i)), (4.23)

and opponent model improvement as

ρt+1(·|s) ∝ exp(∑
ai

Qπt+1,ρt
so f t (s,ai, ·)πt+1(ai|·,s)+αH(πt+1(s))+ logP(·|s)), (4.24)

then Qπt ,ρt
so f t (s,a

i,a−i) can be shown to increase monotonically and πt , ρt will con-

verge at πt = π∞, ρt = ρ∞ respectively. Similar to (Haarnoja et al., 2017), we

can show that any non-optimal policy and opponent model can be improved this

way and the algorithm converges when we cannot improve Qπt ,ρt
so f t (s,a

i,a−i) any-

more. At convergence, the equality in Equation 4.22 establishes and Theorem 2 is

proved.

Following from Theorem 2, we can find the optimal solution of Equation 4.9

by learning the soft multi-agent Q-function first and recover the optimal policy π∗

and opponent model ρ∗ by Equations 4.12 and 4.13. To learn the Q-function, we

show that it satisfies a Bellman-like equation, which we name it as multi-agent soft

Bellman equation:

Theorem 5. We define the soft multi-agent Bellman equation for the soft state-

action value function Qπ,ρ
so f t(s,a

i,a−i) of agent i as

Qπ∗,ρ∗
so f t (s,ai,a−i) = rt + γE(st+1)[V

∗
so f t(st+1)]. (4.25)

With this Bellman equation defined above, we can derive a solution to

Equation 4.25 with a fixed point iteration, which we call ROMMEO Q-iteration

(ROMMEO-Q). Additionally, We can show that it can converge to the optimal Q∗so f t

and V ∗so f t with certain restrictions as stated in (Wen et al., 2019):
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Theorem 6. ROMMEO Q-iteration. In a symmetric game with only one global

optimum, i.e. Eπ∗
[
Qi

t(s)
]
≥ Eπ

[
Qi

t(s)
]
, where π∗ is the optimal strategy profile.

Let Qso f t(·, ·, ·) and Vso f t(·) be bounded and assume

∑
a−i

P(a−i|s)
(

∑
ai

exp(
1
α

Q∗so f t(s,a
i,a−i))

)α

< ∞ (4.26)

and that Q∗so f t < ∞ exists. Then the fixed-point iteration

Qso f t(st ,ai
t ,a
−i
t )← rt + γE(st+1)[Vso f t(st+1)], (4.27)

where Vso f t(st)← log∑a−i
t

P(a−i
t |st)×

(
∑ai

t
exp( 1

α
Qso f t(st ,ai

t ,a
−i
t ))

)α

∀st ,ai
t ,a
−i
t ,

converges to Q∗so f t and V ∗so f t respectively.

Proof. As we show above, when the training converges, we have:

π
∗(ai|s,a−i) =

1
α

exp(Q∗(s,ai,a−i))

∑ai exp( 1
α

Q∗(s,ai,a−i))
, (4.28)

and

ρ
∗(a−i|s) = exp(∑ai Q∗(s,ai,a−i)π∗(ai|s,a−i)+αH(π∗(ai|s,a−i))+ logP(a−i|s))

∑a−i exp(∑ai Q∗(s,ai,a−i)π∗(ai|s,a−i)+αH(π∗(ai|s,a−i))+ logP(a−i|s))

=
P(a−i|s)

(
∑ai exp(Q∗so f t(s,a

i,a−i))
)α

exp(V ∗(s))
, (4.29)

where the equality in Equation 4.29 comes from substituting π∗ with Equation 4.28

and we define the soft sate value function V π,ρ
so f t(s) of agent i as:

V π,ρ
so f t(st) = log∑

a−i
t

P(a−i
t |st)

∑
ai

t

exp
(

1
α

Qπ,ρ
so f t(st ,ai

t ,a
−i
t )

)α

. (4.30)



4.3. Multi-Agent Soft Actor Critic 64

Then we can show that

Qπ∗,ρ∗
so f t (s,ai,a−i)

= rt + γEs′∼ps[(Ea−i
t+1∼ρ,ai

t+1∼π
[αH(π(ai

t+1|st+1,a−i
t+1))]

−DKL(ρ(·|st+1)||P(·|st+1))]Ea−i
t+1∼ρ,ai

t+1∼π
[Qπ,ρ

so f t(st+1,ai
t+1,a

−i
t+1)])]

= rt + γEs′∼ps[V
∗(s′)]. (4.31)

We define the soft value iteration operator T as:

T Q(s,ai,a−i) = R(s,ai,a−i)

+ γEs′∼ps

[
log ∑

a−i′
P(a−i′|s′)

(
∑
ai′

exp
(

1
α

Q(s′,ai′,a−i′)
))α]

. (4.32)

In a symmetric fully cooperative game with only one global optimum,

we can show as done in (Wen et al., 2019), the operator defined above

is a contraction mapping. We define a norm on Q-values
∥∥Qi

1−Qi
2

∥∥ ∆
=

maxs,ai,a−i

∣∣Qi
1
(
s,ai,a−i)−Qi

2
(
s,ai,a−i)∣∣. Let ε =

∥∥Qi
1−Qi

2

∥∥, then we have:

log ∑
a−i′

P(a−i′|s′)
(

∑
ai′

exp
(

1
α

Q1(s′,ai′,a−i′)
))α

≤ log ∑
a−i′

P(a−i′|s′)
(

∑
ai′

exp
(

1
α

Q2(s′,ai′,a−i′)+ ε

))α

= log ∑
a−i′

P(a−i′|s′)
(

∑
ai′

exp
(

1
α

Q2(s′,ai′,a−i′)
)

exp(ε)

)α

= log ∑
a−i′

P(a−i′|s′)exp(ε)α

(
∑
ai′

exp
(

1
α

Q2(s′,ai′,a−i′)
))α

= αε + log ∑
a−i′

P(a−i′|s′)
(

∑
ai′

exp
(

1
α

Q2(s′,ai′,a−i′)
))α

. (4.33)
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Similarly,

log ∑
a−i′

P(a−i′|s′)
(

∑
ai′

exp
(

1
α

Q1(s′,ai′,a−i′)
))α

≥−αε + log ∑
a−i′

P(a−i′|s′)
(

∑
ai′

exp
(

1
α

Q2(s′,ai′,a−i′)
))α

. (4.34)

Therefore
∥∥T Qi

1−T Qi
2

∥∥≤ γε = γ
∥∥Qi

1−Qi
2

∥∥, where α = 1.

4.3.2 Regularised Opponent Model with Maximum Entropy

Objective Actor Critic

ROMMEO-Q assumes we have the model of the environment and is impractical to

implement in high-dimensional continuous problems. To solve these problems, we

propose the ROMMEO actor critic (ROMMEO-AC) which is a model-free method.

We use neural networks (NNs) as function approximators for the conditional pol-

icy, opponent model and Q-function and learn parameters of these functions by

stochastic gradient descent. We parameterize the Q-function, conditional policy

and opponent model by Qω(s,ai,a−i), πθ (ai
t |st ,a−i

t ) and ρφ (a−i
t |st) respectively.

Without access to the environment model, we first replace the Q-iteration with

Q-learning. Therefore, we can train ω to minimise:

JQ(ω) = E(st ,ai
t ,a
−i
t )∼D[

1
2
(Qω(st ,ai

t ,a
−i
t )

−R(st ,ai
t ,a
−i
t )− γEst+1∼ps[V̄ (st+1)])

2], (4.35)

with

V̄ (st+1) = Qω̄(st+1,ai
t+1, â

−i
t+1)− logρφ (â−i

t+1|st+1)

−α logπθ (ai
t+1|st+1, â−i

t+1)+ logP(â−i
t+1|st+1), (4.36)

where Qω̄ are target functions for providing relatively stable target values. We use

â−i
t denoting the action sampled from agent i’s opponent model ρ(a−i

t |st) and it

should be distinguished from a−i
t which is the real action taken by agent i’s oppo-



4.3. Multi-Agent Soft Actor Critic 66

nent. Equation 4.36 can be derived from Equation 4.12 and 4.13.

To recover the optimal conditional policy and opponent model and avoid in-

tractable inference steps defined in Equation 4.12 and 4.13 in complex problems, we

follow the method in (Haarnoja et al., 2018b) where θ and φ are trained to minimise

the KL-divergence:

Jπ(θ) = Est∼D,a−i
t ∼ρ[

DKL

(
πθ (·|st , â−i

t )

∣∣∣∣∣∣∣∣exp( 1
α

Qω(st , ·, â−i
t ))

Zω(st , â−i
t )

)]
, (4.37)

Jρ(φ) = E(st ,ai
t)∼DDKL

ρ(·|st)

∣∣∣∣∣∣∣∣P(·|st)

(
exp( 1

α
Q(st ,ai

t ,·))
πθ (ai

t |st ,·)

)α

Zω(st)


 . (4.38)

By using the reparameterization trick: â−i
t = gφ (ε

−i
t ;st) and ai

t = fθ (ε
i
t ;st , â−i

t ), we

can rewrite the objectives above as:

Jπ(θ) = Est∼D,ε i
t∼N,â−i

t ∼ρ
[α logπθ ( fθ (ε

i
t ;st , â−i

t ))

−Qω(st , fθ (ε
i
t ;st , â−i

t ), â−i
t )], (4.39)

Jρ(φ) = E(st ,at)∼D,ε−i
t ∼N [logρφ (gφ (ε

−i
t ;st)|st)

− logP(â−i
t |st)−Q(st ,ai

t ,gφ (ε
−i
t ;st))

+α logπθ (ai
t |st ,gφ (ε

−i
t ;st))]. (4.40)

The gradient of Equation 4.35, 4.39 and 4.40 with respect to the corresponding
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Figure 4.1: Learning curves of ROMMEO and baselines on ICG over 100 episodes.

parameters are listed as below:

∇ωJQ(ω) = ∇ωQω(st ,ai
t ,a
−i
t )(Qω(st ,ai

t ,a
−i
t )

−R(st ,ai
t ,a
−i
t )− γV̄ (st+1)), (4.41)

∇θJπ(θ) = ∇θ α logπθ (ai
t |st , â−i

t )+∇θ fθ (ε
i
t ;st , â−i

t )

(∇ai
t
α logπθ (ai

t |st , â−i
t )−∇ai

t
Qω(st ,ai

t , â
−i
t )), (4.42)

∇φJρ(φ) = ∇φ logρφ (â−i
t |st)+(∇â−i

t
logρφ i(â−i

t |st)

−∇â−i
t

logP(â−i
t |st)−∇â−i

t
Qω i(st ,ai

t , â
−i
t )

+∇â−i
t

α logπθ (ai|st , â−i
t ))∇φ gφ (ε

−i
t ;st). (4.43)

To have an overview of the proposed methods, we list the pseudo-code of

ROMMEO-Q and ROMMEO-AC as follows:



4.3. Multi-Agent Soft Actor Critic 68

Algorithm 1 Multi-agent Soft Q-learning

Result: policy π i, opponent model ρ i

Initialisation:
Initialise replay bufferM to capacity M.
Initialise Qω i(s,ai,a−i) with random parameters ω i, P(a−i|s) arbitrarily, set γ as the discount factor.
Initialise target Qω̄ i(s,ai,a−i) with random parameters ω̄ i, set C the target parameters update interval.
while not converge do

Collect experience

For the current state st compute the opponent model ρ i(a−i
t |st) and conditional policy π i(ai

t |st ,a−i
t ) respectively

from:

ρ
i(a−i

t |st) ∝ P(a−i
t |st)

∑
ai

t

exp(
1
α

Qω i(st ,ai
t ,a
−i
t ))

α

,

π
i(ai

t |st , â−i
t ) ∝ exp(

1
α

Qω i(st ,ai
t , â
−i
t )).

Compute the marginal policy π i(ai
t |st) and sample an action from it:

ai
t ∼ π

i(ai
t |st) = ∑

a−i

π
i(ai

t |st ,a−i
t )ρ(a−i

t |st).

Observe next state st+1, opponent action a−i
t and reward ri

t , save the new experience in the reply buffer:

M←M∪{(st ,ai
t ,a
−i
t ,st+1,ri

t)}.
Update the prior from the replay buffer:

P(a−i
t |st) =

∑
|M|
m=1 I(s = st ,a−i = a−i

t )

∑
|M|
m=1 I(s = st)

∀st ,a−i
t ∈M.

Sample a mini-batch from the replay buffer:

{s(n)t ,ai,(n)
t ,a−i,(n)

t ,s(n)t+1,r
(n)
t }N

n=1 ∼M.

Update Qω i(s,ai,a−i):

for each tuple (s(n)t ,ai,(n)
t ,a−i,(n)

t ,s(n)t+1,r
(n)
t ) do

Sample {a−i,(n,k)}K
k=1 ∼ ρ, {ai,(n,k)}K

k=1 ∼ π .
Compute empirical V̄ i(s(n)t+1) as:

V̄ i(s(n)t+1) = log

 1
K

K

∑
k=1

(
P

1
α (a−i,(n,k)|s(n)t+1)exp( 1

α
Qω̄ i(s(n)t+1,a

i,(n,k),a−i,(n,k)))
)α

π(ai,(n,k)|s(n)t+1,a−i,(n,k))ρ(a−i,(n,k)|s(n)t+1)

 .

Set

y(n) =

{
r(n)t for terminal s(n)t+1

r(n)t + γV̄ i(s(n)t+1) for non-terminal s(n)t+1

Perform gradient descent step on (y(n)−Qω i(s(n)t+1,a
i,(n),a−i,(n)))2 with respect to parameters ω i

Every C gradient descent steps, reset target parameters:

ω̄
i← ω

end for
end while
Compute converged π i and ρ i
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Algorithm 2 Multi-agent Variational Actor Critic
Result: policy πθ i , opponent model ρφ i

Initialisation:
Initialise parameters θ i, φ i, ω i, ψ i for each agent i and the random process N for action exploration.
Assign target parameters of joint action Q-function: ω̄ i← ω .
Initialise learning rates λV ,λQ,λπ ,λφ ,α , and set γ as the discount factor.
for Each episode d = (1, . . . ,D) do

Initialise random process N for action exploration.
for each time step t do

For the current state st , sample an action and opponent’s action using:
â−i

t ← gφ−i(ε−i;st), where ε
−i
t ∼N ,

ai
t ← fθ i(ε i;st , â−i

t ), where ε i
t ∼N .

Observe next state st+1, opponent action a−i
t and reward ri

t , save the new experience in the replay buffer:

Di←Di∪{(st ,ai
t ,a
−i
t , â−i

t ,st+1,ri
t)}.

Update the prior from the replay buffer:

ψ
i = argmaxEDi [−P(a−i|s) logPψ i(a−i|s)].

Sample a mini-batch from the reply buffer:

{s(n)t ,ai,(n)
t ,a−i,(n)

t , â−i,(n)
t ,s(n)t+1,r

(n)
t }N

n=1 ∼M.

For the state s(n)t+1, sample an action and opponent’s action using:

â−i,(n)
t+1 ← gφ−i(ε−i;s(n)t+1), where ε

−i
t+1 ∼N ,

ai,(n)
t+1 ← fθ̄ i(ε i;s(n)t+1, â

−i,(n)
t+1 ), where ε i

t+1 ∼N .

V̄ i(s(n)t+1) = Qω̄(s
(n)
t+1,a

i,(n)
t+1 , â

−i,(n)
t+1 )−α logπθ i(ai,(n)

t+1 |s
(n)
t+1, â

−i,(n)
t+1 )− logρφ i(â−i,(n)

t+1 |s
(n)
t+1)+ logPψ i(â−i,(n)

t+1 |s
(n)
t+1).

Set

y(n) =

{
r(n)t for terminal s(n)t+1

r(n)t + γV̄ i(s(n)t+1) for non-terminal s(n)t+1

∇ω iJQ(ω
i) = ∇ω iQω i(s(n)t ,ai,(n)

t ,a−i,(n)
t )(Qω i(s(n)t ,ai,(n)

t ,a−i,(n)
t )− y(n))

∇θ iJπ(θ
i) = ∇θ iα logπθ i(ai,(n)

t |s(n)t , â−i,(n)
t )

+(∇
ai,(n)

t
α logπθ i(ai,(n)

t |s(n)t , â−i,(n)
t )−∇

ai,(n)
t

Qω(s
(n)
t ,ai,(n)

t , â−i,(n)
t ))∇θ fθ i(ε i

t ;s(n)t , â−i,(n)
t )

∇φ iJρ(φ
i) = ∇φ i logρφ i(â−i,(n)

t |s(n)t )

+(∇
â−i,(n)

t
logρφ i(â−i,(n)

t |s(n)t )−∇
â−i,(n)

t
logP(â−i,(n)

t |s(n)t )−∇
â−i,(n)

t
Qω i(s(n)t ,ai,(n)

t , â−i,(n)
t )

+∇
â−i,(n)

t
α logπθ i(ai,(n)|s(n)t , â−i,(n)

t ))∇φ igφ i(ε−i
t ;s(n)t )

Update parameters:
ω i = ω i−λQ∇ω iJQ(ω

i)
θ i = θ i−λπ∇θ iJπ(θ

i)
φ i = φ i−λφ i∇φ iJρ(φ

i)
end for
Every C gradient descent steps, reset target parameters:

ω i = βω
i +(1−β )ω i

.
end for
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4.4 Experiments & Results

4.4.1 Iterated Matrix Games

A B C
A ( 11, 11) (-30, -30) (0 , 0)
B (-30, -30) (7, 7) (6, 6)
C (0, 0) (0, 0) (5, 5)

Table 4.1: Payoff matrix of Iterated Climbing Game

We first present the proof-of-principle result of ROMMEO-Q on iterated matrix

games where players need to cooperate to achieve the shared maximum reward.

To this end, we study the iterated climbing games (ICG) which is a classic purely

cooperative two-player stateless iterated matrix games. Climbing game (CG) is

a fully cooperative game proposed in (Claus and Boutilier, 1998) whose payoff

matrix is summarised in Table 4.1. It is a challenging benchmark because of the

difficulty of convergence to its global optimum. There are two Nash equilibrium

(A,A) and (B,B) but one global optimal (A,A). The punishment of miscoordination

by choosing a certain action increases in the order of C→ B→ A. The safest action

is C and the miscoordination punishment is the most severe for A. Therefore it is

very difficult for agents to converge to the global optimum in ICG.

We compare our method to a series of strong baselines in MARL, includ-

ing Joint Action Learner (JAL) (Claus and Boutilier, 1998), WoLF Policy Hill

Climbing (WoLF-PHC) (Bowling and Veloso, 2001), Frequency Maximum Q

(FMQ) (Kapetanakis and Kudenko, 2002) and Probabilistic Recursive Reasoning

(PR2) (Wen et al., 2019). ROMMEO-Q-EMP is an ablation study to evaluate the ef-

fectiveness of our proposed opponent model learning process, where we replace our

opponent model with empirical frequency. Figure 4.1 shows the learning curves on

ICG for different algorithms. The difference of rewards between ROMMEO-Q and

FMQ-c10 may seem small because of the small reward margin between the global

optimum and the local one. However, ROMMEO-Q actually outperforms all base-

lines significantly in terms of converging to the global optimum, which is shown in

Figure 4.2. To further analyse the opponent modelling described in Section 4.2, we
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Figure 4.2: Probability of convergence to the global optimum for ROMMEO and baselines
on ICG over 100 episodes. The vertical axis is the joint probability of taking
actions A for both agents.
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Figure 4.3: Probability of taking A estimated by agent i’s opponent model ρ i and observed
empirical frequency Pi in one trail of training, i ∈ {1,2}.
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visualise the probability of agent −i taking the optimal action A estimated by agent

i’s opponent model ρ i and the corresponding true policy π−i in Figure 4.3. Agent

i’s opponent model “thinks ahead” of agent −i and converges to agent −i’s optimal

policy before agent −i itself converges to the optimal policy. This helps agent i to

respond to its opponent model optimally by choosing action A, which in turn leads

to the improvement of agent −i’s opponent model and policy. Therefore, the game

converges to the global optimum. To note, the big drop of P(A) for both policies and

opponent models at the beginning of the training comes from the severe punishment

of miscoordination associated with action A.

4.4.2 Differential Games

We adopt the differential Max of Two Quadratic Game (Wei et al., 2018) for

continuous case. The agents have continuous action space of [−10,10]. Each

agent’s reward depends on the joint action following the equations: r1 (a1,a2) =
r2 (a1,a2) = max( f1, f2) , where f1 = 0.8 × [−(a1+5

3 )2 − (a2+5
3 )2], f2 = 1.0 ×

[−(a1−5
1 )2− (a2−5

1 )2] + 10. We compare the algorithm with a series of baselines

including PR2 (Wen et al., 2019), MASQL (Wei et al., 2018; Grau-Moya et al.,

2018), MADDPG (Lowe et al., 2017) and independent learner via DDPG (Lillicrap

et al., 2015). To compare against traditional opponent modelling methods, similar

to (Rabinowitz et al., 2018; He et al., 2016), we implement an additional baseline

of DDPG with an opponent module that is trained online with supervision in order

to capture the latest opponent behaviours, called DDPG-OM. We trained all agents

for 200 iterations with 25 steps per iteration.

The design of reward function above makes the problem a challenging task to

most continuous gradient based RL algorithms because gradient update tends to di-

rect the training agent to the sub-optimal point. The reward surface is provided in

Figure 4.4 ; there is a local maximum 0 at (−5,−5) and a global maximum 10 at

(5,5), with a deep valley staying in the middle. If the agents’ policies are initialised

to (0,0) (the red starred point) that lies within the basin of the left local maximum,

the gradient-based methods would tend to fail to find the global maximum equilib-

rium point due to the valley blocking the upper right area.
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Figure 4.6: Mean of agents’ policies π and opponent models ρ .

A learning path of ROMMEO-AC is summarised in Figure 4.4 and the solid

bright circle on the right corner implies the convergence to the global optimum.

The learning curve is presented in Figure 4.5, ROMMEO-AC shows the capabil-

ity of converging to the global optimum in a limited amount of steps, while most

of the baselines can only reach the sub-optimal point. PR2-AC can also achieve

the global optimum but requires many more steps to explore and learn. Addition-

ally, fine tuning on the exploration noise or separate exploration stage is required

for deterministic RL methods (MADDPG, DDPG, DDPG-OM, PR2-AC), and the

learning outcomes of energy-based RL method (MASQL) are extremely sensitive

to the annealing scheme for the temperature. In contrast, ROMMEO-AC employs

a stochastic policy and controls the exploration level by the weighting factor α .

It does not need a separate exploration stage at the beginning of the training or a

delicately designed annealing scheme for α .

Furthermore, we analyse the learning path of policy π and modelled opponent

policy ρ during the training, the results are shown in Figure 4.6. The red and orange
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lines are mean of modelled opponent policy ρ , which always learn to approach the

optimal ahead of the policy π (in dashed blue and green lines). This helps the agents

to establish the trust and converge to the optimum quickly, which further justifies

the effectiveness and benefits of conducting a regularised opponent model proposed

in Section 4.2.

4.5 Conclusion
In this chapter, we use Bayesian inference to formulate MARL problem and de-

rive a novel objective ROMMEO which gives rise to a new perspective on oppo-

nent modelling. We design an off-policy algorithm ROMMEO-Q with complete

convergence proof for optimising ROMMEO. For better generality, we also pro-

pose ROMMEO-AC, an actor critic algorithm powered by NNs to solve complex

and continuous problems. We give an insightful analysis of the effect of the new

learning process of the opponent modelling on agent’s performance in MARL. We

evaluate our methods on the challenging matrix game and differential game and

show that they can outperform a series of strong base lines. It is worthy of noting

that Theorems 2, 5 and 6 only guarantees the convergence to optimal solutions with

respect to ROMMEO objective but not the optimum in the game. The achievement

of the optimum in the game relies on the opponent learning algorithm. In our work,

we demonstrate that ROMMEO-Q/AC’s convergence to the optimum of the game

in self-play setting.



Chapter 5

Partial Observation in Cooperative

Games

In an environment where agents intend to cooperate, communication of private in-

formation between agents is an efficient way to solve the partial observation issue.

Most prior works focus on explicit communication where information is conveyed

by an established channel such as speech, codified gestures and bluetooth, etc. On

the contrary, implicit communication conveys information by actions rather than

language or codified gestures. It is important not to mistake non-verbal explicit

cues with implicit communication. The former often relates to gestures or body

language that have developed an explicit meaning over time, such as the “okay”

hand sign, but the information conveyed in the latter needs to be independently

inferred by other agents (Gildert et al., 2018).

In this chapter, we propose a generic framework, titled policy belief learning

(PBL), for learning to cooperate in imperfect information multi-agent games. Our

work combines opponent modelling with a policy that considers that it is being

modelled. PBL consists of a belief module, which models other agents’ private

information by considering their previous actions, and a policy module which com-

bines the agent’s current observation with their beliefs to return a distribution over

actions. We also propose a novel auxiliary reward for encouraging communication

by actions, which is integrated into PBL. Our experiments show that agents trained

using PBL can learn collaborative behaviours more effectively than a number of
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meaningful baselines without requiring any explicit communication. We conduct a

complete ablation study to analyse the effectiveness of different components within

PBL in our bridge experiment. A distinguishing feature of our work in relation to

previous works in multi-agent communication is that we do not have a predefined

explicit communication protocol or learn to communicate through an explicit chan-

nel. Information exchange can only happen via actions. In contrast to previous

works focusing on unilaterally making actions informative, we focus on bilateral

communication by actions where information transmission is directed to a specific

party with potentially limited reasoning ability. Our agents learn to communicate

through iterated policy and belief updates such that the resulting communication

mechanism and belief models are interdependent. The development of a communi-

cation mechanism therefore requires either direct access to the mental state of other

agents (via centralised training) or the ability to mentalize, commonly known as

theory of mind. We investigate our proposed algorithm in both settings.

5.1 Policy Belief Learning

In this chapter, we consider the problem as I2MDP introduced in Chapter 2. We

simplify the problem by assuming that hidden information states X are temporally

static and are given at the beginning of the game. Applying naive single agent

reinforcement learning (SARL) algorithms to our problem will lead to poor per-

formance. One reason for this is the partial observability of the environment. To

succeed in a partially observable environment, an agent is often required to main-

tain a belief state. Recall that, in our setting, the environment state is formed from

the union of the private information of all agents and the publicly observable in-

formation, st = [xi
t ,x
−i
t ,ot ]. We therefore learn a belief module Φi(x−i

t ) to model

other agents’ private information x−i
t which is the only hidden information from

the perspective of agent i in our setting. We assume that an agent can model

x−i
t given the history of public information and actions executed by other agents

hi
t = {o1:t−1,a−i

1:t−1}. We use a NN to parameterize the belief module which takes

in the history of public information and produces a belief state bi
t = Φi(x−i

t |hi
t). The
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belief state together with information observable by agent i forms a sufficient statis-

tic, ŝi
t = [xi

t ,b
i
t ,ot ], which contains all the information necessary for the agent to act

optimally (Åström, 1965). We use a separate NN to parameterize agent i’s policy

π i(ai
t |ŝi

t) which takes in the estimated environment state ŝi
t and outputs a distribution

over actions. As we assume hidden information is temporally static, we will drop

the time script for it in the rest of the paper.

The presence of multiple learning agents interacting with the environment ren-

ders the environment non-stationary. This further limits the success of SARL al-

gorithms which are generally designed for environments with stationary dynamics.

To solve this, we adopt centralised training and decentralised execution, where dur-

ing training all agents are recognised as one central representative agent differing

only by their observations. Under this approach, one can imagine belief models

Φi(x−i|hi
t) and Φ−i(xi|h−i

t ) sharing parameters φ . The input data, however, varies

across agents due to the dependency on both hi
t and h−i

t . In a similar fashion, we

let policies share the parameters θ . Consequently, one may think of updating θ and

φ using one joint data set aggregated across agents. This centralised training is es-

sentially a self-play training scheme where an agent plays against itself and learns

to improve its performance from the experience. Without loss of generality, in the

remainder of this section, we discuss the learning procedure from the point of view

of a single agent, agent i.

We first present the learning procedure of our belief module. At iteration

k, we use the current policy π[k](ai|ŝ) to generate a data set of size M, Ω[k] =

{(x−i
j ,hi

j)
M
j=1}, using self-play and learn a new belief module by minimising:

φ[k] := argmin
φ

E(x−i,hi)∼Ω[k−1]

[
KL(x−i

j ||bi
j(h

i
j;φ)

]
, (5.1)

where KL(·||·) is the Kullback–Leibler(KL) divergence and we use a one-hot vector

to encode the ground truth, x−i
j , when we calculate the relevant KL-divergence.

With updated belief module Φ[k], we learn a new policy for the next iteration,

π[k+1], via a policy gradient algorithm. Sharing information in multi-agent cooper-

ative games through communication reduces intractability by enabling coordinated
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behaviour. Rather than implementing expensive protocols (Heider and Simmel,

1944), we encourage agents to implicitly communicate through actions by introduc-

ing a novel auxiliary reward signal. To do so, notice that in the centralised setting

agent i has the ability to consult its opponent’s belief model Φ−i(xi|h−i
t ) thereby

exploiting the fact that other agents hold beliefs over its private information xi. In

fact, comparing b−i
t to the ground-truth xi enables agent i to learn which actions

bring these two quantities closer together and thereby learn informative behaviour.

This can be achieved through an auxiliary reward signal devised to encourage in-

formative action communication:

ri
c,t = KL(xi||b−i,∗)−KL(xi||b−i

t+1), (5.2)

where b−i,∗ = Φ
−i
[k](x

i|h−i
t,∗) is agent −i’s best belief (so-far) about agent i’s private

information:

b−i,∗ = argmin KL(xi||b−i
u ) ∀ u≤ t.

In other words, ri
c,t encourages communication as it is proportional to the improve-

ment in the opponent’s belief (for a fixed belief model Φ
−i
[k](x

i|h−i
t+1)), measured by

its proximity to the ground-truth, resulting from the opponent observing agent i’s

action ai
t . Hence, during the policy learning step of PBL, we apply a policy gradient

algorithm with a shaped reward of the form:1

r = re +αrc, (5.3)

where re is the reward from the environment, rc is the communication reward and

α ≥ 0 balances the communication and environment rewards.

Initially, in the absence of a belief module, we pre-train a policy π[0] naively by

ignoring the existence of other agents in the environment. As an agent’s reasoning

ability may be limited, we may then iterate between Belief and Policy learning

multiple times until either the allocated computational resources are exhausted or

1Please note, we omit the agent index i in the reward equation, as we shape rewards similarly for
all agents.



5.1. Policy Belief Learning 80

Algorithm 3 Per-Agent Policy Belief Learning (PBL)
1: Initialise: Randomly initialise policy π0 and belief Φ0
2: Pre-train π0
3: for k = 0 to max iterations do
4: Sample episodes for belief training using self-play forming the data set Ω[k]
5: Update belief model using data from Ω[k] solving Equation 5.1
6: Given updated beliefs Φ[k+1](·), update policy π(·) (policy gradients with

rewards from Equation 5.3)
7: end for
8: Output: Final policy, and belief model

the policy and belief modules converge. We summarise the main steps of PBL

in Algorithm 3. Note that, although information can be leaked during training,

as training is centralised, distributed test-phase execution ensures hidden-private

variables during execution.

5.1.1 Machine Theory of Mind

In PBL, we adopt a centralised training and decentralised execution scheme where

agents share the same belief and policy models. In reality, however, it is unlikely

that two people will have exactly the same reasoning process. In contrast to re-

quiring everyone to have the same reasoning process, a person’s success in nav-

igating social dynamics relies on their ability to attribute mental states to others.

This attribution of mental states to others is known as theory of mind (Premack

and Woodruff, 1978). Theory of mind is fundamental to human social interaction

which requires the recognition of other sensory perspectives, the understanding of

other mental states, and the recognition of complex non-verbal signals of emotional

state (Lemaignan and Dillenbourg, 2015). In collaboration problems without an

explicit communication channel, humans can effectively establish an understanding

of each other’s mental state and subsequently select appropriate actions. For ex-

ample, a teacher will reiterate a difficult concept to students if she infers from the

students’ facial expressions that they have not understood. The effort of one agent

to model the mental state of another is characterised as Mutual Modelling (Dillen-

bourg, 1999).

In our work, we also investigate whether the proposed communication reward
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can be generalised to a distributed setting which resembles a human application of

theory of mind. Under this setting, we train a separate belief model for each agent

so that Φi(x−i|hi
t) and Φ−i(xi|h−i

t ) do not share parameters (φ i 6= φ−i). Without

centralisation, an agent can only measure how informative its action is to others

with its own belief model. Assuming agents can perfectly recall their past actions

and observations, agent i computes its communication reward as:2

ri
c,t = KL(xi||b̃i,∗

t )−KL((xi||b̃i
t+1),

where b̃i,∗
t = Φi(xi|h−i

t,∗) and b̃i
t+1 = Φi(xi|h−i

t+1). In this way, an agent essentially es-

tablishes a mental state of others with its own belief model and acts upon it. We be-

lieve this could be a step towards machine theory of mind where algorithmic agents

learn to attribute mental states to others and adjust their behaviour accordingly.

5.2 Contract Bridge
As we will test PBL on bridge, which is a complex game. Therefore, we intro-

duce the rules of bridge before we presenting our results. In bridge, two teams

of two (North-South vs East-West) are situated in opposing positions and play a

trick-taking game using a standard 52-card deck. Following a deal, bidding and

playing phases can be effectively separated. During the bidding phase, players se-

quentially bid for a contract until a final contract is reached. A PASS bid retains

previously proposed contracts and a contract is considered final if it is followed

by three consecutive PASS bids. A non-PASS bid proposes a new contract of the

form 〈integer,suit〉, where integer takes integer values between one and

seven, and suit belongs to {♣,♦,♥,♠,NT}. The number of tricks needed to

achieve a contract are 6+integer, and an NT suit corresponds to bidding to win

tricks without trumps. A contract-declaring team achieves points if it fulfils the con-

tract, and if not, the points for the contract go to the opposing team. Bidding must

be non-decreasing, meaning integer is non-decreasing and must increase if the

2Note the difference of super/sub-scripts of the belief model and its parameters when compared
to Equation 5.2.
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newly proposed trump suit precedes or equals the currently bid suit in the ordering

♣<♦<♥<♠< NT .

Playing Phase in Bridge: After the final contract is decided, the player from the

declaring side who first bid the trump suit named in the final contract becomes De-

clarer. Declarer’s partner is Dummy. The player to the left of the declarer becomes

the first leading player. Then Dummy lays his cards face up on the table and then

play proceeds clockwise. On each trick, the leading player shows one card from

their hand and other players need to play the same suit as the leading player if pos-

sible; otherwise, they can play a card from another suit. Trump suit is superior to

all other suits and, within a suit, a higher rank card is superior to lower rank one. A

trick is won by the player who plays the card with the highest priority. The winner

of the hand becomes the leading player for the next trick.

Non-competitive bidding: In this work, we focus on non-competitive bidding in

bridge, an imperfect-information game that requires information exchange between

agents to agree high-quality contracts. Hence, such a game serves as an ideal test-

bed for our algorithm. We consider North (N) and South (S) bidding in the game,

while East (E) and West (W) always bid PASS. Hence, the declaring team never

changes. Thus, each deal can be viewed as an independent episode of the game.

The private information of player i ∈ {N,S}, xi, is its hand. xi is a 52-dimensional

binary vector encoding player i’s 13 cards. In Bridge, an agent does not have public

state o. In each episode, Players N and S are dealt hands xN ,xS respectively. Their

hands, together, describe the full state of the environment s = {xN ,xS}, which is not

fully observed by either of the two players.

Double Dummy Analysis (DDA): Since rolling out via self-play for every con-

tract is computationally expensive, we resort to double dummy analysis (DDA)

(Haglund, 2010) for score estimation. Double Dummy Analysis assumes that, for

a particular deal, one player’s hand is fully observed by other players and play-

ers always play cards to their best advantage. However, given a set s = {xN ,xS},
the distribution of remaining cards for the two non-bidding players East and West

is still unknown. To reduce the variance of the estimate, we repeatedly sample a
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deal U times by allocating the remaining cards randomly to East and West and then

estimate re(s) by taking the average of their DDA scores,

re(s) =
1
U

U

∑
u=1

re(xN ,xS,xE
u ,x

W
u ), (5.4)

where xE
u ,x

W
u are hands for East and West from the uth sampling respectively. For

a specific contract at , the corresponding score is given by re(at |s) = re(xN ,xS,at).

In our work, we set U = 20. Interested readers are referred to (Haglund, 2010) for

further details.

Scoring: We use standard Duplicate bridge scoring rules (League, 2017) to score

games and normalise scores by dividing them by the maximum absolute score.

Algorithm 4 Bridge Duplicate Scoring
Score (tricks made,bid level, trump suit)
T ← trump suit
δ ← tricks made− (bid level +6)
score← 0
if δ ≥ 0 then

score← score+bid level ∗ scaleT +biasT {Contract tricks}
if score ≥ 100 then

score← 300 {Game Bonus}
else

score← 50 {PARTSCORE}
end if
if δ = 6 then

score← score+500 {Slam bonus}
else if δ = 7 then

score← score+1000 {Grand Slam bonus}
end if
if δ > 0 then

score← score+δ ∗ scaleT {Over-tricks}
end if

else
score← score−bid level ∗50 {Under-tricks}

end if

Algorithm 4 shows how we score a game under Duplicate Bridge Scoring rules.

We obtain the average of tricks made using Double Dummy Analysis (Haglund,

2010) given the hands of players North and South {xN ,xS}, the declarer and the
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Figure 5.1: Payoff for the matrix game

trump suit. The score function above has a scale and bias for each trump suit. The

scale is 20 for ♣ and ♦ and 30 for all others. Bias is zero for all trumps, except

NT which has a bias of 10. Note that Double is only a valid bid in response to a

contract proposed by one’s opponents. Also, a Redouble bid must be preceded by a

Double bid. In the non-competitive game, opponents do not propose contracts, so

these options are naturally not included.

5.3 Experiments & Results

We test our algorithms in three experiments. In the first, we validate the correctness

of the PBL framework which integrates our communication reward with iterative

belief and policy module training in a simple matrix game. In this relatively simple

experiment, PBL achieves near optimal performance. Equipped with this knowl-

edge, we further apply PBL to the non-competitive bridge bidding problem to verify

its scalability to more complex problems. Lastly, we investigate the efficacy of the

proposed communication reward in a distributed training setting.
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5.3.1 Matrix Game

We test our PBL algorithm on a matrix card game where an implicit communication

strategy is required to achieve the global optimum. This game is first proposed in

(Foerster et al., 2018). There are two players and each player receives a card drawn

from {card 1,card 2} independently at the beginning of the game. Player 1 acts first

and Player 2 responds after observing Player 1’s action. Neither player can see the

other’s hand. By the design of the payoff table (shown in Figure. 5.1), Player 1 has

to use actions C and A to signify that it holds Cards 1 and 2 respectively so that

Player 2 can choose its actions optimally with the given information. We compare

PBL with algorithms proposed in (Foerster et al., 2018) and vanilla policy gradient.

As can be seen from Figure 5.2, PBL performs similarly to BAD and BAD-CF

on this simple game and outperforms vanilla policy gradient significantly. This

demonstrates a proof of principle for PBL in a multi-agent imperfect information

coordination game.
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Figure 5.2: Learning curves of PBL and baselines over 100 runs

5.3.2 Contract Bridge Case-Study

Next, we test PBL on the non-competitive bidding problem. As this experiment

includes a lot of technical details, we will discuss them first in the following para-
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graphs.

Policy Pre-training: In the first PBL iteration (k = 0), to have a good initial policy

and avoid one with low-entropy, we train our policy to predict a distribution formed

using Softmax on re(s) with temperature τ as a warm start. The loss for pre-train

policy given s is:

Lk0 = KL(π(a|x)||Softmax(re(s),τ)),

where KL is the KL-Divergence. To have a fair comparison with other benchmarks,

all our benchmarks are initialised with this pre-trained policy. Supervising a bidding

policy to predict pre-calculated scores for all actions only provides it with a basic

understanding of its hand.

Policy Training: We utilise Proximal Policy Optimisation (PPO) (Schulman et al.,

2017) for policy training. Optimisation is performed with the Adam optimiser

(Kingma and Ba, 2014) with β1 = 0.9, β2 = 0.999, ε = 10−8. The initial learn-

ing rate is 10−4 which we decay exponentially with a rate of decay of 0.95 and a

decaying step of 50. The distance measure used in communication rewards rc is

cross entropy and we treat each dimension of belief and ground truth as an inde-

pendent Bernoulli distribution. We train PBL with 8 PBL iterations, we do policy

gradient 200 times per iteration and we sample 5000 episodes each time. Each mini-

batch is then a sub-sample of 2048 episodes. The initial communication weight α

is 5, and we decay it gradually. We train all other baselines with the same PPO

hyper-parameters.

Learning A Belief Model: When a player tries to model its partner’s hand based on

the observed bidding history, we assume it can omit the restriction that its partner

can only hold 13 cards. Therefore, we take the prediction of the partner’s hand given

the observed bidding history as a 52-label classification problem, where each label

represents one corresponding card being in the partner’s hand. In other words, we

treat each card from a 52-card deck being in the partner’s hand as an independent

Bernoulli distribution and we train a belief model by maximising the joint likelihood

of these 52 Bernoulli distributions given a bidding history h. This gives the loss for
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belief model as:

LΦ =−
52

∑
i=1

x−i log(bi)+(1− x−i) log(1−bi),

where x−i and bi are elements of one-hot encoding vectors of a partner’s hand x−i

and one agent’s belief bi. The reasoning behind this assumption is we think it is

more important to have a more accurate prediction over an invalid distribution than

a less accurate one over a valid distribution as the belief itself is already an approx-

imation. For each iteration of belief training, we generate 300,000 data episodes

with the current policy to train the belief model. Optimisation is performed with

the Adam optimiser with β1 = 0.9, β2 = 0.999, ε = 10−8 and a decay rate of 0.95.

The initial learning rate is 10−3. The batch size is 1024. We split the data set such

that 90% of it is used for training and 10% is for early stopping check to prevent

overfitting.

Benchmarking & Ablation Studies: PBL introduces several building blocks, each

affecting performance in its own right. We conduct an ablation study to better un-

derstand the importance of these elements and compare against a state-of-the-art

method in PQL (Yeh and Lin, 2016). We introduce the following baselines:

1. Independent Player (IP): A player bids independently without consideration

of the existence of the other player.

2. No communication reward (NCR): One important question to ask is how

beneficial the additional communication auxiliary reward rc is in terms of

learning a good bidding strategy. To answer this question, we implement a

baseline using the same architecture and training schedule as PBL but setting

the communication reward weighting to zero, α = 0.

3. No PBL style iteration (NPBI): To demonstrate that multiple iterations be-

tween policy and belief training are beneficial, we compare our model to a

baseline policy trained with the same number of weight updates as our model

but no further PBL iterations after training a belief model Φ0 at PBL iteration

k = 0.
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Figure 5.3: Learning curves for non-competitive bridge bidding with a warm start from a
model trained to predict the score distribution (average reward at warm start:
0.038).

4. Penetrative Q-Learning (PQL): PQL as proposed by Yeh and Lin (2016)

as the first bidding policy for non-competitive bridge bidding without human

domain knowledge.

Figure 5.3 shows the average learning curves of our model and three baselines

for our ablation study. We obtain these curves by testing trained algorithms period-

ically on a pre-generated test data set which contains 30,000 games. Each point on

the curve is an average score computed by Duplicate bridge scoring rules (League,

2017) over 30,000 games and 6 training runs. As can been seen, IP and NCR

both initially learn faster than our model. This is reasonable as PBL spends more

time learning a communication protocol at first. However, IP converges to a local

optimum very quickly and is surpassed by PBL after approximately 400 learning

iterations. NCR learns a better bidding strategy than IP with a belief module. How-

ever, NCR learns more slowly than PBL in the later stage of training because it

has no guidance on how to convey information to its partner. PBL outperforming

NPBI demonstrates the importance of iterative training between policy and belief



5.3. Experiments & Results 89

0.069
0.077

0.025

-0.025

0.079

0.062

-0.054

PBL PQL-5 PQL-5
(No-Rules)

PQL-5
(Single-Network)

PQL-4 PQL-4
(No-Rules)

PQL-4
(Single-Network)

Figure 5.4: Bar graph comparing PBL to variants of PQL, with the full version of PQL
results as reported in (Yeh and Lin, 2016)

modules.

Restrictions of PQL: PQL (Yeh and Lin, 2016) is the first algorithm trained to bid

in bridge without human engineered features. However, its strong bidding perfor-

mance relies on heavy adaption and heuristics for non-competitive Bridge bidding.

First, PQL requires a predefined maximum number of allowed bids in each deal,

while using different bidding networks at different times. Our results show that

it will fail when we train a single NN for the whole game, which can been seen

as a minimum requirement for most DRL algorithms. Second, PQL relies on a

rule-based function for selecting the best contracts at test time. In fact, removing

this heuristic significantly reduces PQL’s performance as reported in Figure 5.4. In

addition, without pre-processing the training data as in (Yeh and Lin, 2016), we

could not reproduce the original results. To achieve state-of-the-art performance,

we could use these (or other) heuristics for our bidding algorithm. However, this

deviates from the focus of our work which is to demonstrate that PBL is a general
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framework for learning to communicate by actions.
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Figure 5.5: An example of a belief update trace showing how PBL agents use actions for
effective communication. Upon observing 〈PASS〉 from East, West decreases
its HCP belief in all suits. When West bids 〈1,C〉, East improves belief in
clubs. Next, East bids 〈1,H〉. West recalculates its belief from last time step
and increases its HCP belief in hearts.

Belief Update Visualisation: To understand how agents update their beliefs after

observing a new bid, we visualise the belief update process (Figure 5.5). An agent’s

belief about its opponent’s hand is represented as a 52-dimensional vector with real

values which is not amenable to human interpretation. Therefore, we use high card

points (HCPs) to summarise each agent’s belief. For each suit, each card is given a

point score according to the mapping: A=4, K=3, Q=2, J=1, else=0. Note that while

agents’ beliefs are updated based on the entire history of its opponent’s bids, the

difference between that agent’s belief from one round to the next is predominantly

driven by the most recent bid of its opponent, as shown in Figure 5.5.

Learned Bidding Convention: Whilst our model’s bidding decisions are based en-

tirely on raw card data, we can use high card points as a simple way to observe

and summarise the decisions which are being made. For example, we observe our

policy opens the bid with 1♠ if it has HCPs of spade 4.5 or higher but lower HCPs

of any other suits. We run the model on the unseen test set of 30,000 deals and sum-

marise the learned bidding convention. Table 5.1 shows the average HCPs (aHCPs)

present in a hand for each of the opening bidding decisions made by North. Once

an opening bid is observed, South updates their belief; Table 5.2 shows the effect

which each opening bid has on South’s belief. We show in Table 5.3 the responding
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Bid ♣ ♦ ♥ ♠ Total

PASS 1.4 1.3 1.4 1.4 5.4
1♠ 2.3 2.1 2.3 4.5 11.2
1♥ 2.3 2.2 4.7 1.8 11.0
1♦ 2.2 4.4 2.1 2.0 10.7
1♣ 4.8 1.9 2.1 2.1 10.9

3NT 4.4 4.4 4.9 4.6 18.3
4♦ 3.0 6.5 3.1 3.4 16.1
4♣ 6.6 5.3 2.3 2.3 16.5

Table 5.1: Opening bid - own aHCPs.

Bid ♣ ♦ ♥ ♠ Total

PASS 1.4 1.3 1.3 1.3 5.3
1♠ 2.3 2.1 2.2 4.6 11.1
1♥ 2.2 2.2 4.7 1.9 11.0
1♦ 2.3 4.5 2.0 2.0 10.8
1♣ 4.8 2.0 2.2 2.2 11.1

3NT 4.4 4.6 4.8 4.7 18.5
4♦ 2.8 6.8 3.3 3.1 16.0
4♣ 6.2 4.0 3.0 2.8 16.0

Table 5.2: Belief HCPs after observing
opening bid.

Bid ♣ ♦ ♥ ♠ Total

PASS 4.4 4.5 4.4 4.5 17.8
1♠ 4.4 4.3 4.5 7.1 20.3
1♥ 4.6 4.4 7.0 4.9 20.9
1♦ 4.3 6.7 4.8 4.9 20.7
1♣ 7.2 4.3 4.7 4.9 21.1
2♠ 4.8 4.7 5.2 8.5 23.2
2♥ 4.9 5.1 8.6 5.1 23.7

3NT 6.6 6.6 7.1 7.2 27.6
4♦ 5.2 8.5 5.5 5.6 24.9
4♣ 8.4 5.6 5.4 5.4 24.8
6♥ 5.7 6.2 9.9 6.9 28.7
6♦ 6.4 9.2 7.3 7.1 30.0
6♣ 10.8 4.0 10.0 6.5 31.3

6NT 7.5 7.0 8.7 9.0 32.2

Table 5.3: Responding bid - own + belief aHCPs.

bidding decisions made by South; aHCP values in Table 5.3 are the sum of HCPs

in South’s hand and South’s belief over HCPs in North’s hand. The values high-

lighted in bold for each row are the maximum values for the respective row. This is

only done for rows where the bid has a specified trump suit. We also present some

interesting bidding examples by PBL agents in Figure 5.6.

Double Pass Analysis At the beginning of bidding, when two players both bid Pass

(Double Pass), all players’ hands are re-dealt and a new episode starts. If we ignore

these episodes in training, a naive strategy emerges where a player always bids Pass
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C.3 Interesting Bidding Examples
We note that in general, in the initial stages of bidding the suit of a bid is used to show strength in that suit with no trump
bids used to show strength across all suits and PASS bids used to show a weak hand. In later stages of bidding, players either
reiterate their strength with larger trick numbers in their bids or show strength in other suits. In the final rounds of bidding agents
show their overall combined view of the pairing’s hands to propose bids that reflect all 26 of the pair’s cards. In the following
examples, we describe how this bidding process manifests in certain cases. Note that in each case where a bid specifying the
trump suit is made, the bidding pair have the majority of the cards in the trump suit in their collective hands. This is often
essential for success in attaining suited bids.
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BIDS: 1♣ 1♦ 2♣ 2♦ 3NT PASS
REWARD: 0.283

North has a very strong hand in clubs holding all of the picture cards and the ace. North also holds the ace of hearts. South has
strength in diamonds and spaces. The bidding pattern shows that North initially signals their strength in clubs and South their
strength in diamonds. Both parties then reiterate their strengths in their next turns and a contract of 3NT is agreed.
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BIDS: 1♦ 1♥ 3NT 4♥ 6♥ PASS
REWARD: 0.301

North opens bidding with diamonds to show their strength in the suit. South then responds with hearts to show their strongest
suit. North then bids no trumps to signal an inferred collective strength in multiple suits. South has little strength outside of
hearts and continues to bid hearts and ultimately a contract of 6♥ is reached as bid by North who only has two hearts. This is
a bid to win all but one hand with hearts as trumps which reflects the fact that between them the pair have from 7 to King of
hearts. The pairing bid hearts despite their collective strength also in diamonds since hearts commands a higher per trick score
if the contract is met.
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BIDS: 1♣ 1♦ 1♠ 2♣ 3NT 4♠ PASS
REWARD: 0.305

Between them the pairing have a strong hand in diamonds clubs and spades with a lack of hearts (15 + 13 = 28 HCP Total).
Bidding opens with 1♣ as North aims to show their strength in clubs. South then conveys their strength in diamonds with a
bid of 1♦. Bidding continues as North demonstrates some strength in spades with a bid of 1♠. Later, a bid by North of 3NT
demonstrates that North believes the pair have strength across the board as reflected by the bids from all suits except hearts.
Bidding ends however, with a bid of 4♠ from South which is then accepted through a PASS bid from North. South makes the
bid of 4♠ despite only having 3 spades in their hand. The earlier bid of 1♠ from North informs South that North has some
strength in spades and hence South believes that the pair may be able to attain 4♠.

(a) North has a very strong hand in clubs holding all of the picture cards and the ace. North also holds the ace of
hearts. South has strength in diamonds and spaces. The bidding pattern shows that North initially signals their
strength in clubs and South their strength in diamonds. Both parties then reiterate their strengths in their next turns
and a contract of 3NT is agreed.

C.3 Interesting Bidding Examples
We note that in general, in the initial stages of bidding the suit of a bid is used to show strength in that suit with no trump
bids used to show strength across all suits and PASS bids used to show a weak hand. In later stages of bidding, players either
reiterate their strength with larger trick numbers in their bids or show strength in other suits. In the final rounds of bidding agents
show their overall combined view of the pairing’s hands to propose bids that reflect all 26 of the pair’s cards. In the following
examples, we describe how this bidding process manifests in certain cases. Note that in each case where a bid specifying the
trump suit is made, the bidding pair have the majority of the cards in the trump suit in their collective hands. This is often
essential for success in attaining suited bids.
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BIDS: 1♣ 1♦ 2♣ 2♦ 3NT PASS
REWARD: 0.283

North has a very strong hand in clubs holding all of the picture cards and the ace. North also holds the ace of hearts. South has
strength in diamonds and spaces. The bidding pattern shows that North initially signals their strength in clubs and South their
strength in diamonds. Both parties then reiterate their strengths in their next turns and a contract of 3NT is agreed.
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BIDS: 1♦ 1♥ 3NT 4♥ 6♥ PASS
REWARD: 0.301

North opens bidding with diamonds to show their strength in the suit. South then responds with hearts to show their strongest
suit. North then bids no trumps to signal an inferred collective strength in multiple suits. South has little strength outside of
hearts and continues to bid hearts and ultimately a contract of 6♥ is reached as bid by North who only has two hearts. This is
a bid to win all but one hand with hearts as trumps which reflects the fact that between them the pair have from 7 to King of
hearts. The pairing bid hearts despite their collective strength also in diamonds since hearts commands a higher per trick score
if the contract is met.
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BIDS: 1♣ 1♦ 1♠ 2♣ 3NT 4♠ PASS
REWARD: 0.305

Between them the pairing have a strong hand in diamonds clubs and spades with a lack of hearts (15 + 13 = 28 HCP Total).
Bidding opens with 1♣ as North aims to show their strength in clubs. South then conveys their strength in diamonds with a
bid of 1♦. Bidding continues as North demonstrates some strength in spades with a bid of 1♠. Later, a bid by North of 3NT
demonstrates that North believes the pair have strength across the board as reflected by the bids from all suits except hearts.
Bidding ends however, with a bid of 4♠ from South which is then accepted through a PASS bid from North. South makes the
bid of 4♠ despite only having 3 spades in their hand. The earlier bid of 1♠ from North informs South that North has some
strength in spades and hence South believes that the pair may be able to attain 4♠.

(b) North opens bidding with diamonds to show their strength in the suit. South then responds with hearts to show
their strongest suit. North then bids no trumps to signal an inferred collective strength in multiple suits. South has
little strength outside of hearts and continues to bid hearts and ultimately a contract of 6♥ is reached as bid by
North who only has two hearts. This is a bid to win all but one hand with hearts as trumps which reflects the fact
that between them the pair have from 7 to King of hearts. The pairing bid hearts despite their collective strength
also in diamonds since hearts commands a higher per trick score if the contract is met.

C.3 Interesting Bidding Examples
We note that in general, in the initial stages of bidding the suit of a bid is used to show strength in that suit with no trump
bids used to show strength across all suits and PASS bids used to show a weak hand. In later stages of bidding, players either
reiterate their strength with larger trick numbers in their bids or show strength in other suits. In the final rounds of bidding agents
show their overall combined view of the pairing’s hands to propose bids that reflect all 26 of the pair’s cards. In the following
examples, we describe how this bidding process manifests in certain cases. Note that in each case where a bid specifying the
trump suit is made, the bidding pair have the majority of the cards in the trump suit in their collective hands. This is often
essential for success in attaining suited bids.
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BIDS: 1♣ 1♦ 2♣ 2♦ 3NT PASS
REWARD: 0.283

North has a very strong hand in clubs holding all of the picture cards and the ace. North also holds the ace of hearts. South has
strength in diamonds and spaces. The bidding pattern shows that North initially signals their strength in clubs and South their
strength in diamonds. Both parties then reiterate their strengths in their next turns and a contract of 3NT is agreed.
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BIDS: 1♦ 1♥ 3NT 4♥ 6♥ PASS
REWARD: 0.301

North opens bidding with diamonds to show their strength in the suit. South then responds with hearts to show their strongest
suit. North then bids no trumps to signal an inferred collective strength in multiple suits. South has little strength outside of
hearts and continues to bid hearts and ultimately a contract of 6♥ is reached as bid by North who only has two hearts. This is
a bid to win all but one hand with hearts as trumps which reflects the fact that between them the pair have from 7 to King of
hearts. The pairing bid hearts despite their collective strength also in diamonds since hearts commands a higher per trick score
if the contract is met.
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BIDS: 1♣ 1♦ 1♠ 2♣ 3NT 4♠ PASS
REWARD: 0.305

Between them the pairing have a strong hand in diamonds clubs and spades with a lack of hearts (15 + 13 = 28 HCP Total).
Bidding opens with 1♣ as North aims to show their strength in clubs. South then conveys their strength in diamonds with a
bid of 1♦. Bidding continues as North demonstrates some strength in spades with a bid of 1♠. Later, a bid by North of 3NT
demonstrates that North believes the pair have strength across the board as reflected by the bids from all suits except hearts.
Bidding ends however, with a bid of 4♠ from South which is then accepted through a PASS bid from North. South makes the
bid of 4♠ despite only having 3 spades in their hand. The earlier bid of 1♠ from North informs South that North has some
strength in spades and hence South believes that the pair may be able to attain 4♠.

(c) Between them the pairing have a strong hand in diamonds clubs and spades with a lack of hearts (15 + 13 = 28 HCP
Total). Bidding opens with 1♣ as North aims to show their strength in clubs. South then conveys their strength in
diamonds with a bid of 1♦. Bidding continues as North demonstrates some strength in spades with a bid of 1♠.
Later, a bid by North of 3NT demonstrates that North believes the pair have strength across the board as reflected
by the bids from all suits except hearts. Bidding ends however, with a bid of 4♠ from South which is then accepted
through a PASS bid from North. South makes the bid of 4♠ despite only having 3 spades in their hand. The earlier
bid of 1♠ from North informs South that North has some strength in spades and hence South believes that the pair
may be able to attain 4♠.
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BIDS: 1♦ 3NT 4♥ 6♦ 6NT PASS
REWARD: 0.651
North has strength in all suits excluding spades (13 HCP Total) and South has strength evenly spread across all suits (18 HCP).
Their shared strongest suit is diamonds where they hold the highest 4 cards between them. The bid of 6♦ is raised to 6NT as
North forms a belief that the pair share strength across multiple suits (31 HCP Total for both hands).
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BIDS: PASS 1♣ 1♦ 2♦ 3NT PASS
REWARD: 0.211
North opens bidding with PASS signaling they they have a relatively weak hand (8 HCP Total). South then responds with 1♣
signaling their strength in clubs. Bidding then progresses as North bids 1♦ signaling that diamond is the stronger of their suits.
South also has strength in diamonds and ultimately the pairing is able to reason about their collective hands and bid 3NT; a bid
that would not be reached without forming beliefs due to the relative weakness of North’s hand.
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BIDS: PASS 1♣ 2♣ 2♦ 3NT PASS
REWARD: 0.258
Between them North and South have evenly spread strength across the suits (9 + 17 = 26 HCP Total). Similarly to Example 4,
we see that the agents are able to reason, using their beliefs, about the collective strength of both of their hands. Here the pair
reach a bid of 3NT while in Example 4, the pairing shared 31 HCP and reached a bid of 6NT.
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BIDS: PASS 1♣ 1♦ 1♠ 2♣ PASS
REWARD: 0.104
Both players lack any cards in one of the four suits. North opens bidding with PASS to show the relative weakness of their hand
(8 HCP Total). Bidding remains low in different suits reflecting the similar level of strength across the suits while low bids show
no significant strength overall. Ultimately a bid of 2♣ is reached reflecting strength in ♣ as between them the pair hold from 9
to Ace of clubs.

(d) North opens bidding with PASS signalling they they have a relatively weak hand (8 HCP Total). South then
responds with 1♦ signalling that diamond is the stronger of their suits. South also has strength in diamonds and
ultimately the pairing is able to reason about their collective hands and bid 3NT; a bid that would not be reached
without forming beliefs due to the relative weakness of North’s hand.

Figure 5.6: Bidding Examples by PBL Agents
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Figure 5.7: Learning curves for Silent Guide. Guide agent trained with communication
reward (CR) significantly outperforms the one trained with no communication
reward (NCR).

unless it is highly confident about its hand and therefore bids at level 1 whose risk is

at the minimum. In this work, we are interested in solving problems where private

information needs to be inferred from observed actions for better performance in

a game. Therefore, this strategy is less meaningful and the opportunity cost of

bidding Pass could be high when a player could have won the game with high

reward. To reflect this opportunity cost in training, we set the reward for Double

Pass as the negative of the maximum attainable reward given the players’ hands:

rd p(s) = −max(re(s)). Therefore, a player will be penalised heavily by bidding

Pass if it could have obtained a high reward otherwise and awarded slightly if they

could never win in the current episode. It is worthy of note that an initial Pass bid

can convey information; however, if it is followed by a second Pass bid the game

ends and hence no further information is imparted from a second Pass.

5.3.3 Silent Guide

We modify a multi-agent particle environment (Lowe et al., 2017) to test the effec-

tiveness of our novel auxiliary reward in a distributed setting. This environment also

allows us to explore the potential for implicit communication to arise through ma-

chine theory of mind. In the environment there are two agents and three landmarks.
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(a) CR (b) NCR

Figure 5.8: a) A trajectory of Listener (grey circle) and Guide (blue circle) with CR. Land-
marks are positioned randomly and the Goal landmark (blue square) is ran-
domly chosen at the start of each episode. b) A trajectory of Listener and
Guide with NCR. Trajectories are presented with agents becoming progres-
sively darker over time.

We name the agents Guide and Listener respectively. Guide can observe Listener’s

goal landmark which is distinguished by its colour. Listener does not observe its

goal. However, Listener is able to infer the meaning behind Guide’s actions. The

two agents receive the same reward which is the negative distance between Lis-

tener and its goal. Therefore, to maximise the cumulative reward, Guide needs to

tell Listener the goal landmark colour. However, as the “Silent Guide” name sug-

gests, Guide has no explicit communication channel and can only communicate to

Listener through its actions.

In the distributed setting, we train separate belief modules for Guide and Lis-

tener respectively. The two belief modules are both trained to predict a naive agent’s

goal landmark colour given its history within the current episode but using differ-

ent data sets. We train both Guide and Listener policies from scratch. Listener’s

policy takes Listener’s velocity, relative distance to three landmarks and the pre-

diction of the belief module as input. It is trained to maximise the environment

reward it receives. Guide’s policy takes its velocity, relative distance to landmarks

and Listener’s goal as input. To encourage communication by actions, we train

Guide policy with the auxiliary reward proposed in our work. We compare our
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method against a naive Guide policy which is trained without the communication

reward. The results are shown in Figure 5.7. Guide when trained with communi-

cation reward (CR) learns to inform Listener of its goal by approaching to the goal

it observes. Listener learns to follow. However, in NCR setting, Listener learns to

ignore Guide’s uninformative actions and moves to the centre of three landmarks.

While Guide and Listener are equipped with belief models trained from different

data sets, Guide manages to use its own belief model to establish the mental state

of Listener and learns to communicate through actions judged by this constructed

mental state of Listener. We also observe that a trained Guide agent can work with

a naive RL listener (best reward -0.252) which has no belief model but can observe

PBL guide agent’s action. The success of Guide with CR shows the potential for

machine theory of mind. We obtain the learning curves by repeating the training

process five times and take the shared average environment reward.

5.4 Conclusion

In this chapter, we focus on implicit communication through actions. This draws a

distinction of our work from previous works which either focus on explicit commu-

nication or unilateral communication. We propose an algorithm combining agent

modelling and communication for collaborative imperfect-information games. Our

PBL algorithm iterates between training a policy and a belief module. We propose

a novel auxiliary reward for encouraging implicit communication between agents

which effectively measures how much closer the opponent’s belief about a player’s

private information becomes after observing the player’s action. We empirically

demonstrate that our methods can achieve near optimal performance in a matrix

problem and scale to complex problems such as contract bridge bidding. We con-

duct an initial investigation of the further development of machine theory of mind.

Specifically, we enable an agent to use its own belief model to attribute mental states

to others and act accordingly. We test this framework and achieve some initial suc-

cess in a multi-agent particle environment under distributed training. There are a

lot of interesting avenues for future work such as exploration of the robustness of
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collaboration to differences in agents’ belief models.



Chapter 6

Safe Exploitation in Competitive

Games

In previous chapters we have looked into challenges of non-stationarity and partial

observation in cooperative games. As discussed in the Chapter 2, these challenges

mainly arise from the lack of knowledge of the opponents. Therefore, based on

the characteristics of the specific problems, we propose ROMMEO and PBL, two

opponent modelling based solutions to the problems respectively.

In this chapter, we will focus on non-stationarity and unclear learning objec-

tive in competitive games. An opponent’s learning process can be generally mod-

elled as transitions among a mixture of unknown number of policies. This motivates

the usage of a Dirichlet process mixture model. As we can only collect trajectories

produced by the adaptive opponents online, we propose to learn our model in a

streaming fashion. Given the predicted opponent policy from our model, we pro-

vide a general framework for training an agent to safely exploit the non-stationary

opponent where safe exploitation means exploiting the current opponent with a low

probability of being exploited by other opponents in future. We empirically demon-

strate the ability of our approach to safely exploit a non-stationary opponent in Kuhn

Poker, a simplified Poker game. Furthermore, once trained, our model can produce

strong counter strategies to unseen opponents without any further training in new

tournaments.
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6.1 Preliminaries
We consider the decentralised training and decentralised execution (DTDE) setting

in zero-sum games where we have access to interaction trajectories τ between our

agent and the adaptive opponent. To solve non-stationarity and unclear learning

objective in this setting, we approach this problem by formulating the interaction

between the training agent and its opponents as a two games at different levels. At

the lower level, the game is essentially an actual environment where agents compete

with others, for example, a poker game. However, every time before agents playing

the lower level game, they need to play a meta-level game. In this game, they need

to decide their playing policies for the lower level. One agent’s each playing policy

can be selected from his/her policies pool or it could be a weighted average over all

his/her policies.

6.1.1 Two-Level Games

We assume that interactions of players in lower level environment can be modelled

by a stochastic game (Shapley, 1953) which is introduced in Chapter 2. In this work,

we specifically denote a trajectory as a set of the opponent’s end-game histories

collected from d episodes τ = {h−i
1,T ,h

−i
2,T , . . . ,h

−i
d,T}, where T is the terminal time

step in an episode. This implies that the opponent’s policy does not change over d

episodes. However, this is not true in our setting or in general. Therefore, we take

d as a hyper-parameter and tune it to obtain satisfactory empirical results.

We formulate the meta-level game as a two-player normal-form game (NFG)

between our agent and its opponents as a whole with notation adapted to our presen-

tation. We denote a 2-player NFG by a tuple (Π,U,N ) where Πi is player i’s set of

policies and i ∈ N where N = {1,2}. For ease of notation, we take player 1 as the

training agent and player 2 as its opponent. We use Π = ∏i∈N Πi to denote the set

of joint policies (strategy profiles). U(π) : Π→ℜn is a payoff table of utilities for

each joint policy π played by all players. ui(π) denotes the utility value for player

i and joint policy π . A player can choose a policy π i from Πi or sample from a

mixture (meta-strategy) over them σ i ∈ ∆
(
Πi) where ∆ is a probability simplex. In

the terminology of game theory, σ i is a mixed strategy and each policy π i is a pure
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strategy.

Each player in the game is assumed to maximise their utility. The most well-

known steady-state concept of a game is the Nash equilibrium (NE). NE is a strategy

profile π such that no player has an incentive to deviate from its current strategy

given the strategies of the other players. Namely, each player’s strategy is a best

response to others’ BR(π−i) = argmaxπ i ui(π i,π−i) ∀i ∈ N . We call a set of

policies ε-best responses to a joint opponents’ policy π−i, when there exists an

ε > 0, such that BRε(π
−i) = {π i : ui(π i,π−i)≥ ui(BR(π−i),π−i)−ε}. An ε-Nash

equilibrium is a strategy profile that satisfies: ui(π) ≥ maxπ i′ ui(π i′,π−i)− ε ∀i ∈
N .

6.1.2 Exploitability and Exploitation

To evaluate our learned policy π1, we use two metrics. An agent’s policy’s π1

exploitation of an opponent’s policy π2 is the extra gain obtained by the agent com-

pared to its NE value v1:

ω(π1,π2) = u1(π1,π2)− v1.

This measures how much the policy π1 exploits the weakness of the opponent’s

policy π2. However, in general, there is no guarantee that the learned policy π1

has no weakness. Therefore, we also define the exploitability of a policy π1 which

measures the loss incurred when the agent faces the best opponent policy π2 =

BR(π1) compared to the agent’s Nash equilibrium value v1:

ε(π1) = v1−u1(
π

1,BR(π1)
)

= max
π1′

min
π2

u1(π1′,π2)−min
π2

u1(π1,π2). (6.1)

From Equation 6.1 we can see that the exploitability of a policy is non-negative and

represents the distance of policy π1 to an equilibrium.
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6.1.3 Restricted Nash Response (RNR)

Johanson et al. (2008) consider a modified zero-sum game where an opponent has

a restricted strategy space Π2
p,πfix

such that it plays a fixed policy πfix with prob-

ability p and plays any possible policy from the original strategy space Π2 with

probability 1− p. Given (p,πfix), they define a restricted Nash equilibrium as a

strategy profile (π1∗,π2∗) such that π1∗ ∈BR(π2∗) and π2∗ ∈BRp,πfix(π
1∗), where:

BRp,πfix(π
1∗)= argmax

π2∈Π2
p,πfix

u2(π1,π2). It is shown that π1∗ is the best response

to πfix among strategies which have equal or lower exploitabilities than π1∗, i.e.:

π1∗ = BRε(πfix), where ε = ε(π1∗). Therefore, π1∗ is called a p-restricted Nash

response (RNR) to πfix.

An RNR solution for a normal-form game considers a modified game where

the opponent plays a fixed strategy πfix with probability p and any strategy from its

original strategy space Π2 with probability 1− p. We implement a linear program-

ming solver for RNR and present our formulation as follows:

We use π1 and π2 to denote an agent’s and its opponent’s strategies respec-

tively. Further, let UΠ denote the utility table for the agent. Since we consider the

zero-sum game, the utility table for the opponent is simply trans(−UΠ) where trans

denotes the matrix transpose operation. As the opponent is restricted to play a fixed

strategy πfix with with probability at least p, the overall opponent policy satisfies:

pπfix(a)≤ π
2(a)≤ pπfix(a)+1− p ∀ a ∈Π

2.

We define a vector ya of size |Π|2×1 whose element indices correspond to opponent

actions, and we have:

ya( j) =

pπfix(a), j 6= a

pπfix(a)+1− p, j = a.
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Therefore, for π1
RNR, we solve the following linear programming problem:

maxu

s.t. u≤ π
1T

UΠya ∀ a ∈Π
2,

π
1(b)≥ 0 ∀ b ∈Π

1,

∑
Π1

π
1(b) = 1.

Similarly, for π2
RNR, we solve the following linear programming problem:

minv

s.t. v≥ xb
TUΠ

π
2 ∀ b ∈Π

1,

π
2(a)≤ pπfix(a)+1− p ∀ a ∈Π

2,

π
2(a)≥ p πfix(a) ∀ a ∈Π

2,

∑
Π2

π
2(a) = 1,

where we define a vector xb of size |Π1|×1 whose each element index corresponds

to an agent’s action, and we have:

xb( j) =

0 j 6= b

1 j = b.

6.2 Dirichlet Process Mixture Opponent Modelling
This section presents our non-parametric Bayesian method for modelling a non-

stationary opponent. We consider an opponent’s learning process as consecutive

transitions from one policy to another such that one opponent can theoretically

adopt infinitely many policies during its life-time. Therefore, we propose to use

a Dirichlet process (DP) mixture to model the learning process as it has the ability

to model an infinite number of clusters (policies in this case) while inferring the

current number of policies from the data collected thus far. As our agent interacts

with the opponent online, we learn a model with a sequential maximum-a-posteriori
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approach.

We model an opponent policy as a parameterized function π2
φ

and denote the

parameter space as Φ. To avoid cluttered notation in this section, we use φ to

represent the modelled opponent’s policy. DP(αH) is a stochastic process with

a concentration parameter α and a base distribution H over Φ. A random draw

G∼ DP(αH) is itself a distribution over Φ, satisfying:

(G(A1), ...,G(Ar))∼ Dirichlet
(
αH(A1), ...,αH(Ar)

)
for every finite measurable partition A1, ...,Ar of Φ. The full graphical model for

opponent modelling is shown in Figure 6.1a. It illustrates a generative process

where at step m, the opponent first samples a policy φ̂m ∼ G and then rolls-out

this policy to collect a trajectory τm.

To facilitate Bayesian inference, two representations of DP are considered.

The stick-breaking representation in Figure 6.1b reveals the discrete nature of G.

G ∼ DP(αH) can be constructed as G = ∑
∞
k=1 βkδφk where βββ ∼ GEM(α) is an

infinite-dimensional random variable sampled from the Griffiths-Engen-McCloskey

(GEM) distribution and {φk}∞
k=1 are i.i.d. sampled policies from H. At step m, the

opponent samples a policy index zm ∼Categorical(βββ ) and rolls-out the policy φzm .

Inference with the stick-breaking representation is required in order to handle the

infinite dimensional βββ . Therefore, the truncation method (Blei et al., 2006) is com-

monly used to limit the model capacity to a K mixture and infer the actual number

of policies by collapsing redundant ones. This requires tracking all K policies si-

multaneously and does not adapt well to online settings.

The Chinese restaurant process (CRP) representation in Figure 6.1c can be

obtained by integrating out βββ . This introduces temporal dependencies between the
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Figure 6.1: Dirichlet process mixture model

policies, which can be expressed by the conditional distribution:

p
(
zm+1 = k|z1:m

)
=



α

m+α
, k = Km +1

|k|m
m+α

, 1≤ k ≤ Km

(6.2)

where |k|m = ∑
m
i=1I(zi = k) is the total number of trajectories from the k-th policy

and Km is the number of realised policies up until step m. Inference with the CRP

representation does not need to handle the infinite dimensional βββ . Furthermore,

at step m, we only need to track at most m policies (Km ≤ m) while all policies

beyond Km are independent from the collected trajectories τ1:m, and thus can be

discarded from the model. In addition, the temporal dependencies between policies

introduced by CRP can be used to develop an online learning algorithm.

Given sampled trajectories τ1:m, the target of our opponent model is to assign

each trajectory to a policy and update existing policies with assigned trajectories.

This can be achieved by seeking maximum-a-posteriori (MAP) estimations of z1:m

and φ1:Km . To deal with streaming trajectories, the MAP algorithm should operate

in an online fashion. Therefore, given the CRP representation, we decompose the

posterior into the product of the posterior from the last step, the current priors and
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the likelihood, which leads to a recursive form:

p(z1:m,φ1:Km|τ1:m) ∝

(Km−1+1

∏
k=1

p(φk)

)
p(z1)p(τ1|φz1)

( m

∏
i=2

p(zi|z1:i−1)p(τi|φzi)

)
,

∝ p(z1:m−1,φ1:Km−1|τ1:m−1)p(φKm)p(zm|z1:m−1)p(τm|φzm),

(6.3)

where p(φk) = H is the base distribution of the DP.

The opponent model either assigns the current trajectory τm to a previous pol-

icy φk or creates a new policy φKm−1+1 to model τm. The choice is made according

to the MAP trajectory assignment z∗m = argmaxzm
p(zm,z∗1:m−1|τ1:m):

p(zm = k,z∗1:m−1|τ1:m)∝


∫

φk
α p(φk)p(τm|φk) dφk, k = Km−1 +1

p(zm = k|z∗1:m−1)p(τm|φ m−1
k ) = |k|∗m−1 p(τm|φ m−1

k ), otherwise
(6.4)

where |k|∗m−1 = ∑
m−1
i=1 I(z∗i = k). Here, the hard assignment z∗m for τm is based

on previous assignments z∗1:m−1 and policies φ
m−1
k , which is equivalent to applying

assumed density filtering (ADF) (Tank et al., 2015) to approximate the true posterior

in Equation 6.3 with a Delta distribution δ (z∗1:m). The hard assignment prevents

creating a new policy at each step if τm is assigned to an existing policy, which

significantly reduces the memory usage. Furthermore, the MAP estimations for all

existing policies, except φz∗m , remain unchanged, which dramatically accelerates the

algorithm. We then optimise the policy φz∗m by maximising the likelihood of all

trajectories assigned to it:

φ
m
z∗m = argmax

φz∗m

log p(φz∗m) ∏
z∗i =z∗m

p(τi|φz∗m). (6.5)

Where finding the global optimum is not tractable in non-conjugate cases, we take

gradient steps to update φ n
z∗m

as

φ
n
z∗m = φ

m−1
z∗m

+λ∇φz∗m
log p(φz∗m) ∏

z∗i =z∗m

p(τi|φz∗m).
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Our streaming MAP algorithm for opponent modelling fits into the general

expectation-maximisation (EM) framework. In the E-step, we seek a Delta distri-

bution q(z1:m) = δ (z∗1:m) to approximate the posterior p(z1:m|τ1:m). Therefore, z∗1:m

are the MAP trajectory assignments. Following Equation (6.3), p(z1:m|τ1:m) can be

obtained by integrating out φ1:Km:

p(z1:m|τ1:m) =
∫

φ1:Km

p(z1:m,φ1:Km|τ1:m) dφ1:Km

∝

∫
φ1:Km

p(z1:m−1,φ1:Km−1 |τ1:m−1)p(φKm)p(zm|z1:m−1)p(τm|φzm) dφ1:Km .

(6.6)

To solve the E-step in an online fashion, we apply assumed density filtering (Tank

et al., 2015) and approximate p(z1:m−1,φ1:Km−1|τ1:m−1) in Equation (6.6) with

q(z1:m−1)q(φ1:Km−1) = δ (z∗1:m−1)δ (φ
m−1
1:Km−1

). Therefore, q(z1:m) is computed recur-

sively by reusing q(z1:m−1) and the policies φ1:Km−1 are fixed to their latest value

φ
m−1
1:Km−1

. Since a new policy may be created, we also need to integrate over φKm−1+1

to incorporate the possibility that Km = Km−1 + 1. In the M-step, we optimise the

policies φ1:Km to maximise Eq(z1:m) [log p(τ1:m,z1:m|φ1:Km)] with an extra regulari-

sation term, log p(φ1:Km), introduced by the policy prior. The whole procedure is

summarised in Algorithm 5. For the initial step, the trivial solution is given by:

z∗1 = 1,φ 1
1 = argmaxφ1

p(φ1)p(τ1|φ1).

The original CRP in Equation 6.2 encapsulates a prior that the distribution of

the next policy mimics the empirical policy distribution from the history. This prior

is not consistent with our knowledge of the policy evolution process since a new

opponent policy is commonly updated from the previous one. Therefore, we adopt

a sticky variant in Equation 6.7 to incorporate the belief that the opponent tends to

persist in the latest policy (Fox et al., 2008; Xu et al., 2020).

p
(
zm = k

∣∣z1:m−1
)
=



α

m−1+α +κ
, k = Km−1 +1

|k|m−1 +κδ̂ (Km−1,k)
m−1+α +κ

, 1≤ k ≤ Km−1

(6.7)
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Algorithm 5 Streaming MAP for Opponent Modelling
Initial Step:
Solve z∗1,φ

1
z1
= argmaxz∗1,φz1

p(φz1)p(z1)p(τ1|φz1).
for m = {2,3, . . .} do

Update z∗1:m (E-Step):
Maximum-a-posterior (MAP) trajectory assignments z∗1:m:

z∗1:m = argmax
z1:m

p(z1:m|τ1:m)

≈ argmax
z1:m

∫
φ1:Km−1+1

q(z1:m−1)q(φ1:Km−1)p(φKm−1+1)p(zm|z1:m−1)p(τm|φzm)dφ1:Km−1+1

z∗1:m−1 remains unchanged and

z∗m = argmax
zm

∫
φ1:Km−1+1

q(φ1:Km−1)p(φKm−1+1)p(zm|z∗1:m−1)p(τm|φzm)dφ1:Km−1+1

which corresponds to Equation (6.4). Then q(z1:m) = δ (z∗1:m) and Km is set
according to z∗m.

Update φ m
1:Km

(M-Step):

φ
m
1:Km

= argmax
φ1:Km

Ep(z1:m|τ1:m) [log p(τ1:m,z1:m|φ1:Km)]+ log p(φ1:Km)

≈ argmax
φ1:Km

∫
z1:m

q(z1:m) log
m

∏
i=1

p(τi|φzi)dz1:m + log
Km

∏
k=1

p(φk)

= argmax
φ1:Km

log
Km

∏
k=1

p(φk)
m

∏
i=1

p(τi|φz∗i )

For k 6= z∗m, φ m
k = φ

m−1
k and φ m

z∗m
= argmaxφz∗m

log p(φz∗m)∏z∗i =z∗m p(τi|φz∗m) which
corresponds to Equation (6.5).

end for
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where κ ≥ 0 is a ‘stickiness’ parameter and δ̂ is the Kronecker delta function.

Following Equation 6.4, the probability of creating a new policy for τn is given

by:

p(z∗m = k) ∝

∫
φk

α p(φk)p(τm|φk) dφk, (6.8)

where k = Km−1 + 1. We use a Monte Carlo method to estimate Equation 6.8 by

sampling new policies from p(φk). However, sampling new policies from a data-

independent prior p(φk) is likely to yield a low trajectory likelihood p(τm|φk), which

prevents the new policy creation. Therefore, we update the sampled policies to

increase the likelihood p(τm|φk) by taking a few gradient steps before estimating

the integration in Equation 6.8.

According to Equation 6.7, the CRP prior encourages the opponent model

to create redundant policies at the early stage when the number of trajectories n

is small and α dominates. Redundant policies could hurt the algorithm’s perfor-

mance as it incurs extra cost in terms of computation and memory. Trajectories

from the same ground truth policy could be assigned to different φks and these

assignments never revisited. Therefore, an error correction mechanism has to be

introduced. Here, we adopt a symmetric distance metric between two policies and

develop a policy merge procedure based on the metric. Given a set of states S,

we define d(φk,φ j) = Es∼Uniform(S)

[
JS
(

φk(·|s)
∥∥φ j(·|s)

)]
, where JS(·||·) is the

Jensen–Shannon divergence and φk(·|s) is the action distribution given state s un-

der the policy φk. When the distance between two policies is below a pre-defined

threshold η , the merge procedure simply re-assigns all trajectories of φk to φ j.

With the opponent model developed in this section, at step m, we can construct

an opponent policy set Π̃2 = {φ m
k }

Km
k=1 and a distribution σ̃2 over Π̃2. The distribu-

tion σ̃2(φ = φk) ∝ |k|m +κδ̂ (Km,k) is essentially the empirical distribution of z∗1:m

altered by the stickiness factor κ .
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6.3 Exploit Policy-Space Opponent Model
In this section, we present how to learn a safe best response to this meta strategy,

given a predicted distribution σ̃2
φ

1 over opponent’s policies. The advantages of our

approach of focusing on policy space are two-fold: first, we do not need to assume

the access to the opponent’s learning characteristics such as its training algorithm,

its neural network’s architecture or its update frequency; we only require past trajec-

tories. Additionally, the distribution of the types of opponent policy σ̃2 gives us an

approximate stable overview of the current opponent’s playing behaviour compared

to the opponent’s current policy whose updates greatly depend on the opponent’s

learning characteristics and randomness from playing (e.g. exploration behaviour)

and training (e.g. stochastic gradient descent). Therefore, learning a response to

this meta-strategy σ̃2 will rely on less prior knowledge about the opponent’s learn-

ing characteristics and is more robust to noise.

However, there is no guarantee that our learned meta strategy σ1 has no (or at

least low) exploitability. It has been shown that overfitting to an opponent strategy

σ̃2 often renders the resulting learned strategy brittle (Johanson et al., 2008; Lanctot

et al., 2017; Wu et al., 2021). Such a brittle strategy performs badly when playing

against different opponent strategies σ̃2′. Therefore, a more desirable goal is to learn

a safe best response to an opponent meta-strategy σ̃2. RNR solutions consider cases

where the game to solve is fixed and known and the opponent’s policy is stationary.

However, when we consider non-stationary opponent exploitation on policy space,

the size of the meta-game to solve increases with the number of interactions between

the training agent and the adaptive opponent. Furthermore, each player is free to

learn and update its policy at any time point during the process.

To address the above issues, we combine DO with RNR to solve a meta-game

built from EGTA where the opponent’s policies are predicted by the opponent model

from Section 6.2. Pseudo-code explaining our approach is presented in Algorithm 6.

We maintain a utility table U Π̃ wherein rows represent learned policies for the train-

ing agent and columns represent a modelled policy of the opponent respectively. An

1To simplify our notation, we will ignore the subscript φ henceforth.
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Algorithm 6 Exploit Policy-Space Opponent Model (EPSOM)
Input: Hyper-parameter p,H,E, an adaptive opponent −i
Output: Policy π i

1,...,E and meta-policy σ i

Initialise learning agent i’s policy π i
0

Initialise a memory buffer B
Initialise opponent meta-policy σ−i(·) = 1
for epoch e in {1,2, . . . ,E} do

for episode h ∈ {1,2, . . . ,H} do
Play an episode against the opponent with strategy σ1

RNR
Collect the trajectory τe,h and save them into B

end forσ̃2,Π̃2 = opponent modelling(B)
p̄ = 1

|Π̃2|∑ j p jσ̃2( j)

compute missing entries in U Π̃ from Π̃ = Π1× Π̃2 by simulations
,σ2

RNR = RNR solver(U Π̃, p̄, σ̃2)
for episode h ∈ {1,2, . . . ,H} do

Sample π̃2 from σ2
RNR

Train oracle π1 over ρ ∼
(
π1, π̃2)

end forΠ1 = Π1∪
{

π1}
Compute missing entries in U Π̃ from Π̃ = Π1× Π̃2 by simulations
σ1

RNR, = RNR solver(U Π̃, p̄, σ̃2)
end for

epoch is defined as a fixed amount of episodes of games where we play against the

opponent holding our strategy σ1 fixed. At each epoch, we run our opponent model

to predict the current distribution σ̃2 of the opponent’s policies. If a new policy

is detected, we will add it into Π̃2. Given σ̃2, we run a p-RNR solver to obtain

the opponent’s RNR meta-strategies σ2
RNR which is a restricted Nash solution to

the current meta-game assuming that the opponent is playing according to σ̃2 with

probability at least p. Then we train an (approximate) best-response policy to σ2
RNR

and add the new policy into Π1. We re-run a p-RNR solver to obtain our RNR

meta-strategies σ1
RNR which we use to mix the policies in population Π1 for the next

epoch’s playing policy.

When a new type j of modelled policy π2, j is added by our opponent model,

we initialise a p-value p j = pinit to this type. Its p-value is incremented pro-

portionally to the probability that the opponent plays this policy in the follow-

ing epochs, σ̃2( j), and clipped at 1. At each epoch, we calculate the average p-

value p̄ = 1
|Π̃2|∑ j p jσ̃2( j) for solving current RNR strategies. In the extreme case
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where p̄ = 0, σ i
RNR is the same as the Nash strategy in the current meta game.

At another extreme where p̄ = 1, σ2
RNR = σ̃2 and σ1

RNR = BR(σ̃2). Therefore,

when we have low confidence in σ̃2 ( p̄ is low), we learn an approximate best re-

sponse to opponent’s current Nash mixture which will enlarge our current empirical

gamescape (Balduzzi et al., 2019) and thus help to find strategies with lower ex-

ploitability. At the same time, the training agent becomes risk-adverse and the next

epoch strategy σ1
RNR becomes a strategy closer to the Nash strategy of the current

meta game.

When p̄ is high, it means that our opponent model has high confidence that

the opponent is playing σ̃2 and an approximate best counter strategy to σ̃2 will

be added into our policy population. The training agent becomes profit-driven and

σ1
RNR becomes a strategy closer to BR(σ̃2) in the next epoch. Therefore, mixing

the playing policy by σ1
RNR flexibly switches the agent between risk-adverse and

profit-driven depending on the confidence of the opponent model. In contrast with

previous RNR solution, EPSOM can always recover a strategy with approximately

the lowest exploitability it has seen so far as we maintain a population of policies.

6.4 Experiments

In this section, we empirically investigate whether the proposed method can (1) ex-

ploit an unknown non-stationary opponent while still maintaining a strategy with

low exploitability, (2) improve its performance by continued training against differ-

ent opponents and (3) exploit previously unseen opponents without further training.

Variants of Poker offer a rich arena for developing artificial intelligence. The games

feature stochasticity, partial observability and competitive dynamics with unknown

adversaries. In this work, we conduct experiments and evaluation in a simplified

Poker game, Kuhn Poker (Kuhn, 1950). This variant of poker is amenable to game

theoretic analysis whilst retaining all of the elements of the more challenging larger

scale poker games. We use an agent learning to play using the PPO (Schulman

et al., 2017) algorithm as our opponent, which suffices to provide a non-stationary

setting. Our hyperparameter values are presented in Table 6.1.
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Settings Value Description
EPSOM

Oracle method Analytical best response subroutine of getting oracles
d Every 64 episodes of a game Update frequency for EPSOM
Meta-solver Linear Programming Solver Meta-solver method

Dirichlet process mixture opponent model
pinit 0.1 initial p value for a new policy
pstep 0.05 p value increment when a new trajectory is assigned to the policy
α 1.0 concentration parameter of the Dirichlet Process
κ 1.0 ‘stickiness’ factor for modified CRP prior
θ 5.0 std of the policy base distribution: p(φφφ k) =N (0,θ 2I)
η 0.1 threshold for merging two policies into one

PPO Opponent
Learning rate 0.0003 Learning rate for PPO
Optimizer Adam Gradient ascent optimizer
NN architecture 12×64×64×2 Neural network architecture
Mini batch size 128 Mini batch size for SGD
Update frequency Every 128 steps Opponent update after every 128 steps
Update epoch 20 Training epochs in an update
Clip ratio 0.2 PPO clip ratio
γ 0.99 Discount factor
λ 0.97 Lambda-return factor

Kuhn Poker
Observation Dimension 12 12 combinations for self hand and game history
Action Space 2 Pass or Bet

Table 6.1: Hyper-parameter settings.

Kuhn Poker (Kuhn, 1950) is a simple, zero-sum two-player imperfect information

game. The deck of cards is limited to simply a Jack, a Queen and a King with no

notion of suits. Ordering is as usual: Jack < Queen < King. If the game reaches a

showdown, the player with the highest card wins. If either player folds at any time

they lose the round and their opponent takes the entire pot. The game opens with a

round of antes of 1. Then each player is dealt a single card and the remaining card is

placed face down. Once the deal is complete it is time for the first round of bidding:

Player 1 may check (no bet) or bet 1. If Player 1 bet Player 2 may call the bet or

fold. If Player 2 calls there is a showdown for the pot of 4, if they fold Player 1 wins

the pot. If Player 1 checked, Player 2 may check or bet 1. If both players check then

there is a showdown for the pot of 2. If Player 2 bets, following a check by Player

1, then Player 1 can either fold or call. If player 1 calls there is then a showdown

for the pot of 4. The starting player may alternate or be chosen at random for each

deal. Kuhn Poker has the second-mover advantage, i.e., the second player to bet

(Player 2 above) will win in expectation when both players play the best response

to each other. To remove this advantage, we alternate the playing turn between our

agent and the opponent after every episode of a game. In this simple game, we do
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Figure 6.2: Exploitability of different algorithms against a non-stationary opponent imple-
mented by PPO in Kuhn Poker.
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Figure 6.3: Exploitation of different algorithms against a non-stationary opponent imple-
mented by PPO in Kuhn Poker.

not discriminate between the Pass and Fold actions, and thus, each player need only

choose from Pass or Bet.

We select 5 representative algorithms as baselines. PSRO is a popular algo-

rithm which guarantees the convergence to an approximate NE. As PSRO is a self-

play algorithm, its is trained before playing against any adaptive opponents. Be-
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Kuhn Poker

PPO TRPO A2C

EPSOM [0.109] 0.037 (0.042) 0.097 (0.061) 0.187 (0.075)
CEPSOM [0.080] 0.114 (0.022) 0.115 (0.037) 0.187 (0.029)
BC [1.333] −0.562 (0.011) −0.276 (0.126) −0.148 (0.171)
PSRO [0.000] 0.050 (0.014) 0.030 (0.006) 0.086 (0.042)
PPO [0.477] −0.405 (0.014) −0.358 (0.031) −0.347 (0.036)
SAM [0.5] −0.270 (0.003) −0.135 (0.010) −0.107 (0.009)
MCCFR [0.28] −0.154 (0.023) −0.138 (0.027) 0.115 (0.068)

Table 6.2: Zero-shot learning exploitation results. Trained agents (row players) play against
adaptive opponents (column players). Adaptive opponents are allowed to update
100 times and a trained agent’s average exploitation are taken over these 100
updates and 20 random seeds. Values in square brackets are each trained agent’s
exploitability and values in parentheses are stds taken over 20 random seeds.

haviour cloning (BC) models the opponent’s policy by taking maximum likelihood

estimation of history trajectories stored in a sliding-window buffer and learns an

(approximate) best-response policy to it. PPO represents a canonical choice among

many SARL algorithms. Switching Agent Model (SAM) (Everett and Roberts,

2018) deals with the non-stationarity problem by switching between different oppo-

nent models. We also consider Counterfactual Regret Minimisation (CFR) (Zinke-

vich et al., 2007a) as another baseline. However, because all other baselines have

no direct access to their opponent’s policy, to have a relatively fair comparison, we

adopt MCCFR (Lanctot et al., 2009), the Monte Carlo sampling version of CFR.

Even in this setting, MCCFR still has advantages as it can query its opponent to

sample actions for its update which is not allowed in our other experiments. In

our work, as agents and their opponents update asynchronously, we always evaluate

each algorithm’s performance right after the opponent’s update for a more robust

evaluation. The following results reported with mean and standard deviation (std)

are all obtained by repeating the corresponding experiment over 20 random seeds.

As shown in Figure 6.2 and 6.3, EPSOM can achieve a safe strategy with rela-

tively low exploitability while still being able to exploit its opponent. Though PSRO

plays a strategy with the lowest exploitability (≈ 0) it also has very low exploitation

against its opponent. In contrast, BC can exploit its opponent to a similar extent as
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EPSOM but it comes with the cost of high exploitability. The PPO algorithm has

large variance and performs badly on average in this non-stationary setting. Similar

to BC, SAM has high exploitability when it is trained against a PPO opponent. Its

exploitation to the PPO agent also varies greatly. MCCFR trained against adaptive

PPO can reduce its exploitability to a relatively low level (0.28) but is limited to

exploit the PPO opponent, especially considering that we only evaluate how much

a baseline can exploit the PPO opponent after every time the PPO is updated. We

also test a continual learning version of EPSOM which we name CEPSOM. It is

implemented by training an EPSOM agent against 5 different opponents without

re-initialisation thereby building up a richer set of modelled opponent policies and

a more robust best-response policy population. Its average performance over these

opponents is also reported in Figure 6.2 and 6.3. In our experiments, we use an

analytical method to calculate a best response to a given policy.

Next, we test these agent’s performance against three adaptive opponents im-

plemented by PPO, TRPO (Schulman et al., 2015) and A2C (Mnih et al., 2016)

without further training and results are presented in Table 6.2. According to the

Table 6.2, relying on an opponent model to predict the current opponent’s policy

type and flexibly adjusting its playing strategy accordingly, CEPSOM achieves the

highest average exploitation against adaptive opponents. EPSOM also obtains pos-

itive average exploitation but with lower values, since EPSOM has only ever been

trained with one opponent. PSRO plays a safe strategy and performs only slightly

better than EPSOM in terms of opponent exploitation when against PPO opponent.

BC, PPO and SAM perform badly as they overfit to one opponent, and thus they

are exploited by other adaptive opponents. Trained MCCFR also perform badly

against strong adaptive opponents (PPO and TRPO) but it obtains positive exploita-

tion against A2C, a weaker adaptive opponent. Note that, in this zero-shot learning

tournament, although we do not train EPSOM and CEPSOM, they still need to pre-

dict the opponent’s policy and solve the meta-game for a RNR solution given the

prediction.

In Figure 6.4, we want to visualise and compare an RL agent’s learning pro-
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Figure 6.4: Opponent’s learning process modelled by CEPSOM: (left) CEPSOM adjusts
playing strategy online; (right) CEPSOM plays an approximate Nash strategy.

cess in stationary and non-stationary environments respectively. To this end, we

first create a stationary environment by fixing our trained agent CEPSOM to always

play a Nash equilibrium strategy. Then from the perspective of the PPO agent, the

environment becomes stationary. To create a non-stationary environment, we allow

the trained CEPSOM to adjust its meta-strategy online based on the prediction of its

opponent model. Creating a non-stationary opponent this way also allows us to un-

derstand how CEPSOM’s online adaptation affects the opponent’s learning process.

To visualise the learning process, we rely on our opponent model. During the PPO

agent’s training, our opponent model will predict its type based on recent trajecto-

ries produced by PPO. Then we use the t-SNE method to present these predictions

in a 2-D diagram. As we can see from Figure 6.4, when the environment is station-

ary, PPO can learn and gradually converge towards the top side of the plot (right in

Figure 6.4) However, when the environment is non-stationary, because CEPSOM

adapts online, the PPO agent struggles to converge and bounce between the top and

middle part of the plot (left in Figure 6.4).

6.5 Conclusion
In this work, we propose a framework for training an agent to safely exploit its

opponent. Compared to RNR and its variants, our work focuses on non-stationary

opponents. We consider the opponent’s learning as a series of policy transitions and

model such a process by a Dirichlet Process. Safe exploitation means that an agent

can exploit an opponent’s weakness to maximise our utility while simultaneously
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maintaining a strategy which has low exploitability. This property is desirable as

naively overfitting to one type of opponent could easily lead to exploitation by other

opponents. We empirically verify our algorithm’s performance on Kuhn Poker, a

simplified version of Poker.

Opponent modelling based MARL algorithms typically require extra compu-

tation for learning a good opponent model. This cost often scales dramatically with

the number of opponents, action space dimensionality and the complexity of the

problem. It can be a heavy burden on an agent if it learns an opponent model from

scratch online. Therefore, a more realistic way for utilising the power of an op-

ponent model is offline training and online prediction. We build CEPSOM based

on this idea where we train one EPSOM agent across different opponents and ag-

gregate knowledge by maintaining a never-reinitialised opponent model and policy

population. Our experiment results show that CEPSOM can achieve high exploita-

tion against a new adaptive opponent without further training, outperforming other

representative baselines from SARL and MARL. In complex competitive games, a

strong player can often encounter sub-optimal opponents and playing a Nash strat-

egy can potentially forego significant profit. EPSOM, alongside many prior works,

shows the potential of an opponent modelling based approach for solving this prob-

lem, and our preliminary results from CEPSOM demonstrate the possibility of a

trained agent beating an as yet unseen adaptive opponent.

EPSOM is limited by its computation and memory complexity. Naively ap-

plying EPSOM to more complex problems requires a great amount of resources.

To alleviate this problem, we introduce policy merge to remove redundant policies

in our opponent model. This approach could be improved by applying game theo-

retic analysis to our policy populations (agent’s self policies and modelled opponent

policies). We leave the study of improving EPSOM’s scalability to future work.



Chapter 7

Conclusions and Future Work

In this thesis we look into three challenges in multi-agent reinforcement learning

(MARL), i.e., the non-stationarity, the partial observation and the unclear learn-

ing objective. We observe that these issues share a common cause which is the

lack of knowledge of the opponents. Specifically, if we knew the exact actions op-

ponents will take, we could integrate them into the environment’s states and the

non-stationarity problem would disappear. If we knew what our agent’s opponents

observe, the partial observation related to private information would be solved. Fi-

nally, if we knew who our opponents would be, our objective would become clear

and that is to train an agent which can best respond to the opponents. However, in

real problems, we rarely have an oracle to tell us this critical information about our

opponents. One approximate solution would be to learn a model which can reason

about our opponents, which is commonly known as opponent modelling. Based on

this observation, we proposed to solve the aforementioned problems with opponent

modelling based approaches. We investigated solutions for the above challenges

under different conditions. Based on the characteristics of different settings, we

proposed different opponent modelling based methods accordingly.

7.1 Contributions
In Chapter 4, we consider the non-stationarity problem in cooperative games. The

non-stationarity problem arises from opponents’ adaptation. Therefore, to solve

this problem, we could build an opponent model which can predict what opponents’
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policies will be after their adaptation at the current time step. This is generally a

difficult problem which normally requires a lot of prior knowledge about the op-

ponents1 such as its learning rate, its learning algorithm, its network’s architecture.

However, in a cooperative game, we observe that it is reasonable to assume that

the opponent is also learning and adapting towards maximising the shared rewards.

This assumption provides us an approximate direction that our opponents’ policies

are updated. Therefore we proposed an algorithm named ROMMEO which is based

on the observation. It is derived by formulating the reward-maximisation problem

in cooperative games as a Bayesian inference problem. We first derive the evidence

lower bound (ELBO) for our objective and propose two methods for optimising the

ELBO, one exact (ROMMEO-Q) and one approximate (ROMMEO-AC). We test

our methods on the challenging matrix game and differential game and show that

they can outperform a series of strong base lines.

In Chapter 5, we look into the partial observation problem in cooperative

games. As researched in many other prior works, an effective way to resolve partial

observation caused by players having private information in cooperative settings

is to train players to communicate. However, in contrast with previous works, we

focus on the setting where explicit communication is not allowed. Therefore, we

proposed an algorithm named PBL which trains agents to communicate implicitly

by actions. This algorithm sets a training framework which iterates the training

between a policy and belief network. The belief network learns to predict the op-

ponent’s hand by the observed bidding history. The policy learns to bid the optimal

contract given its hand and the prediction about its opponent’s hand from the belief

network. As players cannot communicate about their own hands explicitly, the pol-

icy also needs to learn to communicate about this information by actions implicitly.

Part of our work’s novelty comes from the invention of the communication reward.

It is an auxiliary reward which encourages the policy to take actions which convey

information to the opponents. We empirically demonstrate that our methods can

achieve near optimal performance in a matrix problem and scale to complex prob-

1We assume our opponent is also a deep reinforcement learning algorithm.
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lems such as contract bridge bidding. We con-duct an initial investigation of the

further development of machine theory of mind. Specifically, we enable an agent

to use its own belief model to attribute mental states to others and act accordingly.

We test this framework and achieve some initial success in a multi-agent particle

environment under distributed training.

In Chapter 6, we study the non-stationarity and unclear learning objective in

zero-sum games. We propose to consider the opponents’ non-stationary learning

process as transitions from one policy type to another. Then we can model these

transitions by a Dirichlet process such that we could have the theoretically infinite

number of policy types. To the best of our knowledge, this is the first work which

handles non-stationary opponent modelling by the Dirichlet process. For defining

the learning objective, we consider the RNR solution concept proposed in (Johan-

son et al., 2008) and further studied in (Johanson and Bowling, 2009; Ponsen et al.,

2014; Bard et al., 2013). Our contribution to this topic is that we take into account

the non-stationarity induced by opponents when we try to optimise for this trade-

off. Most prior works only consider how to exploit one stationary opponent while

keeping the agent itself with low exploitability. However, in realistic settings, we

need to consider how to exploit opponents which change over time while maintain-

ing low exploitability. Changes can come from opponents also having the ability

to learn and adapt or opponents that are different in different tournaments or both.

Therefore, our work extends previous works to the non-stationarity setting which

is more realistic and therefore more significant to the progress of research in this

area. Our empirical results show that our agents can learn a safe policy while still

exploiting the non-stationary opponents during its training. Once trained and fixed,

our agents can still exploit different adaptive opponents from ones seen in the train-

ing time by adjusting its meta-strategy according to the prediction of its opponent

model.
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7.2 Future Work
Our works are well motivated as they target classical challenges in MARL and novel

in the sense that we consider the settings or approaches with characteristics which

are rarely discussed in prior works. However, two common problems associated

with opponent modelling methods are not discussed well in this thesis, which are

the scalability to multiple opponents and the expensive computation cost. These

theoretical or empirical limitations illuminate our future research works’ directions

and we will discuss them in detail in the rest of this section.

7.2.1 Scalability to Multiple Opponents

Works introduced in this thesis empirically investigated problems where there is

only one opponent, but an agent normally has to interact with multiple opponents

concurrently in real problems. Therefore, strong MARL algorithms which can be

applied to solve real-world problems are expected to have the scalability to mul-

tiple opponents (Yang and Wang, 2020; Zhang et al., 2019). ROMMEO and EP-

SOM study problems whose formulation is not limited to only one-opponent set-

ting. However, extending these two works to multiple opponents setting is non-

trivial. As with many other works, they need to build an opponent model which

predicts joint actions of the agent’s opponents. However, the dimension of the oppo-

nents’ joint actions space grows exponentially with the number of opponents (Jon-

sson and Rovatsos, 2011). This is also known as the combinatorial nature of

MARL (Hernandez-Leal et al., 2019). It greatly increases the computation cost, the

number of training data and the difficulty of learning an accurate opponent model.

A typical approach to this problem is to additionally assume that there exists a fac-

torised structure among agents or introduce additional assumption about opponents’

impact on an agent’s play (Crosby et al., 2013; Yang et al., 2018). For example, if

we assume each of the opponents learn and act independently, then we could model

these opponent independently with fully separate models. This strong assumption

can reduce the exponential complexity to polynomial complexity, but it is not realis-

tic. Another promising direction is to observe that an agent may only need to attend

a very limited number of opponents rather than all opponents. An illustrative exam-
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ple would be autonomous driving where an agent only need to reason about other

vehicles near it. Therefore, we could learn an additional attention model (Vaswani

et al., 2017) which can help the agent to identify important opponents the agent

should attend to.

For approaches focusing on the communication between agents such as PBL,

the problem is more complex because they not only suffer from the exponentially

growing complexity but also need to consider how to communicate to multiple op-

ponents effectively. For instance, recall we calculate the communication reward

in PBL by comparing how much the prediction of the opponent’s model becomes

closer to an agent’s private information before and after the opponent observing the

corresponding action. Therefore, if there are multiple opponents in one system, we

need to consider which opponent’s model to use for calculating an agent’s com-

munication reward. A natural solution we could look into for this problem would

be to introduce the common knowledge (Schroeder de Witt et al., 2019) mecha-

nism to agents in a system. Then an agent’s learning objective for communication

skills would be to convey information in the way that an opponent with the com-

mon knowledge would be able to understand, which mimics how humans learn to

communicate.

7.2.2 Expensive Computation Cost

Methods introduced in this thesis build separate models to predict information about

the opponents. The training of the models and inference from the models will both

incur extra computation cost. To obtain an opponent model with adequate accu-

racy in complex problems, a prohibitively large number of training examples are

normally required (He et al., 2016). Therefore, to learn an opponent model online

while playing against the modelled opponents is challenging. Furthermore, when

we have an accurate opponent model, learning an approximate best response to the

model will also needs many training samples as we know that deep RL algorithms

often suffer from poor sample efficiency (Bard et al., 2013). Hence, we could see

that opponent model based approaches often have expensive computation costs and

it is normally unrealistic to deploy the algorithm online.
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When we consider fully cooperative problems, we might assume that agents

trained together will also be tested together so that no extra opponent models and

the corresponding adaptation are required online in test time. However, this is not

always true in real problems (Hu et al., 2020). For example, rescue teams trained

in different organisations may need to coordinate together immediately to conduct

space search and rescue tasks when a natural disaster happens. In competitive

games, it is much less likely to assume the opponents seen in test time will be the

same as ones seen in training time. Therefore, we believe enabling agents to reason

and adapt their opponents efficiently online in test time is an important problem for

our future work.

A promising solution would be to move the heavy computation of an opponent

model based approach offline and only do computationally light inference online.

CEPSOM introduced in Chapter 6 is motivated by this intuition. Specifically, be-

fore we start a real tournament and play against real opponents, we first build a

population of opponent models and a population of the corresponding robust re-

sponse policies by playing CEPSOM against ‘pseudo’ opponents created by us.

Then in the real tournament, we do not need to train CEPSOM but only solve RNR

solutions for the meta-game online given the predictions of our trained opponent

models. We effectively trade space complexity for time complexity. Similar idea is

also studied in (Bard et al., 2013). However, CEPSOM is only verified empirically

on small scale problems. When applied to large scale problems where opponents

have widely varied strategies, naively adding opponent models or response policies

into a population may soon exhaust our space resources which leads to poor per-

formance. Therefore, introducing measures such as diversity (Nieves et al., 2021)

and relative population performance (Balduzzi et al., 2019) to keep the populations

diverse and representative is a future direction we will look into.

7.2.3 A General Solution

The non-stationarity, partial observation and unclear learning objective problems

share the same cause which is the training agent has limited knowledge of its oppo-

nents. Therefore, one would intuitively expect we could solve all of these problems
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together with one solution. However, in this thesis, we propose three different op-

ponent modelling based algorithms to solve these problems individually or a com-

bination of two. Moreover, these algorithms can only be applied to or have only be

verified in specific settings. Specifically, ROMMEO and PBL are only considered

in cooperative setting in the thesis. EPSOM, on the other hand, is only applicable

to zero-sum games. Therefore, a solution which can solve the three challenges to-

gether and is general to different settings is another future work direction for us to

explore.

7.3 Why Opponent Modelling?
We have discussed several times the motivation of focusing on opponent mod-

elling based approaches in this thesis. Namely, they can be solutions to the non-

stationarity, partial observation and unclear learning objective problems which are

all important issues in the MARL community. However, in this ending section, I

want to discuss why we need to study opponent modelling in a broader sense.

As stated in the previous section, opponent modelling is often computationally

expensive. However, the distribution of computation resources between different

entities such as individuals, organisations, companies and countries is imbalanced.

Therefore, an agent which has enormous computation power may utilise an op-

ponent model to obtain advantages when it interacts with other agents. A typical

example we often see nowadays is price discrimination powered by user profiling.

As computation cost also has the economies of scale property, it is reasonable to be-

lieve the gap between different entities will continue to enlarge in future. Therefore,

understanding the capabilities and limits of opponent modelling based approaches

is an important topic. It will help us to regularise the use of opponent models by

agents with vast computation resources and prevent them from taking unfair advan-

tages over agents with limited computation resources.
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Matej Moravčı́k, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan
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alized training approach for multiagent learning. In 8th International Conference

on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,

http://proceedings.mlr.press/v48/mniha16.html
https://science.sciencemag.org/content/356/6337/508
https://science.sciencemag.org/content/356/6337/508


BIBLIOGRAPHY 141

2020. OpenReview.net, 2020. URL https://openreview.net/forum?

id=Bkl5kxrKDr.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the

Gap Between Value and Policy Based Reinforcement Learning. arXiv e-prints,

art. arXiv:1702.08892, February 2017.

Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. Deep reinforce-

ment learning for multi-agent systems: A review of challenges, solutions and ap-

plications. CoRR, abs/1812.11794, 2018. URL http://arxiv.org/abs/

1812.11794.

Nicolas Perez Nieves, Yaodong Yang, Oliver Slumbers, David Henry Mguni, and

Jun Wang. Modelling behavioural diversity for learning in open-ended games.

CoRR, abs/2103.07927, 2021. URL https://arxiv.org/abs/2103.

07927.
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