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Abstract

Data from a paediatric intensive care transport service based in the South East
of England between 2006 and 2018 are studied using generalized additive models
to investigate the effects of extreme weather on demand in winter. Noticeable
increases in daily demand for the service are uncovered after periods of extreme
weather, and can be partitioned into two characteristically different phenomena,
most pronounced at 2 days and 7 days after a period of particularly low tem-
perature combined with either high or low humidity. The effect is more visible
when virus prevalence is accounted for, showing that demand can increase by
as much as 30% 7 days after a period of low temperature and low humidity, and
20% 2 days after a period of low temperature and high humidity.

Keywords: Demand forecasting, Paediatric intensive care transport services,
Generalized additive models

1. Introduction

Paediatric intensive care transport services operate throughout the United
Kingdom as a means of transferring critically-ill children quickly and safely
from a local district hospital to a specialist facility. Provision of such services is
important as it allows very sick children to receive intensive care level treatment5

more quickly. Running such a service is not without cost since the services are
staffed by highly specialised intensive care clinical teams, however the use of such
specialised teams has been shown to increase the survival of these critically-ill
children [1]. Retrieval services are quite small (11 locations covering England
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and Wales, each with typically 1-2 teams available to transport children) but10

the population they serve is high risk. In times of high demand, there may
not be a team available to retrieve a critically-ill child which could impact on
that child’s eventual outcome. Being able to predict increases in demand a few
days in advance could allow for temporary increases in resourcing to reduce the
chance of a team not being available when needed [2].15

In this article we analyse 12 years of data (2006-2018) from the Children’s
Acute Transport Service (CATS), which serves around 50 district general hospi-
tals in the North Thames, Hertfordshire, Bedfordshire, Essex, Norfolk, Suffolk
and Cambridgeshire regions of England. CATS, based at Great Ormond Street
Hospital, is the paediatric intensive care transport service that performs the20

most retrievals each year in the UK (e.g. [3]) and one of the largest specialist
paediatric retrieval services in Europe [4]. In 2017/18, for example, the service
handled nearly 2,400 calls and mobilized a specialist team for more than 1,200
patient transports, an average of 7 advice calls and 3 patient transports per day
[3]. The CATS service has been operational since 2001 and since then demand25

for services has steadily increased year-on-year.
There is a strong seasonal component to demand for CATS services - the

number of referrals almost doubles during winter [5, 6]. In addition to modelling
these effects, however, a key focus of the present study is short-term weather-
induced fluctuations in demand for the service during winter. Members of the30

CATS team have observed anecdotally that there is a ‘cold snap’ effect; meaning
a temporary spike in referrals shortly after a period of extremely cold weather.
The hypothesis is that a period of very low temperature combined with ex-
treme humidity induces an increase in referrals, particularly those related to
respiratory illnesses. The connection between weather and respiratory illnesses35

is well-studied [7, 8]. It is known that viruses tend to be more prevalent in
colder temperatures, with many different explanations offered [9]. The effects
of humidity appear to vary depending on the type of illness [7], with evidence
that both very high and very low humidities have been associated with increas-
ing susceptibility to different types of respiratory condition. We discuss this in40

more detail in Section 7.1. The CATS population tend to be young children with
small airways and vulnerable immune systems who are more likely to develop
respiratory distress, so even a small effect could impact demand for services.
Therefore, following an incubation period, one would expect an increase in re-
ferrals for CATS services. Understanding the size and duration of such an effect45

to assess the practicality of predicting and flexing the staffing of the service to
meet the needs of the children is the main goal of the present work. In Section
7.2 we discuss implications of the study findings for resource planning of the
service. We analyse referrals to the service from the period April 2006 to May
2018, which includes both advice calls and demand for transport.50

Many previous studies model the association between weather and ambu-
lance demand, but very few with the purpose of analysing short-term changes
as a result of periods of extreme weather. Wong & Lai [10] note that including
weather variables such as average temperature and relative humidity as covari-
ates in auto-regressive integrated moving-average (ARIMA) models to forecast55
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ambulance demand in Hong Kong decreased the root mean squared error in
predictions by 10% for seven-day forecasts and 8.8% for one-day forecasts for
the period May 2006 - April 2009. Thornes et al. studied ambulance call-outs in
Birmingham [11] from 2007-2011, and note that ambulance call-outs for patients
with breathing problems increased significantly in December 2010, the coldest60

month of the study period.
The link between weather and general hospital admissions has also been

studied previously. Lee et al. [12], for example, investigated the association be-
tween meteorological factors and visits to a paediatric emergency department
in Changwon, Korea from 2005-2014. Using a quasi-Poisson generalized linear65

model with some non-parametric terms included the authors found that visits
increased two days after a rainy or snowy day. The focus of the study, how-
ever, was mainly on modelling the reduction of visits to hospitals during bad
weather, so this effect may well be an artefact of visits being delayed, something
that would not be expected of emergency referrals to paediatric intensive care70

(the focus of the present study). Loh et al. [13] modelled weekly incidence of
respiratory infections in a Singapore hospital and associations with both climate
and clinical factors. A time series modelling approach (ARIMA) was taken, with
linear covariates included for climate variables. It was found that both tempera-
ture and relative humidity were negatively correlated with virus incidence. The75

data, being weekly, was not as granular as that of the present work, which may
explain why no lags were needed for the weather variables that were used as
model covariates.

2. Materials

The data consists of 12 years of anonymised referrals to the CATS service,80

from 1 April 2006 until 2 May 2018. There were 26,753 referrals during this
period. Each referral record includes a time stamp, the age of the patient,
the referring hospital, one of 20 diagnostic categories, and the type of CATS
service requested, either an advice call or demand for transport or out of scope.
The majority of referrals occur between 09:00-23:00, and the most common85

diagnostic category is respiratory disease, accounting for 34% of the total. We
grouped referrals into into daily (midnight to midnight) counts for modelling
purposes. All the data are used in the modelling process, not only the referrals
that occurred during the Winter period.

We used two sources of meteorological data that covered the study period:90

the National Oceanic and Atmospheric Administration (NOAA) Global Daily
Historical Climatology Network [14], and weather station data provided by the
University of Cambridge Digital Technology Group (DTG) [15]. The NOAA
data contains daily temperature readings from multiple weather stations around
the world. There are 114 NOAA weather stations in the UK, and 5 of these95

are within the CATS operating region. Comparisons of data at the 5 stations
indicated that temperature did not vary a great deal over the study region, and
so the most abundant source of daily data (Heathrow) was used for analysis.
The DTG data contained various meteorological recordings, including humidity,
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made at a weather station in Cambridge, which is geographically at the centre100

of the CATS region, each at 30 minute intervals throughout the study period.
Daily average humidity readings from this source were taken as a proxy for
humidity across the CATS operating region.

A summary of the finalised data set used in the analysis is given in Table 1.
This also includes virus data, discussed in Section 6.3.105

Table 1: The final dataset used for analysis.

Variable Source Comment
Date CATS Study day, 1-4415
Day CATS Day of the year, 1-365
Calls CATS Daily calls made to the CATS operating

team
Demand CATS Daily requests for transport made to

the CATS team
Respiratory calls CATS Daily calls related to respiratory ill-

nesses
Respiratory demand CATS Daily requests for transport related to

respiratory illnesses
Temperature NOAA Average temperature (degrees Celsius)

on study date, recorded at Heathrow
Humidity DTG Average relative humidity (%) on study

date, recorded in Cambridge
Virus PHE Indicator variable to reflect prevalence

of respiratory viruses in England and
Wales on study date (see Section 6.3)

CATS: Children’s Acute Transport Service, NOAA: National Oceanic and Atmospheric
Association, DTG: Digital Technology Group (University of Cambridge), PHE: Public

Health England.

3. Exploratory data analysis

To develop a basic understanding of the referrals data we performed a sea-
sonal trend decomposition [16] (Figure 1) using the R statistical software [17].

The overall trend in increasing demand for the service over the study period
can be clearly seen (using only the respiratory diagnostic category produces a110

similar result). The large seasonal variation is also striking. To further explore
the seasonality a 30-day moving average plot of each individual study year is
overlaid on a single graph in Figure 2.

While there is some variation between different years, there is a consistent
increase in referrals from November to February, a well known feature of de-115

mand for emergency services in health care [2]. Clearly such a seasonal pat-
tern is strongly influenced by meteorological factors, however the focus of the
present study is not these seasonal changes, but rather short-term fluctuations
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Figure 1: Seasonal trend (STL) decomposition of all referrals across study period. Purple
dots in the first plot indicate days in which temperature is in the lowest 10th percentile and
humidity is in either the lowest or highest 10th percentile.
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Figure 2: Smoothed referrals/day during each year of the study period, 30-day moving average
plot.

in weather patterns and the effects these have on referrals over and above the
annual “winter surge” in demand. Controlling for the long-term and seasonal120

effects is therefore an important modelling component. We note that while there
may be short-term fluctuations in demand for other times of year, these are of
less importance to the service since there is plenty of capacity to meet extra
demand outside of winter (because baseline demand is lower).

Figure 3 shows the average monthly temperature and relative humidity125

across the study period. This information can be used to assess the degree
to which seasonal and short-term weather effects can be separated. The figure
shows that average temperatures in the coldest months are 5.6 degrees Celsius,
and in the warmest month 18.7 degrees. Similarly, average relative humidity
ranges from 70-90%. The two covariates are clearly negatively associated. The130

10th and 20th percentiles for temperature are 2.44 and 5.13 degrees Celsius,
and for relative humidity the 10th and 20th percentiles are 65.5% and 70.0%
and the 80th and 90th are 89.7% and 93.6%.

4. Modelling approach

Aggregating the data into daily counts provides a straightforward frame-135

work for probabilistic modelling. The natural starting point is to assume that
the number of referrals/advice calls/requests for transport per day will approxi-
mately follow a Poisson distribution. If Yt represents some appropriate response
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Figure 3: Average temperature (blue bars) and relative humidity (red line) values in each
calendar month, taken over the study period April 2006 - April 2018, using the NOAA and
DTG datasets.

(e.g. total number of referrals) on day t, then we assume Yt ∼ Poisson(µt). The
mean µt can be chosen to depend on a number of covariates, and ideally this is140

done in such a way that useful inferences can be made about these. We chose
the generalized additive modelling framework to construct an appropriate model
for µt, details of which are given in the next subsection.

The daily counts for the CATS service are small and building a model for
Poisson data with relatively low daily counts is not straightforward. The coef-145

ficient of variation for Yt is 1/
√
µt, meaning that when counts are small, as is

the case here, the level of relative variation in the data is higher. As a result,
building a good predictive model is a challenge. Aggregating the data further
into weekly counts would alleviate the issue, but also make it impossible to cap-
ture the short-term effects of interest in this study. Nonetheless, for inference150

purposes an informative model at the daily level can still be built. In Section
6 we explore various extensions to the Poisson approach, such as models with
auto-correlated residuals, controlling for over- or under-dispersion, and assum-
ing different distributions for the response.

4.1. Generalized additive models155

Generalized additive models (GAMs) [18] are a flexible approach to mod-
elling data in which different variables may be related through some unknown
nonlinear mechanism. Given data {(x1t, ..., xpt, yt)}nt=1, we suppose that Yt
follows some known exponential family distribution (e.g. Normal, Poisson, Bi-
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nomial) with E[Yt] = µt, and seek to fit a model of the form160

g(µt) = α+

p∑
j=1

fj(xjt), (1)

where α ∈ R, each fj is a smooth real-valued function, and g is called the
link function. One can also include terms of the form fjk(xjt, xkt) in the above
expression, to allow for interactions between different covariates. GAMs offer an
attractive compromise between black-box predictive modelling approaches that
can be difficult to interpret and more restrictive linear modelling frameworks165

that can often impose unrealistic assumptions.
The functions fj and the intercept term are inferred from the data in a GAM:

the user need only specify the distribution for the response Yt and the form of
the link function g. In the case of Yt ∼ Poisson(µt), then the canonical choice
of link function is g(µt) = log(µt), which ensures that µt is positive. To avoid170

issues of over-fitting, the model is typically trained using penalized maximum
likelihood methods, with the level of penalisation determined either by general-
ized cross-validation or empirical Bayes techniques [18, Ch. 4]. The individual
fj ’s are learned by first specifying a set of basis functions bjk for 1 ≤ k ≤ kj ,
and then using penalised least squares with a degree of smoothing/regularisation175

controlled by some parameter λj ∈ R to estimate the parameters γjk in the spec-
ification fj(x) =

∑
k γjkbjk(x). A spline basis using kj knots within the range

of the data is typically used [18, Ch. 4]. There are therefore two mechanisms
by which the degree of smoothness of each fj can be controlled to prevent over-
fitting: choosing a smaller number of knots (controlled by the user), or allowing180

a larger value for λj (which is typically tuned to minimise out-of-sample error
during the inference procedure).

We used the mgcv package [19] within the R statistical software [17] to fit
models to the data. We chose the restricted maximum likelihood approach to
estimating the degree of smoothing parameter λj of each smooth term fj , which185

generally gives more stable results in the presence of model miss-specification
where generalized cross-validation can lead to under-smoothing (see [20, 21] for
more on this).

4.2. Model building

We fitted several models to the referrals and meteorological data, using dif-190

ferent responses and different additive structures for log(µt). Each formulation
included features designed to capture both the long-term and seasonal behaviour
of the response over the study period, as well as the short-term weather effects
of our specific interest.

A simple starting point is the collection of lag−k models of the form

log(µt) =α+ f1(t) + f2(dayt) + f3(tempt−k,humidt−k) (2)

+

6∑
j=1

βjI(dowt = j) + γht,
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where t denotes the day of the study (from 1 − 4415), dayt denotes the day of195

the year on study day t (from 1− 365, where 1 represents 1st January), and the
variables tempi and humidi represent the temperature and humidity on study
day i. The integer k indexes a particular model, and determines the lag, or
in real terms the assumed period of time required for any medical conditions
resulting from adverse weather to manifest. The variable ht = 1 if study day200

t was a public holiday in England, and 0 otherwise, and dowt ∈ {1, ..., 6} is a
factor to control for the day of the week. The indicator function I(x) := 1 if the
Boolean variable x is true and 0 otherwise.

Some variations of the above formulation were also tested, such as removing
f2 and allowing f1 to capture both long-term and seasonal effects. This approach205

has the advantage of being able to capture different seasonal effects in different
years, at the expense of requiring many more basis functions to estimate the
function f1 appropriately, which significantly increases the effective number of
parameters to be inferred. A risk in this formulation is identifiability issues
between temporal and weather effects, since the association between the time210

of year and temperature is high. The use of the f1, f2 formulation shown in
(2) addresses these issues to some degree, as a high amount of smoothing can
be imposed on f1 to ensure that only an overall trend is captured, and f2 is
restricted to fit an average seasonal affect across multiple years, meaning short-
term fluctuations resulting from colder than usual temperatures are smoothed215

out and would contribute only to f3. Cyclic cubic splines were used in the
estimation of f2 to ensure that there were no discontinuities between the start
and end of each year (see Figure 4 for an example).

It should be noted that for any particular choice of k (2) is almost certainly
miss-specified, as it is very unlikely that a single lag will capture the heterogene-
ity in lag times experienced by different patients after an extreme weather event.
It does, however, serve as a starting point for analysis to give an approximate
picture of the impact of any single value of k. To give a more accurate picture
of the impact of different lags a single index model formulation was then used,
(e.g. [18, Ch. 7]), which has the formulation

log(µt) =α+ f1(t) + f2(dayt) + f3

(
K∑

k=0

wktempt−k,

K∑
k=0

wkhumidt−k

)
(3)

+

6∑
j=1

βjI(dowt = j) + γht,

with the weights wk learned from the data, and satisfying wk > 0 and
∑K

k=1 wk =
1. The single index approach allows weather effects at multiple time lags to be220

incorporated into the same model, without overburdening the modelling task
by attempting to estimate several bi-variate smooth terms simultaneously for
different lags.

The single index and fixed lag models can be combined to provide a good
understanding of the overall short-term effects of weather on referrals, as the225

weights in the former reveal the most influential lag terms, and the individual
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lag formulations provide a more nuanced (albeit approximate) understanding of
the effects at each individual lag. We illustrate how this combination leads to
a particularly expressive way of capturing the effects of weather on referrals in
the next section.230

5. Results

All model formulations were tested using both all referrals and demand for
transport only as the response, and in addition either across all diagnostic cat-
egories or focusing exclusively on respiratory referrals. The results across the
different formulations were in fact quite similar, providing some evidence that235

the identified effects are real. The assumption is that referrals focused on respi-
ratory conditions are the most likely to be affected by weather fluctuations (and
respiratory conditions drive the annual winter surge), but equally restricting to
a smaller data set in this way increases the coefficient of variation, making it
harder to estimate the different effects reliably. The results presented in the240

below sections are using all referrals as the response, which proved the most
robust.

5.1. Fixed lag models

Generally the fixed lag models varied very little across different choices of k
in terms of inferring the overall trend f1(t) and the seasonal pattern f2(dayt).245

An example in the case k = 4 is given in Figure 4. The overall increasing trend
and increase in demand during the Winter period can be clearly seen in the
forms of f1 and f2.

Contour plots of the estimated bi-variate smooth function of temperature
and humidity (f3) for fixed lags from k = 0 up to k = 10 are shown in Figure 5.250

Initially with no lag there appears to be little association between the weather
variables and demand for the service, which makes sense as extreme weather
is unlikely to make children critically-ill instantaneously. The effects between
k = 1 and k = 5, most pronounced for k = 2, suggest that a combination of
low temperature and high humidity a few days previously results, on average, in255

an increase in demand of up to 20% depending on the severity of the weather.
This is consistent with the ‘cold snap’ hypothesis described in the introduction.
When k ≥ 6, however, a noticeably different pattern can be observed in the
plots. Here high humidity does not appear to be important, and if anything
lower humidity (combined with low temperature) seems to be an indicator of260

an increase in referrals. The models k = 7 and k = 10 in particular score well
according to the AIC (Akaike Information Criterion [22]) and REML (restricted
maximum likelihood) scores of model fit (REML scores shown in Figure 6).

5.2. Single index model

We have seen above that various single lag models capture different levels and265

types of association between weather and referrals. The single index formulation
allows us to infer which of these lags are the most informative in predicting
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Figure 4: Estimated smooth effects of time (left) and day of the year (right) on the logged-
mean total number of calls, taken from lag-4 model.

referrals, and also to some degree control for any interactions between different
lags by including them in the same model. Figure 7 shows the estimated values
of each weight wk for k ∈ {0, ..., 10}.270

The single index model attaches the most prominent weights to the 2-day
and 7-day lag formulations. This is intuitive, as the 2-day and 7-day lag in
particular seem to represent quite different effects. The 2-day lag model is also
the best REML fit among the k = 0 to 5 suite of models, all of which appear
to estimate characteristically similar weather effects as evidenced by Figure 5.275

Similarly the k = 7 model is among the best REML fits from the models with
6 ≤ k ≤ 9 lags. The k = 10 model may again represent a slightly different
effect.

Full estimates for each of the single index model weights, together with
estimates for the parameters β1, ..., β6, α and γ are given in Appendix B.280

6. Extensions

6.1. Residual auto-correlation

The time series structure of the referrals data suggests that there might be
auto-correlation in the model residuals. Some example residual auto-correlation
plots are shown in Figure A.11 in Appendix A, showing that this residual auto-285

correlation did not seem to be a feature of our fitted models. One possible

11



0 5 15 25

50
70

90
Lag =  0

0 5 15 25

50
70

90

Lag =  1

0 5 15 25

50
70

90

Lag =  2

0 5 15 25

50
70

90

Lag =  3

0 5 15 25

50
70

90

Lag =  4

0 5 15 25

50
70

90

Lag =  5

0 5 15 25

50
70

90

Lag =  6

0 5 15 25

50
70

90

Lag =  7

0 5 15 25

50
70

90

Lag =  8

0 5 15 25

50
70

90

Lag =  9

0 5 15 25

50
70

90

Lag =  10

Figure 5: Bi-variate smooth term plots for each of the fixed lag models. All x-axes are
temperature, all y-axes are humidity. Red indicates higher demand and blue lower demand.

explanation is that the data are counts with relatively small numbers and hence
large relative variation, which may dominate any residual auto-correlation ef-
fects that are present. Another is that the temporal structure is fully captured
using the functions f1 and f2. Nonetheless we did fit a Generalized Additive290

Mixed Model to the data (GAMM) [18, Ch. 7] with an AR(1) residual structure
to test for any relevant patterns. These models are a challenge to fit using the
current suite of implementable methods in the mgcv package, as they are com-
putationally intensive and not as numerically robust as GAMs, but in the single
lag k = 4 case the model fitting process converged successfully with an estimated295

value for the AR(1) correlation parameter ρ̂ = 0.05, suggesting that very little
auto-correlation was present in the residuals. The estimated bi-variate smooth
function of temperature and humidity in the AR(1) residual case is shown in
Figure A.10 of Appendix A, and is consistent with the uncorrelated case.

6.2. Different response distributions300

Over-dispersion is common in regression models for count data in which
the response is assumed to be Poisson, as the imposed structure implies that
Var(Yt) = µt. Often some desired covariates cannot be included in the model,
which can have the effect of inflating the variance of Yt. One popular solution is
the quasi-Poisson approach [23]. Rather than specify an entire distribution for305

Yt, in the quasi-Poisson formulation only the mean µt and variance are directly
modelled, and the variance is assumed to be φµt, where φ > 0 is called the
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dispersion parameter. An estimate φ̂ � 1 indicates significant over-dispersion.
To test for over-dispersion quasi-Poisson versions of each of the above fixed lag
models were fitted to the referrals data. In every case φ̂ < 1.04, suggesting310

that very little over-dispersion was present, and the estimates for f1, f2 and
f3 were essentially unchanged. Using an alternative method for assessing over-
dispersion, assuming that Yt instead follows a negative Binomial distribution,
also showed minimal over-dispersion.

There are more days with zero demand in the data than would be expected315

under the Poisson assumption. A natural way to capture such effects is using
a zero-inflated model, in which the response is assumed to be zero with some
probability (1−p), and conditional on not being zero it is modelled as a truncated
Poisson variable (truncated to be ≥ 1, e.g. [24]) . Zero-inflated models can allow
for a much more flexible model structure, but can also sometimes be ineffective,320

particularly when the covariates do appear to have a relationship with whether
or not the response takes a zero value. We fitted a zero-inflated Poisson GAM
using the mgcv package, which offers functionality to estimate a fixed p from
the data, and found p̂ = 0.98, indicating that the best estimates from the data
and proposed modelling structure were that only 2% of the data should be zero.325

This contrasted significantly with the reality in which 18% of total referrals
were zero. The likely explanation is that the covariates are indeed associated
with the response being equal to or greater than zero. Unsurprisingly given the
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estimated value of p, the zero-inflated Poisson models gave very similar results
to the Poisson models in terms of inferences for all other effects.330

6.3. Including virus information

Adverse short-term weather is unlikely to result in high referrals in isola-
tion, particularly for respiratory referrals. The large majority of sick children
will have been exposed to some pathogen such as influenza or the common cold
virus. To capture this ‘probability of exposure’ effect some indication of virus
prevalence was incorporated into the model. The data we used for this purpose
are the routine respiratory infection data weekly reports provided by Public
Health England (e.g. [25]). The reports provide information about the promi-
nence of various respiratory infections in England and Wales on a weekly basis.
Data are available throughout the study period, however only at a weekly level
and with 7% of weeks missing. Because of the coarse granularity and missing-
ness we incorporated this information into the model using a simple indicator
variable

virust := I(At > qA or Bt > qB), (4)

where At and Bt denote the number of recorded reports of influenza A and
B infection in England and Wales during the week of study day t, qA and qB
denote the 90% quantiles for weekly reports of Influenza A and B respectively
across the study period, and I(x) = 1 if x is true and 0 otherwise. In words, the335

virus variable is a factor with two categories, category zero to indicate lack of
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outbreak of influenza, and category one to indicate that the number of reports
of some form of influenza virus are unusually high.

The new extended lag-k model formulation is identical to (2), except that
the bi-variate smooth term is replaced with the term

2∑
i=1

f2+i(tempt−k,humidt−k)I(virust−k = i− 1). (5)

In effect, the model now fits two bi-variate smooth functions at each lag, one to
assess the effects of temperature and humidity on days when the virus indicator340

is zero, and another when it is one (implying that the viral load is high).
The addition of the virus covariate had a small but noticeable effect on the

model fitting. The functions f1 and f2 were essentially unchanged, but the same
is not true of the bi-variate smooth terms, shown in Figure 8 for the 2 day, 4
day, 7 day and 10 day lag models.345
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Figure 8: Bi-variate smooth term plots for the fixed lag 2, 4, 7 and 10 models, with virus
indicator low (first row) and high (second row). Red indicates high demand and blue lower
demand.

In each case there is some refinement to the inference. In particular in the
lag−2 and lag−7 cases the effect size is increased in the case of high viral load,
which can now be as high as 30% for the 7 day lag model. Wald-type tests to
assess the significance of smooth terms in generalized additive models developed
in [26] based on the approach of [27] indicated that both smooth terms included350

in the virus models were significant (p < 0.01), but an analysis of deviance

15



comparing the lag-2, 4 and 7 models with and without the virus terms was less
conclusive (p = 0.99 for lag-2, p = 0.34 for lag-4, p = 0.11 for lag-7, p = 0.42 for
lag-10). The apparent disagreement between these conclusions can be explained
by the fact the Wald tests are assessing whether or not it is plausible that the355

true smooth term could be the zero function. The low p-value here indicates
that this is not very plausible. The deviance measure, however, assesses the
predictive ability of the model, and whether it is worth including this extra
term in terms of predictive ability as measured by the deviance, which is a
sum across all observations in the dataset. This score is only slightly affected360

because there are relatively few days in the dataset in which temperature is
low, humidity is high/low and in addition the viral load is high. As such, this
measure of predictive ability is not influenced much by the predictions for these
days being slightly better, as they are a small fraction of the total number of
study days from which the deviance is calculated.365

7. Discussion

In this paper we have established for the first time a similar association
between periods of low temperature and high humidity and increased demand
for specialised paediatric ambulance services. From both fixed lag models and
the single index model we see an increase in demand for transport to intensive370

care at 2 days (low temperature, high humidity) and 7 days (low temperature,
low humidity) following extreme weather.

7.1. Clinical plausibility

The findings from this analysis are clinically plausible, with the two different
effects explainable by different pathologies. Anecdotally the CATS team have375

recognised that after a period of cold weather there is an increase in children
referred who have an underlying reactive airway disease such as asthma. Many
of these children report changes in weather as triggers for their reactive airway
disease. This would be consistent with our findings here that a drop in temper-
ature and associated high humidity may increase the number of children being380

referred for transport to a paediatric intensive care unit (PICU) 2 days later.
Several studies have noted an association between high humidity and onset of
respiratory conditions such as asthma [28, 29], with one possible causal mecha-
nism an increased prevalence of allergenic mould and dust mites in households
[30, 31, 32].385

The children presenting at day 7 following a drop in temperature but this
time a low humidity would be consistent with infective respiratory presentations.
It is known that in low temperature and humidity conditions many viruses can
survive for longer on surfaces [33, 34, 35]. Other causal mechanisms for virus
spread in low temperatures have also been suggested, such as crowding in indoor390

spaces [9] and a cooling of the nasal cavity rendering the immune response less
effective [36]. In this modelling, the additional effect of high viral load in the
community increased demand for transport by approximately 30% at 7 days
after the weather change.
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7.2. Resource planning395

Studies exploring the association of ambulance call outs [11, 37, 38] and
emergency departments [39] with extreme weather events have found significant
increases in demand during extreme cold or extreme hot periods for adults.
They suggest that such associations could be used to flexibly increase resources
in advance of extreme weather warnings to improve access to critical services.400

Papadakis et al. [37] for instance provided illustrative tables of expected poten-
tial increased demand during a 7-day cold snap that could be used for service
planning.

Services for critical care transport from local hospitals to paediatric intensive
care units are highly specialised. While overall demand is low compared with405

adult services or non-specialised ambulance services, they are resource intensive
and care for the sickest children. With only 11 locations and a few teams within
each location serving England and Wales [40], there is potential for even small
increases in demand to stretch capacity – particular in winter when services are
already stretched [5]. Previous work has shown how the provision of an extra410

team during day times only at the largest retrieval service during winter was as-
sociated with fewer refusals due to no available team [2]. The association found
in this work has the potential for improving allocation of additional resource
across the country. As part of the DEPICT study on paediatric critical care
retrieval [41], an optimisation framework has been developed that can be used415

to allocate different numbers of teams to different retrieval locations depending
on season and time of day to maximise the availability of teams and minimise
time from child referral to the team arriving at the bedside [42]. In that work
it was shown that the addition of even one or two teams in key locations could
significantly reduce times to bedside. The study considered adding teams for420

the whole of a given season over a specific time, however. In future work we aim
to use the optimisation framework to dynamically allocate extra teams to loca-
tions depending on local weather forecasts and knowledge of existing demand
(for instance, if current demand is low an extra team might not be needed even
in a period of extreme weather).425

The next steps for this work are to first improve and validate the models
using national data and then to integrate the updated models into a software
tool that could be used by local services that combines the models, the developed
optimisation framework, local weather forecasts and recent demand to suggest
periods during which additional resource would be beneficial.430

7.3. Limitations

A limitation of the current study is that the viral data used was for influenza
A and B. These are viral infections that cause many adults and some children
to be admitted to intensive care but in children they are not the most common
viral pathogens causing PICU admission each winter, the most common being435

respiratory syncytial virus (RSV). It may be that conditions allowing the rise
of influenza A and B are also optimal for RSV propagation but ideally data for
RSV could be used.
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As highlighted by a reviewer of the manuscript, it is also possible that other
diseases may increase in incidence in response to weather changes. Parsons et440

al. [43] study associations between weather and traumatic injury. Although
hot weather appears to be a stronger predictor than cold, a 3.2% increase in
occurrence for each 5 degree (Celsius) drop in minimum temperature is observed
among adults, and a 7.9% increase is observed in the presence of snow. The same
pattern is not, however, present among children. There is significantly more lit-445

erature connecting heart disease and cold weather. Donaldson and Keatinge
[44] found that extended periods of cold temperature below 15 degrees Celsius
are often followed rapidly by an increase in heart disease mortalities. Anderson
and Riche [45] argue that much of this increased incidence is, however, a con-
sequence of an increase in incidence of respiratory conditions. Pell and Cobbe450

[46] note that the seasonal variation in heart disease incidence varies across age
groups, so further work is needed to understand specific effects among children.
There is also evidence that cerebrovascular disease incidence and mortality in-
creases in Winter as a result of colder weather [47, 48]. Again the precise effects
among children are less well understood. There is also some evidence to suggest455

that epilepsy [49] and cluster headaches [50] can be influenced by cold weather.
Understanding in deeper granularity the nature of demand increases is certainly
an interesting area of future work.
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Figure A.9: Example QQ-plot against the standard Normal distribution and histogram of
deviance residuals, taken from the lag-4 model.
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Figure A.10: Bi-variate smooth plots from the fitted generalized additive mixed model with
AR(1) residual structure for the lag-4 model (left-hand side), compared to independent errors
(right-hand side). As with previous plots, the x-axis is temperature (Celsius) and the y-axes
are relative humidity (%).
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Figure A.11: Residual auto-correlation plots from the lag-k models. On the left-hand side
from top to bottom are lags 0, 2, 4, 6 and 8, on the right-hand side are lags 1, 3, 4, 5, 7 and
9.
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Table B.2: Parameter estimates for fixed effects.
Model Parameter Estimate Standard error
lag-2 α (Intercept) 1.79 0.01
lag-2 β1 (Friday) 0.05 0.01
lag-2 β2 (Monday) 0.01 0.02
lag-2 β3 (Saturday) -0.11 0.02
lag-2 β4 (Sunday) -0.06 0.02
lag-2 β5 (Thursday) 0.05 0.01
lag-2 β6 (Tuesday) 0.04 0.01
lag-2 γ (Public Holiday) -0.14 0.04
lag-7 α (Intercept) 1.79 0.01
lag-7 β1 (Friday) 0.05 0.01
lag-7 β2 (Monday) 0.01 0.02
lag-7 β3 (Saturday) -0.11 0.02
lag-7 β4 (Sunday) -0.06 0.02
lag-7 β5 (Thursday) 0.05 0.01
lag-7 β6 (Tuesday) 0.03 0.01
lag-7 γ (Public Holiday) -0.16 0.04

Single Index α (Intercept) 1.79 0.01
Single Index β1 (Friday) 0.05 0.02
Single Index β2 (Monday) 0.01 0.02
Single Index β3 (Saturday) -0.11 0.02
Single Index β4 (Sunday) -0.06 0.02
Single Index β5 (Thursday) 0.05 0.02
Single Index β6 (Tuesday) 0.04 0.02
Single Index γ (Public Holiday) -0.16 0.05

Effect estimates are shown for the lag-2, lag-7 and single index models. Results for other
models were analogous.
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