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Abstract 

 Rapid human-driven environmental changes are impacting animal populations around 

the world. Currently, land-use and climate change are two of the biggest pressures facing 

biodiversity. However, studies investigating the impacts of these pressures on population 

trends often do not consider potential interactions between climate and land-use change. 

Further, a population’s climatic position (how close the ambient temperature and 

precipitation conditions are to the species’ climatic tolerance limits) is known to influence 

responses to climate change but has yet to be investigated with regard to its influence on 

land-use change responses over time. Consequently, important variation across species’ 

ranges in responses to environmental changes may be being overlooked. Here, we combine 

data from the Living Planet and BioTIME databases to carry out a global analysis exploring 

the impacts of land use, habitat loss, climatic position, climate change, and the interactions 

between these variables, on vertebrate population trends. By bringing these datasets together, 

we analyse over 7,000 populations across 42 countries. We find that land-use change is 

interacting with climate change and a population’s climatic position to influence rates of 

population change. Moreover, features of a population’s local landscape (such as surrounding 

land cover) play important roles in these interactions. For example, populations in 

agricultural land uses where maximum temperatures were closer to their hot thermal limit, 

declined at faster rates when there had also been rapid losses in surrounding semi-natural 

habitat. The complex interactions between these variables on populations highlights the 

importance of taking intraspecific variation and interactions between local and global 

pressures into account. Understanding how drivers of change are interacting and impacting 

populations, and how this varies spatially, is critical if we are to identify populations at risk, 

predict species’ responses to future environmental changes and produce suitable conservation 

strategies.  
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Introduction 

 Global animal populations are facing rapid human-driven environmental changes 

(IPBES, 2019). According to the Living Planet Index, average vertebrate population 

abundance has fallen by two-thirds in the last 50 years (WWF 2020), with declines being 

clustered in certain locations around the world (Leung et al., 2020). However, studies of 

different time-series data, such as the BioTIME database, report little change in abundance 

over time for the majority of populations (Dornelas et al., 2019). Many reasons have been put 

forward as to why the conclusions drawn regarding global populations trends differ between 

the datasets, including selection biases, publication biases, monitoring methods (population- 

or assemblage-level), extreme clusters within the datasets and geographic biases (Dornelas et 

al., 2019; Gonzalez et al., 2016; Leung et al., 2020). Whatever the overall trend, we need to 

understand the drivers underlying population fluctuations. Furthering our understanding as to 

why, and which, populations are changing or staying constant may help us to identify why we 

see such differences in trends between time-series datasets.  

 Recent studies investigating the influence of drivers of change on biodiversity have 

primarily focused on the impacts of climate and land-use change (Antão et al., 2020; 

Daskalova et al., 2020; Northrup, Rivers, Yang, & Betts, 2019; Spooner, Pearson, & 

Freeman, 2018). Using BioTIME assemblage time-series data, Antão et al. (2020) found that 

the abundance trends of temperate terrestrial biodiversity were not coupled to temperature 

changes. However, this study did not account for land-use changes, and changes in forest 

cover have been found to impact population changes, with both declines and increases 

observed to intensify after forest loss (Daskalova et al., 2020). Neither of these studies 

accounted for interactions between land-use change and climate change. Drivers of change 

are not occurring in isolation, and as such interactions between land-use and climate change 

are critical to take into account when studying how populations are changing (Mantyka-
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Pringle, Martin, & Rhodes, 2012; Oliver & Morecroft, 2014; Sirami et al., 2017; Williams & 

Newbold, 2020). Indeed, when interactions are accounted for, a different picture is drawn as 

to the influence of global drivers on populations. For example, a global-level analysis using 

the Living Planet database (LPD) not only found that declines in endothermic vertebrate 

populations were greater at sites where there had been rapid increases in temperature, but 

also, for mammals, that this effect interacted with land-use change, with declines due to rapid 

warming amplified in areas with high rates of conversion from natural to agricultural land 

uses (Spooner et al., 2018). Interestingly though, unlike forest loss (Daskalova et al., 2020), 

land-use change on its own did not influence population changes (Spooner et al., 2018). At a 

more local scale, climatic changes (warming and drying) have also been found to interact 

synergistically with forest loss to influence bird declines in the northwest forests of the 

United States (Northrup et al., 2019).  

One route by which land-use change and climate change could interact to impact how 

vertebrate populations respond to global drivers of change is through the local-scale climatic 

changes that occur due to land-use change (De Frenne et al., 2019; Frishkoff et al., 2016; 

Williams, Bates, & Newbold, 2020; Williams & Newbold, 2020). Human-altered land uses 

(such as agricultural and urban areas) are, on average, hotter and drier than natural habitats 

(De Frenne et al., 2019; Frishkoff et al., 2016). In addition, the removal of canopy layers, 

such as through conversion from forest to croplands, leads to greater temperature extremes 

(De Frenne et al., 2019; Senior, Hill, Benedick, & Edwards, 2017). For example, average 

maximum daily temperatures in pastures and pineapple farms have been recorded to be 

around 6°C and 9°C higher than that in forest (Nowakowski et al., 2017). These local 

climatic differences between land uses have been associated with community shifts: at both 

local- and global-levels, human-altered land uses have been observed to favour species that 

can tolerate greater hot and cold extremes of temperature, and greater wet and dry extremes 
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of precipitation (Frishkoff, Hadly, & Daily, 2015; Nowakowski et al., 2017; Waldock, De 

Palma, Borges, & Purvis, 2020; Williams et al., 2020). As these local-scale climatic changes 

are occurring alongside global climatic changes, this has the potential to lead to complex 

interactions (Williams & Newbold, 2020).  

Populations, however, do not respond to environmental changes uniformly across 

their species’ ranges (Orme et al., 2019; Soroye, Newbold, & Kerr, 2020; Spooner et al., 

2018). Recent analyses are highlighting that ambient climate and, more specifically, how 

close the local temperature and precipitation conditions are to a species’ climatic tolerance 

limits (climatic position), may impact how populations respond to land-use change, leading to 

variation in responses across species’ ranges (Srinivasan, Elsen, & Wilcove, 2019; Williams 

& Newbold, 2021). At a regional level, across the Himalayas, bird species common to 

locations across the region were more forest-dependent (using agricultural sites less) in 

relatively aseasonal compared to highly seasonal locations (Srinivasan et al., 2019). At a 

global level, populations in environments where extreme temperatures were closer to their 

hot or cold thermal limits were filtered out of human-altered land uses (Williams & Newbold, 

2021). Further, despite human-altered land uses being drier on average (Frishkoff et al., 

2016), populations experiencing precipitation levels close to their dry tolerance limits had 

similar abundances in human-altered land uses and natural habitats (Williams & Newbold, 

2021). In comparison, populations with a larger buffer between their dry limit and the 

location’s minimum precipitation levels did worse (had lower abundances relative to that in 

natural habitat; Williams & Newbold, 2021). This variation across species’ ranges has been 

suggested to be due, at least in part, to the local climatic changes following land-use change 

(Williams & Newbold, 2021). However, climatic position and its interaction with land use 

has yet to be considered when analysing global population trends.  
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Here, we combine time-series data from the LPD and BioTIME database, with the 

aim to investigate whether changes in vertebrate population abundances are influenced by 

their climatic position, the habitat they are found within, the rates of climate change and 

changes in surrounding land use and, importantly, interactions between these variables. Based 

on the fact that conversion of natural habitat to agriculture or urban areas leads to more 

extreme local temperatures (De Frenne et al., 2019), that responses to land use vary across 

species ranges due to population’s climatic positions (Williams & Newbold, 2021), and that 

past work has suggested synergistic interactions between land-use and climate change (e.g., 

Spooner et al., 2018), we make three specific hypotheses:  

(1) populations experiencing maximum or minimum temperatures closer to their 

upper or lower thermal tolerance limits, respectively, will decrease more rapidly in human-

altered land uses compared to populations in more natural habitats, particularly in areas that 

have experienced greater increases in surrounding human-altered land uses; 

(2) for those populations experiencing maximum or minimum temperatures closer to 

their upper or lower thermal tolerance limits, respectively, greater rates of decline will be 

observed in places where hot maxima and cold minima have got more extreme over time, and 

this will be more pronounced in human-altered land uses compared to natural habitats; 

(3) populations experiencing rapid increases in surrounding human-altered land uses 

as well as hotter maximum or colder minimum temperatures over time will decrease at a 

faster rate compared to populations not facing such changes or not experiencing these 

changes in tandem, particularly in human-altered land uses. 

We also look at a population’s climatic position with regard to their species-level 

precipitation limits, as precipitation affiliations have been found to have an important impact 

on responses to land-use change (Frishkoff et al., 2016; Williams et al., 2020). However, we 
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do not have clear predictions regarding how populations over time will be influenced by their 

minimum and maximum precipitation position, due to previous mixed results and the 

complex effects of land use on moisture availability (Williams & Newbold, 2020). Previous 

work found that species from areas with lower mean annual precipitation (i.e., dry-affiliated 

species) were more likely to persist within agricultural areas compared to those from areas 

with, on average, wetter climates (Frishkoff et al., 2016). Yet, other studies focusing on 

extreme precipitation conditions have reported shifts towards a higher proportion of species 

affiliated with greater extremes of precipitation (both drier and wetter) in communities in 

human-altered land uses compared to natural habitats (Williams et al., 2020). Species also 

alter their use of natural versus human-altered land uses across precipitation gradients 

(Frishkoff et al., 2016). For example, relative to populations in more natural habitats, tropical 

populations in plantations and croplands experiencing minimum precipitation levels further 

from their dry tolerance limit had lower abundances than populations experiencing minimum 

precipitation levels closer to their dry limit (Williams & Newbold, 2021). Further, 

populations experiencing precipitation levels closer to species’ wet tolerance limit have been 

found to have a lower probability of occurrence in human-altered land uses relative to that in 

natural habitats (Williams & Newbold, 2021). However, the biological mechanisms 

underlying these results are unclear. On top of this, habitat conversion and the ongoing drying 

trends in certain parts of the world, such as the tropics (Lau & Kim, 2015), are favouring the 

same, dry-affiliated species (Frishkoff et al., 2016; Karp et al., 2017), which will likely 

further complicate how populations’ precipitation positions interact with these variables to 

influence population trends. Consequently, we do not make specific hypotheses as to the 

impact of maximum and minimum precipitation position (i.e., how close the maximum and 

minimum precipitation levels a population experiences are to the species’ wet and dry 

tolerance limits, respectively) on population trends.  
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By bringing together these two global databases and incorporating previously 

overlooked variables and interactions, we complete the most comprehensive analysis to date 

to further our understanding on how vertebrates are being influenced by environmental 

changes around the world, how drivers of change are interacting, and which populations may 

be at higher risk from human-induced changes.  

Methods 

Population time-series data 

 We acquired population time-series data for terrestrial vertebrates from the Living 

Planet database (LPD; Living Planet Index database, January 2020) and the BioTIME 

database (Dornelas et al., 2018; see Supplementary information, Appendix 14, for the original 

data citations), for the period covering 1992 to 2015 (to match the land-cover data, see 

below). These two databases together contain time-series of population estimates for over 

100,000 terrestrial vertebrate populations from around the globe within our timeframe. Here, 

we use the term ‘population’ to refer to a group of individuals of the same species at the same 

location. We focused on vertebrates due to the reasonably comprehensive data available on 

their distributions, which was necessary in order to estimate species’ realised climatic 

tolerance limits (see below).  

From both the LPD and BioTIME database, we extracted annual population estimates 

for non-migratory terrestrial vertebrate populations whose specific locations were known (so 

that we could assign land-use and environmental data to the site). In the BioTIME database, 

if there were multiple population estimates per year, we took the mean of these. We further 

removed any birds or mammals classed as migratory according to data obtained from 

BirdLife International (2018) and Gnanadesikan, Pearse, & Shaw (2017). From the BioTIME 

database, we also excluded studies looking at biomass, and populations that were part of 
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treatment studies such as burning, harvesting, or predator exclusion experiments. Finally, we 

excluded studies that were within the Arctic Circle, spanned less than 6 years, or had 5 or 

fewer population estimates over the time-series (following Spooner et al., 2018). This left us 

with a dataset comprised of 9,601 populations, consisting of 423 species (147 mammal, 224 

bird, 30 reptile and 22 amphibian species) in 1,669 locations across 48 countries. 

 For each population we calculated the average logged annual rate of population 

change (𝜆𝒀
̅̅ ̅), following the method used by Spooner et al. (2018). In brief, we first took the 

log (base 10) of each population estimate (if an estimate was zero, we instead took the log of 

1% of the mean estimate from the entire time-series, including the zeros). Second, in order to 

impute values for missing annual population estimates, each time-series was fit with a 

generalised additive model (GAM), with a smoothing parameter set to the half the number of 

population estimates in  the time-series (Collen et al., 2009). Then, 𝜆𝒀
̅̅ ̅ was calculated for each 

time-series using the following equation:  

(1)      𝜆𝒀
̅̅ ̅ =  

1

𝒀
 ∑ (log10 (

𝑛𝑦

𝑛𝑦−1
))𝑛

0  

in which n is the population estimate for year y, and Y is the number of years from the first to 

the last estimate for a population.  

 Land-cover data  

 We obtained global land-cover maps from the European Space Agency Climate 

Change Initiative (ESA CCI; ESA Land Cover CCI project team, Defourny, 2019). These 

maps are available for the years 1992 to 2015, at a spatial resolution of 300m and categorise 

land into 37 land-cover classes (Defourny et al., 2017). We grouped these land-cover classes 

into the broader categories of agriculture, forest, grassland, wetland, urban, and other (we did 

not include the water or permanent snow and ice categories, so removed populations located 
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in these categories; Appendix 1, table S1), closely following the groupings used by the 

Intergovernmental Panel on Climate Change for change detection (Defourny et al., 2017). 

The land-cover category that each population was located in when the population was first 

recorded within the 1992 to 2015 timescale was recorded as it’s starting land-use type (there 

were not enough populations starting in urban or wetland land-use types to include in the 

analysis, so the populations in these categories were removed, leaving forest, grassland, 

agriculture, and other as starting land-use types).  

 To calculate the rate of change in land cover each population experienced over time, 

we first extracted the percentage of semi-natural habitat (SNH) within a 1-km radius of the 

population’s location for each year between its first and last estimate. A radius of 1 km has 

previously been used when assessing the impact of land-use change on local biodiversity (Le 

Provost et al., 2020), and due to our focus on the local climatic changes brought about by 

land-use change, we felt that concentrating on the changes in SNH within a 1-km radius 

surrounding a population was appropriate (however, to check the sensitivity of our results, we 

also calculated percentage change in SNH within a 5-, 10- and 50-km radius). Land-cover 

categories included as SNH were forest, grassland, wetland and shrubland (Appendix 1, table 

S1). We also incorporated a weighting system, in which we used the maximum percentage 

cover of a specific land use (detailed in the ESA’s land-use categories) to weight each 

category. For example, the category ‘Tree cover, broadleaved, deciduous, closed to open 

(>15%)’ was given a weighting of 1, as it could cover 100% of the 300 × 300-m area, 

whereas the category ‘Tree cover, broadleaved, deciduous, open (15-40%)’ was given a 

weighting of 0.4, as this could cover a maximum of 40% of the 300 × 300 m (see Appendix 1, 

table S1 for a full listing of the weightings; non-SNH categories were given a weighting of 

0). Then, for each location with a population time-series, a linear regression was fit to the 

percentage of SNH within the surrounding 1-km radius over the length of the population 
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time-series, with the resulting slope extracted to give the average annual rate of change in 

SNH.  

Climatic tolerance limits  

 We estimated species’ realised climatic tolerance limits, i.e., the maximum and 

minimum temperature and monthly precipitation that a species’ experiences across its 

geographic distribution. We obtained expert-informed species distribution maps (extent of 

occurrence maps) from BirdLife International (2012) and the International Union for 

Conservation of Nature (IUCN 2016a-b, 2017a-c, 2018a-b, 2019a-c). For each species, we 

extracted their native historical ranges (where they were resident, or present during breeding 

or non-breeding seasons) and areas the species had been introduced or reintroduced (i.e., 

excluding areas where presence or seasonal occurrence is uncertain, species are possibly 

extant or vagrant, or areas classed as passages, such as areas used for short periods of time 

during migration). Breeding and non-breeding areas were included within species’ native 

historical ranges because, despite being non-migratory, parts of some species’ ranges were 

classified as, for example, extant (non-breeding). These extracted areas were then rasterised 

into 500 × 500-m equal-area grids (Behrmann projection). We chose this resolution so that 

we could include as many species as possible with very narrow ranges. Areas outside of 

species’ elevation limits, if known (BirdLife International 2018; IUCN 2016a-b, 2017a-c, 

2018a-b, 2019a-c), were removed from their distribution maps.  

We obtained climate maps for average monthly maximum temperature of the warmest 

month, average monthly minimum temperature of the coldest month, and precipitation of the 

wettest and driest months from WorldClim Version 1.4 (Hijmans, Cameron, Parra, Jones, & 

Jarvis, 2005). These maps had a resolution of 30 arc seconds and encompassed averaged 

yearly values from 1960-1990. We resampled these climate maps using bilinear interpolation 
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to 500 × 500-m equal-area grids (Behrmann projection) to match the projection of the 

species’ distribution maps. We overlaid the species’ distribution map on these four climatic 

variables and extracted the highest maximum temperature of the warmest month and 

precipitation of the wettest month, and the lowest minimum temperature of the coldest month 

and precipitation of the driest month across each species’ distribution (ArcGIS 10.4). These 

values provided our estimates of each species’ realised upper and lower temperature and 

precipitation tolerance limits (fig. 1). 

Climate change and starting climatic position 

 Monthly average daily maximum and minimum temperature, and monthly 

precipitation data were acquired from the gridded (0.5° × 0.5°) Climatic Research Unit 

(CRU) Time-series data v. 4.03 (Harris & Jones, 2020). From these, we found the highest 

monthly average daily maximum temperature, lowest monthly average daily minimum 

temperature, and maximum (wettest) and minimum (driest) monthly precipitation per year at 

the location of each observed population within our dataset. For each population, values for 

the four climatic variables were extracted for each year between the first and last population 

estimate. Linear regressions were fit to each set of climatic variables for each population, 

with the slopes of these extracted to give the average annual rate of change in maximum 

temperature of the warmest month, minimum temperature of the coldest month and 

precipitation of the wettest and driest months over the length of the population time-series.   

 For each population, we calculated their starting climatic position with regard to 

maximum temperature of the warmest month (Tmax position), minimum temperature of the 

coldest month (Tmin position), precipitation of the wettest month (Ppmax position) and 

precipitation of the driest month (Ppmin position). These positions describe the thermal and 

precipitation conditions (CRU Time-series data v. 4.03; Harris & Jones, 2020) a population 
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experienced in the first year they were measured at a site, standardised to range between 0 

and 1 relative to the lower and upper realised temperature or precipitation tolerance limits of 

the species (where, for thermal tolerance limits, 0 = minimum realised temperature tolerance 

limit and 1 = maximum realised temperature tolerance limit, and for precipitation tolerance 

limits, 0 = minimum (dry) realised precipitation tolerance limit and 1 = maximum (wet) 

realised precipitation tolerance limit; fig. 1). We chose to use the temperature and 

precipitation conditions a population experienced in the first year of their time-series because 

we wanted a measure of where each population started in relation to their species-level 

climatic limits. However, to check the sensitivity of our results, we also calculated starting 

climatic position using the average maximum and minimum temperature and precipitation 

conditions (CRU Time-series data v. 4.03; Harris & Jones, 2020) in the three years up to and 

including the first year of a population’s time-series, and ran a model (see below) using this 

measure (Appendix 4). 

 

Figure 1: A visual example of how the starting climatic positions (Tmax, Tmin, Ppmax and Ppmin 

position) were calculated for each population. 0 and 1 represent the species-level realised 
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minimum and maximum, respectively, thermal or precipitation tolerance limits, extracted 

from species’ distribution maps overlaid on climatic data from WorldClim Version 1.4 

(denoted by the *; Hijmans et al., 2005). The starting climatic positions were calculated by 

standardising the population’s site-level temperature and precipitation data (obtained from the 

Climatic Research Unit, denoted by +; Harris & Jones, 2020) in the year that the population 

was first recorded to range between 0 and 1 relative to the species-level climatic tolerance 

limits. For example, a Tmax position closer to 1 means that the maximum temperature of the 

warmest month experienced by a population was closer to the highest maximum temperature 

of the warmest month across the species’ range. Similarly, a Ppmin position closer to 0 

describes a population that experienced precipitation levels in their driest month that were 

closer to the lowest precipitation of the driest month across the species’ range. This figure is 

adapted from Williams & Newbold (2021). 

Distance to range edge  

 Within our analyses, we also accounted for a population’s location relative to their 

species’ range edge. For each population in our dataset, we found the shortest distance from 

their location to their species’ range edge and, to account for range size, divided it by the 

greatest distance a population of that species could be from their range edge (calculated by 

transforming species distribution maps into spatial points dataframes). Therefore, each 

population had a standardised (between 0 and 1) distance to range edge measure, where a 

value of 0 meant the population was located at the species’ range edge, and values closer to 1 

meant the population was closer to the range centre. Populations that were recorded outside 

of their distributions as stated by the distribution maps (BirdLife International 2012; IUCN 

2016a-b, 2017a-c, 2018a-b, 2019a-c), were removed.  



15 

 

The final dataset comprised of 7,123 populations, consisting of 341 species (126 

mammal, 186 bird, 12 reptile and 17 amphibian species) in 1,151 locations across 42 

countries (Appendix 2, fig. S1; the final dataset is available in a figshare repository, DOI: 

10.6084/m9.figshare.16895851).  

Statistical analyses 

We used linear mixed-effects models to investigate how the rate of population change 

was affected by land-use type and change, the population’s climatic position, and the rate of 

climate change experienced. We constructed 42 candidate models, with the average logged 

annual rate of population change (𝜆𝒀
̅̅ ̅) as the response variable (see Appendix 3, table S2-3, 

for information on the choice of candidate models).  The ‘full’ model included all of the 

following variables and interactions, with the other 41 candidate models including a subset, 

based on our hypotheses and the aims of this study. Fixed effects included (a) the 

population’s starting land-use type, (b) the rate of change in SNH the population experienced, 

(c) their starting Tmax, Tmin, Ppmax and Ppmin positions and (d) the rate of change in climate 

experienced (for the four climatic variables detailed above; table 1; correlations between 

continuous variables were checked, Appendix 3, table S4). Following our hypotheses, three 

3-way interactions were considered: (1) starting land-use type × rate of change in SNH × 

starting climatic position, to look at whether populations in human-altered land uses 

experiencing temperatures and precipitation closer to their climatic limits as well as greater 

rates of decreases in SNH have larger negative rates of population change, (2) starting land-

use type × starting climatic position × rate of change in climate (with the same focal climatic 

variable as the climatic position, e.g. starting land-use type × starting Tmax position × rate of 

change in maximum temperature of the warmest month), to explore whether populations in 

human-altered land uses experiencing temperatures and precipitation closer to their climatic 

limits on top of greater increases in climatic extremes have larger negative rates of population 
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change, and (3) starting land-use type × rate of change in SNH × rate of change in climate, to 

look at whether populations in human-altered land uses experiencing greater decreases in 

SNH as well as increases in extreme climatic conditions have larger negative rates of 

population change. Any lower-order 2-way interactions between the variables in each 3-way 

interaction were also included (table 1, S2). Covariates included the distance of a population 

from its species’ range edge, and its interaction with starting land-use type and with rate of 

change in SNH (as well as the 3-way interaction between these variables), to account for 

potential response or behavioural differences due to proximity to range edge (Liebl & Martin, 

2012; Orme et al., 2019). In all models, we included four random intercept terms: species 

name, vertebrate class, study site and database (LPD or BioTIME; table 1). We compared 

candidate models using AIC values and Akaike weights (using the MuMIn package v.1.43.17 

in R 3.6.0; Barton, 2020; R Core Team 2019). From the selection of candidate models, the 

full model (which included all of the considered terms) received overwhelming support 

(Akaike weight ≈ 1; Appendix 3, table S3). We henceforth present the results from this ‘final 

model’. We ensured our model was not overfit by splitting the final model (a) per each three-

way interaction (and then including the lower-order interactions and main effects included) 

and (b) per each climatic variable (i.e., running a model in which the only climatic variables 

considered were those including maximum temperature of the warmest month, minimum 

temperature of the coldest month, precipitation of the wettest month or precipitation of the 

driest month), and then checking to see if the resulting effects were similar to those produced 

by the final model. All of the above was completed in ArcGIS 10.4 (ESRI 2015), and R 3.6.0 

(R Core Team 2019) using packages dplyr v.0.8.3 (Wickham, François, Henry & Müller, 

2019), lme4 v.1.1.26 (Bates, Maechler, Bolker & Walker, 2015), MuMIn v.1.43.17 (Barton, 

2020), ncdf4 v.1.17 (Pierce, 2019), plyr v.1.8.6 (Wickham, 2011), raster v.2.8-19 (Hijmans, 

2019) and tidyr v.1.0.0 (Wickham & Henry, 2019). 
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Table 1: Parameters included in the final model. Symbols represent variables within the same 

2- or 3-way interaction (for example, starting land-use type and rate of change in semi-natural 

habitat both have a  symbol, indicating that we included a 2-way interaction between these 

variables – starting land-use type × rate of change in semi-natural habitat – in the final 

model). Interactions combining both starting climatic position and rate of change in climate 

included the same climatic variable (e.g., starting Tmax position × rate of change in maximum 

temperature of the warmest month, or starting Ppmin position x rate of change in minimum 

monthly precipitation). Interactions between starting positions with respect to different 

climate variables, or between rates of change in different climatic variables were not 

included.  
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Parameter Description Type of effect Included in an 

interaction? 

   2-way  3-way  

Starting land-

use type  

The land-use type (forest, grassland, agriculture, or other) the population was within 

in the first year of its time-series.  

Fixed, categorial   

  

Rate of change 

in semi-natural 

habitat  

The average annual rate of change in the percentage of semi-natural habitat (which 

included forest, grassland, wetland, and shrubland) within a 1-km radius of the 

population, over the length of the population time-series.  

Fixed, continuous, 

quadratic 
  

Starting climatic 

position 

The  

a) maximum temperature of the warmest month (Tmax),  

b) minimum temperature of the coldest month (Tmin), 

c) precipitation of the wettest month (Ppmax), and  

d) precipitation of the driest month (Ppmin),  

a population experienced in the first year they were measured, relative to the 

species-level upper and lower realised thermal (for a and b) or precipitation (for c 

and d) tolerance limits. 

Fixed, continuous, 

quadratic 
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Rate of change 

in climate  

The average annual rate of change in 

a) maximum temperature of the warmest month, 

b) minimum temperature of the coldest month, 

c) precipitation of the wettest month, and 

d) precipitation of the driest month,  

over the length of the population time-series. 

Fixed, continuous, 

quadratic  
 

 

Distance to 

range edge  

The distance of a population from their species’ geographic range edge, standardised 

to account for overall range size. 

Fixed, continuous, 

linear 

  

Species name Species binomial, to account for interspecific differences in responses.  Random intercept   

Class The vertebrate Class (Mammalia, Aves, Reptilia or Amphibia), to account for broad 

taxonomic differences in population trends 

Random intercept    

Study site ID based on the population’s location (latitude and longitude), included to account 

for site-specific effects. 

Random intercept   

Database The database the population’s time-series data was acquired from (Living Planet 

database or BioTIME database), to account for differences between the databases 

(differences in inclusion criteria or sampling method, for example). 

Random intercept   
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Sensitivity tests 

 We compared the ESA land cover maps to recently produced global maps of 

terrestrial habitat types (Jung et al., 2020), to check the consistency of land use-types across 

data sources. These latter maps are only available for 2015-2019, so for each site in our final 

dataset (n=1,151), we compared the land-use types between the 2015 ESA land cover map 

and Jung et al.’s (2020) global map of terrestrial habitat types for 2015. In particular, we 

wanted to ensure that there were not a large number of plantations or pastures at sites that we 

classed as forest or grasslands, respectively, as land-cover maps may miss these land uses. 

The IUCN and BirdLife International species’ distribution maps (BirdLife 

International 2012; IUCN 2016a-b, 2017a-c, 2018a-b, 2019a-c) provide data for a wide range 

of vertebrates from around the world, and as such have been used extensively (Allan et al., 

2019; Herkt, Skidmore, & Fahr, 2017; Khaliq, Böhning-Gaese, Prinzinger, Pfenninger, & 

Hof, 2017; Shackelford, Steward, German, Sait, & Benton, 2015). However, they do contain 

inaccuracies as they tend to overestimate area of occupancy and underestimate species’ 

extent-of-occurrence (Herkt et al., 2017; Hurlbert & Jetz, 2007). Therefore, to check the 

robustness of our climatic position measure, we also calculated species’ climatic limits using 

occurrence records from the Global Biodiversity Information Facility (GBIF, 

https://www.gbif.org), rather than species’ distribution maps (Appendix 4). Further, to ensure 

that our climatic position measure was robust to the climatic data used to estimate climatic 

limits, we calculated another estimate of a population’s climatic position, this time using the 

CRU Time-series data v. 4.03 (Harris & Jones, 2020), extracting temperature and 

precipitation data from 1992, to calculate species’ climatic limits (rather than using 

WorldClim data). Additionally, we calculated a fourth estimate of climatic limits, using both 

GBIF occurrence records (rather than species’ distribution maps) and CRU Time-series data 

(rather than WorldClim data). We compared both the resulting climatic positions themselves, 

https://www.gbif.org/
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and the results of models run (with the same structure as the final model) using the climatic 

positions calculated through these different methods of estimating climatic limits (Appendix 

4). 

Further, using the same structure as the final model, we also ran models that (1) 

included the average annual rate of change in the percentage of forest (instead of SNH) 

within a 1-km radius of the population’s location (calculated in the same way as for SNH, but 

only including the forest category; Appendix 1, table S1), to investigate whether it was 

change in forest specifically, rather than semi-natural habitat, driving differences in 

population trends (Daskalova et al., 2020); (2) included percentage of SNH within a 1-km 

radius of the population in the first year they were recorded, rather than starting land-use 

type, to see if this explained more variance in the data (Appendix 5); (3) only included time-

series with R2 ≥ 0.5 when fit to the GAM, to remove populations with more variable 

estimates over the years, for which interpolated values may not be as accurate (Appendix 8); 

(4) excluded time-series with 𝜆𝒀
̅̅ ̅ above and below the upper and lower 97.5th and 2.5th 

percentile, respectively, to ensure results were not being influenced by extreme positive or 

negative rates of population change (we do not remove extreme values in our final model, 

following Daskalova et al., (2020) and Spooner et al., (2018); Appendix 9); (5) excluded 

populations from the genus Gyps, as a previous study using the LPD found that they had a big 

influence on model estimates (Green et al., 2020; Appendix 10); and (6) excluded ectotherms, 

to check these taxa were not driving any observed declines (Appendix 11). Further, to ensure 

that removing populations outside of their species’ ranges did not affect our results, we ran 

two more models (with the same structure as the final model but excluding all terms 

containing distance to range edge), one including and one excluding populations beyond their 

species ranges as stated by BirdLife International (2012) and IUCN (2016a-b, 2017a-c, 

2018a-b, 2019a-c; Appendix 12). We also carried out cross validation tests to ensure there 
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were no overly influential locations or species in our dataset (Appendix 13). We checked to 

see if we could run models separately for each vertebrate class (Mammalia, Aves, Reptilia 

and Amphibia), but there were insufficient data.   

Results 

The 7,123 populations analysed had an average time-series length of 15 years, 

covered a variety of starting land-use types and climatic positions and, across these 

populations, there were both increases and decreases experienced in surrounding SNH and all 

climatic variables (table 2).   

Table 2: Summary statistics for the population time-series analysed, split by the originating 

database (the Living Planet database or BioTIME database). The average annual rate of 

change in semi-natural habitat refers to change within a 1-km radius surrounding each 

population. Fitted values were based on fixed effects only.  

 Living Planet 

database 

BioTIME 

database 

Number of populations analysed 367 6756 

Average annual rates of population change (% / year)    

 Mean of observed (and fitted) values -2.83 (1.09) -0.03 (0.42) 

 Median of observed (and fitted) values -0.53 (0.86) 0 (0.47) 

 Number of populations with a positive (↑) or 

negative (↓) values 

↑ 152 

↓ 215 

↑ 3299 

↓ 3319 

Mean length of population time-series (years) 13 15 

Number of countries from which populations originated  42 4 

Average annual rates of change in semi-natural habitat   

 Range (% / year) -7.75 – 3.97 -7.27 – 9.24 
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 Mean (% / year) -0.17 0.02 

 Median (% / year) 0 0.03 

 Number of populations with a positive (↑) or 

negative (↓) values 

↑ 137 

↓ 168 

↑ 3882 

↓ 2592 

Percentage of populations starting in each starting land-

use type (%, to 1 decimal place) 

  

 Forest 58.9 54.2 

 Grassland 3.5 11.6 

 Agriculture 17.7 28.3 

 Other 19.9 5.8 

 

In summary, our results highlight the complexity of the impact that climatic position, 

land-use type and change, and climate change have on populations over time, with all these 

variables interacting with each another in complex ways (see Appendix 3, table S5 for the 

fixed-effects included in the final model, and table S6 for more details on the continuous 

variables). Notably, the rate of change in SNH surrounding a population affected the rate of 

population change, with this differing slightly depending on a population’s starting land-use 

type: for populations starting in forest, average annual rate of population change was 

relatively consistent across different rates of change in surrounding SNH (although it 

decreased slightly under rapid increases and decreases in surrounding SNH), whereas in 

grassland and agriculture, rates of population change increased as rates of change in 

surrounding SNH got higher (fig. 2). In general, starting land-use type appeared to play an 

important role within interactions, particularly in its influence on how populations were 

affected by rates of change in climate and their starting climatic position. The fixed effects 

that were included in the final model (Appendix 3, table S5) explained almost 5% of variation 
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in the rate of population change (marginal pseudo-R2, sensu Nakagawa & Schielzeth, 2013) 

and together with the random effects, explained 68% of the variation (conditional pseudo-R2).  

While testing the sensitivity of our results, we included the percentage of SNH within 

a 1-km radius of the population in the first year they were measured (rather than starting land-

use type); the results indicated that populations surrounded by a higher percentage of human-

altered habitats at the start of recording often had greater negative rates of population change 

(Appendix 5, figs. S13-16). This is another very interesting result and we present it in the 

Supplementary information (due to it being a post-hoc test, as well as having a higher AIC 

value and lower marginal R2 compared to our final model, and not capturing the difference 

between populations starting in forest versus grassland). Below we do not plot the results for 

populations that started in habitats classed as ‘other’ because, following our hypotheses, we 

want to focus on how the impact of climatic position, land-use, and climate change on the 

rate of population change differs between those starting in human-altered habitats 

(agriculture) compared to those in more natural habitats (forest and grasslands). We use heat 

maps to display the results of each focal three-way interaction – (a) starting land-use type × 

rate of change in SNH × starting climatic position, (b) starting land-use type × starting 

climatic position × rate of change in climate, and (c) starting land-use type × rate of change in 

SNH × rate of change in climate – see figure 3 for guidance on how to interpret these heat 

maps. We also present a series of line graphs in the Supplementary information to provide an 

alternative presentation of the three-way interaction results (Appendix 3, figs. S2-4). 
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Figure 2: The average annual rate of population change depending on the average annual rate 

of change in semi-natural habitat, split by the land-use type a population was in when the first 

population measure was recorded. Error margins denote ±1 standard error. 
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Figure 3: Guidance on how to interpret the heat maps used to display the modelled results for 

the three focal interactions – (a) starting land-use type × rate of change in SNH × starting 

climatic position (fig. 4), (b) starting land-use type × starting climatic position × rate of 

change in climate (fig. 5), and (c) starting land-use type × rate of change in SNH × rate of 

change in climate (fig. 6). The colours within the heat maps represent the average annual rate 
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of population change (%/year). Blues represent population increases (+), and reds represent 

population declines (-), with darker colours representing faster rates of change in both 

directions. The figures below also display contour lines (and labels), indicating conditions 

that share the same rates of population change. The panels in the figures below are also split 

into the starting land-use type (forest, grassland, and agriculture), which is indicated at the 

top of each column.  

 We found support for our first hypothesis. With regard to Tmax position, populations 

experiencing maximum temperatures closer to their upper thermal tolerance limits (high Tmax 

position) decreasing more rapidly in human-altered land uses (especially in areas that have 

experienced greater decreases in surrounding semi-natural habitat), compared to populations 

in more natural habitats (fig. 4). Interestingly however, populations starting in agricultural 

land uses with lower starting Tmax positions (indicating they initially experienced maximum 

temperatures further from their hot thermal limit) also had more negative rates of population 

change in areas that had experienced more rapid increases in SNH in the surrounding 

landscape (fig. 4). With regard to Tmin position, despite populations in forest, grassland, and 

agriculture that experienced minimum temperatures closer to their lower thermal tolerance 

limits (low Tmin position) having similar rates of population change, agricultural populations 

experiencing more rapid increases in surrounding SNH were increasing fastest (fig. 4).  

Support for our second and third hypotheses was mixed. Unexpectedly, and not in line 

with these hypotheses, populations in agricultural areas that experienced more negative rates 

of change in maximum temperature (i.e., hot extremes got cooler over time), also often had 

negative rates of population change (and vice versa, with agricultural populations 

experiencing warmer maximum temperatures having higher rates of population increase; figs. 

5-6). With regard to Tmin position, and in contradiction to our second hypothesis, populations 

in agriculture with lower starting Tmin positions (experiencing minimum temperatures closer 
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to their cold thermal limit), had more positive rates of population change compared to 

populations with higher Tmin positions in areas that experienced decreases in minimum 

temperature (fig. 5). However, in support of our third hypothesis, agricultural populations in 

areas where minimum temperatures had got colder and there had been rapid declines in 

surrounding SNH often had lower rates of population change (figs. 6); although 

unexpectedly, under the same conditions, greater negative rates of population change were 

observed in grasslands (fig. 6).   

 In terms of precipitation, for those populations experiencing minimum precipitation 

levels close to their dry tolerance limit (low Ppmin position), those that started in agriculture 

were decreasing more rapidly (fig. 4). Notably, we found that for populations with a low 

Ppmin position, those also experiencing rapid decreases in minimum precipitation had 

negative rates of population change, the lowest of which was observed for those populations 

starting in agriculture (fig. 5). A populations’ starting Ppmax position also interacted with the 

rate of change in SNH, with this effect differing between starting land-use types (fig. 4). 

Effects of Ppmax positions and rate of change in SNH were stronger for populations starting in 

grassland sites compared to forest or agriculture, with rapid declines observed for populations 

experiencing maximum precipitation closer to their wet tolerance limit on top of swift 

decreases in surrounding SNH (fig. 4). 

Further, it was interesting to observe that, across climatic positions and different rates 

of change in climate and surrounding SNH, the average annual rates of population change for 

populations starting in forested sites were relatively similar (increasing at a rate of around 

1%). Conversely, often the most variation in the rate of population change was observed for 

populations that started in grasslands (figs. 4-6). 
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Figure 4: The average annual rate of population change across different starting land-use 

types, depending on: (i) the average annual rate of change in the percentage of semi-natural 

habitat within a 1-km radius; and (ii) a population’s starting climatic position with regard to 

maximum temperature of the warmest month (Tmax), minimum temperature of the coldest 

month (Tmin), precipitation of the wettest month (Ppmax) or precipitation of the driest month 
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(Ppmin). The x- and y-axes are truncated at the 10th and 90th percentile of sampled values of 

each variable. Contour lines (and labels) indicate changes in average annual rate of 

population change.  

 

Figure 5: The average annual rate of population change across different starting land-use 

types, depending on: (i) the average annual rate of change in climate; and (ii) a population’s 
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starting climatic position. Climatic variables considered were maximum temperature of the 

warmest month (Tmax), minimum temperature of the coldest month (Tmin), precipitation of the 

wettest month (Ppmax), and precipitation of the driest month (Ppmin). The x- and y-axes are 

truncated at the 10th and 90th percentile of sampled values of each variable. Contour lines 

(and labels) indicate changes in average annual rate of population change. 
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Figure 6: The average annual rate of population change across different starting land-use 

types, depending on: (i) the average annual rate of change in the percentage of semi-natural 

habitat within a 1-km radius; and (ii) average annual rate of change in climate with regard to 

maximum temperature of the warmest month (°C/year), minimum temperature of the coldest 

month (°C/year), precipitation of the wettest month (monthly mm/year), and precipitation of 
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the driest month (monthly mm/year). The x- and y-axes are truncated at the 10th and 90th 

percentile of sampled values of each variable. Contour lines (and labels) indicate changes in 

average annual rate of population change. 

Sensitivity tests 

Land-use types extracted from the 2015 ESA land cover map (ESA Land Cover CCI 

project team, Defourny, 2019) and the 2015 global map of terrestrial habitat types (Jung et 

al., 2020) were the same for over 70% of sites in our dataset (Appendix 6, table S8-9). Out of 

the sites that differed, there were a low number of discrepancies between forest and 

plantation (n=24, 2.1% of all sites in the dataset) and between grassland and pasturelands 

(n=6, 0.5% of all sites in the dataset).  

Using the average temperature and precipitation conditions in the three years up to 

and including the first year of a population’s time-series to calculate climatic position (rather 

than the temperature and precipitation in the first year) explained almost the same proportion 

of variation in the rate of population change but the model had a higher AIC (ΔAIC = 25.9). 

Overall, the model produced very similar results to those presented above (Appendix 4, figs. 

S5-6). The climatic positions calculated using CRU Time-series data (instead of WorldClim 

climate maps) to estimate species’ climatic limits were strongly correlated to the climatic 

positions used in the final model (r > 0.9), and the results of the models run using these 

climatic positions estimates were very similar to those above (Appendix 4, table S7, figs. S7-

8). We were able to calculate climatic positions using GBIF occurrence data (instead of 

species’ distribution maps) for 324 of the species found in our final dataset (6,681 

populations), and these were also strongly correlated to the climatic positions reported here (r 

> 0.78; Appendix 4, table S7). The overall patterns of results using climatic positions derived 

from GBIF data (with either WorldClim or CRU Time-series climate data) were on the whole 
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similar to the results reported above (Appendix 4, figs. S9-12). The key differences included 

that, unlike above, negative rates of population change were observed for populations (a) in 

agriculture where thermal extremes had got warmer and populations had high starting Tmax 

positions or high starting Tmin positions; fig. S10, S12) and (b) in grasslands where 

populations had rapidly lost surrounding SNH and had low starting Tmin positions or low 

starting Ppmax positions (fig. S9, S11). Further, when GBIF data were used with WorldClim 

data to estimate climatic limits, other differences included (a) the negative rates of change 

observed above for populations in agriculture with lower starting Ppmin positions under 

different rates of change in SNH and minimum precipitation (figs. 4-5) were not observed 

(instead the rate of change varied around 0% – 1 % per year; figs. S9-10) and (b) the negative 

rates of change observed above for populations starting in grasslands with high Ppmax 

positions and experiencing low negative rates of change in SNH (fig. 4) were dampened to 

less negative rates of population change (between -1% and 0% per year; fig. S9). 

Including the average annual rate of change in the percentage of SNH within a 1-km 

radius of each population, as in the model reported above, explained more variance (higher 

marginal R2 values) than using rates of change within a 5-km radius. The model including 

rate of change in SNH within a 10- or 50-km radius explained around the same amount of 

variance as within a 1-km radius, but as our hypotheses were focused on local climatic 

changes following land-use change, the 1-km radius was more appropriate. The model that 

included average annual rate of change in the percentage of forest within a 1-km radius, 

rather than SNH, explained a very similar proportion of variation in the rate of population 

change, and produced similar overall patterns to those observed above (although positive 

rates of change in grassland were often more extreme; Appendix 7, figs. S17-18). We also 

observed more negative rates of change for populations starting in agriculture with high Tmax 

positions when they experienced rapid increases in surrounding forest compared to SNH (fig. 
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S17). We present the results of the model including SNH above, and that including rate of 

change in forest in the Supplementary information, due to our hypotheses focusing on the 

conversion of natural habitats (including both forest and grassland) to human-altered land 

uses. 

Excluding populations whose time-series did not have a GAM R2 ≥ 0.5 removed 

around three-quarters of populations. The resulting model had a higher marginal R2 and 

predicted more extreme rates of population change (in both the positive and negative 

direction) than those reported above, but patterns with respect to the environmental variables 

discussed in the main findings above were similar (although a few differences in the pattern 

of rate of change in population were observed for those starting within grassland, which may 

be due to the lower number (n = 201) of populations starting in grassland included in this 

model; Appendix 8, figs. S19-21). Excluding time-series with 𝜆𝒀
̅̅ ̅ above and below the upper 

and lower 97.5th and 2.5th percentile, respectively, resulted in a model that explained slightly 

more variation (0.7%) than the final model, but overall patterns were similar (Appendix 9, 

table S10, figs. S22-24). Excluding species from the genus Gyps produced a model with a 

similar marginal R2 value and very similar results to the model presented above (Appendix 

10, figs. S25-27). Running models without ectothermic species produced very similar results 

to those presented above, although rates of population change were shifted towards lower and 

more negative values (Appendix 11, figs. S28-30). The models that excluded variables 

including the distance to range edge measure were very similar whether populations recorded 

outside of their species’ ranges as stated by BirdLife International (2012) and IUCN (2016a-

b, 2017a-c, 2018a-b, 2019a-c) were included or excluded (Appendix 12, figs. S31-36). The 

majority of populations recorded outside of their species’ ranges were relatively close to the 

range edge (70% were within 82km), with those further away generally being species 
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invasive to the recorded location. Finally, cross validation tests showed that there were no 

overly influential locations or species within our dataset (Appendix 13, figs. S37-40).  

Discussion 

Vertebrate populations are not responding uniformly to land-use change across their 

distributions. Rather, we show that land-use change is interacting with climate change and 

climatic position to influence rates of population change. In particular, our results highlight 

the importance of taking a population’s climatic position and the habitat they are within into 

account, as this led to large variation in the impact of the environmental changes we 

considered. 

We show for the first time that a population’s climatic position has an important 

influence on the rate of change in populations over time, in particular through its interactions 

with land-use type and environmental changes. Our results provided support for our first 

hypothesis regarding Tmax position: for populations initially in environments where maximum 

temperatures were closer to the species’ hot thermal limit, those that were in agriculture and 

experienced more rapid losses in surrounding SNH (i.e., high Tmax position + agriculture + 

SNH loss, fig. 4) had more negative rates of population change compared to populations in 

forest or grassland. Again in line with our first hypothesis, we found that, within agriculture, 

for populations initially in environments with minimum temperatures close to their species’ 

cold thermal limit, those that experienced increases in surrounding SNH (i.e., low Tmin 

position + agriculture + SNH gain, fig. 4) had positive rates of population change (whereas 

populations experiencing declines in SNH had lower rates of population change). These 

results highlight the need to, first, account for population’s climatic positions when 

investigating the impacts of land-use change (not just climate change) and second, include 

interactions occurring between drivers of change. These should be incorporated in both 
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global biodiversity models, such as the one we present here, as well as local-scale 

conservation and management plans – these interactions and differences across species’ 

ranges in responses to environmental changes cannot be overlooked if we are to mitigate the 

impact of anthropogenic changes on vertebrate populations around the world. 

There were also unexpected results that were not in line with our hypotheses. For 

example, contrary to our second hypothesis, populations starting in agriculture that 

experienced rapid decreases in hot extremes had negative rates of population change, 

especially if they had high starting Tmax positions (i.e., high Tmax position + agriculture + 

cooler hot extremes). Additionally, we observed that populations in agriculture, and initially 

in environments where maximum temperatures were further from the species’ hot thermal 

limit, had more negative rates of population change in areas that had more rapid increases in 

surrounding SNH (i.e., low Tmax position + agriculture + SNH gain). These observations may 

be due to individuals recolonising surrounding areas, which may have been restored (Nichols 

& Grant, 2007), and so moving out of agricultural areas. Whilst our analyses reveal several 

very important results, one limitation is that we are not able to determine how our focal 

variables are influencing population trends, whether it is through effects on birth, death, 

immigration, or emigration rates. The mechanisms underlying how populations are 

influenced by climatic changes, and how their climatic positions may interact with the local 

climatic changes following land-use change are complex (Williams & Newbold, 2020). 

Further work is needed to explore the mechanisms underlying the influence of climatic 

position and interactions with land-use and climate change on population trends.  

 Regarding populations’ precipitation positions, we found that our results using 

population time-series data contrasted in some respects when compared to a past space-for-

time analysis (using data from the PREDICTS Project database; Williams & Newbold, 2021). 

The space-for-time analysis suggested that agricultural land uses had little impact on 
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population abundance (relative to that in natural habitat) in environments where precipitation 

in the driest month was close to the species’ dry limit (Williams & Newbold, 2021). 

However, here we observed that agricultural populations initially in environments where 

precipitation in the driest month was closer to the species’ dry limit (i.e., low Ppmin position + 

agriculture) had more negative rates of population change relative to populations in more 

natural habitats. The two types of analysis are capturing different attributes of population 

abundance (a snapshot in time vs. temporal trends), and resulting differences may be due to 

the influence of temporal lags, an interaction with global climate change, or the locations of 

populations in the analyses. First, lags in responses to environmental changes (Lira, de Souza 

Leite, & Metzger, 2019) may mean that populations with lower Ppmin positions are initially 

able to tolerate local changes towards drier conditions following land-use change, due to 

drought adaptations for example, but they may not be able to sustain numbers if the 

conditions continue. Lagged responses are not captured in most space-for-time analyses (De 

Palma et al., 2018). Second, ongoing drying trends in the tropics (Lau & Kim, 2015) may 

interact with precipitation position to lead to more rapid declines for populations with lower 

Ppmin positions (indeed, we observe this in our results above, fig. 5), a trend which may be 

hidden if the rate of climate change is not considered. Finally, and perhaps most importantly, 

most populations in our temporal analysis were found at temperate latitudes, and in the space-

for-time analysis, the pattern regarding Ppmin position was much stronger for agricultural 

populations at tropical latitudes (Williams & Newbold, 2021). This emphasises the need to 

collect more time-series data for tropical populations (discussed further below), in order to 

explore geographic differences. Ultimately, exploring similar questions using both space-for-

time and temporal analyses is key.  

The land-use type a population was within when their population was first measured 

(starting land-use type: forest, grassland, agriculture, or other), and the percentage of 
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surrounding SNH at the start of recording, also played vital roles within interactions. For 

example, we observe that, although populations starting in forests were generally increasing 

by around 1% per year, this rate was similar for populations with different starting climatic 

positions and experiencing different rates of land-use and climate change. This suggests that 

forests may act as buffers, providing climatic conditions and/or habitat quality (e.g., due to 

the thermal buffering properties of a canopy layer and the complexity of microhabitats; De 

Frenne et al., 2019; González del Pliego et al., 2016) that protect populations from 

surrounding landscape-level (change in SNH) and global-level (climate change) 

environmental changes. Similarly, those populations surrounded by higher percentages of 

SNH at the start of recording generally had weaker and less negative population trends, 

suggesting that surrounding SNH can also help buffer populations from land-use and climatic 

changes, across different climatic positions. Conversely, we observed that variation in rate of 

population change across different climatic positions and rates of land-use and climate 

change was often greater in grassland habitats compared to forest or agriculture. This 

suggests that grassland populations may be especially sensitive to environmental changes. 

The majority of grassland populations were birds, and it has previously been found that 

grassland birds respond more strongly than forest birds to climatic changes (Jarzyna et al., 

2016). In addition, it has been highlighted that many grassland bird species may be 

particularly sensitive to habitat loss due to being area-sensitive (Herkert 1994; Vickery et al., 

1994). Overall, this emphasises that habitat type needs to be accounted for within large-scale 

models analysing the impacts of drivers of change across multiple land uses – otherwise, the 

weight of any driver’s influence may be dampened or obscured due to the buffering effects of 

natural habitats. 

 By analysing time-series data from both the LPD and BioTIME database together, not 

only were we able to analyse over 7,000 vertebrate populations, but we could also highlight 
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some of the differences between the databases, which may contribute to the conflicting 

results between previous studies analysing these databases separately (e.g., Dornelas et al., 

2019; WWF 2020). After filtering, there were roughly the same number of populations from 

tropical (n=174) and temperate (n=193) latitudes from the LPD, whereas all BioTIME 

populations (n=6,756) came from temperate latitudes. Even though abiotic factors are 

suggested to have greater impact on species distributions at higher latitudes (Khaliq et al., 

2017; MacArthur, 1972), the tropics have continuously been identified as particularly 

vulnerable to drivers of change such as land-use and climate change (Brook, Sodhi, & 

Bradshaw, 2008; Newbold, Oppenheimer, Etard, & Williams, 2020). Further, previous global 

studies examining the impact of local climatic changes following land-use change have found 

greater differences in communities between natural and human-altered land uses in tropical 

than temperate latitudes (Williams et al., 2020). Reasons for this include the relative stability 

(past and present) of the tropical climate (Janzen, 1967; Pacifici et al., 2017), the smaller 

average range sizes of species within the tropics (Stevens, 1989; Thuiller, Lavorel, & Araújo, 

2005), the fact that tropical species are often living closer to their maximum thermal 

tolerance limits (Deutsch et al., 2008; Sunday et al., 2014), and the larger proportion of 

specialist species (habitat and dietary specialists) inhabiting the tropics (Forister et al., 2015). 

Consequently, the skew of BioTIME data towards temperate assemblages may not give an 

accurate representation of global population trends. Indeed, analyses of vertebrate 

populations of forest specialists from the LPD found that the average abundance trends were 

positive in temperate biomes and negative in tropical biomes (Green et al., 2020). Ideally, we 

would test whether population trends were influenced differently by our focal variables 

depending on whether the population was at a tropical or temperate latitude. However, there 

were insufficient tropical data to do so. In our final dataset, the LPD contributed populations 

from 42 countries, whereas the BioTIME database contributed populations from just 4 
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countries (United States of America, Canada, South Africa, and Brazil; Appendix 2, fig. S1). 

Historical pressures on biodiversity can impact vulnerability to present-day environmental 

changes (Balmford, 1996). Therefore, analyses based on data from a small number of 

countries need to take this into account and, in the case of the BioTIME database, the 

countries contributing data all have long histories of environmental changes (although, in the 

case of Brazil, this varies spatially within the country; Goldewijk, 2001; Goldewijk, Beusen, 

Van Drecht, & De Vos, 2011; Nehren, Kirchner, Sattler, Turetta, & Heinrich, 2013). 

Consequently, this may be another reason for disparities between previous studies using data 

from the LPD versus BioTIME database.  

 Using species’ distribution maps and climate data from WorldClim to estimate 

species’ realised climatic tolerance limits meant that we were not able to take into account 

climatic adaptations over time, intraspecific differences in climatic tolerances, or 

microclimatic conditions. In addition, despite excluding migratory species from our dataset, 

populations may still utilise different local habitats (e.g., different microhabitats or move 

across local-scale elevations) throughout the year. However, at present, the data are not 

available to include/account for these variables, especially for the large number of 

populations (over 7,000 populations, covering almost 350 species) that were included in this 

analysis. Hopefully it will be possible to account for these variables in future. Further, we use 

estimates of realised climatic tolerance limits, which can be influenced by factors other than 

climate, such as dispersal barriers and biotic interactions (HilleRisLambers, Harsch, Ettinger, 

Ford, & Theobald, 2013; Peterson et al., 2011). Nevertheless, we use these rather than 

physiological climatic tolerance limits because physiological data are available for very few 

species, the metrics produced in laboratory tests are often incomparable to one another (due 

to different measurement procedures), and laboratory tests have been criticised for not being 
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reflective of real-world conditions (Araújo et al., 2013; Rezende, Castañeda, & Santos, 2014; 

Sunday, Bates, & Dulvy, 2012).  

In conclusion, local land-use changes and global climate changes are interacting to 

impact vertebrate population trends around the world. Further, these interactions do not 

impact populations uniformly across species’ ranges. Rather, a population’s climatic position 

is key within these interactions and can lead to the impacts of land-use and climatic changes 

being intensified or dampened, especially within grassland and agricultural land uses. 

Consequently, we highlight the importance of taking a population’s climatic position into 

account, not just when studying the impacts of climate change (Soroye et al., 2020), but also 

land-use change. Even though the effects of these interactions are complex, and further work 

is needed on the mechanisms underlying how these variables influence populations, our 

results allow us to identify populations that may be at more risk of decline. For example, our 

results highlight that populations in agricultural land uses where maximum temperatures were 

closer to their hot thermal limit, declined at faster rates when there had also been rapid losses 

in surrounding semi-natural habitats. In order to prevent further population declines and 

mitigate the impact of anthropogenic changes, we cannot ignore interactions between drivers 

of change, and we must account for variation across species’ ranges in responses to local and 

global environmental changes in both local conservation strategies and global models.    
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