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Compulsive behavior is enacted under a belief that a specific act controls the likelihood of an undesired future event. Compulsive
behaviors are widespread in the general population despite having no causal relationship with events they aspire to influence. In
the current study, we tested whether there is an increased tendency to assign value to aspects of a task that do not predict an
outcome (i.e., outcome-irrelevant learning) among individuals with compulsive tendencies. We studied 514 healthy individuals who
completed self-report compulsivity, anxiety, depression, and schizotypal measurements, and a well-established reinforcement-
learning task (i.e., the two-step task). As expected, we found a positive relationship between compulsivity and outcome-irrelevant
learning. Specifically, individuals who reported having stronger compulsive tendencies (e.g., washing, checking, grooming) also
tended to assign value to response keys and stimuli locations that did not predict an outcome. Controlling for overall goal-directed
abilities and the co-occurrence of anxious, depressive, or schizotypal tendencies did not impact these associations. These findings
indicate that outcome-irrelevant learning processes may contribute to the expression of compulsivity in a general population
setting. We highlight the need for future research on the formation of non-veridical action−outcome associations as a factor
related to the occurrence and maintenance of compulsive behavior.
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INTRODUCTION

To say that a reinforcement is contingent upon a response,
may mean nothing more than that it follows the response. B.F.
Skinner (1948) [1]

Compulsive, ritualistic behaviors are enacted to influence the
likelihood that a certain event will occur [1]. These behaviors
are seen in more than one-quarter of the general population
[2, 3]. By definition, there is no causal relationship between
compulsive behaviors and the likelihood of the event they aim
to influence [4, 5]. Furthermore, in many instances, individuals
have explicit knowledge that their compulsive actions are
causally irrelevant [1]. Therefore, a fundamental unanswered
question relates to what facilitates the formation of such
action−outcome associations, given they do not exist in the
external environment.
Outcome-irrelevant learning can be defined as a tendency to

assign credit to actions that do not hold any causal association to
an outcome [6]. Outcome-irrelevant learning was first observed in
animals by Skinner, who found that pigeons acquire a ritualistic-
like behavior when food pellets are presented at random time
intervals [7]. He went on to note that movements enacted by

chance, just before the appearance of a food pellet, were
subsequently re-enacted at a higher frequency as if by doing so
the pigeons could make the food pellet re-appear. For example,
one of the pigeons learned to hop from its right to the left foot in a
specific corner of the cage, despite this behavior having no causal
influence on the future appearance of a food pellet. Whether such
outcome-irrelevant learning, as observed in pigeons, bears any
relation or significance to the expression of human compulsive
behaviors is unknown.
Recently, we observed outcome-irrelevant learning in human

subjects that manifests as a tendency to press a response key
that was previously followed by a monetary gain, and a
tendency to avoid it when it was followed by a loss, despite
there being no actual causal relationship between the
response key and an outcome [6]. Such outcome-irrelevant
learning was observed even following extensive practice
sessions (up to three sessions, and more the 500 trials), which
should indicate to a participant that response keys were not
predictive of an outcome [6]. On this basis, and bearing in mind
the aforementioned studies on pigeons, we asked whether
outcome-irrelevant learning might be a significant contributory
process in the emergence of human compulsive behavior (i.e.,
behaviors that are not causally connected with the event they
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aim to influence). Thus, the main goal of the current study was
to examine whether outcome-irrelevant learning is empirically
related to compulsive tendencies in a community sample of
human subjects.
Previous reinforcement-learning studies that have examined an

association between value-based learning and compulsivity
focused on goal-directed reasoning strategies (i.e., model-based
control) [8–10]. These studies demonstrated a replicable (yet small)
reduction in goal-directed reasoning strategies among individuals
who scored high on compulsivity scales. Given that reduced model-
based control is currently considered an inherent aspect of
compulsive symptoms [8–10], it is of interest to ask whether
outcome-irrelevant learning can extend our ability to predict the
expressions of compulsivity, beyond that based on model-based
control. Finally, some researchers have suggested that reduced
model-based control is tightly coupled with an increased expres-
sion of habitual (model-free) behavior, such that a tendency to form
and maintain rigid habits is considered to underlie compulsive
behavior [11]. However, we note that empirical findings regarding
increased habitual behavior in compulsive individuals provide
mixed, and difficult to replicate, evidence [8, 12].
In the current study, we tested for an association between

outcome-irrelevant learning and compulsive behavior in a
healthy, general population sample, and to assess whether this
association exists over and above other associated factors
previously reported in the literature. We analyzed data from 514
individuals from a community-based longitudinal sample,
comprising adolescent and young adult volunteers, living in
Cambridgeshire and London, UK (Neuroscience in Psychiatry
Network [13]). Participants completed self-report measures of
obsessive, compulsive, anxious, depressive, and schizotypal
tendencies, and performed a laboratory-based two-stage
decision task [8, 14–18]. We first used latent score analysis to
measure a latent factor of compulsivity and replicated Gillan
et al.’s [9] findings by showing that compulsive behavior can be
segregated from obsessive thinking using factor analysis, as
well as replicated an association between reduced model-based
abilities and compulsivity [8–10]. Importantly, we found that
outcome-irrelevant learning positively relates to compulsivity,
even after controlling for other clinical symptoms and the
extent of expressed model-based control. Thus, our findings
highlight a unique association between outcome-irrelevant
learning and compulsive behavior in a healthy population of
young people.

MATERIALS AND METHODS
Participants
We obtained data from a community-based longitudinal sample of
adolescent and young adult volunteers living in Cambridgeshire and
London, UK (Neuroscience in Psychiatry Network [13]). The study recruited
participants from an age-sex-stratified sample, with equal numbers of
males/females across five age groups: 14–15, 16–17, 18–19, 20–21, and
22–24.99 years. Participants completed up to three in-lab assessments,
involving a structured psychiatric interview for DSM-V, clinical self-report
measures, and task-based cognitive measures (median of 18 months
between the first and last in-lab assessments). They further completed self-
report measurements at three time points at home (median of
27.19 months between the first and third home-pack return; 5.76 months
between the first in-lab and first home-pack return). Only participants who
had been estimated on all measures (i.e., two-step task, and self-report
measures) were included in further analysis. Participants who met the
diagnostic criteria for a psychiatric disorder were excluded (N= 31; see
Supplementary Information), resulting in a total of 514 individuals
(females/males= 255/259; mean age at first assessment= 18.39; 6.23%
Asian, 4.47% Black, 6.23% Mixed, 76.46% White, 6.61% other). The study
was carried out in accordance with the Declaration of Helsinki and Good
Clinical Practice guidelines. Ethical approval was granted by the Cambridge
Central Research Ethics Committee (12/EE/0250), and all participants gave
their informed consent to take part in the study.

Self-reported symptoms
Self-report ratings regarding symptoms of compulsive, obsessive, anxious,
depressive, and schizotypal tendencies were obtained by asking partici-
pants to complete the following scales:

(a) Obsessive-Compulsive Inventory-Revised (OCI-R) [19, 20]—18-items,
divided into six subscales: Washing, Checking, Ordering, Counting,
Hoarding, and Obsessions.

(b) Padua Inventory-Washington State University Revision (PI-WSUR)
[21, 22]—39 items, divided into five subscales: Thoughts about
harm, Impulses to harm, Washing, Checking, and Grooming.

(c) Short Leyton Obsessional Inventory (LOI) [23]—11 items, totaled to
create a single sum score.

(d) Mood and Feelings Questionnaire (MFQ) [13, 24]—33 items, totaled to
create a single sum score.

(e) Revised Children’s Manifest Anxiety Scale (RCMAS) [13, 24, 25]—37
items, divided into three subscales: Physiological-anxiety, Worry,
Social-anxiety.

(f) Schizotypal Personality Questionnaire (SPQ) [26]—74 items, divided
into nine subscales: Ideas of reference, Odd behavior, Constricted
affect, Odd speech, Excessive social-anxiety, No close friends,
Suspiciousness, Perceptual experiences, Magical-thinking.

Overall, the six questionnaires (i.e., OCI-R, PI-WSUR, LOI, MFQ, RCMAS,
and SPQ) resulted in 25 subscales (see Supplementary Table S1). Using
linear regression, we controlled for age, gender, and repeated assessments
for each of the 25 subscales, followed by a dimension reduction analysis
(for a single time point analysis controlling for change over time in
symptoms; for information on how these estimates were controlled, see
Supplementary Information). Performing a dimension reduction analysis
was important for several reasons; first, a previous study demonstrated
that dimension reduction can disentangle compulsive from obsessive
tendencies [9]; second, dimension reduction is useful in reducing multiple
comparisons [8, 9]; and third, dimension reduction allows for an estimation
of latent factors, known to be more reliable than single estimates [27]. Our
dimension reduction analysis involved a principal component analysis (a
‘promax’ rotation was used to allow for non-orthogonal components while
avoiding factor score indeterminacy, which is characteristic of factor
analysis; see Supplementary Information). Using a scree plot analysis (see
Supplementary Information and Supplementary Fig. S1), we observed that
three factors best explained the data (58% explained variance). After
examining subscale loadings on each of the factors (Fig. 1), we labeled the
first factor ‘anxiety−depression−obsession’, the second ‘compulsivity’ and
the third ‘schizotypal tendency’ (22%, 21% and 16% explained variance for
each factor, respectively). Importantly, similar to findings from a recent
study by Gillan et al. [9], dimension reduction enabled us to segregate
obsessive from compulsive tendencies. Overall, this analysis resulted in
three factors, with each of the 514 individuals having a single loading score
on each factor (compared with 25 estimates for each individual before
dimension reduction). These three factors were used in a subsequent
regression analyses, as presented below.

Reinforcement learning estimates
Two-step task. To obtain individual measures of outcome-irrelevant
learning and model-based control, participants completed a two-step
reinforcement-learning task [14, 18, 28]. In this task, players were asked to
make decisions in order to maximize monetary gains (play pounds). Each
trial included two stages, in which participants made a choice between two
fractals (see Fig. 2A). The fractals in the first stage led probabilistically to one
of the two second-stage pairs; fractals in the second stage led
probabilistically to receipt of a reward (£0 or £1). Each fractal was randomly
assigned in each trial and stage to appear on the left or right side of the
screen. Participants were instructed to select a fractal by pressing the
corresponding left or right response key (see Fig. 2B). Importantly, only
fractals, but not their arbitrary and varying affiliated response keys, predicted
outcomes—the fractal position on the screen, and the effector participants
used to select the fractal were randomly assigned by the computer. Subjects’
choices and reaction times enabled us to estimate outcome-irrelevant
learning and model-based control, as described further below.

Outcome-irrelevant learning. We operationalized outcome-irrelevant learn-
ing as a disposition to assign value to a task representation that is not
predictive of an outcome (see Fig. 3). In the current task, fractals were
randomly assigned in each trial to appear on either the left or right side of
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the screen, and participants pressed a corresponding left or right response
key to select a fractal (see Fig. 2B). Fractal identity alone, but not their
response keys, predicted reward. This task feature was introduced to
participants by means of both instruction and practice. We started by re-
fitting a computational model that allows estimation of individuals’
tendency to assign value to the response key, despite it being outcome-
irrelevant [6]. Specifically, Shahar et al. [6] previously reported findings from
a comprehensive model comparison using the same data and showed that
a tendency to assign and follow outcome-irrelevant representations is
captured by two computational model parameters: a decision-weight,
reflecting the integration of such information during the decision phase
(woutcome-irrelevant; see Supplementary Information, Eqs. 6 and 7 and Table 1)
and a learning-rate parameter, reflecting the updating of outcome-
irrelevant representations (αoutcome-irrelevant; see Supplementary Information,

Eqs. 3 and 4 and Table 1). After fitting the computational model and
estimating woutcome-irrelevant and αoutcome-irrelevant, we further estimated three
independent sequential trial scores previously found to be closely related to
these two outcome-irrelevant computational parameters [6]. This was
implemented because the use of both model parameters, and closely
related model-agnostic scores, have been shown to increase estimator
reliability [17]. Furthermore, a non-computational-minded reader will find it
easier to understand outcome-irrelevant learning by considering these
model-agnostic estimates, which directly reflect outcome-irrelevant learning.

(a) First-stage score (see Fig. 3A)—calculated as the effect of a trial
n reward (unrewarded vs. rewarded) on the probability that a
response key selection made in the second stage of the n trial will
be repeated in the first stage of the n+ 1 trial.

A

B

Fig. 1 The three factors revealed from a dimension reduction analysis performed on self-report estimates. A Factor loadings showed that
obsessional thinking loaded primarily on the first factor, along with depression, anxiety, and worry subscales. The compulsive behavior subscale
primarily loaded on the second factor, and schizotypal tendencies predominantly loaded on the third factor. B Illustration of the association
between the compulsive factor and individual items from the self-report measures. The x axis on all four scatter plots indicates the latent score
for each individual on the compulsivity factor. The y axis illustrates the subscale score of a single estimate including (from left to right): (I)
Compulsive washing (the average rating across the ten items of the washing subscale in the PI-WSUR questionnaire; an example item is, “I wash
my hands more often and longer than necessary.”). (II) Compulsive checking (the average rating across the ten items of the checking subscale
in the PI-WSUR questionnaire; an example item is, “I tend to keep on checking things more often than necessary”). (III) Compulsive ordering
behavior (the average rating across the three items of the ordering subscale in the OCI-R questionnaire; an example item is, “I get upset if
objects are not arranged properly”). (IV) Compulsive dressing/grooming (the average rating across the three items of the grooming subscale in
the PI-WSUR questionnaire; an example item is, “I feel obliged to follow a particular order in dressing, undressing, and washing myself”).
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(b) Second-stage score I (Fig. 3B)—calculated as the effect of a trial n reward
(unrewarded vs. rewarded) on the probability that the response key
selection made in the second stage of the n trial will be repeated in the
second stage of the n+ 1 trial. This score was calculated using trials in
which the individual reached a different second stage in trial n+ 1
compared with trial n, ensuring that the effect would not be influenced
by value-learning regarding the relevant fractals.

(c) Second-stage score II (see Supplementary Fig. S2)—calculated as an
interaction of a trial n reward (unrewarded vs. rewarded) and fractal to
response key pairing (same vs. different) on the probability that the
same fractal will be selected again in trial n+ 1. This score was
calculated using responses from two consecutive trials, in which an
individual was offered the same pair of fractals at the second stage. A
similar effect of reward across pairing (no interaction) indicates no credit
assignment to the response key, whereas a positive interaction indicates
an assignment of value to the response key.

Summary statistics for the five outcome-irrelevant learning estimates can be
found in Table 1. Correlations between the five outcome-irrelevant learning
scores were all positive, as expected. Pearson coefficients for the correlations of
woutcome-irrelevant with first-stage and second-stage I and II scores were 0.12,
0.11, and 0.15, respectively (p< 0.05). Correlations of αoutcome-irrelevant with first-
stage and second-stage I and II scores were 0.35, 0.45, and 0.41, respectively (p
< 0.001). After controlling for age, gender, and repeated assessments using
linear regression (see Supplementary Information for details regarding this
analysis), we transformed the five estimates to standardized z-scores and
averaged across these to obtain a single compound score reflecting outcome-
irrelevant learning (for a single time point analysis controlling for change over
time in symptoms, and information regarding how these estimates were
controlled, see Supplementary Information).
A number of issues regarding outcome-irrelevant learning estimation need

consideration. First, this type of learning was observed despite extensive task
experience [7]. In fact, we found that even after three in-lab sessions and
more than 500 trials, outcome-irrelevant learning was still evident in an
individual’s behavior and, if anything, tended to increase towards the end of
each session (see analysis in Shahar et al. [7]). Second, a study by Feher da

Silva and Hare [29], which used a cover story two-step task version to ensure
that instructions were clear, provided additional support for our findings. A
re-analysis of the two-step task data from Feher da Silva and Hare (2020)
showed that the use of an explicit task cover story did not eliminate
outcome-irrelevant learning (see Supplementary Information). Thus,
outcome-irrelevant learning was observed despite individuals receiving clear
and reliable instructions that response keys do not predict an outcome per se.
Finally, recall that outcome-irrelevant learning, in the current task, refers solely
to a tendency to repeat a response key selection as a function of reward. Our
computational model also included two free parameters capturing key
perseveration (a tendency to repeat the previously selected response key
regardless of reward) and key bias (a tendency to prefer right or left response
keys regardless of task history, e.g., due to hand dominancy); both can
influence response key selection independent of reward delivery (see
Supplementary Information). Key perseveration and key bias were not
included as outcome-irrelevant learning estimates as they do not reflect value
assignment.

Model-based control. Model-based strategies are an expression of goal-
directed control, which utilize explicit knowledge about the transition structure
of the environment in order to inform the best option choices [9, 14, 30]. A
model-based system calculates action values by prospectively examining a
chain of outcomes that are expected to follow a specific action or set of
actions. In the current two-step task, model-based control assigns value to first-
stage visual stimuli (i.e., fractals) by calculating which of the two first-stage
fractals is most likely to lead to the best second-stage fractal. We assessed
model-based control using a well-described computational parameter, which
calculates a weighting for the relative influence of model-based strategies on
decision-making (wmodel-based; see Supplementary Information, Eq. 6 and
Table 1). We further estimated two independent sequential trial scores, which
were previously found to be directly associated with the computational wmodel-

based parameter [30]. The aggregation of these three estimates was shown to
provide a reliable model-based control latent variable.

(a) First-stage score (see Supplementary Fig. S3)—The interaction
effect of transition (common vs. rare) and outcome (rewarded vs.

70% 70%
30%

A B
1st stage
(decision)

£0 or 1 £0 or 1

C

unti l response
(<2sec)

1.5sec

1.5sec

1 to 2sec

unti l response
(<2sec)

*

1st stage
(outcome)

2nd stage
(decision)

2nd stage
(outcome)

ITI

*

Fig. 2 Two-step task illustration. A Participants navigated between the two stages of the task in order to reap rewards. The second stage
included two pairs of fractal images, which led probabilistically to a reward. To attain these rewards, participants made choices during the first
stage, which probabilistically determined the fractals presented during the second stage. B Illustration of trial sequences, showing a choice
made in the first stage, followed by feedback, and a second-stage selection that was followed by a reward (1 play pound). C A fractal to
response key pairing was allocated randomly in each trial. Panel (C) illustrates a trial sequence, in which the same fractals were selected as in
panel (B), but now with different effectors. Although fractal identity predicted relevant outcomes (second-stage fractals, and reward), the
position of the fractal and the response key used to report a selection were always outcome-irrelevant. Outcome-irrelevant learning was
inferred from a participant’s tendency to assign value to response keys despite their irrelevance to any individual decision (see Fig. 3 for
outcome-irrelevant estimate plots). Model-based control was estimated as the ability to select a first-stage action based on the task’s transition
probability and subjective action values of second-stage fractals [14, 31] (see Supplementary Fig. S3 for model-based estimate plots).
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unrewarded) from the previous trial on the probability of
repeating a first-stage choice on the next trial. For the non-
computational reader, a brief explanation is called for as to why
this interaction is considered to reflect model-based control, that
is, an ability to make first-stage decisions based on transition
probabilities and subjective second-stage values. Assume your
choices in trial n led to a reward. When making a first-stage choice
in the n+ 1 trial, an individual using a model-based strategy will
take the transition structure into account. If the previous trial
included a common transition, this individual will stay with the
same first-stage choice, as this provides the best chance of
reaching the same previously rewarded second-stage fractal.
However, if the previous trial included a rare transition, then an
individual who relies on a model-based strategy, should switch to
the alternate first-stage choice, since this has a greater probability
of leading to the same second-stage fractals which were
rewarded in the previous trial. Therefore, a higher transition ×
reward interaction score is considered indicative of a model-
based strategy [14, 30].

(b) Second-stage score (see Supplementary Fig. S3)—An individual
who deploys model-based strategies in the first stage also
demonstrates faster reaction time cost at the second stage
[16, 30]. A reaction time cost is calculated as the difference
between the mean reaction time in the second stage after a rare

vs. common transition, in which a larger difference (i.e., larger MB-
II scores) indicates greater model-based involvement.

Summary statistics for the three model-based estimates of interest can be
found in Table 1. Correlations between the three model-based scores were
positive, as expected. The Pearson correlation was 0.55 between the first- and
second-stage scores, 0.51 between the w1 parameter and the first-stage score,
and 0.37 between the wmodel-based parameter and the second-stage score (all p
values were <0.001). We controlled for age, gender, and repeated assessments
for each estimate, then transformed the three estimates to standardized z-
scores and averaged them to obtain a single compound score reflecting
model-based control (for a single time point analysis controlling for change
over time in symptoms, and information regarding how these estimates were
controlled, see Supplementary Information).
A few caveats regarding model-based control estimates need to be

acknowledged. First, as studies have raised concerns regarding estimates
derived from first-stage scores [18, 28, 29, 31], we took several steps to ensure
the integrity of our estimates. These steps included: (1) using both first-stage
choices and second-stage reaction time estimates [30] and (2) adhering to
recommendations of Akam et al. of a need to control for choice accuracy at the
first-stage choice, as the latter improves the validity of first-stage model-based
estimates (see Supplementary Information). To further ensure that we had
good reliability estimates, we followed hierarchical model fitting procedures
[32], which resulted in behavioral estimates of ~0.8 test−retest reliability or

2nd stage

A

1st stage

?

Monetary
outcome

2nd stage

C

Monetary
outcome

2nd stage

?

B

D

Fig. 3 Outcome-irrelevant learning. The figure illustrates two sequential trial analyses (previously reported in Shahar et al.), demonstrating
outcome-irrelevant value learning. These analyses examined a tendency to repeat a response key selection from trial n to trial n+ 1, as a
function of reward. A, B First-stage score—In this analysis, we show the influence of reward delivery on a tendency to re-select a response key
during the first stage of the n+ 1 trial, which was previously selected in the second stage of the n trial. For example, if the individual selected a
fractal with a left response key press in the second stage of trial n, the left response key is more/less likely to be selected in the first stage of
the following trial as a function of the reward/unrewarded outcome in trial n, respectively, as shown in panel (B). C, D Second-stage score I—In
this analysis, we demonstrate the influence of reward delivery on a tendency to re-select a response key in the second stage of the n+ 1 trial,
which was previously selected during the second stage of the n trial. This analysis included only trials in which a different pair of fractals was
offered in the n and n+ 1 trial. For example, if the individual selected a fractal with a left response key press in the second stage of trial n, the
left response key is more/less likely to be selected in the second stage of the following trial as a function of reward/unrewarded outcome in
trial n, as shown in panel (D) (for second-stage score II, see Supplementary Iinformation).
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more in the two-step task [30, 32]. In addition, in line with previous literature
suggesting that aggregating both measures of choice and reaction times
[16, 30] into a single compound score greatly improves the psychometric
properties of the estimates, we also performed this calculation. Finally, we did
not include model-free estimates in our main analysis since previous studies
failed to show a relationship between these estimates and compulsivity (see
Supplementary Information for the model-free estimates).

RESULTS
Our main question was whether outcome-irrelevant learning is
associated with compulsivity. Thus, we examined the correlation
between latent compulsivity factor scores and outcome-irrelevant
learning estimates (see Fig. 3). Outcome-irrelevant learning showed a
positive correlation with compulsivity, confirming our main hypoth-
esis (r= 0.17, CI95%: 0.08–0.25, BF10= 140.47 in support of H1, see Fig.
4A; also for posterior distribution plot and prior robustness check, see
Supplementary Fig. S4). This result indicates that individuals who
display a tendency to assign credit to task elements that are not
related to an outcome are also those who report higher compulsive
tendencies. Note that while this effect is considered quite small
based on recent individual differences guidelines [33] (~3%
explained variance), the effect size we report is very similar in
magnitude to those reported in previous studies examining an
association between value-learning and compulsivity [8–10].
Next, we replicate a finding reported in previous studies, where we

find a negative correlation between compulsivity and model-based
abilities [8–10] (r=−0.18, CI95%: −0.26 to −0.09, BF10= 272.74 in
support of H1, see Fig. 4B; also for posterior distribution plot and prior
robustness check, see Supplementary Fig. S4). Thus, we found model-
based control was negatively correlated with outcome-irrelevant
learning (r=−0.29, CI95%: −0.37 to −0.21, BF10= 8.84 × 108; see
Supplementary Fig. S5). This raises the question as to whether
outcome-irrelevant learning improves our ability to explain individual
variability in compulsivity estimates, beyond a well-established
association between model-based control and compulsivity [8–10].

To examine an association between outcome-irrelevant learning
and compulsivity, while controlling for model-based abilities, we
next conducted a multiple Bayesian linear regression. In this
analysis, we tested the effects of outcome-irrelevant learning and
model-based abilities, as well as their interaction, on compulsivity.
Following recent guidelines for Bayesian linear regression [34], we
first conducted model comparison, followed by an examination of
the parameters posterior distributions for the winning model (for a
null hypothesis testing table with p values, see Supplementary
Table S2). We tested five nested models including (a) a null model
(with an intercept predicting compulsivity), (b) outcome-irrelevant
learning as a single predictor of compulsivity, (c) model-based
control as a single predictor of compulsivity, (d) both outcome-
irrelevant learning and model-based control predicting compulsiv-
ity, and finally (e) the impact of the two main effects, and their
interaction, as predictors of compulsivity. We found that the data
were most likely under a model containing both outcome-irrelevant
learning and model-based control as predictors of compulsivity,
with no interaction (i.e., winning model; R2= 4.5%). The results
indicated that the data are 1435.92 times more likely under the
winning model compared to the null model, 6.15 times more likely
compared to a model with only model-based control as a predictor,
11.87 times more likely compared to a model with only outcome-
irrelevant learning as a predictor of compulsivity, and 2.69 times
more likely compared to a model with both outcome-irrelevant
learning, model-based control and their interaction as predictors of
compulsivity. Examining the posterior parameter distributions for
the winning model showed that higher outcome-irrelevant learning
(coefficient posterior mean= 0.12, CI95%= 0.04−0.21) and lower
model-based abilities (coefficient posterior mean=−0.13, CI95%=
−0.22 to −0.06) predicted higher compulsivity estimates (see
Fig. 4C). These results were robust across a range of priors (for prior
robustness checks, see Supplementary Information). Overall, this
result supports a proposal that outcome-irrelevant learning predicts
compulsivity after controlling for model-based abilities.

Table 1. Sample characteristics and descriptive data per time point.

Baseline Follow-up 1 Follow-up 2 Across time points

Sample characteristics

N 514 48 514

Gender (m/f) 259/255 24/24 259/255

Age 18.81 (2.96) 19.30 (2.87) 20.27 (2.98)

Outcome-irrelevant learning

woutcome-irrelevant 0.23 (0.09)

αoutcome-irrelevant 0.29 (0.23)

First-stage score 0.03 (0.12) 0.04 (0.11) 0.04 (0.10)

Second-stage score I 0.04 (0.15) 0.04 (0.14) 0.03 (0.12)

Second-stage score II 0.15 (0.27) 0.12 (0.24) 0.16 (0.22)

Model-based control

wmodel-based 0.38 (0.20)

First-stage score 0.10 (0.25) 0.08 0(0.23) 0.12 (0.20)

Second-stage score (ms) 120 (110) 110 (90) 130 (100)

Outcome-irrelevant learning: woutcome-irrelevant reflects the weight of the response key cached value on the individual’s trial-by-trial decisions (units are arbitrary
and should be interpreted in terms of being negative, zero, or positive; see Supplementary Information, Eqs. 6 and 7), estimated using computational
modeling across all three time points. αoutcome-irrelevant is the learning rate for the response key cached value (range is between 0 and 1; see Supplementary
Information, Eqs. 3 and 4), estimated across all three time points. First-stage and second-stage score I estimates are depicted as unstandardized regression
coefficients, representing the effect of outcome in the previous trial (rewarded vs. unrewarded) on the probability of making the same response key choice
(see Fig. 3). Second-stage score II shows the unstandardized regression coefficients of the previous outcome ×mapping interaction estimate on the probability
of making the same response key choice (Supplementary Fig. S1). Model-based control (wmodel-based) reflects the weight of model-based strategies on an
individual’s first-stage choices (units are arbitrary and should be interpreted in terms of being negative, zero, or positive; see Supplementary Information, Eq.
6). The first-stage score shows the unstandardized regression coefficients of the previous reward × previous transition interaction effect on the probability that
individuals will repeat their first-stage fractal choice (see Supplementary Fig. S2). Second-stage score II reflects the difference in reaction time for second-stage
choices after a rare compared to a common transition (see Supplementary Fig. S2).
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Our latent factor of compulsivity was obtained using a non-
orthogonal rotation, as this allowed us to deal with factor
indeterminacy and provided us with an easier way to interpret
factor estimates. However, it also meant that clinical factors were
expected to be correlated (see Supplementary Fig. S6). We repeated
the same Bayesian linear regression described above, with the only
difference being that anxious, depressive, obsessive, and schizoty-
pal tendencies were included as additional null predictors across all
models. We found that the winning model was one where
outcome-irrelevant learning was a single task-based predictor (see
Supplementary Table S3 for Bayes factors and Supplementary Table
S4 for the null hypothesis testing analysis with p values). The reason
model-based control was not included in the winning model is
likely to reflect the fact that model-based control was more highly
correlated with the two additional clinical factors, and therefore less
specific to predicting compulsivity (see Supplementary Fig. S6 for a
correlation matrix between the factors).
Finally, one concern in our analysis comes from the use of

individual random effect coefficients for subsequent analyses, a
procedure that can underestimate variances and overestimate the
covariance [35]. To rule out the influence of the latter we repeated
our analysis with outcome-irrelevant learning and model-based
scores that were estimated individually (as opposed to hierarchi-
cally, with random effects). This analysis led to the same
conclusions (see Supplementary Information).
Thus, our main finding is a positive association between outcome-

irrelevant learning and compulsivity. Despite the small effect size
(~3% explained variance), this association remained significant even
after controlling for model-based control, and the co-occurrence of
obsessive, anxious, depressive, and schizotypal tendencies.

DISCUSSION
Compulsive rituals are often performed under the belief that they
alter the probability of the occurrence of some future event [1, 36].
Here, we demonstrate that a tendency to form action−outcome
associations, that do not exist in the external environment (i.e.,
outcome-irrelevant learning), is associated with higher levels of
compulsive symptoms in the general population. Albeit small, the
positive association between outcome-irrelevant learning and
compulsivity remained when accounting for model-based control,
as well as anxious, depressive, and schizotypal tendencies.
A remarkable element of outcome-irrelevant learning estimates is

that they are expressed across outcome-relevant features of the task
(i.e., fractals, states, and stages) [6, 37]. This suggests that compulsive

rituals might, in part, represent response-outcome tendencies that are
divorced from any influence of decision-relevant stimuli [6]. For
example, think of a bowler who has just thrown a ball and is now
moving her shoulders from right to left, as if she is trying to control
the course of the ball [7]. An action (e.g., twisting the shoulders) might
then be reinforced by the outcome (e.g., a high score), irrespective of
any outcome-relevant aspects (e.g., feeling the ball in one’s hand or
visually examining the bowling lane before throwing the ball). This
means that, at some subjective level, shoulder twisting becomes
associated with better bowling outcomes, and on this basis might
come to be perceived as having a ‘magical’ influence on the ball’s
trajectory [1, 7].
A prominent observation in the reinforcement-learning literature

regarding compulsive behavior is that individuals with high
compulsive tendencies show reduced model-based control
[8, 9, 11, 38, 39], a finding also supported by our current study.
Importantly, we found that an association between outcome-
irrelevant learning and compulsivity remains even after controlling
for model-based abilities. Our findings further suggest that outcome-
irrelevant learning was slightly less associated with other psychiatric
symptoms (i.e., anxiety, depression, and schizotypal tendencies)
compared to model-based abilities. When we controlled more strictly
for these additional clinical symptoms, we found that the best model
to predict compulsivity was the one with outcome-irrelevant learning
as a single predictor, without benefits for adding model-based abilities
as an additional predictor. Therefore, it might be that model-based
abilities are more related to general psychopathology, while outcome-
irrelevant learning is more directly associated with compulsivity.
However, dedicated studies are required to address this assumption.
We further suspect given these results that future studies involving
sub-clinical screening and/or assessments might yield improved
prediction accuracy for compulsivity with respect to outcome-
irrelevant learning estimates. However, to accomplish the goal of
using task-based estimates for sub-clinical screening, further studies
will need to be cognizant that an empirical association between task-
based estimates and compulsivity tends to be small [8–10].
Another related issue is that the current study did not address

possible theoretical reasons as to why model-based control was
negatively associated with outcome-irrelevant learning, and we
suggest this as a useful focus for future investigation. Interestingly,
Moran et al. argued that a cognitive map (or model) guides credit
assignment [40–43], specifically the attribution of relevant rewards
to a preceding causal action. By extension, we can speculate that a
cognitive model of the environment includes a representation of
which aspects of an action (e.g., visual or motor) are relevant to a
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Fig. 4 Association of outcome-irrelevant learning and model-based control with compulsivity. A Scatterplot showing the association
between outcome-irrelevant learning and compulsivity. B Scatterplot showing the association between model-based control and
compulsivity. C Posterior mean coefficients with 95% credible intervals taken from a Bayesian regression analysis exploring the effects of
outcome-irrelevant learning and model-based control on compulsivity. Overall, the results show that outcome-irrelevant learning is positively
related to compulsivity, even when controlling for the impact of model-based control (note that estimates are presented as standardized
scores. Outcome-irrelevant learning estimates reflect the compound scores across five closely related task-based estimates, model-based
control estimates reflect the compound scores across three closely related task-based estimates, and compulsivity reflects a factor that mainly
loaded on self-report items of washing, checking, ordering, and grooming).
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task outcome, thus directing credit assignment to relevant aspects
and filtering out any credit assignment to non-relevant aspects.
Future studies might usefully examine whether a direct manipula-
tion of model-based resources impacts upon outcome-irrelevant
learning, which might, in turn, influence the expression of
compulsive tendencies.
Our results have relevance for the interpretation of findings from

value-based neuroimaging studies on compulsive individuals. Speci-
fically, a blunted neural response to a reward has been reported in
compulsive individuals, with areas such as the nucleus accumbens
showing reduced reward anticipation encoding [44]. In contrast, other
studies have reported increased reward prediction error signals
among compulsive individuals [45, 46]. Our findings imply a much
more complex expression of reinforcement learning among highly
compulsive individuals. Thus, studies addressing reward-related
neural responses among highly compulsive individuals might
endeavor to disentangle outcome-relevant from outcome-irrelevant
reward-related responses. We acknowledge that our results speak to
tendencies in the general population and any generalization to a
clinical population, such as those with obsessive−compulsive
disorder, should be made with caution pending further evidence [9].
One limitation to the current study is that we cannot determine a

direction of causality using regression analysis alone [47, 48]. Many
studies tend to implicitly infer that task-behavior reflects cognitive
processes that underlie compulsive behavior [11, 38, 39]. For
example, it might be the case that outcome-irrelevant learning
reflects a general tendency of the cognitive system to assign credit
and form non-veridical action-outcome associations, which then
leads to increased compulsive behavior. This suggests, much like
Skinner’s superstitious pigeons [7], that some actions that are
enacted prior to a meaningful outcome (or internal imagery of such
an outcome [1]) can be perceived as causally related to that
outcome. However, studies place less of an emphasis on the fact
that task-based performance might be seen as reflecting a set of
symptoms, rather than representing an underlying mechanism.
According to this view, a latent tendency towards compulsive action
leads to a specific behavior in our task, such that participants were
less able to think and act in a model-based manner and were more
prone to repeat a response key selection after a reward. Therefore,
both reduced model-based behavior and increased outcome-
irrelevant learning might reflect underlying causal factors in the
genesis of compulsive tendencies. Yet, equally plausible is the
possibility that reduced model-based behavior and increased
outcome-irrelevant learning are themselves consequences of
compulsive tendencies. Only a rigorous manipulation of model-
based control and outcome-irrelevant learning will ultimately enable
us to determine which explanation is more likely [48].
Another potential limitation relates to a suggestion that the

deployment of model-based strategies, such as in Daw et al.’s task
version, do not necessarily lead to higher gains. This means model-
based estimates such as ours might underestimate an individual’s
true ability, as participants might not have been motivated to
deploy model-based strategies [18, 31]. This might explain the small
observed overall effect in our study, and indicates future studies that
encourage the use of model-based abilities will be informative.
However, notwithstanding a potential underestimation of the true
association between model-based abilities and compulsivity, this is
less likely the case when it comes to estimates of outcome-irrelevant
learning, the main focus of the current study. Outcome-irrelevant
learning in the two-step task leads, by definition, to lower pay-offs,
as these aspects change randomly between trials and do not predict
any particular outcome [6].
To conclude, we demonstrate a positive relationship between

outcome-irrelevant learning and compulsive behavior in a
healthy volunteer sample. We suggest that attributing value to
task representations regardless of their outcome relevance may
be one contributory component to the emergence of compulsive
behaviors.
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