
Algorithmic Regulation using AI and
Blockchain Technology

Hirsh Jaykrishnan Pithadia

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

November 6, 2021

2

I, Hirsh Jaykrishnan Pithadia, confirm that the work presented in this thesis is

my own. Where information has been derived from other sources, I confirm that

this has been indicated in the work.

Abstract

This thesis investigates the application of AI and blockchain technology to the
domain of Algorithmic Regulation. Algorithmic Regulation refers to the use of
intelligent systems for the enabling and enforcement of regulation (often referred
to as RegTech in financial services). The research work focuses on three problems:
a) Machine interpretability of regulation; b) Regulatory reporting of data; and c)
Federated analytics with data compliance. Uniquely, this research was designed,
implemented, tested and deployed in collaboration with the Financial Conduct Au-
thority (FCA), Santander, RegulAItion and part funded by the InnovateUK RegNet
project. I am a co-founder of RegulAItion.

Using AI to Automate the Regulatory Handbook
In this investigation we propose the use of reasoning systems for encoding financial
regulation as machine readable and executable rules. We argue that our rules-
based white-box approach is needed, as opposed to a black-box machine learning
approach, as regulators need explainability and outline the theoretical foundation
needed to encode regulation from the FCA Handbook into machine readable se-
mantics. We then present the design and implementation of a production-grade
regulatory reasoning system built on top of the Java Expert System Shell (JESS)
and use it to encode a subset of regulation (consumer credit regulation) from the
FCA Handbook. We then perform an empirical evaluation, with the regulator, of the
system based on its performance and accuracy in handling 600 real- world queries
and compare it with its human equivalent. The findings suggest that the proposed
approach of using reasoning systems not only provides quicker responses, but also
more accurate results to answers from queries that are explainable.

SmartReg: Using Blockchain for Regulatory Reporting
In this investigation we explore the use of distributed ledgers for real-time reporting
of data for compliance between firms and regulators. Regulators and firms recog-
nise the growing burden and complexity of regulatory reporting resulting from the
lack of data standardisation, increasing complexity of regulation and the lack of
machine executable rules. The investigation presents a) the design and implementa-
tion of a permissioned Quorum-Ethereum based regulatory reporting network that
makes use of an off-chain reporting service to execute machine readable rules on
banks data through smart contracts b) a means for cross border regulators to share

Abstract 4

reporting data with each other that can be used to given them a true global view
of systemic risk c) a means to carry out regulatory reporting using a novel pull-
based approach where the regulator is able to directly pull relevant data out of the
banks environments in an ad-hoc basis- enabling regulators to become more active
when addressing risk. We validate the approach and implementation of our system
through a pilot use case with a bank and regulator. The outputs of this investigation
have informed the Digital Regulatory Reporting initiative- an FCA and UK Gov-
ernment led project to improve regulatory reporting in the financial services.

RegNet: Using Federated Learning and Blockchain for Privacy Preserving
Data Access
In this investigation we explore the use of Federated Machine Learning and Trusted
data access for analytics. With the development of stricter Data Regulation (e.g.
GDPR) it is increasingly difficult to share data for collective analytics in a compli-
ant manner. We argue that for data compliance, data does not need to be shared but
rather, trusted data access is needed. The investigation presents a) the design and
implementation of RegNet- an infrastructure for trusted data access in a secure and
privacy preserving manner for a singular algorithmic purpose, where the algorithms
(such as Federated Learning) are orchestrated to run within the infrastructure of
data owners b) A taxonomy for Federated Learning c) The tokenization and orches-
tration of Federated Learning through smart contracts for auditable governance. We
validate our approach and the infrastructure (RegNet) through a real world use case,
involving a number of banks, that makes use of Federated Learning with Epsilon-
Differential Privacy for improving the performance of an Anti-Money-Laundering
classification model.

Contributions to Science and Industry Impact
The major contributions of this work are:

• A means to capture machine readable and executable semantics of the Fi-
nancial Conduct Authority regulation Handbook; which can then be used to
automate regulatory compliance

• A regulatory data reporting infrastructure that could realistically used in
industry- leading to the further development of the Digital Regulatory Re-
porting initiative by the regulator

• A trusted data access infrastructure for singular algorithmic purposes (such
as Federated Machine Learning) that is compliant with Data Regulation

• A Taxonomy for Federated Learning

• Co-founding RegulAItion- a RegTech company focused on delivering re-
search driven, enterprise Algorithmic Solutions for industry

• UKRI InnovateUK funded RegNet project (application number 45079) for
further research

Impact Statement

This thesis investigates the application of AI and blockchain technology for Al-

gorithmic Regulation. The work has been done in conjunction with the FCA,

Santander, RegulAItion, The ODI and a number of other banks and law firms.

The design decisions, implementation and deployment decisions were for the three

experiments: Machine Interpretability of Regulation; SmartReg and RegNet were

made with their input. Experimental work was undertaken with the collaborators to

validate the design choices.

The first experiment has been made into a standalone recommender system that

has been employed by the regulator for its internal permissions process. The de-

sign decisions made in SmartReg have informed a wider project carried out by the

regulator and a number of banks. This is the Digital Regulatory Reporting Project

(DRR). DRR has become a priority for the regulator, banks and the UK financial

services industry. The work undertaken as part of RegNet was part of an Innova-

teUK funded project and has been applied to a number of use cases and has been

used to create an infrastructure platform for trusted data access that has received

commercial interest. The thesis also provides a Taxonomy for Federated Learning-

a growing sub-field of machine learning.

List of Publications and Grants

List of Publications

• Smietanka, Malgorzata and Pithadia, Hirsh and Treleaven, Philip, Fed-

erated Learning for Privacy-Preserving Data Access (September 15,

2020). Preprint available at SSRN: https://ssrn.com/abstract=3696609 or

http://dx.doi.org/10.2139/ssrn.3696609

• Pithadia, H. and Treleaven, P., 2020. Blockchain Tokenization (November 07,

2020). Arxiv.org. Preprint available at arxive: https://arxiv.org/submit/3459915/view

• Treleaven, Philip, Pithadia, Hirsh and Smietanka, Malgorzata, Federated

Learning (September 25, 2020). [Accepted for IEEE Computer]

List of Grants

• UKRI InnovateUK Grant: RegNet- Privacy preserving data access network

for regulated sectors (Application number: 45079)

Commercialisation

• Co-founding RegulAItion 1- a “RegTech” company that provides solutions

and tooling for Algorithmic Regulation

1https://regulaition.com/

Acknowledgements

I’d like to offer my sincerest gratitude to my supervisor, Prof. Philip Treleaven,

who has supported me throughout my research with his patience, enthusiasm and

motivation whilst allowing me the room to work in my own way. I attribute the ac-

complishments of this research work to his encouragement and effort. One simply

could not wish for a better or understanding supervisor. I am very grateful to him

for broadening my view of what a the opportunity of a PhD education is- not solely

about writing academic papers and presentations, but also engaging and learning

from the world, beyond university walls, and more importantly having a visible

impact practically and commercially 2.

I’d also like to thank Sally Sfeir-Tait for her continued guidance personally and

professionally, she has always believed in my research ideas, its impact and helped

materialise it into something meaningful- rather than just abstract ideas. I wouldn’t

have been able to achieve this work if it wasn’t for her patience and understanding.

I would also like to thank my second supervisor Dr. Steven Murdoch and MSc

Supervisor Prof. Chris Clack for their invaluable guidance, I wouldn’t have consid-

ered research as a career without them. I’d like to also thank Andrei Margeloiu- I

thoroughly enjoyed our time working together and learnt a lot about programming

and systems design from him. I’d also like to thank Bogdan Batrinca who has

always been there for advice.

2Something Adriano made me realise

Acknowledgements 8

This thesis would not be possible without the support and help of EPSRC, CDT

Financial Computing, Yonita Carter, Dawn Bailey, Sarah Turnbull and JJ Giwa-

Majekodunmi. I thank you for facilitating this research.

I’d like to also thank Mihir Pithadia, Parul Chhaya and Hina Huntington they

have always believed in my work and backed me during difficult times. Thank you!

It is unthinkable to finish this section without mentioning my parents, Jaykrishnan

and Bharti, and my sibling Harikrishna who have always been there- resolute and

ever supporting.

Over the last four years I have been able to validate the industrial impact of this

research through the help and support of the FCA and Santander and thank them

for giving me the opportunity to conduct this research. I would like to also thank

everyone at RegulAItion- you have had a large part to play in the implementation

of this research.

I’d also like to thank Darshan Soni, Karan Verma and Rishan Shah for their re-

lentless tism. One simply could not wish for a more based collective of goblins.

Looking back, I realise the amount of people that have supported my work and

pushed me throughout the last few years to complete this research. I don’t think

I can mention all of them but I appreciate their kind words, guidance, and advice

and would like to mention just a few of them- Rodrigo Mazorra Blanco, Samuel

Stern, Timothy Law, Utpal Kanbi, Ravi Majevadia, Pralad Vekaria, Adriano Soares

Koshiyma and Emre Kazim. It was Adriano and Emre that pushed me to finally

finish!

Contents

1 Introduction 18

1.1 What is Algorithmic Regulation? 19

1.2 Research Motivation . 22

1.3 Research Objectives . 26

1.4 Research Methodology . 28

1.5 Scientific and Industry Contributions 29

1.5.1 Machine Interpretability of Regulation 29

1.5.2 SmartReg: Using Blockchain for Regulatory Reporting . . . 30

1.5.3 RegNet: Using Federated Learning and Blockchain for Pri-

vacy Preserving Data Access 30

1.6 Thesis Structure . 31

2 Background and Literature Review 33

2.1 Algorithmic Regulation in Financial Services 33

2.2 Technical Background . 37

2.2.1 Rules and Principles . 37

2.2.2 Expert Systems . 39

2.2.3 Expert System Shell Analysis 42

2.2.4 A formal model for expressing expert systems 43

2.2.5 Distributed Ledger Technology 53

2.2.6 Federated Learning . 57

3 Using AI to Automate the Regulatory Handbook 59

Contents 10

3.1 Introduction . 59

3.1.1 Objectives . 61

3.2 Background . 62

3.2.1 A semi-formal model for a regulatory expert system 62

3.3 System Design . 65

3.3.1 System Requirements . 65

3.3.2 System Overview . 65

3.3.3 Feature Driven Design . 66

3.3.4 Regulatory Reasoning Engine 67

3.3.5 Database . 69

3.3.6 Front-End . 71

3.3.7 Supporting Infrastructure 72

3.3.8 Frameworks . 72

3.3.9 Architecture . 73

3.4 Implementation . 74

3.4.1 The Flow Data Structure 74

3.4.2 RESTful services and API creation 75

3.4.3 Database . 77

3.4.4 Reasoning Engine . 78

3.4.5 UI Implementation . 79

3.5 Testing & Results . 80

3.5.1 Testing . 80

3.5.2 Results . 81

3.6 Conclusions . 82

3.6.1 Summary . 82

3.6.2 System Shortfalls . 82

3.6.3 Evaluation of the Objectives 83

4 SmartReg: Using Blockchain for Regulatory Reporting 86

4.1 Introduction . 86

4.1.1 The problem with regulatory supervision 87

Contents 11

4.1.2 Objectives . 88

4.2 Background . 89

4.2.1 Trust models in Computing Networks 92

4.2.2 Experiment . 93

4.2.3 Use Cases . 95

4.3 Systems Design . 96

4.3.1 Systems Architecture . 96

4.3.2 Reporting through Smart Contracts 103

4.3.3 Consensus . 108

4.4 Implementation . 110

4.4.1 Tools & Environments . 111

4.4.2 Identity . 112

4.4.3 Experiment Implementation 114

4.4.4 Deployment . 116

4.5 Testing & Results . 118

4.5.1 Testing . 118

4.5.2 Results . 120

4.6 Conclusions . 122

5 RegNet: Using Federated Learning and Blockchain for Privacy Pre-

serving Data Access 125

5.1 Introduction . 126

5.1.1 The Problem of Analytics, Data Sharing and Compliance . . 127

5.1.2 Objectives . 128

5.2 Background . 129

5.2.1 A Taxonomy for Federated Learning 129

5.2.2 Communications and Control Architecture 130

5.2.3 Data Partition . 131

5.2.4 Federation of Nodes . 132

5.2.5 Security & Privacy . 133

5.2.6 Secure Multiparty Computation 133

Contents 12

5.2.7 Homomorphic Encryption 135

5.2.8 Differential Privacy . 135

5.3 Systems Design . 137

5.3.1 Concepts . 137

5.3.2 Distributed Ledgers . 139

5.3.3 Channels . 141

5.4 Implementation . 143

5.4.1 Distributed Ledger and RegNet Peer 144

5.4.2 Tokenization of the FL Process 146

5.5 Testing and Results . 149

5.5.1 Testing . 149

5.5.2 Results . 149

5.6 Conclusions . 150

6 Conclusions and Future Work 152

6.1 Contributions & Future Work . 153

6.1.1 Using AI to Automate the Regulatory Handbook 153

6.1.2 SmartReg . 154

6.1.3 RegNet . 156

Appendices 160

A Z Notation 160

B Representing FCA Handbook regulation 162

C License Registration Decision Tree 166

D Blockchain Tokenization 168

D.1 Abstract . 168

D.2 Introduction . 168

D.2.1 Tokens and Tokenization 170

D.2.2 To Tokenize or Not Tokenize 173

Contents 13

D.2.3 Properties of Tokens . 174

D.3 A Taxonomy of Tokens . 175

D.4 Tokens as State Machines . 178

D.5 Token Platforms . 180

D.5.1 Ethereum . 180

D.5.2 Libra . 182

D.5.3 Token Standards and Exchange Protocols 184

D.6 Tokenization challenges and advantages 187

D.6.1 Advantages . 187

D.6.2 Challenges . 190

D.7 Token Regulation and the Law . 193

D.8 Conclusions . 195

E SmartReg 198

E.1 SmartReg UI Screenshots . 198

Bibliography 200

List of Figures

1.1 Algorithmic Regulation, adapted from [76] 24

2.1 Algorithmic Regulation using blockchain technology, adapted from

[76] . 37

2.2 The architectural overview of an Expert System [35] 40

2.3 Core Components of a Knowledge Based System [36] 43

2.4 Ethereum State Transition, adapted from [20] 55

2.5 Quorum Node, adapted from [58] 56

3.1 Fact template in JessML vs. Java API 69

3.2 Jess Architecture and API access 69

3.3 System Architecture . 73

3.4 Flow Class Diagram . 75

3.5 RESTful Service Diagram . 76

3.6 Database Schema . 77

3.7 Engine Schema . 78

4.1 Regulatory Reporting workflow [11] 88

4.2 Network topology for the experiment 95

4.3 Architecture of an individual SmartReg peer 98

4.4 Flow of arguments to a factory method which instantiates a contract. 105

4.5 UML diagram of reporting smart contracts 107

4.6 HTTP request incorporating the token into the Authorisation header 113

4.7 The authorisation workflow used by the SmartReg application . . . 113

4.8 Generation of Smart Contract API wrappers 114

List of Figures 15

4.9 Inheritance structure of the Institution Java classes 114

4.10 The UML diagrams of Code, CodeController, Submission and Sub-

missionController . 116

4.11 The UML diagrams of RunController and QuorumBlockchain . . . 116

4.12 Automated deployment on the Heroku Cloud Platform 118

4.13 Reporting Functions on Digital Ocean Cloud 118

4.14 Test times for the PSD Report Execution and Submission 121

4.15 Test times for the CET Report Execution and Submission 121

5.1 Federated Learning Taxonomy . 130

5.2 Federated Learning Characterised by Data Partition [86] 132

5.3 Formal Definition of Differential Privacy [32] 136

5.4 Channel level architecture of RegNet 142

B.1 FCA Handbook Authorisations Regulation, from [9] 163

B.2 Annotated FCA Handbook Authorisations Regulation, from [9] . . . 164

C.1 License Registration Decision Tree 167

D.1 A Blockchain Technology Stack, tokens evolved from being im-

plemented in the infrastructure layer to the protocol, services and

application layers . 171

D.2 Do you need a token? . 174

D.3 Bond token as a state machine . 179

D.4 The ERC20 token standard smart contract 182

D.5 Move smart contract . 183

D.6 Decentralised exchanges, adapted from [84] 186

D.7 Composability of Financial Instruments through Tokenization . . . 186

D.8 Creating new forms of programmable securities 188

E.1 UI: Empty submissions form . 198

E.2 UI: Fully populated submission form ready to be submitted 199

E.3 UI: List of regulatory functions available to a Bank 199

List of Tables

1.1 Technologies for Regulatory Automation and their Challenges . . . 22

2.1 Rule-based Regulatory Regimes, adapted from [17] 38

2.2 Principles based Regulatory Regimes, adapted from [17] 38

2.3 Expert System Shell Survey . 43

2.4 Inference Engine Schema Specification 47

2.5 Inference Engine State Specification 48

2.6 Inference Engine Step Specification 49

2.7 Rule Component Schema Specification 50

2.8 Rule State Schema Specification 51

2.9 Rule Step Schema Specification 51

2.10 Working Memory Schema Specification 52

2.11 Working Memory State Schema Specification 53

2.12 Working Memory Step Schema Specification 53

3.1 Modified Rule Component Schema Specification 63

3.2 Modified Rule State Schema Specification 64

3.3 Database Comparisons SQL vs NoSQL, adapted from [18] 70

4.1 Problems, design constraints and solutions for regulatory data sub-

mission . 90

4.2 SmartReg System Components . 96

4.3 Contents of a bank’s submission 106

4.4 SmartReg Implementation details 115

4.5 Contents of a bank’s submission 122

List of Tables 17

5.1 RegNet Tokenized Artefacts . 148

B.1 A model representation of FCA Handbook Authorisations Regula-

tion . 165

D.1 Comparison of commonly used tokens 169

D.2 Evolution of “Tokenization” . 173

D.3 Classifying purpose parameters of the token taxonomy, based on [61] 176

D.4 Classifying governance parameters of the token taxonomy, based

on [61] . 176

D.5 Classifying technical parameters of the token taxonomy, based on

[61] . 177

D.6 Classifying functional parameters of the token taxonomy, based on

[61] . 177

D.7 Common Ethereum Standards . 181

Chapter 1

Introduction

The objective of this chapter is to present an overview of this thesis

by discussing the motivation behind the research problem, the objec-

tives, experiments and contributions of this study and the structure of

this thesis. The chapter starts by briefly introducing some background

information on the growing problems financial regulators are facing,

Distributed Ledgers and Algorithmic Regulation. The chapter then out-

lines the objectives, experiments and contributions of this work and

concludes with the thesis structure.

This thesis explores the use of Artificial Intelligence and Blockchain technology

for the purposes of Algorithmic Regulation. Growing concerns about financial

regulation and compliance having negative effects on the development of financial

services have expressed the need for data-driven technology enforced mechanisms

for regulation [79, 5, 6, 76]. To this end the thesis provides a means to capture

regulatory rules in machine semantics, the design of a system for regulatory data

reporting and a framework for trusted data access for singular algorithmic purposes.

The majority of the work in was conducted in collaboration with the FCA, Regu-

lAItion and Santander, facilitating expert guidance, validation and further confirm-

ing the relevance of this study.

1.1. What is Algorithmic Regulation? 19

1.1 What is Algorithmic Regulation?
The term Algorithmic Regulation was first coined by O’Reilly in [63]. Although no

concrete definition was provided, O’Reilly provides 4 characteristics of Algorithmic

Regulation1:

1. A deep understanding of the desired outcome

2. Algorithms (i.e. a set of rules) that make adjustments based on new data

3. Real-time measurement to determine if that outcome is being achieved

4. Periodic, deeper analysis of whether the algorithms themselves are correct

and performing as expected.

Regulation refers to the action or process of being regulated 2. Where the task of

regulating involves the control of an activity to achieve a desired outcome/goal.

This is done through rules, principles or methods. O’Reilly’s first and second

characteristics enable this. To do this through computers, where the actions and

processes are executed using algorithms, often reactive based on external feedback,

is referred to as Algorithmic Regulation- O’Reilly’s third and fourth characteristics.

This definition lacks clarity on what the term algorithm refers to or why an ac-

tion needs regulating, we therefore adopt an alternative definition of Algorithmic

Regulation. In [89] Yeung et al. define the term Algorithmic Regulation as:

“...decision-making systems that regulate a domain of activity in or-

der to manage risk or alter behaviour through continual computational

generation of knowledge by systemically collecting data (in a real-time,

on a continuous basis) emitted directly by numerous dynamic compo-

nents pertaining to the regulated environment in order to identify and,

if necessary, automatically refine (or prompt the refinement of) the sys-

tem’s operations to attain a pre-specified goal.”

1Or rather the systems that enable it have
2As per the Oxford English Dictionary

1.1. What is Algorithmic Regulation? 20

More specifically, from the above definition, the terms:

• “decision-making systems”- refers to systems that make use of knowledge/

pre-defined rules to execute or inform decisions

• “pre-specified goal”- refers to the pre-defined objectives that achieved

through the regulation. As such any regulatory system has a ‘system’ director

(or regulator) that defines the purpose and aim of regulation. In the financial

services in the UK, this is the FCA whose goal is to regulate the conduct of

firms within financial services.

• “computational generation”, “automatically refine”- refer to the use of in-

telligent systems such as computers

• “managing risk”- refers to the reason for regulating an activity

• “alter behaviour”- refers to the direct outcome of implementing regulation

This is a general but more comprehensive definition of Algorithmic Regulation

and is therefore adopted throughout this thesis. This is different from the term

RegTech that refers to “technologies that may facilitate the delivery of regula-

tory requirements more efficiently and effectively than existing capabilities” [5].

Whereas Algorithmic Regulation refers to the use of intelligent systems to manage

risk for any processes or systems, the term RegTech is more specific and refers to

the application of technology for the automation of particular regulatory processes.

In [89], Yeung also provides a taxonomy of Algorithmic Regulation systems and ar-

gues that, broadly, Algorithmic Regulation is of two kinds: reactive or preemptive.

Reactive Algorithmic Regulation systems trigger an automated response based on

the algorithmic analysis of data. Preemptive Algorithmic Regulation systems act

preemptively on the algorithmic assessment of data to infer predictions about future

behaviour and act accordingly. Fundamentally both require data to act on or prevent

behaviours/ activities that arise from it 3, in order to manage risk. This process is

3Which are predominantly based on rules/principles

1.1. What is Algorithmic Regulation? 21

called compliance and is the instrument through which regulation is carried out.

Automated regulation is crucial to the future success of the financial services

industry and especially the rapidly evolving new Financial Technology (FinTech)

area [79]. The vision of Algorithmic Regulation, modelled on Algorithmic Trading

systems [76], is to stream compliance reports, social media data and other kinds of

surveillance information from different sources to a platform where regulatory data

are encoded using distributed ledger technology and automatically analysed using

AI machine learning technology.

For Regulators, the data science technologies provide, on the one hand, unprece-

dented volumes of data and analytics tools for surveillance, but on the other ‘rev-

olutionary innovations that present new regulatory challenges [5, 79, 76]. To

understand the opportunities offered by data-driven regulation, it is necessary to

understand the data science technologies contributing to this.

We review the data science technologies into a) data technologies the collection

and analysis of huge volumes of historic and real-time information (e.g. finan-

cial, economic, social media, alternative); b) algorithm technologies new forms of

‘statistics, such as machine learning, computational statistics, and complex systems

(e.g. deep neural networks, Monte Carlo simulation); c) analytics technologies

covering the application of the data technologies (e.g. natural language processing,

sentiment analysis); and d) infrastructure technologies providing the infrastructure

for information management and automation (e.g. blockchain, computable regula-

tions), table 1.1.

The research work carried out in this thesis investigates the use of these technolo-

gies for regulation. The first investigation investigates the application and devel-

opment of machine readable semantics of regulation- recognised as the foundation

for algorithmic regulation [76]. The second investigation provides the application

1.2. Research Motivation 22

Table 1.1: Technologies for Regulatory Automation and their Challenges

Regulatory Automation Regulatory Challenges

Data Technologies
• Big data
• Internet of Things (IoT)
• Machine Readable Rules

• Data privacy versus sharing
• Privacy-preserving access to data
• ‘data’ subversion

Algorithm Technologies
• Computational Statistics
• AI & Machine Learning
• Complex Systems

• Combination of multiple models
• Algorithm interpretability
• Conduct and Ethics in algorithms

Analytics Technologies

• Natural Language Processing (NLP)
• Sentiment Analysis
• Behavioural Analytics
• Predictive Analytics

• Multiple natural languages
• `deep understanding of content
• Algorithm legal status and certification
• Public confidence and acceptability

Infrastructure Technologies
• Blockchain
• Digital object identifiers
• Federated Learning

• Regulator collaboration
• International regulatory standards

of infrastructure and data technologies for regulatory reporting and collaboration;

it makes use of a blockchain and machine readable regulation for regulatory report-

ing. The third investigation provides the application of these infrastructure, data,

algorithm and analytics technologies for anti-money-laundering purposes; it makes

use of federated learning, blockchains and analytics to detect fraudulent financial

transactions.

1.2 Research Motivation
The problem with interpreting regulation

Regulatory handbooks, such as the FCA handbook [14], have been the key means

through which regulators interact with firms. Handbooks in essence are the

regulatory prescriptions set out by regulators, for firms in the industry, that

characterise their conduct of behaviour. Hence all reporting and compliance related

operations revolve around the handbook. The FCA handbook is computationally

stolid - it has no formal semantics and all regulation is written in text based markup

that cannot be used easily by machines to reason about regulation [76]. This makes

compliance, registration and reporting related tasks difficult to automate.

The primary barrier to the development of RegTech is not due to technological

limitations. It is rather the inability of regulators to process large volumes of

financial compliance data that the technology itself generates [83]. The entire

financial industry is become increasingly data-centric. Arner et al. [5] actually

argue that the industry is experiencing a shift form the traditional

1.2. Research Motivation 23

”Know-Your-Client” based policies to ”Know-Your-Data” based policies 4 that

regulators find a challenge to accommodate within their existing regulatory

frameworks [6]. Consider the FinTech sector for instance, where focus is shifting

to the provision financial services using digital money & assets5 and the

monetisation of data6 prompting the need for regulatory frameworks capable of

accommodating algorithmic supervision and data sovereignty7.

In Treleaven et al. [76] further motivate the need for efficient regulation for the

success of the financial services industry, particularly within the FinTech space. To

achieve this Treleaven et al. propose the use of “Algorithmic Regulation” [63].

Algorithmic Regulation refers to the automation of financial compliance

monitoring and regulation through the use of Artificial Intelligence and Blockchain

Technology - a proposal that addresses the growing data-centricity of financial

regulation found today8.

Treleaven et al. have modelled the concept of algorithmic regulation on

algorithmic trading systems. It involves the consolidation of compliance data,

social networks data and other sources of information to a platform that encodes

compliance reports using distributed ledger technology, where regulation is

enforced as executable programs in the form of smart contracts [76]. The platform

in question would be composed of 5 operational aspects 9:

1. Intelligent Regulatory Advice

2. Automated Monitoring

3. Automated Reporting

4. Regulatory Policy Monitoring

4KYC to KYD
5Through Cryptocurrencies and other P2P technologies
6Through the application of A.I and Big Data Analytics
7Data sovereignty refers to the legal fabric governing the data in question. In some cases, regu-

lators may find that they cannot regulate the activities of companies if their data does not fall under
their country’s jurisdiction (e.g. due to geographic boundaries).

8A more formal definition has been discussed and used in the next chapter
9Discussed in greater detail, chapter 3

1.2. Research Motivation 24

5. Automated Regulation

Figure 1.1 provides an overview of the platform and the interdependencies of each

component. A long term research objective is to develop a proof of concept system

that integrates all the components to carry our algorithmic regulation systemically.

We first require a sub-system that is capable of reasoning with regulation. This

would be a trivial task if regulation in its current form was expressed as a semantic

model. However, therein lies the challenge.

Figure 1.1: Algorithmic Regulation, adapted from [76]

The project’s motivation stems from this long term research objective of a holistic

system for algorithmic regulation. The aim of this investigation is to develop a

system that is capable of reasoning with regulation via a reasoning engine. This

reasoning engine will be tested by the regulator through a platform that enables

financial companies to navigate through the handbook to carry out tasks such as

license registration. The platform will in turn serve as the Intelligent Regulatory

Advisor component noted in figure 1.1 and [76].

The problem of reporting data for regulation

In order to supervise firms, regulators need to examine the practices of institutions

they regulate. All regulated firms are required to submit data of their practice

1.2. Research Motivation 25

through regulatory reports. Whereas handbooks, such as the FCA Handbook,

provide the instructions of how regulatory reports should be built and delivered,

the reports are explicit instructions of what fields of data need to be submitted for

supervision. The level of regulation and regulatory reporting has significantly

increased since the financial crisis [5].

Given this increase in reporting requirements, the complexity and time it takes for

financial institutions to manage compliance reporting has also grown. Moreover

regulators make ad-hoc data requests over and above routine reports submitted by

regulated firms. The only way most firms have managed to scale this increase in

requirements and complexity is by increasing the headcount within their

compliance departments.

There are a number of reasons why the process of supplying regulatory reports is

increasingly complex [12]. The process of building reports from the FCA

Handbook is difficult and open to interpretation by legal departments in [79].

Moreover the entire set of instructions for compiling a report can be spread across

many different areas of interlinking regulation. At times, the wording found in the

Handbook is insufficient or unclear for firms to understand. On the other side,

regulators struggle to provide precise reporting instructions for about 50,000 firms

that operate across financial services [12] [13]. Often times firms need to make

judgements based on their practice that makes it difficult to provide unambiguous,

definitive requirements. Additionally, firms could be operating across several

jurisdictions, forcing them to repeat the reporting process in multiple regimes and

jurisdictions. This repetition is often across the same data sets with similar

requirements.

The second motivation stems from this problem of reporting data, can we architect

an automated mechanism to report data to multiple regulators without the trusted

intermediation?

1.3. Research Objectives 26

Data regulation compliance and collaboration

The debate around Data Regulation is amplifying and the need for policies and

mechanisms to manage data compliance, governance and regulation is growing.

There are growing political, commercial and social challenges concerning data that

have resulted in the need for the Algorithmic Regulation of data [79, 89, 77, 86].

Whereas collaboration, ownership and harvesting are all challenges that deal with

Data Management (including analytics, application and administration of data)

[77]. Legislation and sovereignty are challenges deal with Data Governance.

Security and privacy challenges deal with the assurance and safekeeping of data.

All three factors: Data Management, Governance and Security need to be

considered when regulating data [89]. The fundamental research question of this

chapter is based on the premise of all these three factors: How can we better

manage and govern data in a secure, privacy preserving manner for algorithmic

purposes? The third research motivation addresses this problem.

1.3 Research Objectives
The motivation of this thesis is to investigate the application of blockchain

technology and artificial intelligence to the domain of Algorithmic Regulation.

The intention is to explore the problems with regulatory compliance and

supervision in financial services as well as an emerging form of regulation- the

regulation of data, with close industry collaboration. The understanding and

findings from these will then be used to architect Algorithmic Regulation

solutions, which could realistically be adopted by industry, that automate

regulation and compliance. All the work has been validated by industry partners

and collaborators. To this end, the thesis explores 3 investigations:

1. Using AI to Automate the Regulatory Handbook

2. SmartReg: Using Blockchain for Regulatory Reporting

1.3. Research Objectives 27

3. RegNet: Using Federated Learning and Blockchain for Privacy Preserving

Data Access

Using AI to Automate the Regulatory Handbook

This study has a number of sub-objectives:

• Study the semantic structure of regulatory rules and how they can be

encoded as machine readable rules

• Propose a formal specification for a regulatory reasoning system

• Implement the design of this reasoning engine for use by the regulator as a

recommender system

• Assess the suitability and accuracy of automated guidance from this system

SmartReg: Using Blockchain for Regulatory Reporting

The following objectives were established:

• Identify problems with regulatory reporting currently from the perspective of

each entity ()

• Establish systems design constraints based on these

• Propose a solution architecture that addresses these design constraints

• Implement, analyse and iterate the proposed solution

• Test the solution in the“real world” with an actual reporting use case pilot

• Analyse and compare the proposed solution to the current system

RegNet: A Framework for Privacy Preserving Data Access

The following objectives were established:

• Identify relevant technologies and fields of research in data science and

information security to support trusted data access for a singular algorithmic

purpose

1.4. Research Methodology 28

• Architect a framework based on these technologies that facilitates data

access for industry applications

• Implement, analyse and iterate over the design of this framework and its

emerging infrastructure

• Test and validate this infrastructure with the collaborators

• Analyse the proposed solution and its efficacy in governing data in a secure,

compliant manner for algorithmic purposes

1.4 Research Methodology
All three studies involve the development of Algorithmic Regulation systems,

therefore a Domain Driven Design [66] approach has been used to architect the

systems. The goal/requirements of each system have been the primary focus upon

which all architectural decisions have been made. These have been informed by

the relevant industrial collaborators and the resulting systems have been

implemented and tested through their application to a number of use cases

provided by the collaborators. Once these were established, an agile methodology

has been used for implementation, testing and iteration.

More specifically, the development, implementation and testing of each system has

involved the following:

1. Using AI to Automate the Regulatory Handbook

• Decomposition of regulatory rules for graph based rule representation

• Formal design of the engine, knowledge store and rules representation

• System Implementation, benchmarks and improvements

• Application of a backtracking algorithm and comparisons

2. SmartReg: Using Blockchain for Regulatory Reporting

• Standardise of reporting firms’ data through open interfacing

1.5. Scientific and Industry Contributions 29

• Develop machine readable and executable reporting rules from the

Handbook

• Develop a standardised automated reporting mechanism

3. RegNet: Federated Learning and Blockchain for Privacy Preserving

Data Access

• Development of Federated Data Infrastructure: privacy-preserving data

infrastructure and framework for collaboration that allows secure

communication with collaborating parties, such that ‘raw’ data does

not leave the owner.

• Development of Federate Machine Learning algorithms for relevant

use cases: decentralised training of a machine learning models that

enable collaborative learning while keeping data sources in their

original location

1.5 Scientific and Industry Contributions
Although discussed in detail in their relevant chapters the impact and contributions

of the work undertaken in this thesis is as follows:

1.5.1 Machine Interpretability of Regulation

The work in capturing regulatory semantics has made the following contributions:

1. A semi-formal model capable of reasoning with financial regulation has

been developed. The model has been used to represent regulation from the

FCA Regulatory Handbook, proving that it is capable of representing and

reasoning with financial regulation.

2. The model has been developed into a working reasoning engine

3. The reasoning engine has been incorporated into a platform that is capable

integrating existing regulatory systems or be used as a standalone tool for

regulatory advice

1.5. Scientific and Industry Contributions 30

The work in this project is part of a long-term goal and collaboration with the FCA

to deliver a system capable of reasoning with regulation. The work provides the

groundwork needed to realise this goal through the development of a system

capable of reasoning with regulation. The proof-of-concept, based on this work,

has also been used by the FCA for their internal regulatory guidance for providing

licenses. The work presented in this chapter has also fed into a Master’s

dissertation on reasoning with regulation.

1.5.2 SmartReg: Using Blockchain for Regulatory Reporting

The design decisions made in SmartReg have informed a wider project carried out

by the regulator and a number of banks. This is the Digital Regulatory Reporting

Project (DRR). DRR has become a priority for the regulator, banks and the UK

financial services industry [12, 13]. This has been the greatest impact of the work

presented in this chapter. The work in SmartReg has wide reaching impact through

the following benefits of its approach:

1. Easier regulatory compliance

2. More precise and agile regulation

3. Accurate and real-time information

4. Standardisation

5. Improved systemic risk control

1.5.3 RegNet: Using Federated Learning and Blockchain for

Privacy Preserving Data Access

Through the use of Federated Learning and Tokenization, RegNet, removes the

need to explicitly share data, for the purposes of analytics and provides access in

an auditable, privacy preserving manner that is able comply with data policies such

as GDPR. Tokenization also offers the ability to provide a means to administer

data governance, particularly at the channel level. The work undertaken within this

chapter proves the use of both technologies for trusted data access (also validated

1.6. Thesis Structure 31

by its application on an applied use case within industry).

The need for such a trusted infrastructure that is compliant with data regulation has

been further strengthened by a report released recently by the UK AI Council. It

recognises that AI advances with diverse data and stresses the need for trustworthy

accessible data, the work undertaken in RegNet provides such a solution.

1.6 Thesis Structure
This thesis is structured as follows:

• Chapter 2 reviews background information on algorithmic regulation,

algorithmic regulation in the financial services, financial information

systems and the regulatory challenges that the industry faces. It provides a

technical overview of financial regulations and distributed ledgers (Ethereum

and Quorum in particular).

• Chapter 3 introduces the design of an engine capable of reasoning with

financial regulation that has been co-developed and tested with the FCA. It

includes all the architectural decisions taken to address problems such as

parallelisation and system downtime in order to serve in a production grade

environment within the FCA. The chapter then ends with a discussion on the

objectives and outcomes of the work carried out.

• Chapter 4 presents the design for a system to carry out automated

compliance and reporting through distributed ledgers. The chapter explores

the use of Smart Contracts for regulatory reporting and the automation and

implementation of reporting rules. The chapter also explores the design

decisions taken in implementing the blockchain infrastructure. The chapter

then ends with an evaluation of the results as well as the outcomes of the

work undertaken.

• Chapter 5 begins with a discussion on Federated Machine Learning, Privacy

Preserving cryptography and the need for trusted data access. The chapter

1.6. Thesis Structure 32

then presents the design of a framework for trusted data access for singular

algorithmic purposes and applies it to an Anti-Money-Laundering use case.

The chapter ends with a discussion on the results and the future work that

needs to be carried out.

• Chapter 6 provides an overall conclusion of this research with the summary

of the key findings and their impact in Algorithmic Regulation. The thesis

ends with recommendations for future work to be done in this area.

Chapter 2

Background and Literature Review

This chapter begins with a discussion an overview of Algorithmic Reg-

ulation in the Financial Services. The chapter then provides a detailed

discussion of the systems and motivations for Algorithmic Regulation in

Financial Services and concludes with a brief technical background on

Blockchain Technology, Knowledge Base Systems and regulation within

the UK Financial Services.

2.1 Algorithmic Regulation in Financial Services
In the financial services in the UK, regulation is a reactive activity and as such relies

on compliance and monitoring to enforce regulation- banks/ financial institutions

have to submit data to regulators that may choose to act (or rather “react”) accord-

ingly [79, 5, 11]. There is a growing concern about regulation and compliance,

which is increasingly perceived to have negative effects on the development of

financial services, discouraging innovation by requiring an ever-growing amount of

data reporting [17, 6].

Financial regulation is becoming increasingly burdensome. Research suggests

that as of July 2016 U.S. banks had paid U.S.$24 bln and 61 million employee

hours to comply with Dodd-Frank Wall Street Reform and Consumer Protection

Act, passed in the U.S. amid outcry over the financial crisis [89, 5, 70]. This was

just one single regulatory reform act. Regulation constantly evolves to address new

risks and prevent new harms that emerge in the industry.

2.1. Algorithmic Regulation in Financial Services 34

Additionally, financial regulation faces a myriad of pressures: political pressure

to curb excesses (e.g., Libor); escalating international and European Union reg-

ulations (e.g., MiFID II); individual firms simultaneously regulated in multiple

jurisdictions and with frameworks; and institutions asked to produce increasing

amounts of financial, risk, and compliance data [79]. All this pressure has gener-

ated the negative perception that data is being requested speculatively and not being

used by the regulators. The challenge is to simplify and balance regulation while

encouraging innovation for new FinTech alternative finance entrants, in rapidly

changing environments [79] and as such [76], Treleaven et al. argue the need to

overcome this impasse requires radical automation.

In [76] Treleaven et al. motivate and identify five potential solutions for collec-

tively realising Algorithmic Regulation in the financial services. These involve:

1. Intelligent Regulatory Advisor

Financial companies, especially FinTech startups1 find it extremely difficult

and expensive to navigate through the regulatory landscape because of the

complexity of the regulatory handbook and registration processes. To over-

come this hurdle, Treleaven et al. propose the creation of an artificially intel-

ligent front-end to the handbook that guides users through regulation, iden-

tifying the aspects relevant to them and assists them through the registration

process.

2. Automated Monitoring

Regulators, such as the FCA, have experienced an explosion in the number

of firms that they have to monitor. The FCA was previously responsible for

monitoring about 25,000 firms. However, with the growth of FinTech and

other developments in the industry, the FCA is faced with the dilemma of

regulating an additional 21,000 firms with the same amount of resources. A

solution to automate this involves the use of data scraping and sentiment anal-

1Often very innovative, yet underfunded

2.1. Algorithmic Regulation in Financial Services 35

ysis tools previously employed in the retail industry 2.

3. Automated Reporting

Treleaven et.al argue that an opportunity exists in the development of an auto-

mated light-weight solution for regulatory compliance reporting through the

use of online analytics software techniques. However, three key requirements

need to be in place:

(a) A Reporting Language: A mark-up based reporting standard such as the

ISO 20022 standard.

(b) A Reporting Platform: A light-weight client side platform capable of

interfacing with standard accounting systems.

(c) Regulatory Analytics: For use in Anti-Money-Laundering (AML) and

Know-Your-Customer (KYC) based compliance and reporting polices.

4. Regulatory Policy Modelling

Developments in computational models such as Agent Based Modelling

within sandboxed environments can be used to assess the impact and effec-

tiveness of new regulatory policies. This would enable the development of

more effective, less systemically risky policies.

5. Automated Regulation

Involves the development of a system where blockchain and distributed ledger

technology are used for recording compliance reports and smart contracts are

used to encode regulations as self-enforcing computer programs.

In order to facilitate Algorithmic regulation, Treleaven et al. argue that

Blockchain Technology and Smart Contracts are key [76]. Smart Contracts, by

definition, refer to an agreement whose execution is both automatable and enforce-

able. Automatable by computer, although some parts may require human input

and control. Enforceable by either legal enforcement of rights and obligations or

tamper-proof execution [22]. Blockchains on the other hand are distributed ledgers

2For brand management and customer profiling e.g. Google Alerts and Brandwatch

2.1. Algorithmic Regulation in Financial Services 36

where transactions and state changes of smart contracts3 are kept in a shared,

replicated, synchronised record that is secured through the use of public key cryp-

tography [59, 55]. Its integrity is preserved through decentralisation and the use of

consensus mechanisms 4 that make it difficult to alter the record [59].

Smart Contracts5 and Blockchain Technology would be used for Automated Report-

ing, Regulatory Policy Modelling and Automated Regulation. In the case of Auto-

mated Reporting, a reporting standard is key. All compliance reports would be filed

into a distributed ledger. Public key infrastructure and other crypto-systems can be

used to manage the data within the ledger (e.g. to authorise viewership/assessment

of the compliance data). The compliance reports would however need to be verified

using a system that is capable of reasoning with regulation before being written

onto the immutable ledger.

Similarly, automated regulatory policy assessment can be achieved through the

use of Smart Contracts and Testnets. Testnets are sandboxed environments that are

used to test new Smart Contracts (i.e. new regulatory policies) within a blockchain

system. However, for effectiveness, a substantial amount of regulation will need to

be encoded as Smart Contracts before agent-based models can be used to analyse

the impact and effectiveness of proposed regulatory policy.

Automated Regulation would then use automated Monitoring and Reporting, with

Analytics and Smart Contract based analytics to provide a platform capable of

Algorithmic Regulation as noted in figure 2.1.

3e.g. Ethereum
4such as Proof-of-Work and Proof-of-Stake
5It should be strongly noted that not all aspects of regulation can be recorded as Smart Contracts,

sub-chapter 2.2.1 explains why.

2.2. Technical Background 37

Figure 2.1: Algorithmic Regulation using blockchain technology, adapted from [76]

2.2 Technical Background
This sub chapter presents some of the general background. Each experiment pro-

vides a more detailed section of its relevant technical background.

2.2.1 Rules and Principles

According to Brummer et.al [17], there exist two categories for characterising

regulation: principle-based regulation and rules-based regulation. Rules-based reg-

ulation is prescriptive, precise and specific. Principles based regulation on the other

hand is broad, goal-oriented and outcome focused. It considers context and circum-

stances rather than being definitive and decided.

However, neither can exist in isolation, rules need to be derived from principles

and principles are meaningless without rules. Tables 2.1 and 2.2 provide a detailed

analysis of both. Both factors need to be considered in the design of a system capa-

2.2. Technical Background 38

Table 2.1: Rule-based Regulatory Regimes, adapted from [17]

Rules-based Regulation
Benefits Limitations

Certainty and predictability, including with
respect to future enforcement

Check-the-box forms of compliance that
strategically evade the underlying purpose of
regulation

Clear communication of steps for compliance High internal costs of compliance
Ensures specific behaviour Deterrence with respect to innovation

Uniform treatment of regulated entities
Frequent disconnect between the purpose of
regulation and the actual regulatory outcomes
Obsolescence

Table 2.2: Principles based Regulatory Regimes, adapted from [17]

Principles based Regulation
Benefits Limitations

Executive level management involvement in
incorporating regulatory principles into busi-
ness models

Uncertainty and the risk of unpredictable post
hoc application or arbitrage

Flexibility and innovation in the face of
rapidly changing environments

Concerns over fairness. bias in application

Speed in the regulatory process
Inadequate deterrence of specific problematic
behaviour or activities

The centrality of guidance and evolving
norms/best practices

Over-reliance on the current norms and prac-
tices

ble of reasoning with regulation. Rules-based reasoning systems can be developed

using traditional expert systems. However, encoding principle-based reasoning is

a complex and open ended research question. Partial principle-based reasoning is

possible through a combination of expert systems with backward chaining algo-

rithms 6 and suitable rules-conflict resolution mechanisms. However, this requires

a large amount of rules readily available in the system as a pre-requisite. Therefore

the key is to design a rule-based system capable of both backward and forward

chaining reasoning.

Rulemaking therefore is crucial. Brummer et.al [17] suggest the use of “agile

and iterative” rulemaking. They argue that while innovation, management and mar-

kets have evolved as technology has evolved, regulation has not. This sentiment

is consistent with a number of literatures [76, 5, 50, 6]. They therefore suggest an

6Discussed in greater detail in chapter 3

2.2. Technical Background 39

iterative results driven rule making process through the constant review of outcomes

and regulatory goals via feedback loops.

2.2.2 Expert Systems

Expert systems are rule-based computer programs that capture the knowledge of

human experts in their own fields of expertise [45]. Early, successful expert

systems were built around rules (sometimes called heuristics) for medical

diagnosis, engineering, chemistry, and computer sales [54]. One of the early expert

system successes was MYCIN, a program for diagnosing bacterial infections of

the blood. Expert systems had a number of perceived advantages over human

experts [54]. For instance, unlike people, they could perform at peak efficiency, 24

hours a day, forever.

2.2.2.1 Expert System Architecture

The rules in the first expert systems were implemented directly with the rest of the

software, so that developing a new expert system meant starting from the ground

up. The developers who wrote MYCIN, recognising this fact, created a

development tool named EMYCIN. EMYCIN (Empty MYCIN) was developed by

removing all the medical knowledge from MYCIN, leaving behind only a generic

framework for rule-based systems. EMYCIN was the first expert system shell. An

expert system shell is just the inference engine and other functional parts of an

expert system with all the domain-specific knowledge removed. Typically an

expert system is composed of [35]

1. An Inference Engine

2. Rule Base

3. A Working Memory

An inference engine, in turn is composed of:

1. A Pattern Matcher

2. An Agenda

2.2. Technical Background 40

3. An Execution Engine

Figure 2.2 provides an architectural overview of an expert system.

Figure 2.2: The architectural overview of an Expert System [35]

Inference Engine

The inference engine controls the whole process of applying the rules to the

working memory to obtain the outputs of the system. Usually an inference engine

works in discrete cycles based on the following sequence [35]:

1. All the rules are compared to working memory (using the pattern matcher)

to decide which ones should be activated during this cycle. This unordered

list of activated rules, together with any other rules activated in previous

cycles, is called the conflict set.

2. The conflict set is ordered to form the agenda - the list of rules whose

right-hand sides will be executed, or fired. The process of ordering the

agenda is called conflict resolution. The conflict resolution strategy for a

given rule engine will depend on many factors, only some of which will be

under the programmers control.

3. To complete the cycle, the first rule on the agenda is fired (possibly changing

the working memory) and the entire process is repeated. This repetition

implies a large amount of redundant work, but many rule engines use

sophisticated techniques to avoid most or all of the redundancy. In particular,

2.2. Technical Background 41

results from the pattern matcher and from the agendas conflict resolver can

be preserved across cycles, so that only the essential, new work needs to be

done

Rule Base

The rule base contains all the rules the system knows. They may simply be stored

as strings of text, but most often a rule compiler processes them into some form

that the inference engine can work with more efficiently. For an email filter, the

rule compiler might produce tables of patterns to search for and folders to file

messages in. Some compilers build a complex indexed data structure called a Rete

Network. A Rete network allows rule-based systems to process rules very

efficiently via backward chaining [36].

Some rule engines allow (or require) one to store the rule base in an external

relational database, and others have an integrated rule base. Storing rules in a

relational database allows one to select rules to be included in a system based on

criteria like date, time, and user access rights.

Working Memory

In a typical rule engine, the working memory, sometimes called the fact base,

contains all the pieces of information the rule-based system is working with [45].

The working memory can hold both the premises and the conclusions of the rules

[45]. Typically, the rule engine maintains one or more indexes, similar to those

used in relational databases, to make searching the working memory a very fast

operation. Some working memories can hold only objects of a specific type, and

others can include, for example, Java objects. This provides deeper embedability

of the shell with the language/platform.

2.2.2.2 Historic Use of Expert Systems in Regulation

An example of the use of Expert systems in regulation and legislation is the work

carried out by Van Engers er al. in the EU. funded Estrella Project [78]. The Es-

trella project involved the development of a “Legal Knowledge Interchange Format

2.2. Technical Background 42

- LKIF” that made use of expert systems for legislation.

The outcome from the project made use of the Legal Knowledge Interchange

Format to model European Tax Legislation which was then trialled by a number of

European Tax administrations. This is a close parallel to the work carried out in

this thesis.

2.2.3 Expert System Shell Analysis

Given that expert system have been in use since the early 1970s, there exist a large

number of shells. However, not all are alike, they could be written in different

languages, have different inference algorithms and may not support forward or

backward chaining. A survey was carried out to analyse the relative merits of 5

expert systems shells. These 5 shells were identified through their popularity and

use on GitHub.

The properties and abilities of each shell were analysed based on the following

criteria:

1. Embeddability: How deeply can the shell be embedded with the development

language; can it interact with classes and external libraries easily

2. Forward Chaining: Whether the shell supports forward chaining or not

3. Backward Chaining: Whether the shell supports backward chaining or not

4. Extensibility: Can parts of the shell’s existing code base be edited

5. Open Source: Is the shell open source or does it require licenses

6. Development Tools: Whether there are development tools such as IDE exten-

sions available for use with the shell

7. Developer Support: Whether there is adequate support for the shell, either on

GitHub, StackOverflow or their personal forums

As it can be seen from table 2.3, the Java Expert System Shell is the only shell

that satisfies most criteria. The only criteria that fails to support is the open source

criteria. Jess however can be used freely for academic purposes, without the explicit

need for a license. Moreover, Jess is the only shell that supports both forward and

2.2. Technical Background 43

Table 2.3: Expert System Shell Survey

Shell Properties
Language Developer Tools Developer Support Extensibility Forward Chaining Backward Chaining Embedability Open Source

PyClips Python Y Y N Y N Y N
Jess Java Y Y Y Y Y Y N

Clips
CLIPS
(lisp like)

Y Y Y Y N N Y

Pyke Python N N Y Y N Y Y
Eresye ErLang N Y Y Y N Y Y

backward chaining, therefore Jess is the shell that has been chosen to bootstrap

development.

2.2.4 A formal model for expressing expert systems

An expert system is fundamentally composed of an Inference Engine, Working

Memory and Knowledge Base as seen from figure 2.3 below.

Figure 2.3: Core Components of a Knowledge Based System [36]

The formal model developed by Gamble et al. is based on the architecture seen in

figure 2.3. It is composed of a set of formal models that define the Schema of each

component. The Schema7 is the “blueprint” that defines the component with

attributes that it must have.

The model is “Object-State-Step” based. This means that the model defines the

static properties of the components at each step - the model is therefore state based

and can be viewed as a form of state machine. Therefore, alongside component

Schemas, State Schemas also need to be defined formally. These collectively form

transitions from one legal state to another.

The model has been defined using Z notation [75, 36]. A set of the Z notation

7For intuition, think of this as a class as perceived in an object oriented language such as Java.

2.2. Technical Background 44

conventions used in this dissertation has been provided in Appendix A. It is

assumed that the reader is comfortable with basic logic and notation. A formal

model for all three components has been provides, we begin with the definition of

the schema for the component, followed by formal definitions for their state and

step-changes in state.

A formal model for the controller that that acts as the data interface across all three

components has not been provided. This is because we are interested in the

high-level representation of knowledge and reasoning rather than the lower-level

control flow. Gamble et al. however provide a formal model for the controller(s)

and can be studied in greater detail in [36].

2.2.4.1 Preamble

The premise of a knowledge base system (KBS) is to capture expertise in the

domain it is employed towards. Rules form the building blocks of KBS systems. In

essence, Rules possess the form:

LHS→ RHS (2.1)

The LHS (Left-Hand-Side) refers to the list of conditions that need to be fulfilled.

The RHS (Right-Hand-Side) refers to the actions that need to be carried out, given

that the LHS conditions are met.

Type Declarations

Consider the following types:

1. FACT

A FACT type is one of the basic types, these are statements that are

perceived to be true

2. RID

A RID (Rule ID) is a unique identifier (e.g. a hash) for a rule component

2.2. Technical Background 45

3. ACTION

An ACTION type refers to the changes from the rules

4. TEMPLATE

A TEMPLATE is a type synonym for the left hand side of the rule

5. PRECONDITION

A PRECONDTION type is a relation between a rule and the TEMPLATE of

conditions for of the rule. The TEMPLATE refers to the “IF” part of the

RULE. More precisely a PRECONDITION is:

RID↔ TEMPLATE

6. RULE-INSTS

The RULE-INSTS type is a relational type that matches a rule with the

FACTs in the WORKING MEMORY. Which results in the firing of a rule

through rule instantiation. It is defined as:

RID↔ set FACT

User Defined Functions

Consider the following user defined functions, their purpose and definitions:

1. update function

The purpose of the update function is to “update” the WORKING

MEMORY. It takes and ACTION-FACT relation8 (that is obtained from a

rule), applies it to the WORKING MEMORY and returns an updated

WORKING MEMORY. It is defined as:

update ::= ((ACT ION↔ FACT)× set FACT)9 set FACT (2.2)

2. unifedset function

This purpose of the “unifiedset” function is to produce new changes for the

Inference Engine. The unified function matches a Rule Instantiaition with

8An ACTION-FACT pair simply refers to an activated rule

2.2. Technical Background 46

the PRECONDITION that may cause it to fire. It then “ activates” the rule

by returning an ACTION-FACT pair.

unifiedset ::= (RULE−INST S×set PRECONDIT ION)9 (ACT ION↔FACT)

(2.3)

3. select function

The purpose of the select function is to choose a a rule instance from a set of

rule instances that all satisfy the conditions in the WORKING MEMORY. It

does this based on a STRATEGY9. The select function selects RULE-INSTS

based on the given STRATEGY(therefore by implication selects which rule

to fire when used alongside unifiedset).

select ::= (RULE− INST S×ST RAT EGY)9 RULE− INST S (2.4)

4. match function

The purpose of the match function is to pattern match a PRECONDITION to

the set of FACTS (that collectively form the WORKING MEMORY). This

in turn instantiates new Rules (i.e. RULE-INSTS), based on the match

predicate.

match ::= (set FACT × set PRECONDIT ION)9 RULE− INST S (2.5)

The subsequent sub-chapters present the definition for each component in figure

2.3. Each component is composed of 3 specifications. The first is a schema

specification for the component; it provides the “blueprint” for the component that

defines its attributes. The second is a state specification that provides the schema

for the modelling state. The third is the schema for the step change in state.

9For simplicity, we don’t provide a model for STRATEGY in this discussion. It does not have
to be a complex strategy it could, for instance, be based on salience which would entail providing a
flagged number that signifies rule precedence.

2.2. Technical Background 47

2.2.4.2 Inference Engine

Component Schema

For intuition, consider the Inference Engine (IE) as a broker that exchanges inputs

and outputs; it performs matches between the working memory and knowledge

base (where the rule base resides). It collects the incoming rule changes from a

rule (when fired) and processes them based on the current state of the working

memory. These incoming inputs can be characterised as action-fact pairs as seen in

the definition table 2.4. Action-fact pairs are a cartesian cross product between

actions and facts, meaning that they represent the combination of all values of facts

and actions. Similarly, the outgoing data is characterised through rule insts. These

are explicitly defined variables that store matched preconditions.

Table 2.4: Inference Engine Schema Specification

actions: set ACTION All actions
fact: set FACT All facts
changes: ACTION↔ FACT All incoming changes; action-fact relations
rule insts: RID↔ set FACT All outgoing rule instances
states: set STATE Valid states
start: STATE Starting state
transition: (STATE × (ACTION ↔ FACT))
↔(STATE × RULE-INSTS)

Valid transition

start ∈ states Start state is valid
changes ⊆ actions × facts Incoming changes are valid
(∪ ran rule insts)⊆ facts Outgoing data is valid
∀ s1, s2: STATE; ch:ACTION ↔ FACT; ri:
RULE-INSTS | ((s1,ch)(s2, ri)) ∈ transitions • s1,
s2 ∧ch ⊆ changes ∧ ri ⊆ rule inst

Given the current state and incoming changes, a
new state and the rule instances are produced

The legal behaviour for the inference engine state machine is characterised through

three variables: state, start state and transitions. The states consider all possible

states that the Inference Engine can encounter. The start state provides the bearing

for where to begin. The transition is essentially a function that takes an action-fact

pair and the internal state. A new state and new rules are instantiated based on

these. It should be noted that as per Z notation, these are declared above the

midline as observed in definition table 2.4. This is because they represent all the

variables and identifiers pertinent to the IE component.

The items below the midline are the properties that must hold for the entire

2.2. Technical Background 48

definition to hold. Thus from the definition table 2.4 it can be observed that the

following needs to hold true:

1. The start state should be valid

2. The incoming and outgoing data should be valid

3. The transition function needs to perform the matching and selection such

that it is relevant to the rule instances, current state and incoming changes.

State Schema

The purpose of the state schema is to keep track of the IE’s current state (curstate),

the incoming state (instate) and the outgoing state (outstate). As seen from the

portion below the midline in the table definition 2.5, the curstate is composed of a

tri-tuple of:

1. The local variable represented by state vars

2. The Knowledge-Base working memory represented by work mem

3. The precondition of the rule represented by precond

In fact the IE state is just a cartesian cross product of the above three types.

Table 2.5: Inference Engine State Specification

ie: IE COMPONENT Given instance of the inference engine
curstate: STATE The current state of the inference engine

state vars: IESTATE
Local variables of the state, is actually part of the
current state

work mem: set FACT Current working memory
precond: set PRECONDITION The rule preconditions
instate: ACTION↔ FACT Current input data
outstate: RULE-INSTS The data on the output
curstate=(state vars, work mem, precond)
curstate ∈ ie.states The current state is valid
work mem ⊆ ie.facts The working memory is valid
instate ⊆ ie.changes The changes provide the input data

outstate ⊆ ie.rule inst
Outgoing data is in the outgoing collection vari-
able

(∪ ran outstate) ⊆ work mem Outgoing data is a susbset of the working memory
instate 6= /0⇒ outstate = /0

outstate 6= /0⇒ instate = /0
At most, only one of instate or outstate can hold
data

Now consider the constraints that need to be held for the state schema to hold 10. A
10Recall that this is the portion below the midline of table definition 2.5, as per the convention in

Z notation.

2.2. Technical Background 49

valid curstate must be present within the state instance of the IE instance 11. The

constraints for the input data that needs to be processed is represented by instate.

Similarly, the output data is constrained through the outstate constraints seen in the

table definition 2.5.

Given that a rule-based system computes in discrete cycles 12, there can only be

data either in the the instate or outstate. This constraint is reflected in the last

definition of table 2.5.

Inference Engine State Step Change Schema

The step schema (i.e. the IE state transition schema), is defined in the table

definition 2.6. We are only considering the change in the IEState (hence the use of

4 symbol). Therefore, for a valid change to hold, all the constraints pertinent to

the IEState should hold before and after the transition. These are the state

invariants. However, we have undergone a computation therefore something must

change. This change is characterised through the removal of the action-fact tuple

from the instate and the addition of new information into the outstate.

Table 2.6: Inference Engine Step Specification

4 IEState Given a step state change in the Inference Engine
ie’ = ie Constraint information does not change
∃ out: RULE-INSTS • ((curstate, instate),
(curstate’, out)) ∈ ie.transitions ∧ instate 6= /0∧
work mem’ = update(instate,work mem) ∧ out =
match(work mem’, precond) ∧ instate’ =/0∧ out-
state’ = outstate ∪ out

Given a valid current state and valid input, pro-
duce a valid output with the update and match
functions. Remove the input data form the instate,
and add the new data to the output

2.2.4.3 Knowledge Base (Rule Repository)

Component Schema

Given that rules are fired based upon a given decision, we require unique

identifiers in the form of rulename as observe in the table definition 2.7. Likewise,

facts refer to all the facts refer to all the facts that appear as inputs 13 and cause

11The dot notation ie.states binds the state definition to the component definition
12e.g. using the Rete Algorithm [35]
13These come from the working memory

2.2. Technical Background 50

rules to to instantiate. Recall that the purpose of of rules is to make changes if the

given conditions are satisfied. These conditions are denoted on the

Right-Hand-Side (RHS) portion of the rule 2.1.

These changes are defined in the changes variables. As before, changes are

essentially just a cartesian cross product between actions & facts. The rule

transitions through a mapping of the rule’s internal state and the value of insts, into

a new internal state which becomes the outgoing data. The transition is constrained

by the incoming insts and the outgoing changes as seen in the definition table 2.7.

Table 2.7: Rule Component Schema Specification

rulename: RID Rule Name

insts: set FACT
All facts triggered from the instantiation of
rule(i.e. incoming data)

actions: set ACTION Changes (i.e. outgoing data)
changes:ACTION↔ FACT All actions pertinent to the given rule
facts: set FACT All facts pertinent to the given rule
states: set STATE Vaild states
start: STATE Starting state
transition: (STATE × set FACT) ↔ (STATE
×(ACTION↔ FACT))

Valid transitions

start ∈ states Start state is valid
changes ⊆ actions × facts Incoming changes are valid
insts ⊆ facts Outgoing data is valid
∀ s1, s2: STATE; ri: set FACT; ch: ACTION ↔
FACT | ((s1,ri) (s2, ch)) ∈ transitions • s1, s2 ∈
states ∧ ri ⊆ insts ∧ ch ⊆ changes

Given the current state, rule instantiation, and
the set of preconditions a new state with action
facts(changes) are produced

State Schema

Just like the Inference Engine, an instance of the component needs to first be

created as it is this that must possess the state. In this case we create a rule

component instance. The purpose of a rule state schema is to assert, at any given

point in time, that the rule is fully consistent with its internal state, incoming data

and outgoing data.

The variable curstate (i.e. the state of the rule) is constrained as a cartesian

cross-product of the current state and precondition14.

14For simplicity it is presented as tuple in the definition table 2.8

2.2. Technical Background 51

Table 2.8: Rule State Schema Specification

r:Rule Component Given the instance of the rule
curstate: STATE Current internal state
state vars: RSTATE Local variable of the state
precond: PRECONDITION The rule precondition
instate: set FACT Current input data
outstate: ACTION↔ FACT The data on the output
curstate = (state vars, precond) The current state is the current state info.
precond.l = r.rulename The precondition is valid
curstate ∈ r.states The current state is valid w.r.t the rule
instate ⊆ r.insts Incoming data is valid
outstate ⊆ r.changes Outgoing data is valid
instate 6= /0⇒ outstate = /0
outstate 6= /0⇒ instate = /0 At most one can have data at any time

The second constraint in the table 2.8 ensures that the rule id that maps to the

template of the working memory of preconditions is consistent with the

instantiated rule’s state. Incoming data is constrained through instate and outgoing

data is constrained through the outstate constraint. Once again, as rule-based

systems operate in discrete cycles, there can only be either one input or output but

never a simultaneous occurrence. The last constraint in table 2.8 ensures this.

State Step Change Schema

Table 2.9: Rule Step Schema Specification

4 RuleState Step change in a rule
r’ = r Rule information does not change
∃ out: ACTION ↔ FACT | ((curstate, in),
(curstate’, out)) ∈ r.transitions • out = unified-
set(in, precond) ∧ instate’ = /0∧ outstate’ = out-
state ∪ out

Given a valid curstate and a valid input, valid out-
put is produced through set

At every step the rule component transforms incoming insts to outgoing changes

using the unified function15. This function writes the incoming insts with

preconditions that in turn produce changes. It is these changes that are delivered to

the I.E. As a result, constrains involve the removal of a rule instantiation from the

incoming data and the addition of new changes.

15Equation 2.3

2.2. Technical Background 52

2.2.4.4 Working Memory

Component Schema

Table 2.10: Working Memory Schema Specification

facts: set FACT All facts
initfacts: set FACT All initialising facts
changes: set FACT All possible changes
states: set STATE Legal states
start: STATE Starting state
transition: (STATE × set FACT)↔ (STATE) Valid transitions
start ∈ states Start state is valid
changes ⊆ facts Incoming changes are valid
∀ s1, s2: STATE; ch: set ACTION | ((s1,ch) (s2))
∈ transitions • s1, s2 ∈ states ∧ ch ⊆ changes

Given the current state and the set of changes, a
new state is produced

The Working Memory Component is a simple component in the system. It can be

thought of as an unordered list of facts that can never be empty. It should be

composed of initialising facts in the very least. Other facts16 can be inserted into

the working memory via changes17. It transitions through new facts that come

from these changes.

Start states need to be part of valid states. Changes can only be facts. A valid

transition is one that produces a new state given the current state and valid changes

as seen from the last constrain in table 2.10.

State Schema

An instance of the working memory needs to be created to enable it to possess

state. In this case we create wm as seen in definition 2.11. The purpose of the

Working Memory state schema is to assert, at any given point in time, that the

working memory is consistent with its internal state, incoming data and outgoing

data.

16Defined in definition table 2.10
17Also defined in table 2.10

2.2. Technical Background 53

Table 2.11: Working Memory State Schema Specification

wm: Working Memory Component Instance of the Working Memory
curstate: STATE Current internal state
state vars: WMSTATE The local variable of instance
instate: set FACT Input data
outstate: set FACT Output data
curstate = (state vars),

curstate ∈ wm.state
The current state is valid and equal to all the state
info

instate ⊆ wm.facts Input data is valid
outstate ⊆ wm.changes Output data is valid
instate 6= /0⇒ outstate = /0
outstate 6= /0⇒ instate = /0 At most one can have data at any time
curstate 6= /0,

curstate ∈ wm.initfacts
The current state can never be empty; it should be
composed of initialising facts in the very least

The current state is as a composition of itself, via its state vars (unlike the

Inference Engine and Rules). Incoming data is constrained through the instate and

outgoing data is constrained through outstate as noted in table 2.11. The current

state can never be empty, it has to be composed of the intialising facts in the very

least. The last constraint in table 2.11 portrays this.

State Step Change Schema

Table 2.12: Working Memory Step Schema Specification

4WorkingMemoryState Step change in the working memory
wm’ = wm Working Memory information does not change
∃ out: set FACT | ((curstate, in), (curstate’, out))
∈ wm.transitions • out = update(in, changes) ∧
instate’ = /0∧ outstate’ = outstate ∪ out

Given a valid curstate and a valid input, valid out-
put is produced through with the update function

At every step, the working memory component transforms incoming input to

output. It does this via the update function (equation 2.2).

2.2.5 Distributed Ledger Technology

Distributed Ledger Technology makes use of a distributed (i.e. shared), replicated

ledger (state) across a network of peer-to-peer nodes that keep consistency of the

shared state through consensus. This consensus is often Hardened Byzantinian Fault

tolerant as the peers may not trust each other. The first use of this technology

2.2. Technical Background 54

was in Bitcoin [59]. A number of other projects include Ethereum [20] which is

a permissionless ledger and Quorum [58] and Hyperledger Fabric [3] which are

private and permissioned18. This chapter presents Ethereum and it’s permissioned

derivative: Quorum. Quorum has been used in the second investigation 19.

2.2.5.1 Ethereum

Ethereum is the biggest network for decentralised computation when measured by

market capitalisation [23, 2]. Launched in 2015, Ethereum is a decentralised plat-

form, offering the ability to run decentralised applications where code execution is

distributed across the Ethereum network [20, 85].

Decentralised computation works by running code (smart contracts) on the

Ethereum Virtual Machine (EVM), which can be thought of a distributed global

computer. Since the EVM does not exist in any one physical location, but rather

in all locations where there are nodes, code execution inherits the benefits of de-

centralisation [85]. Of these benefits, one of the most significant is a guarantee of

immutability, meaning that it is impossible for published code to be modified. The

nature of the network further guarantees zero downtime since there exists no single

node and thus no single point of failure [20].

A fundamental entity in Ethereum is the account [20]. Accounts can be owned

by either a human (external accounts, controlled by a private key) or autonomous

(contract accounts, controlled by the logic of their contract code). They are identi-

fied on the network by a unique address, and are comprised of four fields: a nonce,

ether balance (ether is discussed later in this section), contract code (often referred

to as a smart contract) and storage. Unlike the other fields, the contract code is

immutable and cannot be altered after the account is created [20, 85].

18The degree of privacy and permissioning can vary depending upon how the network is config-
ured

19In reality an HL Fabric implementation was also made by the collaborators, as one of their
objectives was to assess a Quorum vs. HL Fabric. This thesis presents the Quorum design and
implementation.

2.2. Technical Background 55

Entities external to Ethereum that wish to interact with an account, typically users,

do so by creating a transaction. Transactions either initiate the execution of an

accounts contract code, or create a new account. Valid transactions are collected

into blocks, and during the block validation, code at the accounts specified by each

transaction is executed, or, if no account exists at the given address then one is

created. Contract code can send messages to other contracts, causing their code to

run, and it is in this way that contract communicate with each other autonomously

[20, 85].

Figure 2.4: Ethereum State Transition, adapted from [20]

Each transaction that updates state on the network invokes the Ethereum state

transition function. This is a simple, deterministic function δ that takes the current

state S and a transaction and returns a new state S′:

δ : (S,Tx)→ S′

δ performs several important tasks, including the validation of Tx and adding the

transaction that pays the miner. More interestingly, however, it is in this function

that Tx’s contract code is executed. As such, the result of Tx’s contract code is

encoded within S′ meaning that all the nodes that validate Tx’s block from this point

onwards will execute Tx’s code. The parameters found in S and Tx can be seen from

figure 2.4

2.2. Technical Background 56

2.2.5.2 Quorum

In commercial contexts, one of the biggest drawbacks to Ethereum is that every

transaction on the network is public. Anyone with access to the network can look

at the data of any transaction or account [58, 55]. Clearly, this is unsuitable for

sensitive information, which firms have significant interest in protecting [55].

Quorum aims to address this issue. It is a version of Ethereum (specifically a

fork of the go-ethereum library, commonly referred to as Geth) developed at J.P.

Morgan which incorporates an additional private state tree visible only to certain

users [58]. As such, private transactions can be made on a public Quorum net-

work without divulging details about that transaction. As asserted on their website,

Quorum offers “high speed and high throughput processing of private transactions

within a permissioned group of known participants[58].

As in Ethereum, a Quorum network is comprised of a set of connected nodes

that work together to maintain consensus. However, each node is subtly modified to

support Quorums private state, among other things [58]. Additionally, each node is

paired with a constellation node comprised of a transaction manager and an enclave,

as seen from figure 2.5.

Figure 2.5: Quorum Node, adapted from [58]

In a Quorum network, the state database of each node is split into a public

state and a private state. “All nodes are in perfect state consensus based on their

public state”. However, the private state is different. This permissioned private

feature makes Quorum suitable for developing blockchain systems in which finan-

cial institutions and regulators want to share sensitive financial data using private

2.2. Technical Background 57

channels[58].

Transactions can be made private for any number of nodes on the network by

setting the transactions privateFor field. This instantiates a sequence of com-

putation when that transaction is received.

For example, in a network of three nodes: A, B and C, if A wished to send a private

transaction to B it could list Bs public key in privateFor, omitting C. Whilst

public transactions are handled in the normal way, private transactions go through

an additional step where the transaction payload is replaced with a hash. This hash

is generated in such a way that only nodes explicitly listed in privateFor can

replace the hash with the original payload[58].

As depicted in figure 2.5, Quorum contains 4 components that are further explained

below[58]:

1. Transaction Manager manages the encrypted private communication chan-

nels and data store

2. Crypto Enclave manages the private keys of the network

3. QuorumChain is part of the QuorumNode, it represents a voting consensus

that check and propagate votes on the network

4. Network Manager is part of the QuorumNode, it enables the creation of per-

missioned networks

2.2.6 Federated Learning

The traditional machine learning strategy is to gather raw data together (e.g. in a

central repository hosted in the cloud) for training. This is characterised as taking

the data to the algorithm. In contrast, federated learning involves taking the algo-

rithm to the data. The typical federated learning paradigm involves two stages: a)

clients train models with their local datasets independently, and b) the data centre

2.2. Technical Background 58

gathers the locally trained models and aggregates them to obtain a shared global

model.

Federated machine learning by definition aims to build a joint model based on

data located at multiple sites. It involves two processes: i) model training and ii)

model inference. In the process of model training, information 20 can be exchanged

between parties but not the underlying sensitive raw data. The exchange does not

reveal any protected private portions of the data at each site. The trained model

can reside at one party or be shared among multiple parties. At model the infer-

ence stage, the model is applied to a new data for the purposes of prediction and

analytics(e.g. a federated anti money laundering detection system may receive a

monetary transaction from a bank. Banks collaborate in classifying this transaction

as legitimate or fraudulent based on previous transactional patterns of historically

similar type of transactions).

Broadly, federated learning ecosystems address:

• On-device (i.e. cross-device) infrastructures for mobile devices, IoT, Edge

and other connected devices. For example, Google and Apple used it for

keyboard (next-word prediction models) [53]. The data ecosystem is charac-

terised by a very large number of devices (tens or hundreds of millions), with

intermittency and low bandwidth connections.

• Inter-organisation (i.e. cross-silo) infrastructures allowing collaborating or-

ganisations to contribute to the training with their local datasets. An example

is the European MELLODDY project [19], where ten pharmaceutical com-

panies collaborate in training a machine learning for drug discovery based on

private, highly sensitive datasets. This data ecosystem is characterised by a

smaller number of participants with good bandwidth and connectivity.

20Usually model weights and other statistical patterns

Chapter 3

Using AI to Automate the Regulatory

Handbook

The chapter explores the use of traditional AI- knowledge base systems for captur-

ing machine readable and executable semantics of regulation. The chapter begins

with a deeper discussion on automating regulation & compliance, through the use of

machine readable semantics of regulation. The chapter then delves into the theory

of expert systems, inferences engines and other key concepts with the aim of laying

the technical foundation necessary for subsequent sections, including an analysis

on Gamble et al.’s [36] work on expressing expert system shells through the use of

formal methods. The chapter then moves on to exploring the use of these formalisms

in expressing regulatory rules. The chapter ends with a discussion on representing

regulation from the FCA handbook with the semi-formal model and provides the

design an implementation of a system based on this. The chapter concludes with

a discussion on the shortfalls of the system and the possible solutions to address

them.

3.1 Introduction

In [76] Treleaven et al. have modelled the concept of algorithmic regulation on al-

gorithmic trading systems. It involves the consolidation of compliance data, social

networks data and other sources of information to a platform that encodes compli-

ance reports using distributed ledger technology, where regulation is enforced as

executable programs in the form of smart contracts [76]. The platform in question

3.1. Introduction 60

would be composed of 5 operational aspects 1:

1. Intelligent Regulatory Advice

2. Automated Monitoring

3. Automated Reporting

4. Regulatory Policy Monitoring

5. Automated Regulation

Each one of these operational aspects relies on the rules and principles presented

within regulatory Handbooks, such as the FCA handbook [14]. All reporting and

compliance related operations revolve around this handbook. However, the FCA

handbook is computationally stolid - it has no formal semantics and all regulation is

written in text based markup that cannot be used easily by machines to reason about

regulation. This makes compliance, registration, monitoring, reporting and other

operational tasks difficult to automate. The ability to interpret regulations from the

Handbook by a machine is necessary before any other algorithmic regulation task

can be carried out.

The motivation for the work within this chapter stems from this problem. The

aim of the project is to develop a system that is capable of reasoning with regu-

lation. This reasoning engine has then been integrated into a platform that allows

financial companies to navigate through the handbook to carry out tasks such as

license registration. The platform in turn serves as the Intelligent Regulatory Advi-

sor component noted in figure 1.1 and [76].

An important point to note is this project has been carried out in close collab-

oration with the Financial Conduct Authority (FCA) and the RegTech company

RegulAItion. The motivation for this collaboration is based on the need for devel-

oping a system that actually meets real world needs of the regulator and firms alike

within the industry and is validated by industry.

1Discussed in greater detail, chapter 2

3.1. Introduction 61

3.1.1 Objectives

The objectives of this project are to:

1. Develop a semi-formal model for an inference engine and regulatory knowl-

edge base that is capable of reasoning with regulation

2. Once a model has been developed, it will be implemented and its ability

to reason with regulation will be tested. This involves a number of sub-

objectives:

(a) Implementation of the regulatory expert system

(b) Analysing its ability to reason with regulation based on examples pro-

vided by the regulator and legal services

(c) Adjusting the knowledge representation model based on the analysis

3. Develop a system that integrates the reasoning engine into an advisory plat-

form. This also involves a number of sub-objectives

(a) Designing a systems architecture, for the engine, to enable RESTful

services

(b) Developing a rich interactive UI for testing by the project collaborators

(c) Deploying the system to a cloud based environment

(d) Creating documentation for the entire platform

4. The shortcomings of the Intelligent Regulatory Advisory system as well as

possible correction and improvements are then discussed

Thus the end goal is interpret to develop a system capable of providing an intel-

ligent front-end to a regulatory handbook (through the interpretation of the rules

and regulations found within it) that guides a registrant through the financial regis-

tration process and also provides basic automated regulatory advice for applicants

with limited knowledge of the regulatory application process (e.g. FinTech bank.)

3.2. Background 62

3.2 Background

3.2.1 A semi-formal model for a regulatory expert system

Representing regulation as rules is not a trivial task. This is because:

1. There exists no clear definition of what needs to be represented or how

regulatory texts can be represented as a collection of regulatory rules. Even

if there exists such a schema, there exist no clear way in which we can

approach it or from where one should begin reasoning.

2. There is no clear distinction that separates rule based regulation from

principle based regulation.

A formal model partially helps us address these issues. The first problem can be

solved through the use of a Rule Component Schema definition such as the one

found in table 2.7. This is because it provides a clear structure and definition of the

parameters that need to be extracted, enabling us to create a valid rule whose

behaviour is guaranteed. A schema also forces us to specify a start state, this

provides a means through which it can be approached by the I.E 2.

Consider the Rule Schema in table 2.7, based on the schema it can be seen that a

rule is composed of the following:

1. rulename

2. facts

3. start

4. actions

5. changes

Now consider the example found in figure B.1 of appendix B. The figure is part of

the “Perimeter Guidance Manual” chapter of the FCA Handbook [9]. It deals with

authorisations of firms. We need to identify the above parameters for each node in

the diagram. The rulename is a unique id that we can arbitrarily allocate although

2It also provides us with a means to make a rule dependency tree in real time.

3.2. Background 63

it is best if we let a hashing algorithm handle this to avoid collisions as this has to

be unique 3. We need our facts to be those that are asserted in the working memory

such that the rule will fire. Thus we can either have “y” or “n” to represent this.

Our start states are simply those the nodes that point to our node. Actions are the

new rules that need to be fired given the response (i.e. the transitions). Our

changes are the new rules that are fired as well as any other data such as

recommendations made during inference. Based on this we can easily “translate”

figure B.1 to the table B.1.

We can therefore see that it is possible to “translate” rule-based regulation into

formally specified rules. However, there are times that the recommendations may

not be presentable due to the their arbitrary nature. To address this we introduce a

new type into the Rule Component Schema referred to as EXTSTATE. Its type

however is concretised to STATE 4. Its purpose is to address the arbitrariness of

some portions of the rule. The rule component definition is redefined as:

Table 3.1: Modified Rule Component Schema Specification

rulename: RID Rule Name
tags: set TAG All semantic tags pertinent to the rule

insts: set FACT
All facts triggered from the instantiation of
rule(i.e. incoming data)

actions: set ACTION Changes (i.e. outgoing data)
changes:ACTION↔ FACT All actions pertinent to the given rule
facts: set FACT All facts pertinent to the given rule
states: set STATE Vaild states
exttstate: EXTSTATE Variable represents context
start: STATE Starting state
transition: (STATE × set FACT) ↔ (STATE
×(ACTION↔ FACT))

Valid transitions

start ∈ states Start state is valid
changes ⊆ actions × facts Incoming changes are valid
insts ⊆ facts Outgoing data is valid
∀ s1, s2: STATE; ri: set FACT; ch: ACTION ↔
FACT | ((s1,ri) (s2, ch)) ∈ transitions • s1, s2 ∈
states ∧ ri ⊆ insts ∧ ch ⊆ changes

Given the current state, rule instantiation, and
the set of preconditions a new state with action
facts(changes) are produced

Similarly the Rule’s state schema needs to be redefined as:

3An annotated version of the diagram is represented in figure B.2, it shows which node corre-
sponds to which unique rulename

4It can, to some extent be regarded, as a type synonym

3.2. Background 64

Table 3.2: Modified Rule State Schema Specification

r:Rule Component Given the instance of the rule
curstate: STATE Current internal state
state vars: RSTATE Local variable of the state
estate:r.extstate precond: PRECONDITION The rule precondition
instate: set FACT Current input data
outstate: ACTION↔ FACT The data on the output
curstate = (state vars, precond,estate) The current state is the current state info.
precond.l = r.rulename The precondition is valid
curstate ∈ r.states The current state is valid w.r.t the rule
instate ⊆ r.insts Incoming data is valid
outstate ⊆ r.changes Outgoing data is valid
instate 6= /0⇒ outstate = /0
outstate 6= /0⇒ instate = /0 At most one can have data at any time

The current state needs to now also be composed of the extstate variable from the

component schema. This is done by taking the cartesian cross product of the

stat vars, precond and estate variables. One thing to note is that the step schema

does not change because our definition constraints on curstate are of the same type
5.

What we still can’t do is isolate rule based regulation from principles based

regulation; rules need to be derived from principles and principles are meaningless

without rules. One way to address this is to semantically tag our rules in some way

such that an Inference Engine can identify the underlying principles that govern a

given rule. Therefore, the Rule Component is revised to hold tags. In order to do

this, a TAG type is introduced. It holds the tagging metadata, such as the family of

regulation the rule belongs to. For instance, in the FCA Handbook example of

figure B.1, we can possibly add the tag “authorisation” to indicate that the rule is

pertinent to authorisations. This allows us to enrich the rule semantics because we

can, by implication, reason that the principles applicable to “authorisation” are

applicable to the rule. The revised rule schema is provided in table 3.1.

Thus, we can to some extent, represent the arbitrariness and the principles

pertinent to the rule. Given that we have introduced an arbitrarily defined state

5As we have said that EXTSTATE is a type synonym for STATE

3.3. System Design 65

variable, we forgo the ability of the model to behave deterministically. This,

however, gives us greater flexibility in the representation of rules- the model is no

longer formal it is “semi-formal”. A key attribute of the model is that it only

manipulates the rule based schema. The other components do not require

modification and we can adopt Gamble et al.’s definition [36] for simplicity.

3.3 System Design

3.3.1 System Requirements

The purpose of the system is to provide an intelligent front-end to a regulatory

handbook that guides a registrant through the financial registration process and also

provides basic automated regulatory advice for applicants with limited knowledge

of the regulatory application process (e.g. FinTech banks). It has two categories

of users: an admin user and a normal user. The admin user will be able to cre-

ate/delete/edit/test regulatory rules. A normal user will be able to use the system for

seeking regulatory advice. Thus the system should:

1. Be capable of reasoning with regulation

2. Provide an intuitive means to encode regulations as rules

3. Provide a store for regulatory knowledge

4. Be easy to use and interact with on any device

Based on the above requirements the following were surmised, respectively:

1. The formal model from the previous chapter can be implemented into an Ex-

pert System capable of reasoning with regulation

2. A graphical means can be used to intuitively encode rules

3. A database can store the regulatory rules and knowledge

4. A rich web-based UI can be used to promote cross-platform usability

3.3.2 System Overview

The design for the system has been decomposed into four units that accommodate

the above requirements.

3.3. System Design 66

1. The reasoning engine

This is responsible for reasoning with regulation.

2. Database

Rather than store knowledge directly into the reasoning engine, it is stored

in a standalone database. At each session, knowledge is exported into the

reasoning engine. This promotes scalability.

3. Front-End

The system will be used by regulators and lawyers therefore designing an

intuitive cross-platform UI is important.

4. Supporting Infrastructure

Integrating the reasoning engine within API level infrastructure promotes ex-

tensibility.

3.3.3 Feature Driven Design

Rather than solely tackle the design of the system with a set of abstract require-

ments, a feature driven design methodology has been adopted. This provides a

better benchmark for developing software that actually meets real-world needs,

because development is inspired directly from the problem.

The problem considered was that of license registration where a client asks the

question: “I would like to assist clients in buying equities. What licenses do I

need?”. To answer this a lawyer/ regulatory advisor must ask the following ques-

tions6

1. Will you be buying the equities for them? (if yes, then dealing as agent or

dealing as principal license is required)

2. Will you buy the equities in your name, then sell them to your client? (dealing

as principal. If no, then only dealing as agent is required)

3. Where will the purchased equities be held? With custodian? With bank?

(generally the answer will be yes to both or either one)

6The accompanying answers are also provided

3.3. System Design 67

4. Will you put clients in touch with other brokers? (if yes, then we have to

continue with below)

5. Will you assist your clients in opening accounts with custodians and banks?

(if yes, then arranging license may be required but not necessarily)

6. Will you assist clients by taking their purchase orders and sending them to

brokers, banks or custodians? (if yes, then arranging license is required)

7. Will you put clients in touch with custodians? Or banks who provide custody?

(if yes, then arranging custody license is required)

8. Will you advise your clients on which equities to buy? (if yes, then advising

license is required)

9. Will you receive money from your clients when they open an account? (if

yes, then system has to send them to us for advice. If no, then continue)

10. Will you receive money from your client before they purchase equities? Or

will the money go directly to banks and other brokers? (if yes, then system

has to send them to us for advice. If no, then finish)

The set of answers are logical and can be represented as a decision tree. Figure C.1

in Appendix C illustrates the decision tree for the above problem. Hence the system

should have the following leading features:

1. The system has to enable lawyers/regulators (we term them as admin users)

to create decision trees

2. These decision trees should be parsed, by the system, into rules and facts

within the reasoning engine

3. The system should provide normal users with an interactive environment to

query the inference engine to obtain regulatory advice.

3.3.4 Regulatory Reasoning Engine

The previous chapter discussed a semi-formal model for representing rule based

regulation and a means of reasoning with it. An important property of the model

is that a large part of it is generalised and applicable to most expert system shells,

making it possible to bootstrap development and implementation onto an existing

3.3. System Design 68

Expert System Shell. This is because the underlying Inference Engine, Working

Memory and their respective controllers conform to the model and are largely the

same.

The Java Expert System Shell (Jess) was identified as the most suitable Expert

System Shell. Jess makes use of a DSL known as the Java Expert System Shell

Markup Language (JessML). It is syntactically similar to Lisp. For instance it has

a fully parenthesised prefix notation and makes use of functional like notational

structure 7. A large part of JessML has also been influenced by another DSL used

for Expert Systems - the CLIPS language. CLIPS (C Language Integrated Produc-

tion System) is one of the first Expert System DSL and has been used to develop a

large number of commercial systems. JessML borrows a large number of functions

and other expert system programming conventions from CLIPS.

A key characteristic of Jess is that it is treated as a first-class citizen within Java

and therefore embeds comfortably within the Java environment. This is possible

because Jess Engine can be instantiated within a Java class. The Jess API (Appli-

cation Programming Interface) provides a seamless means of interaction with the

engine; it provides a direct mapping to JessML types and functions. For instance,

consider the example in figure 3.1, both code fragments create a new template that

holds a fact 8. The first is in JessML and the second is written using the Java API.

Although verbose, it is possible to interact with the reasoning engine fairly easily.

Figure 3.2 provides an insight into this isomorphic relationship. Another important

feature of Jess is that it can handle Java Bean Objects [26]. It is therefore possible

to pass the Rule Component Schema into Jess as a Java Bean. It is important to

note that a Java Bean holds state this makes it all the more suitable for the purpose

of defining our rules based on the schema found in table 3.1. A detailed discussion

has been carried out in the next chapter.

7Similar to Alonzo Chruch’s Lambda Calculus
8In the example we consider a basic license type with a name and description

3.3. System Design 69

;;Create a new template to hold license type

(deftemplate license (slot name)(slot description))

//Instantiate a Jess Engine

Rete engine = new Engine();

//Instantiate a fact template

Deftemplate d = new Deftemplate ("license", engine);

//Define the slots in the engine with a number of initialising parameters

d.addSlot("name", Funcall.NIL, "STRING");

d.addSlot("type", Funcall.NIL, "STRING");

//Pass the fact to the Engine

engine.AddDeftemplate(d);

Figure 3.1: Fact template in JessML vs. Java API

Figure 3.2: Jess Architecture and API access

The reasoning engine is the system’s core. From a design perspective, this is

the focal point. Therefore, all other design decisions have been made in cognisance

of this.

3.3.5 Database

Integrating the reasoning engine with a standalone database is important for a

number of reasons:

1. The database holds all the knowledge (regulatory facts and rules) collected

during a knowledge engineering process. This is a very laborious task that

takes a very long time. It also requires input from domain experts, which can

be expensive. Hence it is crucial to isolate and back-up this knowledge as it

provides redundancies against system failures - e.g. in the event that the

reasoning engine fails we still have all the knowledge intact and well

preserved in a database.

3.3. System Design 70

2. The entire repository of knowledge is not used in most cases. A subset of it

is used most times. It therefore does not make sense for the reasoning engine

to hold the entire store of knowledge at all times because it needlessly adds a

memory overhead that impacts performance and speed of the system. A

solution is to only import relevant knowledge from the entire repository of

knowledge. For instance, if the system is required to give licensing

recommendations, it should only import knowledge relevant to licensing

from the database.

3. Jess’s memory is mutable. The inference engine constantly changes the state

of memory as it transitions through each rule. This means that multiple

instances of the reasoning engine can’t run simultaneously, unless they all

have access to a global repository of knowledge. Therefore, integrating a

database enables parallelisation of the reasoning engine.

4. Different types of users require different levels of access to the knowledge.

Access restrictions and permissions are better managed directly from a

database, freeing up the need for the reasoning engine to handle this. This

reduces complexity.

A choice between an SQL database or a NoSQL database has to be made given the

above database requirements and motivation. Table 3.3 summarises the limitations

and merits of both. Our purpose requires a database capable of handling constantly

Table 3.3: Database Comparisons SQL vs NoSQL, adapted from [18]

SQL NoSQL
Logical related discrete data requirements,
possibly known beforehand

Unrelated and evolving data requirements

Data integrity is essential Looser integrity requirements
Standards based - readily used in enter-
prise grade systems that need consistency and
availability

Speed and scalabilty are more imperative that
availability

evolving data-type definitions. Even though rules will be constrained to the formal

definition, other aspects may require more loose definitions. Moreover, NoSQL

databases have become more robust and reliable. They are increasingly being used

3.3. System Design 71

for enterprise-grade systems. NoSQL databases hold data in the form of key-value

pairs using JSON9. JSON representation provides an easier interface for

programming rich and readily-scalable User Interfaces through frameworks. Thus

a NoSQL database has been identified as fitting. MongoDB is the most widely

used NoSQL database, it has a wide library of developer tools and documentation

[56]. Therefore MongoDB has been selected as the system’s database.

3.3.6 Front-End

The target users for the system are regulators, lawyers and people seeking

regulatory advice. These users fall under two classes: admin users and normal

users. The UI should enable admin users to:

• Create new rules and facts

• Modify existing rules resulting from changes in regulation

• Test the flow and logic of rules

The UI should enable normal users (e.g. clients) to:

• Seek advice by answering a number of questions

• Assist them with the registration process (through intelligent form

completion)

These are just the basic UI requirements for the proof-of-concept. A large number

of features can be integrated into the system in the future. Hence the UI needs to

be extensible. This can be achieved through a component based modular design

where each feature is boxed into an independent component that sits on a global

dashboard. The target platform for the UI needs to be also considered. A browser

based UI has been selected for the following reasons:

1. Browser based UIs promote cross-platform usage as most devices (mobile or

desktop) have browsers

2. There exist a large number of frameworks that promote component based

modular design, improving extensibility

9JavaScript Object Notation

3.3. System Design 72

3. There exist a large collection of libraries such the node package manager

that could be used to provide more features in the future

The next sub-chapter discusses the choices made in selecting a framework for the

UI.

3.3.7 Supporting Infrastructure

A service-oriented architecture has been adopted for the design and deployment of

the system. This decision has been undertaken to promote a “Regulation As A

Service” philosophy, where users can use the inference engine to reason with

regulation that is relevant to them.

To facilitate this a Representational State Transfer (RESTful) architecture has been

used. A RESTful architecture involves the design of RESTful APIs that use HTTP

requests to GET, PUT, POST and DELETE data to/from a client from/to a server.

RESTful architectures are a subset of client-server architectures that are widely

used in industry as their design promotes scalability 10.

3.3.8 Frameworks

3.3.8.1 UI Frameworks

Frameworks provide browser-based application with a model view controller ca-

pability that promotes modularity and curtails spaghetti code. It also reduces the

amount of JavaScript code needed through the use of single-page-applications.

Frameworks also provide testing environments and tools. They promote rapid

front-end development. Most are designed to accommodate RESTful architectures

as well.

Two popular front-end frameworks are Google’s Angular 4 and Facebook’s Re-

actJS. Angular was chosen due to the more compositional design pattern it adopts.

10There are many reasons for this, [66] discusses them in detail. For instance the RESTful archi-
tecture enables dynamic load balancing across servers, especially within cloud computing environ-
ments.

3.3. System Design 73

Angular also makes use of TypeScript as its programming language. TypeScript

is a strongly-typed superset of JavaScript. A strongly typed system promotes less

error-prone development. The relative familiarity with Angular 4 over ReactJS was

another factor that led to its selection.

3.3.8.2 RESTful Frameworks

The Reasoning Engine has been incorporated into Spring. Spring is a light-weight,

enterprise grade framework that facilitates the creation of high performance, easily

testable and reusable code. Moreover Spring is composed of a large number of

modules that provide a wide number of features such as the creation of RESTful

services.

Other RESTful frameworks such as Jersey and Spark exist. However, these are

not as comprehensive as Spring. Therefore, Spring was selected.

3.3.9 Architecture

Thus, based on the discussions above, the final system architecture is presented in

the figure 3.3 below.

Figure 3.3: System Architecture

3.4. Implementation 74

3.4 Implementation
This section provides the implementation details for the system. It begins with

an overview of the central data structure, referred to as the “flow”, its structure

and purpose. A discussion about integrating this data structure with a database has

been provided, followed by a means of creating RESTful services. The chapter then

moves onto a discussion about integrating the flow with the reasoning engine. Some

familiarity with the Java Spring Framework has been assumed. The chapter finally

ends with a brief discussion on the implementation of an Angular 4 User Interface.

3.4.1 The Flow Data Structure

The flow data structure is a directed acyclic graph for representing rules. In essence

it is just a collection of relevant rules that are pertinent to one branch of regulation.

Figure 3.4 provides a class diagram for a flow. A flow could be thought of as a

collection of Nodes and Edges. Nodes can be of different types. The parent type is

simply referred to as a “Node” type. It consists of a unique identifier and comment

describing its purpose. An OutboundNode type is one that has an additional

component; an outgoing edge. OutboundNodes can either be MultiNodes, that

have more than one outgoing edge, or purpose specific edges such as

QuestionNodes. QuestionNodes hold the questions that are asked to a client.

Nodes can also be terminal. Terminal nodes such as LicenseNode and

LaywerNode represent logical conclusions that may be reached after transitioning

through multiple QuestionNodes. Flows store Nodes based on their type - i.e.

different nodes are stored as different collections. Nodes are connected by Edges.

Edges are unique and are represented with identifiers. They contain information

about their origin and destination Nodes and a comment that describes their

purpose. Flows also have a unique identifier, a name, comments that describe their

purpose and a flag for the Node that initiates the transitions across a flow. For

simplicity the unique identifiers (id: Integer) are incrementing integers. These,

however, can be substituted for digests from a suitable hash function to avoid

collisions. It should be noted that the implementation of supporting objects such as

3.4. Implementation 75

Nodes and Edges has not been provided for conciseness 11.

Figure 3.4: Flow Class Diagram

3.4.2 RESTful services and API creation

Figure 3.5 illustrates the structure of how RESTful services are created. Each

object is confined to its own package with a controller and service. The controller

is responsible for “transferring” HTTP requests (GET/POST/PUSH/DELETE) to

the service. The service is responsible for holding the methods definition body

onto whom the HTTP requests are mapped.

The Spring framework makes use of the @RequestMapping annotation above

controller class methods to map the given HTTP request to its method.

RequestMappings by path have been used. This means that an incoming URL is

pattern matched with the specified path. If the pattern matches, the method body

annotated directly below will be executed.

11However, an implementation of their use with RESTful methods is discussed in a later part of
this chapter

3.4. Implementation 76

Figure 3.5: RESTful Service Diagram

3.4.2.1 Implementing a Service

Consider a given flow, users may want to either add, delete, retrieve or update a

flow. This means that our flow service class will need to handle these methods.

Flows can be added by creating a start node and specifying the all the nodes and

their edges in the collection. The body of the addFlow illustrates this. Similarly,

flows can be updated, retrieved or deleted, based upon their unique identifier, via

the updateFlow, getFlow and deleteFlow methods.

3.4.2.2 Implementing a Controller

As soon as the controller is instantiated, we autowire the service onto it. This

resolves injection dependencies in Spring. The @RequestMapping annotation

is used to map the HTTP request with the method definition. We define the GET

RequestMethod above our getFlow method, based upon the unique ID. The

getFlow method then calls on its service to fulfill this task.

The RESTful services for other objects such as Nodes and Edges have been

implemented in a similar, modular fashion.

3.4. Implementation 77

3.4.3 Database

For the purpose of consistency, all knowledge that is engineered during a

knowledge engineering process is stored as a flow. Therefore, the database schema

is such that it is able to store different flows.

Figure 3.6: Database Schema

Intuitively, the database could be regarded as a list of flows with a unique

identifier, name and a set of comments. It also stores a nested collection of

multi-nodes, question-nodes, license-nodes, lawyer-nodes and edges. Each of

these objects in turn hold their data, such as their unique identifiers and labels.

Before being inserted into the database the flow needs to be manipulated. Spring

maps the class into a JSON collection, however in order to do this it must be

provided with a template. This template must begin with the @Document

annotation. This notifies Spring that the given class accesses the database. This

3.4. Implementation 78

EntityWorker12is used to store and receive a QuestionNode from the database.

However, before the database can be accessed, we require an interface that can

cycle through the data already stored within the database. The Repository interface

enables us to do this.

3.4.4 Reasoning Engine

The Reasoning Engine is the core of the system as it handles all the logic and

queries. Development of this has been bootstrapped onto the Jess Expert System

Shell. Java treats Jess as a first-class citizen and can be accessed from Java classes

through the instantiation of a rete object. A rete object is just an instance of

the Jess Engine. The Jess-Java API can then be used to interact with the engine,

add rules and facts or query the engine. The start method in Jess enables us to

do this. Other methods such as stop and retrieveState control the engine.

The defineClasses method in the snippet injects rules into the engine session.

Similarly, the defineFacts method injects initial facts into the working

memory.

Figure 3.7 provides the class diagram for the engine.

Figure 3.7: Engine Schema

Before being injected into the reasoning engine, the rules and facts need to be

parsed from a flow. In order to do this, a number of parsing classes have been
12This has been written by Andrei Margiki

3.4. Implementation 79

written. The method of interest within this class is the

transformQuestionNode. It tokenises the metadata of the QuestionNode

and creates an ArrayList of tokenised arguments that are used to inject rules into

the reasoning engine. It is these set of arguments that are based on the semi-formal

model define in the previous section of this chapter.

It should be noted that the above technique of parsing individual objects is

sub-optimal as it does not scale well when new types of Nodes are used. For this

reason, a standalone JSON to JessML parser is under development13.

3.4.5 UI Implementation

Angular4 has been used for the implementation of the UI. In Angular4 each UI

feature is compartmentalised into standalone components. These components rest

on a parent component e.g. a dashboard. Each component is has 3 files: an HTML

file that describes the structure of the component; a CSS file that provides a set of

styles for the component and a TypeScript file that acts as the controller for the

component and handles all the business logic.

Consider the example to illustrate the UI’s control logic, we require that a flow of a

given I.D needs to be displayed. For this, the TypeScript file must send an HTTP

request to the server to collect the information about the flow. Once this is done, it

filters the array of flows that were received, based on the ID of interest. Angular

now has access to this and can inject it into the HTML Document Object Model

(DOM) via string interpolation. Other components may require different services,

some may require that we send a payload of data to the server. POST methods

come in use for this. Different components require different levels of interaction

with the server. The isolation of each of these through individual TypeScript files

makes this extensible. Each component has a structure that is nested within a

separate HTML file.

13It is not yet complete and therefore not presented

3.5. Testing & Results 80

With regards to styling, Twitter BootStrap’s CSS grid system has been used for

responsiveness. The other aspects of the style have come from a boiler-plate theme.

3.5 Testing & Results

3.5.1 Testing

Testing is a crucial part of the development lifecycle, particularly when it comes to

systems like this that provide guidance. As such it acts as a safety net, helping avoid

the unwitting deployment of broken code. Given that the system was to be tested in

a production like environment by the collaborators, the system had to go thorough

testing requirements imposed by the collaborators, this included a penetration test.

3.5.1.1 Unit Tests

Unit tests check for the validity and correctness of an individual unit. A unit can be

arbitrarily defined, but is typically a function or method. Well tested applications

employ many unit tests to assert various properties across the codebase.

The entire SpringBoot application has been tested using the JUnit framework.

The frontend codebase uses Jasmine, a test generation framework, and Karma to

run the test suite.

3.5.1.2 Deployment and Manual Testing

Whilst testing local versions of the codebase captures a wide range of errors, it is

has been equally important to test a deployed version of the application. Particu-

larly because deployment environments vary from the development environment.

Additionally, new constraints, such as CORS and SSL certificates, come into play

each of which can cause unforeseen integration problems.

The project also made use of continuous integration pipelines (initially using Cir-

cleCI and then using GitLab 14) to manage deployment of code into the production

environment, and manage deployment to the master branch from dev. This formed

14Cost was the motivation for this

3.5. Testing & Results 81

part of our continuous development process, and meant that deployment bugs could

be addressed as they rose. Part of the build pipeline made use of a code scanner

tool (SonarQube) to assess for any code vulnerabilities.

3.5.1.3 Pen Testing

As part of the collaborators’ requirements, the system was put through a black box

penetration test before use. There were a number of minor vulnerabilities found par-

ticularly with Cross-Site Scripting that were fixed before use with the collaborators
15.

3.5.2 Results

Due to the commercial sensitivity of the testing- the tests were carried out in a

real environment by the collaborators exact details cannot be provided. However,

twelve different flows within consumer credit were created by the collaborators

from the handbook 16. From these about 600 individual set of queries, based on

if and what licenses (i.e. authorisations) were needed, were passed through the

system. The responses and guidance from these queries were manually compared

with the responses (of the same set of queries) from the legal experts. The following

empirical results were obtained:

1. Processing a set of queries was about 12 times quicker than the human legal

expert equivalent

2. The system provided a 94% true positive rate with respect to the accuracy

of the guidance it provided, this was better than the human counterpart that

averaged 85%

3. Where lacking, the system required additional information and flows- i.e. a

larger knowledge base and therefore could not provide an answer

4. The user experience in receiving was ranked as 4/5 compared to the current

2/5 for human guidance

15Exact details cannot be provided due to the sensitivity.
16Similar to the figure B

3.6. Conclusions 82

The system has been considered a success (in a business context) in its application

to provide guidance for licensing however the collaborators need to augment its

knowledge base and thoroughly test the guidance it provides before deploying it as

the tool for providing regulatory guidance.

3.6 Conclusions

3.6.1 Summary

The project looks into the problem of machine interpretability of regulation and

provides a “white-box” technique to address machine reasoning with regulation

through the use of a knowledge base system. The project provides a means to

capture machine readable and executable semantics of regulatory rules that could

be used to automate financial services regulation. It demonstrates how the tech-

niques proposed in the project can be applied to the FCA Handbook. The use of a

“white-box” solution (compared to a “black-box” Machine Learning solution) has

been validated by the regulator’s approval in using it internally.

3.6.2 System Shortfalls

The system however has a number of shortcomings that need to be addressed:

1. There is a scalability bottle-neck due to lack of a JessML-JSON two way

parser -facts and rules need to be converted from JSON strings to JessML. In

order to do this currently, we rely on creating mapping classes that map each

object (e.g. a flow node or an edge) in the JSON string to JessML and

vice-versa. These classes are unique to each object. Their creation cannot

scale when the number of objects grows. We therefore require a more

automated means to achieve this. A 2-way parser can help resolve this.

2. Inadequate real-world regulatory testing -even though the system has been

show to be able to reason with regulation, its design and development has

been based on a limited number of examples. Further testing, based on

diverse real world examples, is required to better assess the limitations of the

system (and also by implication the semi-formal model).

3.6. Conclusions 83

3. Lack of diverse knowledge representation -the flow is a crucial and central

data-structure within the system. Even though it possesses a fairly simple

structure its graph structure can encode a large number of rules and facts.

The flow however makes use of customised nodes to hold specialised

knowledge that is particular to one kind of regulation. For instance, for the

license and registration case, it makes use of a hard coded license node

structures. These cannot be used to represent another type of regulation. It is

this lack of knowledge diversity that needs to be addressed, it can be

achieved through the use of more generalised nodes.

4. UI design and implementation -even though the UI is functional, it still

requires more usable features. The knowledge engineering user interaction is

still unwieldy and requires more work. This however is more manageable

given the component based modular design choice that has been made as it

facilitates rapid UI component development.

3.6.3 Evaluation of the Objectives

This section lists all the research goals of the project and highlights how they have

been achieved.

Develop a semi-formal model for an inference engine and regulatory

knowledge base that is capable of reasoning with regulation

A semi-formal model capable has been developed. It is based on and extends Gam-

ble et al.’s work on formalising Expert System models. The model has been used to

represent regulation taken from the FCA handbook 17.

Once a model has been developed, it will be implemented and its ability

to reason with regulation will be tested. This will involve a number of

sub-objectives:

1. Implementation of the regulatory expert system

17Refer to Chapters B and B.1

3.6. Conclusions 84

2. Analysing its ability to reason with regulation based on examples

provided by the regulator

3. Adjusting the knowledge representation model based on the anal-

ysis

Given that the semi-formal model only makes changes to the Rules Schema and no

other component of an Expert System, implementation has been boostrapped onto

an existing Expert System Shell - Jess.

The license registration example has been used to throughout implementation.

Based on an iterative design process “the flow” data-structure has been developed

to better represent regulation.

Develop a system that integrates the reasoning engine into an advisory

platform. This will also involve a number of sub-objectives

1. Designing a systems architecture, for the engine, to enable REST-

ful services

2. Developing a rich interactive UI for testing by the project collab-

orators

3. Deploying the system to a cloud based environment

4. Creating documentation for the entire platform

The reasoning engine has been integrated into a platform capable of serving REST-

ful service. This has been done through the use of the enterprise-grade Java Spring

Framework. The RESTful API endpoint is a rich, cross-platform interactive dash-

board built with Angular4. It however needs to be used a lot more by regulators and

lawyers to help identify and revise its shortcomings.

The back-end of the system has been deployed onto the Heroku Cloud service

whereas the front-end of the system has been deployed onto Google’s Firebase.

3.6. Conclusions 85

The front end is being ported to Heroku. Even though the code has been com-

mented, suitable documentation for the system has not done. This sub-objective

will be addressed in the near future.

The shortcomings of the Intelligent Regulatory Advisory system as

well as possible correction and improvements will then be discussed.

The need for the JessML-JSON two way parser, the inadequacy of real-world testing

and the need for representing more diverse forms of regulatory knowledge have

been discussed. The motivation and need for better user interaction has also been

discussed.

Chapter 4

SmartReg: Using Blockchain for

Regulatory Reporting

The chapter explores the use of permissioned blockchains for regula-

tory reporting. It also explores how smart contracts can be used to

encode regulatory reports. The chapter begins with the problem that

financial institutions have with scaling their regulatory reporting needs

and then discusses the design goals of a system capable of address-

ing these problems. The chapter then presents, in detail, the solution

architecture and its implementation and the results of the regulatory re-

porting experiment. The chapter ends with a discussion on the results

and the impact of this study. The work in this chapter has been carried

out with Santander UK PLC and the Financial Conduct Authority.

4.1 Introduction

Regulators in financial services, in the UK, have 2 main roles: to manage Prudential

Risk and maintain Financial Conduct. Although 2 separate bodies carry out these

functions in the UK, the means through which they carry this out is the same. They

guide, supervise and indict firms based on their practice. The previous chapter

described in detail how regulators could improve their guidance function. This

chapter discusses how they can carry out their supervisory role more efficiently.

4.1. Introduction 87

4.1.1 The problem with regulatory supervision

In order to supervise firms, regulators need to examine the practices of institutions

they regulate. All regulated firms are required to submit data of their practice

through regulatory reports [14]. Whereas handbooks, such as the FCA Handbook,

provide the instructions of how regulatory reports should be built and delivered,

the reports are explicit instructions of what fields of data need to be submitted

for supervision. The level of regulation and regulatory reporting has significantly

increased since the financial crisis [5, 6, 79].

Given this increase in reporting requirements, the complexity and time it takes

for financial institutions to manage compliance reporting has also grown. Moreover

regulators make ad-hoc data requests over and above routine reports submitted by

regulated firms [79]. The only way most firms have managed to scale this increase

in requirements and complexity is by increasing the headcount within their compli-

ance departments [79].

There are a number of reasons why the process of supplying regulatory reports

is increasingly complex [12, 79]. The process of building reports from the FCA

Handbook is difficult and open to interpretation by legal departments in firms .

Moreover the entire set of instructions for compiling a report can be spread across

many different areas of interlinking regulation. At times, the wording found in the

Handbook is insufficient or unclear for firms to understand. On the other side, reg-

ulators struggle to provide precise reporting instructions for about 50,000 firms that

operate across financial services [12]. Often times firms need to make judgements

based on their practice that makes it difficult to provide unambiguous, definitive

requirements. Additionally firms could be operating across several jurisdictions,

forcing them to repeat the reporting process in multiple regimes and jurisdictions.

This repetition is often across the same data sets with similar requirements. Figure

4.1 demonstrates how reporting is done.

4.1. Introduction 88

Figure 4.1: Regulatory Reporting workflow [11]

Fundamentally, we argue that the problem is one of data. How can the reg-

ulator efficiently collect, store and use this data when need be. Moreover, can it

use this data to monitor financial health in real-time? This an extremely arduous

task because the regulator deals with thousands of firms of varied sizes, different

capabilities and lines of business. Additionally, they all have different levels of

technology to carry out compliance from containerised micro-services infrastruc-

ture in tech savvy funds to monolithic banking applications on mainframes, to

spreadsheets in small family owned businesses. The one common thread they share

is regulatory compliance and supervision.

4.1.2 Objectives

The aim of this project is to design and build a prototype solution that demonstrates

a viable alternative to the current system for regulatory reporting; one which could

be realistically explored further by Santander and regulators such as the FCA. The

findings of this study will be used to inform discussions on the development of

digital regulatory reporting infrastructure by the regulator.

The following objectives were established in order to realise this aim:

1. Identify problems with regulatory reporting currently

2. Establish systems design constraints based on these

4.2. Background 89

3. Propose a solution architecture that addresses these design constraints

4. Implement, analyse and iterate the proposed solution

5. Test the solution in the “real world”

6. Analyse and compare the proposed solution to the current system

In order achieve the objectives, the following technical tasks were established:

• Standardise of reporting firms’ data

• Develop machine-readable and executable reporting rules from the Handbook

• Develop a standardised automated reporting mechanism

4.2 Background
The FCA and Santander were consulted to identify the problems with reporting

data they currently face, these responses were analysed collectively and the a set

of requirements/ design constraints were established. These requirements/ design

constraints are based on deeper underlying issues identified by the analysis. These

were then used to identify broader solutions to the problem (all outlined in table

4.1).

Problems P1-P8 (table 4.1) affect both the regulator and the firms it regulates and

in order to design an infrastructure that addresses both their needs, it is important

to establish which entity should be responsible for solving each of the problems.

It is also important to understand which entity develops and maintains such an

infrastructure.

4.2. Background 90

Table 4.1: Problems, design constraints and solutions for regulatory data submission

Problem Design Constraint/Requirement solution

P1

Firms have to constantly interpret nat-
ural language regulation, and opera-
tionalise it through machine-readable
code

Reduce the need for firms to interpret
regulatory rules via natural language

Create machine-readable and exe-
cutable reporting rules (or in a way
such that they can be unambiguously
transpiled to this), ab initio.

P2

Regulatory reporting is cumbersome,
there are too many intermediate pro-
cesses leading to errors in data sub-
mission

Improve the regulatory reporting
workflow by removing inter-
mediation as seen from figure
4.1

Automate the entire reporting pro-
cess; rather than using multiple dis-
parate systems, consolidate all pro-
cesses and workflows into one plat-
form

P3
New regulations and changes to exist-
ing regulation is time consuming

Enable new regulations and changes
to existing regulations to be imple-
mented more quickly and cheaply

By encoding reporting rules directly
as machine-readable/ executable
code, it is possible to treat the rules
as a piece of software. New rules or
amendments can then be treated like
any other software rollouts that have
inbuilt version control and continu-
ous integration and delivery pipelines
that facilitate a much quicker and
more agile process

P4

There exist no single set of report-
ing standards or a uniform report-
ing framework, making it difficult for
the regulator to analyse the submitted
data

Allow regulators to collect more
structured data which can allow them
to identify and monitor risks more ef-
ficiently through analytics

Machine executable rules would pro-
duce reporting data that has a consis-
tent data model.

P5

There exist no single set of report-
ing standards or a uniform reporting
framework, firms have tried to tackle
this multiple times through the in-
troduction of uniform reporting data
models but the adoption is minimal as
firms find it difficult to refactor their
existing systems to these new data
models

The solution should promote the con-
sistency and data quality across re-
porting firms

By enforcing the use of machine ex-
ecutable rules as the only acceptable
mechanism to report data, it would be
possible to maintain consistency.

P6
Both the regulator and the firms need
to maintain a record of the reporting
data

Remove needless data replication be-
tween the regulator and reporting
firms

Regulators don’t need store the data,
all they need is a unique identifier that
can be used to access the data if/when
they need to from the bank

P7

Regulators cannot share reporting
data of the firms it regulates, with
each other. Conversely firms have to
submit the same reporting data to dif-
ferent regulators

Provide a means for the regulator to
share reporting data with other regu-
lators. Also provide a means for firms
to submit to multiple regulators.

Regulators could share these identi-
fiers with other regulators. For intu-
ition, the identifier could be thought
of as a key to the underlying data.
As such, regulators would then trade
these keys (along with their inherent
data). Similarly, firms could share the
same identifier with different regula-
tors.

P8
Data reporting happens infrequently
as it is laborious

Improve the reporting frequency by
firms

The consolidation of the entire re-
porting process into one platform will
improve the efficiency of the report-
ing process- firms would be able to
run more reports within a given time,
making reporting more frequent and
push towards real-time reporting

The obvious suggestion is that the regulator should be this entity as they are

perceived neutral by firms and they authorise all regulation. However, this cannot

be the case for a number of reasons:

• It is not within the regulators mandate to actively maintain infrastructure; their

4.2. Background 91

role is to facilitate and provide regulatory oversight not implement [14]1

• As a policy, the regulator maintains technology agnosticism as much as pos-

sible [14, 25] 2.

• Regulators need to share reporting data with each other (e.g. the FCA shar-

ing data with the Bank of England), what would the trust model look like if

only one regulator maintained and developed such a system. Should all the

regulators trust the one regulator in charge of the system. The trust prob-

lem is amplified by the fact that some of the regulators could be in different

jurisdictions 3.

• Who manages the governance (technical, commercial and to a greater extent

political governance) of the platform, should there be a regulator’s regulator

that manages this governance?

An alternative solution could be an industry-led platform similar to the way in which

SWIFT works [69]. However, this also has a number of problems:

• The regulator regulates thousands of firms varying in size and technical com-

petence; no one regulated firm or group of firms can be left in charge of

developing and maintaining such a system

• It still does not solve the problem of regulators wanting to share data with

each other, often within different jurisdictions

Given that one entity cannot be responsible for the maintenance and development

of the platform. it is therefore important to understand the bounds of trust and

the trust architectures available before considering the technical architecture of the

system. The chapter below explores this, in the scope of networking and computing.

1Refer to section PRIN 1.1 Application and purpose
2Section REC 3.16 Information technology systems of the Handbook
3e.g. The FCA sharing data with the SEC

4.2. Background 92

4.2.1 Trust models in Computing Networks

4.2.1.1 Centralised Trust

When it comes to centralised trust, client server architectures are the most widely

used networked service architectures prevalent on the web [65]. In networking

terms, the server is regarded as the “producer” as it provides the service 4. Con-

versely, the client (i.e. the consumer) consumes this service and responds accord-

ingly [65]. The responsibility of trust mainly lies with the producer 5 i.e. the server

and all service related transactions are intermediated by the server 6.

4.2.1.2 Decentralised Trust in Computing Networks

Peer-to-peer (P2P) architectures are one of the most common decentralised com-

pute architectures. The web is one such example. A computer is regarded both a

‘producer’ and a ‘consumer’ of a service [65]. Distributed ledgers, more commonly

referred to as blockchains, provide a trusted decentralised architecture. This is done

through the use of Byzantinian fault tolerant consensus that manages a replicated

state of the entire network across the peers [59]. Effectively, trust is maintained via

an honest majority principle on this ledger [85].

4.2.1.3 Trust in SmartReg

In SmartReg, trust does not fall within either extremities. It falls in between- Regu-

lators do not trust each other (particularly if they operate cross jurisdiction). Firms

however trust the regulator that regulates them. A hybrid model is therefore re-

quired. However, in the cases where trust is required it does not have to be based on

hardened consensus. This is because regulators generally know each other and have

their reputations staked and international legislation prohibits them from acting de-

structively, meaning that they do not have strong incentives to behave maliciously

against their counterparts. Regulators are also aware of all the firms that regulate

and actively police them, legal frameworks are also present within the regulator-

4A service is an abstraction of computer resources and a client does not have to be concerned
with how the server performs while fulfilling the request and delivering the response.

5Protocols such as TLS maintain the integrity of this trusted relationship
6Distributed systems can still be centralised if the computation/ storage is managed/ orchestrated

and carried out by a single entity such as an organisation

4.2. Background 93

firm relationship that prevent them from acting dishonestly.

The problem of trust breaks down into “Federated Trust” that is based on the au-

thority of each regulator, the firms they regulate and the wider legal implication that

may apply to them if they behave nefariously. Effectively, SmartReg would have

two components:

1. The network infrastructure that facilitates regulatory reporting

2. The machine-readable semantics that enable automated reporting

Where the latter uses the former to share executed reports7.

4.2.2 Experiment

Based on the requirements discussed above the following experiment was designed

to validate SmartReg8:

1. Contain three types of actors or participants: Regulators, banks and code

providers where:

• Regulators are responsible for receiving and validating the reporting

data

• Banks are the entities that need to report their data to the regulator

• Code providers provide machine executable regulations to the banks

2. Manage six nodes: two regulators, two banks and two code provider nodes

(as seen from figure 4.2; the nodes in the figure represent the participants and

links represent the sharing of reporting data or machine executable regula-

tions).

3. Represent a marketplace where code can:

• be submitted by the code providers

• be traded by the banks and approved, rejected or queried by the regula-

tors
7Including the underlying data that is part of the report
8With input from the FCA and Santander

4.2. Background 94

4. Represent a Submission Management Tool where the banks can submit re-

ports to the regulators by using approved code and regulators can approve,

reject or query them

5. Contain a screen to visualize the Code Inventory (i.e. submitted machine

executable regulations), where:

• the code providers can submit new code to the inventory

• the regulators can change the status of the submitted code by using

Smart Contracts

7. Contain a screen to visualize the Submission Management Tool, where:

• the banks can submit new regulation reports through the Submission

Tool

• the regulators can change the status of the submitted reports by using

Smart Contracts

8. Comply with the following set of permissions and privacy rules:

• the code and Submission Inventories should be public to every partici-

pant node

• Code can only be added by the code providers

• Submission reports can only be submitted by the banks

• The status of the code and submissions can be updated only by the reg-

ulators

• Banks and regulators can only see records related to them

4.2. Background 95

Figure 4.2: Network topology for the experiment

4.2.3 Use Cases

Two use cases were explored in the experiment. Both these use cases make use of

a firms’ compliance reports. The regulatory rules for these are defined in the FCA

and PRA Handbooks [14].

4.2.3.1 PSD001 Loan to Income Ratio reporting check

This is a quarterly report that shares the data of all the mortgages a firm has sold.

Regulators require this information to ensure that lenders are lending in a responsi-

ble manner. According to the Handbooks, no more that 15% of all mortgages sold

should exceed a Loan to Income ratio of 4.5. The firms have to make this calcula-

tion and provide this to the regulator.

The reason for using this as a use case has been because PSD reporting usually falls

within the remit of the PRA, but it is often the case that the other regulator (FCA)

want this data. They usually get this data from the each other but it is a lengthy and

error prone process (as outlined in the sections above).

4.2.3.2 CET1 Capital Equity Tier 1 compliance check

This is a report that shares the measure of the minimum capital a firms has against

its assets. By requirement, this ratio must be greater than 4.5% of the risk weighted

assets a firm has at all times.

4.3. Systems Design 96

The reason for using this as a use case has been because CET1 reporting also falls

within the remit of the PRA, but it is often the case that the other regulator (FCA)

want this data. Additionally, it falls under different regulatory reporting standards-

the Basel III Standards.

4.3 Systems Design
This section examines, at a high-level, how SmartReg is designed, exploring the

reasoning behind the choices made and the trade-offs encountered.

4.3.1 Systems Architecture

Before exploring how the disparate components of the system relate to each other, it

is helpful to start with a list of the services that comprise SmartReg and their roles:

Table 4.2: SmartReg System Components

Service Description

Frontend
Displays information to the user, and exposes a vi-
sual interface for interacting with that data.

Backend
Server which communicates with the Blockchain
to create contracts on the network.

API
A RESTful API server that enables communica-
tion between the frontend and backend.

Authentication Server
Server which holds authentication details for the
users of the system.

Database
Hold arbitrary business data. Cache blockchain
data.

Blockchain
Decentralised network which stores an immutable
growing chain of data.

Code Explorer

Frontend site which is essentially a wrapper
around the GitHub API. It enables users to search
for approved repositories, and for users to log in
and submit their own repositories for approval.

Regulatory Report
A machine-readable and executable version of
regulation- “codified” regulation.

Extraneous services such as load balancers and caches have been omitted here

for the sake of brevity and because their exclusion does not meaningfully impact

the core components of the system.

4.3. Systems Design 97

In addition to the business requirements discussed in table 4.1, it is crucial to

consider the requirements of a system when it comes to system design. Every

choice brings with it a set of trade-offs, and successful systems will use its require-

ments to inform which trade-offs are acceptable and which are not.

In the case of financial regulation, two of the most significant technical require-

ments are security and data privacy. As such the system was designed with modular

components in a manner that gives each entity complete control over their data.

The system should also avoid imposing any single opinionated way of delivering

this, as different banks may have completely different approaches to data-privacy.

Another consideration is that firms may want to connect SmartReg to their existing

corporate authentication system, and SmartReg shouldn’t enforce any particular

constraints. Put succinctly, SmartReg should be built as a platform for supporting

decentralised financial regulation, irrespective of the environment.

Our response to these constraints is to categorise each component as either a peer

component or a reporting network component. The peer components include:

1. Frontend

2. Backend

3. API

4. Authentication Server

5. Database

6. Reporting Module

7. Quorum node

The reporting network on the other hand also includes the Quorum node but also

the Quorum blockchain. Peer components will be replicated at each institution and

thereby be under that institution’s control, whilst a blockchain component is shared

4.3. Systems Design 98

across all institutions, thereby remaining uncontrolled by any one actor. The rest of

this section will discuss the design of each of these sections.

4.3.1.1 Peer Components

Each node in the network runs a traditional web stack, comprised of a frontend,

backend, authentication server and database. There is nothing inherently special

about this stack, in fact it is designed to be as generic as possible so that it can be

deployed to whichever set of environments the client is running.

The frontend application is the primary way users will interact with the under-

lying application and blockchain. The application is decoupled interacting with the

blockchain through the server via a RESTful API service [66, 71] and secure only

ever receiving information that the current user has permissions to view, as defined

by an access token.

One benefit of this approach is that the server and database can be switched out

as needed from institution to institution, so long as the API specification is up-

held. This makes for a highly flexible integration experience for institutions joining

SmartReg, who often have a large amount of technical debt and legacy infrastruc-

ture.

Figure 4.3: Architecture of an individual SmartReg peer

4.3. Systems Design 99

4.3.1.2 Frontend

The frontend is responsible for visually displaying data to SmartReg users. The

UI is particularly important as it’s the primary method of interaction with the

underlying network. Since the primary audience of our solution are compliance

professionals, not software engineers, a clean, intuitive UI will be key in selling

the solution as a viable alternative to the tried and tested spreadsheet and email

workflow used today.

There are some important design and security constraints to consider. Firstly, the

frontend should make no assumptions about the backend, other than that it provides

an API that meets a certain specification. This allows a loose coupling between the

front and backend, for flexibility. No server specific or institution details are hard

coded into the frontend codebase. Owing to this loose coupling, there only needs to

exist a single code base to serve all entities on the network, with each entity simply

deploying a copy of the frontend code and setting environment variables pointing

to their API. Indeed, because the frontend is so stand-alone, it can be open sourced

where it can benefit with input from the developer community.

Secondly, the frontend code is stateless and modular. API keys, URLs, authen-

tication tokens, institution data, regulation data, submission data and other such

information is never be hard-coded into the system, as doing so would greatly re-

duce the codebase’s portability. Instead, data is requested from the API and used

to populate an instance of the frontend. Meanwhile, API keys, endpoint and other

per-institution data are defined in environment variables. In this way, each deployed

instance of the frontend codebase can use a custom configuration, maximising flex-

ibility across a range of deployment environments. This also delivers significant

security benefits, as private keys and other custom configuration never need leave

its institution.

Finally, the application accepts and stores an opaque, stateless access token

4.3. Systems Design 100

(SmartReg uses JSON Web Tokens -JWT) from the authorisation server upon a

user’s successful login [8]. This token is included as an authorisation header in all

requests made to the server, and encodes details about the user making the request.

In this way, the server can respond with only information that user has permissions

to view.

4.3.1.3 Backend, Authentication and Database

The backend has several key responsibilities. Firstly, verifying authentication. Each

incoming HTTP request from the frontend contains an access token in the request’s

authorisation header. Before processing the request, the backend should verify the

integrity of the token. This exact verification process depends on whether the token

was signed using public-private key cryptography or a shared secret. If any part

of the information contained in the token has been changed then this verification

step will fail and the request should be rejected. If the verification succeeds, and

the token is within its expiry time, then the request is accepted and processed [8, 34].

Secondly, the server is responsible for reading and writing to the database. The

fact that each institution connects to their own internal databases is significant as it

enables users to authenticate with their institutional credentials. Additionally, the

database can act as a cache, storing requests so the system doesn’t always need to

access the blockchain, thereby speeding up common requests.

Thirdly, the server needs to make connections to the Quorum network so that

data can be read and written to the blockchain. We use Web3J, a library for inter-

acting with nodes on an Ethereum-based blockchain. It is across this connection

that nodes can view, modify and create submissions on the shared network, and

retrieve data to send as API responses.

4.3.1.4 API

The sole method of communication between the frontend application and backend

server is via a RESTful HTTP API [71]. The frontend requests data from the back-

end via this API, passing an authentication token with each request. According to

4.3. Systems Design 101

the permissions encoded in the token, the backend responds with a payload, hydrat-

ing the client with data.

Writing the API specification is not something that could be done once and left

alone. It needed to adapt as the project grew and changed, and as such we adopted a

pragmatic, flexible approach to the API specification, one where changes were not

just allowed, but encouraged as we rapidly iterated in SmartReg.

4.3.1.5 Reporting Module

The reporting module has 2 sub components:

1. Reports Explorer

2. Machine Executable Reports (also referred to as reporting functions)

The regulation function is a machine executable version of the regulatory rules.

Its purpose is to deterministically map an input to an output according to the logic

inscribed by a particular piece of regulation. The regulation function could be a

single rule or a set of rules. The resulting output encodes whether or not the input

has passed the function’s regulation, among other things. In order to support au-

tomation in running the function, each function should conform to a standardised

interface. This allows any function to be programmatically downloaded and run

from within a virtual or containerised environment (e.g. Docker) on any server

offering a significant speed and reliability boost when compared to a manual ap-

proach.

Because these functions are deterministic, the running of a function can be de-

scribed by its input, function ID (comprised of the repository URL and git commit

SHA), and its output. It is this determinism that makes verification so computa-

tionally easy; a regulator simply runs the specified function on the given inputs

and checks that the output matches that given by the firm. Such steps are trivial to

automate. Furthermore the determinism at play gives rise to greater transparency, as

all steps a regulator take to verify compliance can be recorded and replayed at any

4.3. Systems Design 102

time with identical results. This could benefit auditors, who might wish to replicate

the exact steps taken at a particular time in history.

One important property of regulatory functions is their referrential transparency;

they apply the same logic every time, regardless of the input. This represents one

of the most significant benefits of using codified regulation, as the interpretation is

fully defined with no subjectivity or ambiguity.

The code explorer is an online directory which enables users to search for and

discover regulatory function repositories. Code providers can log in to the code

explorer using their GitHub accounts and submit one of their repositories to a

regulator. Each submission is represented by a code token smart contract which

is stored on the blockchain. Regulators assess submitted repositories and hence

approve or reject code tokens. Each accepted repository is associated with a set of

approved commit SHAs, or versions, so approvals are tagged to a specific version

of the code. This prevents code providers from pushing new, unapproved logic to

previously approved repositories.

For the purposes of this project, a very simple UI wrapper around the GitHub

API was built along with an additional form page for making code submissions. In

the future, we envisage the creation of a fully featured online code directory with

complex search, filtering and submission functionality.

4.3.1.6 Quorum Peer

The SmartReg Reporting Network consists of the decentralised network consists of

a network of nodes which produce smart contracts, connected by Quorum. Each

node performs a variety of functions, including the generation of non-deterministic

data (such as the current time) and running computationally expensive tasks that

do not need to be done on-chain. It has two main sub components: a peer identity

wallet and a repository of smart contracts relevant to the peer. Each of the peers

validate their identities, sign transactions and manage other peer responsibilities

4.3. Systems Design 103

(e.g. consensus) through this identity. The wallet, referenced by an address number,

manages this identity, it essentially is a secure artefact that manages secrets (i.e.

private keys associated with the peer), based on the SECP26k1 ECDSA standard

[85]. Section 4.3.2 goes into more detail of how smart contracts are designed to be

used in SmartReg.

4.3.2 Reporting through Smart Contracts

To prove a bank has complied with regulation, it runs its inputs (financial data) on

a regulatory function to deterministically generate an output. The entire process

is orchestrated through the use of Smart Contracts. Smart Contracts are also used

to persist the details of each regulatory report on the blockchain in the form of a

token that represents a “proof of compliance”. The contracts specification has been

designed with the aim of being implemented in Solidity, a high-level, contract-

oriented language similar to JavaScript [31], as seen from figure 4.5. The language

compiles down to Ethereum virtual machine (EVM) instructions which are executed

by the Ethereum virtual machine [31]. There exist four concrete contracts, and one

abstract contract. These are:

1. Submission Factory

2. Submission Token

3. Code Factory

4. Code Token

5. Regulated (abstract)

4.3.2.1 Patterns

One pattern used heavily in the contract design is the factory pattern (figure 4.5).

Each token, be it submission or code, has an associated factory contract which is

responsible for instantiating the token.

A factory describes an architecture where an object, or in this case a contract,

4.3. Systems Design 104

is created without calling that object’s constructor. Instead, a factory method is

called, which internally invokes the constructor, abstracting away the need to know

about the details of the underlying object’s instantiation. This is useful because it

decouples the codebase from any one specific implementation. If, at a future date,

the object be replaced with one that has an entirely different signature, the only

place where changes would need to be made are in the factory method.

A further benefit, and the main reason for employing the factory pattern in our

case, is that default values can be specified in the factory method and thereby ap-

plied to all new contracts created by that method. For the submission factory, this

pattern is used to provide the value for the submission’s regulator, with the values

for the regulator being provided when the factory class is instantiated. In this way,

every bank-regulator pair has a corresponding factory class, and by calling that

class the regulator value is prefilled. The code factory contract behaves similarly.

The data that forms a token on the network is stored in the submission token

and code token contracts. Whilst submission data is specific to each, both store

the same regulation information, namely who the regulators are and the current

submission status.

To promote code reuse, and to adhere to the don’t repeat yourself (DRY) prin-

ciple [44], this common regulation code has been abstracted into the Regulated

contract. This contract is not designed to ever be instantiated on its own, but rather

exists solely to be inherited (analogous to abstract classes in Java). By sub-classing

the regulated contract both token contracts inherit its logic. Now, any updates to

this shared piece of code only ever need take place in one file, improving code

maintainability. Further to this, structuring the contracts in this way encourages a

modular application design where specific pieces of logic are represented in one

authoritative place, rather than the monolithic practice of combining distinct logical

components together in one class.

4.3. Systems Design 105

Figure 4.4: Flow of arguments to a factory method which instantiates a contract.

The submission and code factory contracts implement a factory design pattern.

Each factory has a create method which performs token construction and injects

certain defaults to that constructor, such as the regulator’s address. Meanwhile, the

regulated contract encapsulates functionality common to both token contracts in one

place. These patterns are explored in detail in the subsections below.

4.3.2.2 Submission

Submission contracts hold submission data and encapsulate permission checking

logic which, for example, sets the address of the sender making the contract as the

owner of the submission (to prevent an entity submitting on behalf of another). A

hash of the inputs, link to the function and output is sent to the network, where

it is stored as an immutable item on the distributed ledger. Table 4.3 shows the

information stored in each submission, along with a description of how the value is

verified.

The address of the submission token serves as the token’s ID. This reduces the

space used by each token, and enforces uniqueness at the protocol level, reducing

the amount of custom logic needed to read and write from the smart-contract.

At its core, the submission token consists of the following fields: the bank’s address

on the network, the address of the regulator this submission was submitted to, the

submission status (pending, approved, rejected, queried), the address and SHA256

hash of the code token used to verify compliance, the input hash string and the

proof string (which is the output of the function). The piece of regulation being

complied with is implied by the code token (and the regulatory function it points

to).

4.3. Systems Design 106

Table 4.3: Contents of a bank’s submission

Data stored How to verify

ID
Is a unique identifier at the protocol level (unique to each
smart contract), verification can be done through comparing
with block data

Submission timestamp.
Can be trivially verified by comparing it with the timestamp
of the block the submission was “mined” in.

Address of the bank making
the submission.

he address of the sender is set as the bank address, and this
logic is written into the smart contracts. Thus, bank A cannot
submit on behalf of bank B without bank B’s private key.

Address of regulator being
submitted to.

This is up to the bank, but entering an incorrect value here
would be self defeating and not in the bank’s interest.

The address of the code to-
ken that represent the regula-
tory function used

Together these three items form a proof
of compliance. Changing any one of
these values would cause a verification
error if a regulator decided to check that
token. This is made possible by the
determinism of the regulatory function

The hash of the input data
used.
The output of the regulatory
function.

4.3.2.3 Code contract

Code contracts are smart contracts similar to submission contracts, figure 4.5. The

code token contract represents a submitted code repository. They are submitted by

code providers and approved, rejected or queried by regulators. Each code sub-

mission, also referred to as a code token, links to specific versions of a specific

repository containing a regulatory function.

A code token is responsible for storing the author of the regulatory function (repre-

sented by an organisation name and optional URL), a repository (represented by a

name, URL and array of allowed SHAs), a regulation ID corresponding to the piece

of regulation that the function was written to verify, the address of the regulator the

submission is for and the submission status (pending, approved, rejected, queried).

When a code token has an approved status, it is available to banks for verifying

their submissions.

In SmartReg a repository is specified by a GitHub URL and the versions are spec-

ified by git commit SHAs. Once a code token has been approved by a regulator, is

4.3. Systems Design 107

on the bank’s server and is available for use by banks, SmartReg uses the token’s

GitHub URL to download and run the regulatory function for verification.

Figure 4.5: UML diagram of reporting smart contracts

4.3.2.4 Limitations

At the time of conducting the SmartReg experiment, the latest version of Solidity

was 0.4.21. As might be expected for such an early version there exist limitations in

the language which need to be worked around and have, in some cases, constrained

the design of the contracts.

One of the main limitations was Solidity’s non-support for two-dimensional or

higher arrays in parameters to external functions. So if a contract has an external

function foo, it cannot have array parameters with dimensionality 2 or above (e.g.

uint[][] is unsupported). This limitation becomes more significant when con-

4.3. Systems Design 108

sidering that strings in Solidity are internally represented as arrays of bytes. Hence,

the type string[] is internally represented as bytes[][] a two dimensional

array. This means that contracts cannot accept string arrays from external calls.

This presents a problem in the code token contract, which needs to accept an

array of SHA strings. To address this issue, I exploited the consistent format of git

SHAs, which are hashes of 40 characters. This consistent length could be exploited

in the type of the SHA array type, by moving from string[], an array of dynam-

ically sized byte arrays, to byte[40][], an array of statically-sized byte arrays.

Because the byte array’s length is known at compile time, Solidity can collapse

this type to a single dimensional array, thereby allowing it in the parameter of the

externally facing constructor.

However, there exists a second limitation which affects the byte[40][]

workaround, and that is Solidity’s lack of support for nested arrays in construc-

tors. This means that even with the byte[40][] workaround, arrays cannot still

be passed directly to contracts during construction. There exist several workarounds

for this limitation, each with their own trade-offs.

1. Drop array support this is the simplest option, but means that each submit-

ted SHA would need its own separate submission. For simplicity, this is the

approach taken in the contract source code

2. Implement a public function, which supports being passed byte[40][],

that sets the allowed SHAs this function could be called directly after con-

tract construction. It implements the functionality, but comes at a significant

complexity cost

4.3.3 Consensus

SmartReg uses Quorum as its blockchain protocol. Part of the design decisions

made also rely on defining the choice of consensus mechanism to validate transac-

tions onto the distributed ledger. A consensus mechanism is needed because such

4.3. Systems Design 109

a distributed system has peers that act independently when processing transactions

and updating state. As a result, a non-disputable agreement amongst the peers is

required to achieve synchronisation.

Consensus mechanisms need to be fault-tolerant, meaning that they need to provide

a reliable mechanism to achieve synchronisation and network resiliency. Here two

kinds of fault tolerance have been considered:

1. Crash Fault Tolerance - Fault tolerance that provides resiliency against peers

failing (as a result of technical mishaps such as communications failure, peer

outage etc). Common examples include Raft and Paxos [68, 49].

2. Byzantinian Fault Tolerance - Fault tolerance that provides resiliency against

dishonest peers that may act adversarially. Common examples include Proof-

of-Work, Proof-of-Stake and Proof-of-Authority [59, 85]

Open blockchain systems, such as Bitcoin and Ethereum, need Byzantinian Fault

Tolerance as the identities and intentions of the peers is not known. The trust model

in SmartReg is different. It is a private consortium blockchain that characterised by

three distinctive trust properties:

1. The identities of all the peers within SmartReg are known, if they act dishon-

estly this can be identified and they can be punished by the regulator

2. Peer permissioning is required- all peers need to be explicitly allowed to join

the network so the chances of adding ”dishonest” peers is reduced

3. Peers (i.e. the organisations/ firms) have a legal obligation to report honestly,

failure to do this can result in being punished by the regulator [14]

As a result, Crash Fault Tolerance has only been considered when identifying a con-

sensus mechanism rather than Byzantinian Fault Tolerance. Raft has been chosen

as the consensus mechanism for SmartReg for a number of reasons:

• It has a simple leader-follower model and implementation compared to its

Paxos counterpart [68]

4.4. Implementation 110

• Raft only synchronises peers if transactions exist and if they need to be pro-

cessed. Proof of Work and other Byzantinian Fault Tolerant mechanisms need

to create blocks regardless of transaction processing. This can unnecessarily

bloat the ever growing blockchain [58]

• Raft has been used in large scale enterprise-grade distributed applications

such as Kubernetes [58]

In SmartReg experiment, both the regulator and reporting firms can take part in

consensus through Raft. This means that both can propose new blocks and validate

transactions. Initially, it was proposed that the regulator be the only entity that

takes part in consensus. This was changed to provide better Crash Fault Tolerance

within the system. To better understand this, we need to consider that regulators

in the reporting ecosystem are a handful compared to the thousands of firms they

regulate. This would mean that only a handful of peers would provide fault toler-

ancy for the entire network of potentially consisting of thousands of peers, reducing

the resiliency of the network 9. Therefore both the regulator and the firm has been

allowed to take part in consensus.

If firms are to act dishonestly, this can easily be identified by the regulator as

discussed above meaning that firms don’t have strong incentives to act dishonestly

within the network.

4.4 Implementation
This section presents the implementation details of SmartReg. It starts with a dis-

cussion of the tools, environments and frameworks used, followed by a discussion

on how a role-based identity system has been implemented. It also discusses the

important APIs implemented for Regulatory Reporting. It ends with a discussion

with the implementation details of an automated deployment mechanism for each

of the peers in the reporting network.

9What if the all the handful regulator peers go down?

4.4. Implementation 111

4.4.1 Tools & Environments

The main motivation behind the choice of tools, languages and frameworks for

the components in chapter 4.3.1 is to enable “frictionless” integration between

SmartReg and internal banking infrastructure.

4.4.1.1 Backend

The entire backend has been implemented on the Java Virtual Machine (JVM) using

Java 8 and the SpringBoot framework. The JVM and SpringBoot are widely used

in the financial services industry for their backend systems 10- writing the backend

on the JVM would allow quicker integration of SmartReg with internal banking

infrastructure.

4.4.1.2 Frontend

The Frontend component has been implemented using the ReactJS Framework. The

intention of using ReactJS is as follows:

1. Its virtual DOM paradigm enables a higher level abstraction for quicker de-

velopment and quicker rendering of frontends [33]

2. It enables code reusability and efficiency through reusable React components

[33]

3. A uni-directional data flow model provides code stability, particularly when

refactoring code [30]

4. It is being increasingly used by banks for their front end applications

4.4.1.3 API

The APIs have been written with the OpenAPI specifications to facilitate quicker

integration between the internal banking systems and SmartReg.

4.4.1.4 Authentication Server

A third party tool has been used as an authentication server. This tool conforms to

the 0Auth 2.0 protocol (and makes use of JSON Web Tokens, JWT) that is com-
10Validated by Santander and FCA

4.4. Implementation 112

monly used for Single Sign On (SSO) based authentication within banks and enter-

prise [8].

4.4.1.5 Database

For the purposes of the SmartReg experiment, a NoSQL database (MongoDB) has

been used. There is no particular reason for this (other than implementation ease),

the interface that consumes the database has been implemented to consume either a

SQL or NoSQL database.

4.4.1.6 Reporting Module and Reporting Functions

The entire reporting infrastructure has been implemented using Haskell. Haskell is

a high-level functional programming language that is referrentially transparent by

design- a technical requirement for the reporting module and functions.

4.4.2 Identity

In order to manage the identity of the clients that interact with the Spring Boot web

server, we use Auth0, a platform that employs the OAuth 2.0 authorisation frame-

work. This framework, which replaces the previous OAuth 1.0 protocol, authorises

a third-party application to access data. From a high-level perspective, the OAuth

framework empowers clients to gain access to specific resources by acquiring an

access token, such as a JSON Web Token, instead of directly using the credentials

of the resource owner. The authorisation server generates tokens after the resource

owner approves it. The client may use the token in order to access the resource

server. The access to the resource server is made possible through HTTP requests

using the Transport Layer Security (TLS) protocol.

Particularly, in the context of SmartReg application, the client-side obtains a JWT

from the Auth0 server and uses the token to access resources hosted on the Spring

Boot web server, which in our context plays the role of both resource owner and

resource server. It accomplishes this by incorporating the token into the header of

the HTTP request (Figure 4.6).

4.4. Implementation 113

Figure 4.6: HTTP request incorporating the token into the Authorisation header

Once the web server receives the JWT, it uses a number of different methods

to verify the validity of the token by interacting with the Auth0 authorisation server.

Thus, the token represents an abstraction that comes as an advantage for the resource

owner, due to the fact that it removes the resource server’s need to implement its

own identity management system. By using the OAuth 2.0 framework, the resource

server has to deal only with granting access to the authorisation server and verifying

the validity of the tokens received from the clients. Figure 4.7 illustrates the work-

flow of this framework protocol and presents the communication flow between the

client, resource owner, authorisation server and resource server (the resource owner

and the resource server are one entity).

Figure 4.7: The authorisation workflow used by the SmartReg application

The workflow between the three entities depicted in Figure 4.7 includes these

stages:

1. The client requests an access token from the Auth0 server by sending creden-

tials

4.4. Implementation 114

2. The Auth0 server checks the credentials, and if valid, sends back the access

token

3. The client uses the token to request the protected resources from the web

server

4. The web server verifies the token, and if valid, sends back the requested re-

sources

4.4.3 Experiment Implementation

The experiment outlined in section 4.2.2 has been implemented as in table 4.4.

Figure 4.8 illustrates how the Solidity Application Binary Interface (.abi) has been

generated from the Solidity Smart Contract code and “wrapped” as a corresponding

Java class.

Figure 4.8: Generation of Smart Contract API wrappers

Figure 4.9 provides the inheritance logic for the institutions within SmartReg.

Figure 4.9: Inheritance structure of the Institution Java classes

4.4. Implementation 115

Table 4.4: SmartReg Implementation details

Requirement Implementation Details
1. Achieve data privacy by interacting with a pri-
vate blockchain network

Implement the blockchain network using the Quo-
rum private protocol

2. Contain three types of actors or participants
Regulators, Banks and Code Providers

Implement Regulator.java, Bank.java and Code-
Provider.java classes that inherit from the Institu-
tion.java parent class (Figure 4.9)

3. Manage six nodes: two Regulators, two Banks
and two Code Providers nodes

Implement InstitutionController.java, a controller
class that creates 6 Java objects by instantiating the
Regulator.java, Bank.java and CodeProvider.java
classes

4. Create a marketplace and a submission man-
agement tool, where code can be submitted by
the Code Providers, traded by the Banks and ap-
proved, rejected or queried by the Regulators.
Banks can only trade code that has already been
approved by the regulatory institutions. In addi-
tion, before they make the submission, Banks must
run the code.

Create a Spring Boot RESTful API that handles
HTTP requests from the client server and uses
Web3j to connect to the blockchain network Store
the data on the Quorum blockchain and implement
a caching system using MongoDB Each node must
have its own web server and MongoDB instance
Manage the identity of the participants by us-
ing the Auth0 Authentication system At least one
Bank node must run code in a virtual determinis-
tic environment using Docker Containers Imple-
ment the RunController.java class (Figure 4.11)
that calls a BASH script to run code

5. Contain a screen to visualize the Code Inven-
tory (submitted code) and the Submission Man-
agement Tool, where:

• the Code Providers can submit new code to
the inventory the Regulators can change the
status of the code by using Smart Contracts

• the Banks can submit new regulation reports
through the Submission Tool

• the Regulators can change the status of the
reports by using Smart Contracts

Develop the Graphical User Interface (GUI) us-
ing React, a JavaScript library Implement two Java
classes Submission.java and Code.java and two
controllers SubmissionController.java and Code-
Controller.java (Figure 4.10) Implement smart
contracts using Solidity and automatically convert
them into Java Wrapper classes using the Web3j
library and BASH scripting (Figure 4.8) Manage
the nodes by finding a feasible solution that man-
ages the keys and permissions of the network Au-
tomatically deploy the Spring Boot web servers on
a Cloud Computing platform

6. Comply to the following set of rules:

• Code and Submission Inventories should be
public to every participant node

• Code can only be added by the Code
Providers and the submission reports can
only be submitted by the Banks

• The status of the code and submissions can
be updated only by the Regulators

• Banks and Regulators can only see records
related to them

The smart contracts and the way the Quorum
protocol works will guarantee that the applica-
tion respects these set of rules. Implement Quo-
rumBlockchain.java (Figure 4.11) class that uses
methods from the generated Java Wrapper classes
and:

• Connects to the Quorum network

• Deploys smart contracts

• Loads the deployed smart contracts

Figure 4.10 presents the class diagrams for the code and submission compo-

nents, including their controllers.

4.4. Implementation 116

Figure 4.10: The UML diagrams of Code, CodeController, Submission and Submission-
Controller

Figure 4.10 presents the class diagrams for the Quorum component.

Figure 4.11: The UML diagrams of RunController and QuorumBlockchain

4.4.4 Deployment

4.4.4.1 Heroku Cloud Environment

Each of the peers in the SmartReg Experiment have been deployed on the Salesforce

Heroku cloud environment. There is no particular motivation behind this other than

cost. The deployment process on the Heroku platform is automated using BASH

scripting. Automated deployment made the whole deployment process faster and

4.4. Implementation 117

more efficient, offering ease during testing and replication.

In order to understand how Heroku works, one must understand what a dyno is.

Dyno is a specific name given by the Heroku community to represent a lightweight

Dockerised Linux container. Every time an application is deployed, it runs inside

a dyno container. Dynos are maintained and managed by an entity called the dyno

manager. Each dyno has its own ephemeral file system that contains the latest

version of the deployed code. The processes that run inside a dyno can use this file

system, but any files written are erased when the dyno is restarted or stopped.

The architecture of the SmartReg application imposes that each institution has

its own web server deployed at a different URL. Figure 4.12 illustrates how the au-

tomated deployment is achieved in the context of the SmartReg application. Each

Dyno is a separate lightweight Linux environment that runs a SmartReg peer to

replicate the network topology found in figure 4.2

Although Heroku makes the deployment process simple and efficient through the

CLI, dynos are limited and they do not allow the applications running on top of

them to make changes to the file system. Given that each of the bank entities must

be able to run reporting functions that are Haskell applications, a separate environ-

ment is needed to run these. In order to address this limitation, the bank entities had

reporting functions deployed on the Digital Ocean Cloud Platform.

4.4.4.2 Digital Ocean Cloud Environment

The bank entities additionally have their reporting functions deployed on Digital

Ocean. It runs onto an Apache Tomcat 8 server that is deployed on a Linux virtual

machine, which uses the Ubuntu 16.04 x64 distribution. The virtual machine is

configured so that the process created by the Spring Boot web server, when the client

runs code, has root privileges. Thus, the process is allowed by the virtual machine’s

operating system to call a BASH script. The script performs a computation and

returns its result to the web server, which ultimately sends it back to the client

4.5. Testing & Results 118

server (Figure 4.13). Figure 4.12 presents the automated deployment on the Heroku

Cloud Platform via a single heroku-deploy.sh shell script.

Figure 4.12: Automated deployment on the Heroku Cloud Platform

Figure 4.13 presents the deployment of reporting functions on Digital Ocean

Droplets.

Figure 4.13: Reporting Functions on Digital Ocean Cloud

4.5 Testing & Results

4.5.1 Testing

Testing is a crucial part of the development lifecycle, particularly when it comes to

applications like SmartReg which touch sensitive data. As such it acts as a safety

4.5. Testing & Results 119

net, helping avoid the unwitting deployment of broken code. In SmartReg a number

of tests were carried out.

4.5.1.1 Unit Tests

Unit tests check for the validity and correctness of an individual unit. A unit can be

arbitrarily defined, but is typically a function or method. Well tested applications

employ many unit tests to assert various properties across the codebase.

The smart contract code has been developed using the Truffle framework, which

supports the testing of contracts locally. This means unit tests can be run on the

developer’s machine, without having to deploy contracts to the network and then

run tests on those deployed contracts. Meanwhile, the frontend codebase uses Jest,

a testing platform, to run the test suite.

4.5.1.2 Deployment and Manual Testing

Whilst testing local versions of the codebase captures a wide range of errors, it has

been equally important to test a deployed version of the application. Particularly

because deployment environments vary from the development environment. Addi-

tionally, new constraints, such as CORS and SSL certificates, come into play each

of which can cause unforeseen integration problems.

Early on in the development of SmartReg made use of continuous integration

pipelines to manage deployment of code into the production environment, and

regularly updated that code to match the local copies. This formed part of our con-

tinuous development process, and meant that deployment bugs could be addressed

as they rose.

4.5.1.3 Iteration

SmartReg has evolved substantially throughout the course of its development,

adapting to new constraints, feature requests and the continually shifting blockchain

ecosystem. This section describes how the final solution was reached through an

iterative process of continuous feedback from the collaborators.

4.5. Testing & Results 120

Initially, it was planned for banks to upload a full, plain-text record of their financial

metadata in their submissions, relying on the quorum network for orchestration and

audit only. This had several issues, however. First, after initial talks with Santander

it became clear that, from a legal perspective, Santander would not be prepared

to store copies of sensitive metadata on a shared network outside of its firewall,

even when that data was private to itself and its regulators. Secondly, the storage

requirements necessary to facilitate all banks uploading full financial metadata for

every submission did not scale well, and would have led to undue storage costs

through a bloated blockchain.

To solve these problems, the property of transaction replay by way of deterministic

functions was used to devise the system which has been described in the chapter.

Instead of storing plain-text metadata, the SHA256 hash of that data is stored as a

persistent identifier. This identifier can be used by the permissible entity (ideally

the relevant regulator) to view the underlying data from the bank. This solves both

the privacy and storage problems, since all hashes are 128 characters long and are

boundedly intractable to reverse, meaning that the plain-text source cannot be re-

covered from the hash alone. This new approach is better for users of the system, as

they don’t upload plain-text metadata to an external network, and offers improved

scalability for the system as a whole.

4.5.2 Results

The experiment describes in section 4.2.2 was carried out 11. In order to identify

whether the system is capable of almost real-time data reporting each of the reports

(PSD and CET) were run 1000 times on the infrastructure. The runs were randomly

allocated between a bank and a regulator or a pair of regulators. The results have

been presented in figures 4.14 and 4.15.

11Some screenshots of the UI have been provided in Appendix E.1

4.5. Testing & Results 121

Figure 4.14: Test times for the PSD Report Execution and Submission

Figure 4.15: Test times for the CET Report Execution and Submission

The report execution times are the time (in seconds) it took to run a machine

executable regulatory report (i.e. the reporting function). The report submission

time is the time it took to submit this report to the regulator after execution of

machine executable report. The total is the sum of these two times- the total time it

4.6. Conclusions 122

takes to run a given report i.e. submit data to the regulator from the time of request

by the regulator.

Table 4.5 provides the average of these times from all 1000 runs. In both cases

the submission times are about 12 seconds. This is expected as the average block

time on Quorum is set to 10 seconds. This factored with some additional latency

due to communications across peers results in the average. The execution times

are dependent on the reporting functions, the execution time of CET is greater as

the number of data fields it has to run against is far greater than its PSD coun-

terpart. Although not quite “real-time” regulatory reporting SmartReg provides

a much quicker reporting time (in seconds) compared to the average 1 month it

takes currently 12- a significant improvement that is closer to the goal of real-time

reporting.

Table 4.5: Contents of a bank’s submission

Report Type Execution Time [s] Submission Time [s] Total Time [s]
PSD 9.80 12.11 21.91
CET 25.04 11.35 36.40

4.6 Conclusions
SmartReg has explored the design of a new approach to financial regulation. It

combines traditional banking infrastructure with a shared distributed ledger to offer

a hybrid system that combines the benefits of both technologies. By leveraging

Quorum, a version of Ethereum that supports private state, data can move within

private channels on a shared network, offering privacy and permissioning between

competing entities on the same network.

Our implementation sees each submission storing a hash of the financial data input,

the output and the link to the regulatory function. This approach has the advan-

tage of storing minimal data, and thereby keeping the network’s file size small, but

12Determined by the collaborators

4.6. Conclusions 123

means that raw financial input is not stored on the blockchain, necessitating the re-

quest of this data from the banks by regulators. Future work may see an alternative

approach used, depending on the desired features of the system. An implementa-

tion where some raw financial data is stored on chain may be preferable, and worth

higher storage costs, to leverage a greater level of automation, for instance.

Codified regulatory functions (i.e. machine executable regulations) shift the onus

of regulatory interpretation to an objective, pre-approved function. This offers non-

subjective interpretations of regulation, enabling automated submissions by banks

and verification by regulators which delivers speed and cost improvements. The

work in SmartReg has wide reaching impact13 through the following benefits of its

approach:

1. Easier regulatory compliance

2. More precise and agile regulation

3. Accurate and real-time information

4. Standardisation

5. Improved systemic risk control

Whilst we proposed the core concepts of SmartReg, there are still areas for

extension. It is our hope that future work, will take the ideas described in the project

and yield a compelling, production ready solution for modern financial compliance.

First, there exists the issue of standardisation. The regulatory functions rely on the

assumption that certain standards exist to enable their successful execution across a

variety of environments. These assumptions include the existence of a standardised

interfacing for running regulatory functions that enables execution support across

all supporting nodes. Also, the output of the functions should conform to some stan-

dard format, such that the interpretation of the function result can be automated.

These standardisation efforts should possibly exist as an open source specification,

13Confirmed by the collaborators, FCA and Santander

4.6. Conclusions 124

so that members of the community can propose changes and raise concerns.

The design decisions made in SmartReg have informed a wider project carried

out by the regulator and a number of banks. This is the Digital Regulatory Report-

ing Project (DRR). DRR has become a priority for the regulator, banks and the UK

financial services industry [12, 13]. This has been the greatest impact of the work

presented in this chapter.

Chapter 5

RegNet: Using Federated Learning

and Blockchain for Privacy

Preserving Data Access

The chapter discusses new techniques in Federated Machine Learning,

Data Privacy and Trusted Computing that can be used for the purposes

of compliance with data regulation. It also explores the use of Differen-

tial Privacy for privacy preserving machine learning. The work in this

chapter has been carried out as part of an InnovateUK Grant, Regu-

lAItion and a consortium of financial institutions, law and accountancy

firms, The Open Data Institute as well as the regulator. The chapter

begins with the growing problem of regulating data and algorithms. It

then provides the design and implementation of a framework for this-

RegNet. The chapter ends with a discussion on the results and impact

of the application of this framework to a use case. Due to the commer-

cial sensitivity of the work undertaken, the chapter provides the rele-

vant scientific details of the work undertaken and does not explore finer

technical details of the work undertaken1.

1These can be clarified in the examination viva of this thesis.

5.1. Introduction 126

5.1 Introduction
The debate around Data Regulation is amplifying and the need for policies and

mechanisms to manage data compliance, governance and regulation is growing

[89, 81, 38, 82]. There are growing political, commercial and social challenges

concerning data that have resulted in the need for the Algorithmic Regulation of

data [89, 46, 4, 60]:

• Data harvesting - the process of extracting and analysing (personal) data on

users from online interactions. Leading companies include Google, Face-

book, Amazon, Tencent, and ByteDance TikTok. They collect comprehensive

personal and interaction data on users and their network of contacts; then use

sophisticated machine learning algorithms for ‘deep’ behavioural and predic-

tive analytics.

• Data ownership - who own the data and the right to exploit it. It covers issues

of ownership, stewardship and custodianship; responsibility for data content,

context, safe custody and usage.

• Data privacy - ensuring that the data shared by clients is only used for its

intended purpose; and the right of individuals to have control over how their

personal information is collected and used.

• Data collaboration - spans: a) internal companies in a group or departments

in government; b) consortia groups of companies partnering in analytics and

business; and c) international organisations such as financial regulators (e.g.

AML), law enforcement (e.g. drug cartels) or security organisation (e.g. ter-

rorist groups).

• Data security - means protecting digital data from destructive forces and from

the unwanted actions of unauthorised users, such as a cyberattack or a data

breach, that may compromise the integrity, availability, confidentiality or pri-

vacy of the data

5.1. Introduction 127

• Data legislation - controls how personal or customer information is used by

organisations or government bodies. A prominent example being the EU Gen-

eral Data Protection Regulation (GDPR) covering data protection and privacy,

plus transfer of personal data outside the EU.

• Data sovereignty - the idea that data is subject to the laws and governance

structures within the nation it is collected; central to competition, taxation,

security and economic supremacy.

Whereas collaboration, ownership and harvesting are all challenges that deal with

Data Management (including analytics, application and administration of data).

Legislation and sovereignty are challenges deal with Data Governance. Security

and privacy challenges deal with the assurance and safekeeping of data. All three

factors: Data Management, Governance and Security need to be considered when

regulating data [74]. The fundamental research question of this chapter is based on

the premise of all these three factors: How can we better manage and govern data

in a secure, privacy preserving manner for algorithmic purposes?

5.1.1 The Problem of Analytics, Data Sharing and Compliance

With huge and ever-growing amounts of data for analysis, organisations are faced

with three major challenges [74]:

1. Data ecosystems comprise of distributed and isolated data sets that need to be

moved around for analytics

2. Analytics requires models to be trained across these independent data sets

3. Data sovereignty/privacy legislation is making the collection, sharing and

analysing of data increasingly difficult

Organisations and industry recognise the utility in collaborating with each other for

the purposes of analytics but also recognise that data regulation and compliance,

when sharing this data, makes it challenging to do so [74]. Fundamentally the

problem is one of sharing data, we argue that data does not need to be shared for

5.1. Introduction 128

the purposes of analytics and that trusted data access can achieve the same goal

whilst maintaining compliance. Whilst sharing explicitly involves the trading of

data between owners/custodians and counterparties, data access involves making

data available for algorithmic purposes. Trusted data access facilitates this in a

secure and privacy preserving manner for a singular-algorithmic purpose only. The

aim of this chapter is to provide an infrastructural framework for this trusted data

access. This is significant as data policies such as GDPR can be complied with as

there is no sharing of data and individuals’ privacy within the dataset is preserved

[87].

5.1.2 Objectives

The following objectives were established with the collaborators to realise this aim:

1. Identify relevant technologies and fields of research in data science and in-

formation security to support trusted data access for a singular-algorithmic

purposes

2. Architect a framework based on these technologies that facilitates data access

for industry applications

3. Implement, analyse and iterate over the design of this framework and its

emerging infrastructure

4. Test and validate this infrastructure with the collaborators

5. Analyse the proposed solution and its efficacy in governing data in a secure,

compliant manner for algorithmic purposes

We establish 2 core aspects for the development of such an infrastructure:

1. Federated Data Infrastructure- privacy-preserving data infrastructure; a

framework for collaboration, allowing secure communication with collabo-

rating parties, such that ‘raw’ data does not leave the owner.

5.2. Background 129

2. Federate Machine Learning- decentralised training of a machine learning

model which enables collaborative learning while keeping data sources in

their original location2.

The subsequent chapters explore the technologies and techniques used to achieve

this.

5.2 Background
This section provides the relevant information on the use of Federated Learning

(FL) for RegNet, it provides an overview of FL, type of FL and a taxonomy of this

emerging sub field of Machine Learning. The taxonomy is one of the contributions

of this thesis.

The second half of this section provides an overview of some of the Privacy En-

hancing Techniques used in PPML.

5.2.1 A Taxonomy for Federated Learning

To provide a perspective we next look at categorising federated learning (see in

figure 5.1):

• Communication - communication or control of federated analysis: a) cen-

tralised learning - a central server orchestrates the different steps of the al-

gorithms and coordinate participating nodes during the learning process; b)

decentralised Learning - the participating nodes coordinate themselves to ob-

tain the global model.

• Data - by data partition: a) horizontal federated learning - homogeneous data

sets have the same feature space but distinct sample spaces; b) vertical fed-

erated learning - heterogeneous data sets with different feature spaces but the

same sample space; and c) Federated transfer learning - here data sets differ

not only in samples but also in feature space.

2 For example, Google’s mobile phone users benefit from obtaining a well-trained model without
sending their personal data to the Cloud.

5.2. Background 130

• Federation - the scale of federation of nodes: a) multiple nodes - a large num-

ber of On-device nodes, such as smart phones, each with a relatively small

amount of data and processing power; b) major nodes - a small number of

major inter-organisation nodes, such as data centres, each with a large amount

of data and processing power.

• Security - the data privacy preserving techniques employed. Popular for fed-

erated learning are: a) Secure Multi-Party Computation SMPC - a subfield of

cryptography with the goal of creating methods for parties to jointly compute

a function over their inputs while keeping those inputs private; b) homomor-

phic encryption - the conversion of data into an encrypted form that can be

analysed and worked with as if it were still in its original form; and c) differ-

ential privacy - a system for sharing information describing the group patterns

within a data set while withholding identifiable ‘raw data’ about individuals

in the dataset. These are discussed further in the section below.

• Machine learning - the emerging federated machine learning models are vari-

ants of traditional models. Examples include: a) deep neural networks- net-

works multiple layers between the input and output layers; and b) gradient

boosted decision trees - involves three elements: a loss function optimisation,

a weak learner for predictions, and an additive model for minimizing the loss

function.

Figure 5.1: Federated Learning Taxonomy

5.2.2 Communications and Control Architecture

Federated Learning is, in part, a problem of orchestration- how do we orchestrate

the training of a model across multiple federated learning nodes and their datasets.

5.2. Background 131

By abstracting away orchestration from training/ learning it is possible scale and

modularise FL infrastructure from the Machine Learning problem 3- we could have

2 ML problems, each using a different type of model architecture (e.g. Neural Nets

vs. Decision Trees) but they can both use Trusted Aggregation, meaning that their

orchestration is coordinated out by a trusted aggregator node. Given that orches-

tration relies on communcations across peers it is important to understand com-

mon communication architectures such as the use of a trusted centralised node (i.e.

server) to orchestrate learning; or a collection of decentralised nodes coordinating

themselves to obtain a global model. Examples include FedAvg and SimFL [87].

5.2.2.1 Centralised Federated Averaging (e.g. FedAvg)

With centralised learning the trusted node aggregates the information from the other

nodes and sends back training results (e.g. gradients or model parameters) to the

participating nodes. Communication or control between the nodes can be syn-

chronous or asynchronous.

5.2.2.2 Decentralised GBDT FL (e.g. SimFL)

With decentralised learning communications are performed amongst the nodes and

every node is able to update the global model parameters directly.

5.2.3 Data Partition

Federated learning systems are frequently classified by their data partition into how

the data sets are distributed across the nodes [87]; namely the sample and feature

spaces:

• Horizontal federated learning - homogeneous data sets share the same feature

space but have different in samples;

• Vertical federated learning - with feature-based learning multiple heteroge-

neous data sets share the same data space but differ in feature space;

• Federated transfer learning - here data sets differ not only in samples but

3It could potentially also help address open problems such as FL crash tolerancy as tolerancy
becomes a problem of nodes and communication across them

5.2. Background 132

also in feature space with only a small portion of the feature space from both

parties overlaps; and

• Hybrid federated learning - used a combination of horizontal and vertical data

partitions.

Figure 5.2 provides a graphical representation of this.

Figure 5.2: Federated Learning Characterised by Data Partition [86]

Data can also be categorised by the ‘unbalancedness’ (i.e. non- Independent

and Identically Distributed) of local data samples: a) covariate shift - local samples

have different statistical distributions; b) prior probability shift - local nodes may

store labels that have different statistical distributions; c) concept shift dividing into:

i) local nodes share the same labels but have different features, and ii) local nodes

the same features but different labels; and d) unbalancedness - the data available at

the local nodes may vary significantly in size.

5.2.4 Federation of Nodes

Classification by federation ranges from a) multiple nodes - a large number nodes

each with a relatively small amount of data (e.g. smart phones, IoT devices); to b)

major nodes - a small number of powerful nodes, each with a large amount of data

5.2. Background 133

(e.g. data centres).

Federations of multiple or major nodes can span a single product line or company,

or a small number of major organisations collaborating.

5.2.5 Security & Privacy

Federated Learning is a form of Privacy Preservation Machine Learning Techniques

(PPML). This is not to be confused with secure Machine Learning (secure ML). The

fundamental difference that Secure ML assumes that the adversary breaches the

integrity and availability of the system whereas PPML assumes that the adversary

breaches the confidentiality and the privacy of the system [87]. Where:

1. Integrity- an adversarial attack on the integrity means the veracity of the sys-

tem is compromised e.g. the system may false negative outputs by the system

as normal

2. Availability- a systemic adversarial attack that renders the system unusable

and can lead to classification errors

3. Confidentiality- an adversarial attack results in the leakage of sensitive infor-

mation e.g. training data

4. Privacy- an adversarial attack results in the leakage of identifiable and at-

tributable information e.g. identifiable features such as person name or com-

pany name in a data set

A number of Privacy Enhancing Techniques (PETs) can be used individually and in

ensemble (Differential Privacy and Secure Multi Party Computation, SMPC). This

section explains some of the techniques, for the case of RegNet only Differential

Privacy has been employed4. The next subsection discusses these in detail.

5.2.6 Secure Multiparty Computation

Also known as Secure Function Evaluation [88], it involves jointly computing a

function from the private input by each party without revealing the value of these
4It is expected that future work will involve the development of SMPC and the two in ensemble

5.2. Background 134

private inputs to other parties. In ML terms this function could be a model’s loss

function during training or the model itself (during inference). Cryptographic

schemes such as Oblivious Transfer [47] and Threshold Homomorphic Encryption

[27] schemes can be used to facilitate SMPC. However, the most common scheme

currently used in PPML is Secret Sharing schemes [72, 29].

Secret sharing schemes involve the hiding of a secret value by splitting it into

parts and randomly distributing it to the parties involved in the multi-party compute

such that each part has only one share of this secret. A threshold number of these

individual shares is needed to fully reconstruct the entire secret. Arithmetic secret

sharing is the most commonly used in existing SMPC PPML systems.

Most SMPC based PPML consists of two parts: an online and offline phase. The

offline phase involves the bulk of the cryptographic operations such as the genera-

tion of triples. The online phase involves the training of the ML Model (e.g. using

the triples generated in the offline phase). SMPC based PPML is commonly used

for a number of reasons [62]:

• It is less computationally expensive than Fully Homomorphic Encryption

• It isn’t vulnerable to computationally powerful adversaries

• It can be used to perform inference directly on encrypted data i.e. without

allowing the model owner to see the private data of the owner

It however has a number of limitations:

• There is a networking and communications overhead

• It assumes that individual parties are not colluding or at most the n parties

are colluding such that n < threshold distributed secret shares, assuming each

party has at most one share.

5.2. Background 135

5.2.7 Homomorphic Encryption

Homomorphic Encryption (HE, first proposed by Rivest et al. [67]) involves the

direct computation over a ciphertext, without decrypting the ciphertext. There are

a number of HE schemes, often bucketed into three: Partially HE schemes, Some-

what HE schemes and Fully HE schemes that have been used for PPML (their

computational complexity grows as the HE functionality grows). These include

the use of Paillier’s Scheme in the training of logistic regression models through

secure gradient descent [41] or the use of secure inference of encrypted queries over

trained neural networks [37]. The inference by clients is classified securely by the

neural network without inferring information from the query itself.

The biggest advantage of HE is that it can be used to perform inference directly on

encrypted data without revealing any information

It however has the following limitations:

• HE schemes are extremely slow ad require large computational and memory

overheads compared to other techniques

• HE schemes are restrictive as a limited set of computational operations can

be performed, these might not restrict the degree to which they can be used

for ML

5.2.8 Differential Privacy

The premise of Differential Privacy (DP) is to confuse an adversary (in the case

of FL, an algorithm) that may be trying to access individual information from a

database such that they cannot distinguish any individual-level sensitivity from it.

In the PPML context DP can be used at the local level (Local Differential Privacy,

LDP). Each party perturbs their dataset and releases this perturbed data for model

training during FL. DP schemes are usually considered to have a relatively smaller

computational overhead compared to SMPC/ HE based schemes and a number of

different techniques have been explored [64, 53].

5.2. Background 136

In [32], DP is qualitatively described as:

“ Differential privacy describes a promise, made by a data holder, or

curator, to a data subject: You will not be affected, adversely or oth-

erwise, by allowing your data to be used in any study or analysis, no

matter what other studies, data sets, or information sources, are avail-

able.”

Formally Differential Privacy is defined as:

Figure 5.3: Formal Definition of Differential Privacy [32]

Where M is the randomised algorithm consuming the dataset for a given

query; S all the outputs of M that can be predicted; x are the entries in the dataset

and y are the entries in the parallel dataset.

The terms ε and δ are the most significant terms in the definition. ε refers to

the maximum distance between a query on one dataset and the same query on its

parallel dataset and δ refers to the probability of any information being leaked. It

is often referred to as the “privacy budget”- the amount of “privacy” the owner of

the dataset wishes to “spend” on the query. The smaller the values of ε the more

privacy (noise) that is added to the response of the query making it difficult to con-

struct the true value from the query. The trade-off with using a smaller value of ε

is that the results from the query could be distorted (less reflective of the true value).

δ is dependent on the size of the dataset and caters for the privacy of “signifi-

cant few” outliers in the dataset. For simplicity in the experiment within RegNet,

5.3. Systems Design 137

we consider this value to be 0 and only consider ε differential privacy.

As the algorithm “asks” the dataset more queries, it spends “privacy” of the dataset.

Therefore it is important for the dataholder to put an upper bound on the allowable

limit to the number of queries w.r.t maximum ε spend that can be offered to the

algorithm. RegNet provides a means to keep track of this privacy budget loss spend

per dataset- offering a means to quantitatively keep track of privacy of the dataset.

5.3 Systems Design
Whereas the previous two sections explained techniques and purpose of FL and

PETs (the first core component of RegNet) in detail, this section will present the

design of a Federated Data, Audit and Orchestration infrastructure. Familiarity with

blockchain concepts (from the previous chapters) is assumed.

5.3.1 Concepts

In this subsection we introduce the main concepts underlying RegNet. Conceptually

RegNet is a framework to orchestrate computations within a peer to peer network

of different nodes that could be data holders, algorithm providers or consumers of

a machine learning model. These peers communicate within Private Channels over

a number of Assets 5 under the constraint of the Channels Governance regime- a

concepts central to RegNet.

5.3.1.1 Network

The Network refers to a collection of individual nodes that communicate with each

other over one or a number of private channels. The term RegNet is used to refer to

the network, along with its peers, channels and their governance. It has a peer-to-

peer architecture orchestrated through a distributed ledger.

5.3.1.2 Nodes

Nodes are standalone compute and storage resources that run a RegNet peer. Reg-

Net peers could be composed of organisations that are data holders, algorithm

5Channels and Assets are defined in the subsections below

5.3. Systems Design 138

providers or consumers of a machine learning model. By design, it is the responsi-

bility of independent organisations to maintain and control their respective nodes 6.

Individual users are authenticated by way of their organisational nodes. The nodes

in turn are authenticated through a node level CA (certificate authority) architecture

[1]; individual users are not personally identifiable within the node (and by impli-

cation the Network/Channel level). To that end, for the remainder of this chapter,

we will refer to users, organisations, institutions as Nodes distinctly within RegNet.

The term peer will also be used interchangeably. All peers/ nodes are part of the

global channel.

5.3.1.3 Channels

Channels are a monadic construct for the platform; all computations and governance

happens by way of them. They are the basis for everything that happens within the

platform, by design any sort of interaction that happens within the platform has to

carried out via a channel. In fact, RegNet itself could be thought of as one single

network level channel, all the other channels are a level of abstraction below these

channels that implement their own governance over the network.

Channels can be composed of:

1. Unary channel- a single node is in a private channel with itself

2. Binary channels- channels composed of 2 nodes

3. Multitenant channels- channels composed of a number of nodes n, where n¿2.

5.3.1.4 Assets

Assets are tokenized artefacts that operated within RegNet. Tokenization is a key

part of how RegNet deals with managing algorithms, datasets etc. on the platform.

Each Asset Type is a tokenized 7 artefact with its own deterministic finite state

machine that runs on the distributed ledger. They are implemented using smart

6RegNet is a P2P system
7We present Tokenization in greater detail in Appendix D

5.3. Systems Design 139

contracts within the platform. Assets manage the governance, orchestration and

access of their underlying artefact. Assets include:

1. Datasets- These are to the individual collections of data for federated learning

or inference. They may contain sensitive information. By design datasets

within a common channel are required to have a standard format. Datasets

need to be registered as an Asset before being enabled for use.

2. Algorithms- These are federated learning algorithms that train a model on

a given Dataset for a given task. It could specify a number of parameters

including the model type, architecture loss functions, neural network hyper-

parameters and the parameters that are tuned during a training.

3. A model is a collection of parameters from a training- they could be collection

of weights. It is the product of the computation between an algorithm and a

dataset or a collection of datasets. In the case of neural nets, it refers to a

collection of weight parameters for the connections of the neural net.

5.3.2 Distributed Ledgers

5.3.2.1 Motivation

By design FL is a collaborative activity that has a number of open problems:

• How do you administrate the actions of the collaborators?

• How do you manage the interactions between the collaborators?

• How do you enforce acceptable behaviour (or unacceptable behaviour)?

• Who manages the governance of the training process?

• Which entity manages the trusted actions (such as trusted aggregation in FL)

in the channel?

• How do you ensure integrity of the entire FL process?

5.3. Systems Design 140

Traditional systems have a trusted intermediary that carries out these roles. For

instance, in the case of the FL use case by Google (Google keyboard), Google has

been the trusted intermediary that manages these issues [53]. Trusted intermedi-

ary based systems such as these have stronger integrity but do not scale well; they

continuously rely on individuals/organisations to assimilate the “trust risk” whilst

relying on them for the administration and enforcement of an FL process. We use

distributed ledgers to remove this need for trusted intermediation.

5.3.2.2 Purpose

In RegNet, a distributed ledger is used for three main functions:

1. Auditability- maintain a traceable record of all the activities by the nodes

within the channel

2. Governance- the permissioning, administration and use of assets within the

network with respect to channels

3. Orchestration - the execution of an FL task across a channel (this becomes

more apparent when it comes to activities such as trusted aggregation)

RegNet has a P2P architecture, where peers keep in sync via a distributed crash-

tolerant consensus. Hyperledger Fabric has been used to facilitate this [3]. A

RegNet node is a HL fabric instance with a number of further design choices:

Consensus

Raft has been used as the consensus mechanism for a number of reasons [68].

These include its simplicity, pragmatism and scalability [43]. A Hardened Byzan-

tinian Fault Tolerant consensus is not needed for RegNet as the network itself is a

vetted network where the identities of the peers are known beforehand and a strict

vetting process is carried out before allowing them to join the network (each peer

additionally stakes his/her reputation) [43, 57]. As such all the limitations of Raft

are subsumed here as well, for instance there need to be mechanisms in place to

5.3. Systems Design 141

manage the collusion between two followers.

Identity/ authentication

The HL Fabric model of using TLS certificates is used to manage and maintain

identities. The reasons for doing this are simple: all enterprise organisations al-

ready use trusted Certificate Authorities (and its underlying web of trust) to vet

their digital infrastructure [3], we just bootstrap onto this. Certificates also offer

a hierarchical abstraction of identities which can be at the organisational level as

well as the individual/user level thus enabling Certificate based RBAC (roles based

access control).

Roles

There is only one peer type that is created in RegNet. The responsibilities of this

individual include:

• Ability to register assets

• Ability to maintain the governance of assets

• Take part in channel governance

• Take part in channel consensus

As the protocol matures, these responsibilities will be split and peer roles with more

defined responsibilities will be created, according to the organisations needs.

5.3.3 Channels

Channels are the building block of RegNet, by design every allowable interaction

with an Asset type on the network has to happen via a channel. Similarly all Asset

types need to be designed with channel level interaction and channel level policies

in mind. Channels should be used for purposes such as interaction with collabora-

tors, to create audit trails, manage governance, manage access etc. The failure to

use channels, for instance to maintain Assets, will mean that the Asset is not recog-

nised by the protocol and is therefore invalid. Figure 5.4 presents the architecture

of one such RegNet channel between three organisations.

5.3. Systems Design 142

If you cannot see your use case using a channel, you do not require RegNet;

you will be adding unwanted complexity to your technical stack. The “REGNET-

ServiceApp” tool is a front end abstraction of the concept of channels and provides

an interface to manage Channels and Assets associated with it.

Figure 5.4: Channel level architecture of RegNet

There can be two kinds of channels:

1. Inter-organisational- These are channels that exist across one or more organ-

isations that come together to form a consortium. They are used to manage

Assets, access policies and governance for the consortium. In order to main-

tain simplicity and information security, separation of concerns should be

considered in that a channel should only exist for one specific use case; an-

other use case with the same collaborators should be managed on a different

channel

2. Intra-Organisational- channels, although organisational, can be made at the

individual level (assuming there is valid PKI/ CA infrastructure in place to

facilitate this). This can be used to create channels across departments within

5.4. Implementation 143

the same organisation that may have internal policies that may restrict the data

access otherwise

RegNet also provides unary channels. Unary channels are an oddity in that they

are channels with no one. These are allowed on RegNet for a number of reasons:

1. Testing Federated Learning Infrastructure e.g. by Data Science companies

before being made available to others

2. Testing the management of Assets and Assets Types

3. Testing policies

5.3.3.1 Channel onboarding process

1. Organisations, wanting to provide data access, agree on the terms and policies

outside the network

2. They nominate an organisation to create the channel

3. This entity that creates the channel, by default is the channel admin (and the

ordering service)

4. They add the organisations’ nodes; with the choice of making some (or all)

the Orderers

5. The choice of adding/expelling organisations to/from the channel has been

left to the channel admin and or the channel organisations

6. The channel is used for tasks such as FL training

5.4 Implementation
This section will discuss how the concept of RegNet has been implemented.8

8Due to the commercial sensitivity of the project only some aspects have been presented. The
other parts of the implementation will be discussed in the examination viva of this thesis.

5.4. Implementation 144

5.4.1 Distributed Ledger and RegNet Peer

Hyperledger Fabric (HLF) has been used to implement the Distributed Ledger com-

ponent. This section explains how it works at a high level and how some of its

parameters are configured for RegNet’s purposes.

5.4.1.1 Transactions

The interactions between nodes across the network are transactional; they happen

on a per transaction basis. Each node must submit a transaction to interact with any

part of the distributed ledger, whether it is a simple smart contract read query or a

smart contract write.

A transaction flow is as follows, this is partly similar to the transaction flow in

HLF:

1. A Node submits a transaction e.g. to register an Asset

2. Endorsing nodes independently verify the validity of the transaction (is it sent

by the right person (i.e. valid signatures)?, is the initiating entity permitted to

carry out the transaction?, is he/she part of the channel?)

3. Endorsing nodes independently verify the transaction and run the smart con-

tract/ code that is attached to the transaction to generate a set of computed

outputs (read-write transaction set generation)

4. The node that initiated the transaction can choose to inspect the read-write

sets from all the endorsing nodes

5. The endorsement policy of the channel is enforced by the node that submitted

the transaction

6. If everything is valid, this is sent to the Orderer (i.e. the ordering service)

7. The ordering service packages the transaction into a block

5.4. Implementation 145

8. The block of transactions is sent back to the committing peers on the channel

that independently verify that transaction and endorsement policy one last

time

9. The transaction is committed

5.4.1.2 Endorsement Policies

Endorsement policies are the orchestration mechanism for verifying and validating

transactions within the channel and have implications to the overall governance of

the channel [3]. They should be carefully created and agreed upon when deciding/

creating the channel.

Endorsement policies are the smallest subset of peers within a channel that are

required to endorse a given transaction (recall that a transaction needs to be en-

dorsed before being sent to the Orderer).

Policies could be:

1. Explicit- Peers A,B, C and E can only endorse a transaction

2. Categorical- A 70 % majority of peers in channel need to endorse the trans-

action

By default, all RegNet nodes are given the responsibility of endorsing transactions.

This can be changed however depending on the need. Endorsement policies in Reg-

Net are tightly coupled to the Channel Level Agreement that is pre-agreed before

joining/ creating the channel.

5.4.1.3 Peers/ Nodes

There are a number of responsibilities that all nodes, wanting to join a RegNet

channel, need to undertake:

1. Endorsement - by design (as a default; it can be changed if need be) all Reg-

Net nodes will have to take part in endorsement, this means that they will

5.4. Implementation 146

have to validate transactions in the channel. The action of endorsing involves

independently running the smart contract code associated with a transaction

and signing the outcome. This outcome along with the transaction and the

endorsing signature by the peer is sent to the ordering service to be included

into a block. If all the other peers have come to the same outcome, then and

only then is this included within the block. By default, all RegNet nodes are

given the responsibility of endorsing all channel transactions. This can be

changed however depending on the need.

2. Commit - once the Orderer has ordered the block of endorsed transactions,

committing peers make one last check to validate that the transactions will

give the same outputs. They then “commit” this block to the distributed

ledger- they are responsible for actually writing onto the ledger. Recall that

the channel has a replicated distributed ledger, therefore each committing

peer actually writes the block to its version of the ledger (which is consis-

tent with all the other peers’ version). By default, all RegNet nodes are given

the responsibility of committing transactions. This can be changed however

depending on the need. The responsibility of this involves maintaining a repli-

cated copy of the distributed ledger.

3. Ordering - their job is to make the block of transactions once the endorsing

peers have provided a list of endorsed transactions. Every channel needs at

least one. This does not have to be someone specific to the channel’s use

case, it can also be a third party as their job is to simply cryptographically

collate transactions and package them onto the block (for brevity the exact

cryptographic mechanism of transaction ordering has not been discussed).

Given that the Orderer works with cryptographic material only, he/she can

learn nothing identifiable from the transaction.

5.4.2 Tokenization of the FL Process

Once organisations are within a private channel they can initiate a training process

through FL. This is done through the use of tokenised artefacts (refer to appendix

5.4. Implementation 147

D). In order to engage in one FL workflow, organisations must:

1. Add Datasets: each of the organisations add the datasets they want to provide

for training. They “add” the dataset by allowing their RegNet peer to access

it (this could be as simple as providing a URL to the AWS S3 bucket in which

it resides)

2. Register Dataset: Once added to their peer nodes, organisations register this

dataset onto the channel; they publish details (such as the name, description

etc.) across the channel, including the privacy budget they want to provide

for the access of the dataset.

3. Register an Algorithmic Purpose: The “Purpose” defines the intent and the

use of an Algorithm and respective datasets for a training

4. Register an Algorithm: The peer/ organisation in the channel that wants to

provide the Algorithm must register it in the channel and all the elements

associated with its Algorithmic Purpose

5. Register an FL Task: Organisations/ peers describe all the details needed to

execute a Federated Learning task implemented in an available Algorithm,

including the names of the registered datasets (within the channel only) that

the task might need. Owners of the selected datasets will be all invited to

participate in the task, and its execution will be pending until they approve it.

6. Approve an FL Task: Organisations/ peers have to then approve the execution

of the FL task against their datasets. This means they authorise the deploy-

ment of the infrastructure needed to execute the task within their infrastruc-

ture.

This entire process is orchestrated by way of the tokenized artefacts. Table 5.1 pro-

vides the definition of some of these tokenised artefacts. Each of these artefacts is

a collection of smart contracts that have been implemented as a finite state machine

within RegNet. It is the allowable interactions, permissions and behaviours that

5.4. Implementation 148

channel level members can have on these tokenised artefacts that provide gover-

nance. All interactions with these tokenised artefacts are logged by the DLT layer,

providing strong auditability of the entire process.

Table 5.1: RegNet Tokenized Artefacts

Tokenised artefact Properties

Dataset

• Name (ascii [50char, no spaces, just -])
• Hash (SHA-256) – key
• Owner (MSP ID)
• Nonce
• Role (training/testing)
• Permissions for use during training/evaluation/prediction
• Metadata
• Status: registered/deprecated/pending(initialised)
• Privacy Budget

Algorithm

• Name
• Description
• Owner (MSP ID)
• Hash of the cloned git repo
• Nonce
• [Purpose keys] (hash)
• Quality metrics
• Dataset format (schema)
• Status: dev, prod

Training Task

• Algorithm key
• Nonce
• Keys of input data (datasets, other models)
• Author
• Permissions to see the training task,

download and use the output
• Aggregation subtask
• Status: in queue, provisioning, provisioning failed,

training, done, failed

Prediction Task

• Algorithm key
• Nonce
• Keys of input data (datasets, other models)
• Author
• Permissions to see the prediction task, download the output
• Status: in queue, provisioning, done, failed

5.5. Testing and Results 149

5.5 Testing and Results

5.5.1 Testing

The aim of this project is to provide an infrastructure for trusted data access for

singular-algorithmic purposes across organisations in a manner that is compliance

with regulation. Once the infrastructure was implemented, deployment and testing

was carried out with the industry collaborators (which consisted of a number of

institutions from financial services). The peer nodes were deployed within their

cloud infrastructure. They formed a private channel and each provided access to one

of their datasets, all within the bounds of a sandboxed environment. An entire end

to end workflow (as discussed in the previous section) was executed. The following

subsection explains the datasets used and the use case.

5.5.1.1 Use Case

The FL training experiment was carried out on Anti-Money-Laundering datasets.

The private channel consisted of 3 financial institutions (that provided datasets),

one algorithm provider and one observer. A Horizontal-FL (figure 5.2) process

was executed with the algorithm provider also managing the trusted aggregation

(FedAvg). Although the datasets used were mock datasets (already labelled), they

were suitable in validating the entire concept and framework. The FL task was to

create a classifier for detecting fraudulent monetary transactions. The FL objective

was to be train a model across all the financial services institutions’ datasets within

a federated space and then assess how effective the federated model was compared

to each of the institutions own model (i.e. trained with their own data only).

5.5.2 Results

Two training cases were considered; FL with no Differential Privacy and FL with

Differential Privacy. Each of the firms used a maximum allowable budget value of

ε = 60. The training algorithm was designed to spend an ε = 0.8 9. An entirely

9 These values were empirically found to provide the best accuracy-privacy trade-off when Dif-
ferential Privacy was applied to each of the datasets. It is left to the owner/administrator of the dataset
to determine what levels they want to set this to- they need to provide this value when registering
their datasets on the channel.

5.6. Conclusions 150

new dataset was used for validation, and was found to have an average accuracy

of 73.1% in a non-federated, non differentially private environment. The accuracy

rose to 76.6% for the federated model. This increase was an expected result as the

federated model is trained on more data compared to its non-federated counterpart.

In a non-federated, differentially private environment, the average accuracy of

the model fell to 65.8%. This was expected as the model trades off accuracy for

privacy, a higher ε value would’ve improved the score (at the expense of privacy).

In a federated and differentially private space, the accuracy score was an improve-

ment to 69.3%. This increase was an expected result as the federated model is also

trained on more data. In both cases (with and without DP) the federated models

each provided a 4% increase in accuracy.

It should be noted that the purpose of the testing was to validate an entire end-

to-end FL workflow with the infrastructure rather than the use of FL for AML.

Through their involvement, the collaborators validated the use and proposition of

the infrastructure and are in the process of using the infrastructure for more complex

use cases. A number of other tests are currently being carried out with more collab-

orators from the insurance, law and government sectors. A Data Protection Impact

Assessment is being carried out with the regulator to validate that our approach is

compliant with the regulator.

5.6 Conclusions

Through the use of Federated Learning and Tokenization, RegNet, removes the

need to explicitly share data, for the purposes of analytics and provides access in

an auditable, privacy preserving manner that is able comply with data policies such

as GDPR. Tokenization also offers the ability to provide a means to administer

data governance, particularly at the channel level. The work undertaken within this

chapter proves the use of both technologies for trusted data access (also validated

by its application on an applied use case within industry). Additionally, we also

5.6. Conclusions 151

provide a taxonomy for Federated Learning- a new and growing form of Machine

Learning. Our work also provides a list of open problems with Federated Learning

(presented in chapter 6)

The need for such a trusted infrastructure that is compliant with data regulation

has been further strengthened by a report released recently by the UK AI Council

[77]. It recognises that AI advances with diverse data and stresses the need for

trustworthy accessible data. It also recognises that need for making public sector

data safely and securely available. To achieve this goal and further validate our

approach, a use case is being explore with a UK Government body.

Whilst we proposed the core concepts of RegNet, there are still areas of exten-

sion. It is our hope that future work will take the ideas described in the project and

apply them to a more complete set of industry-related use cases to further validate

the need and approach of the RegNet. To that end work is still being done with

a number of enterprise collaborators within the Legal, Insurance, Accountancy,

Financial Services and Government sectors. A grant application for further funding

on this work has been made to UK Research and Innovation (UKRI).

Chapter 6

Conclusions and Future Work

This thesis investigates the application of blockchain technology and artificial in-

telligence to the domain of Algorithmic Regulation. It explores the problems with

regulatory compliance and supervision in financial services as well as an emerging

form of regulation- the regulation of data. The main motivation behind the thesis

is to architect Algorithmic Regulation solutions, that automate regulation and com-

pliance, which could realistically be adopted by industry. All the work has been

validated by industry partners and collaborators. To this end, the thesis explores 3

projects:

1. Using AI to Automate the Regulatory Handbook

2. Using Blockchain fro Regulatory reporting of data (SmartReg)

3. Using Federated Learning and Blockchain for Privacy Preserving Data Ac-

cess (RegNet)

The first project looks into the problem of machine interpretability of regu-

lation and provides a “white-box” technique to address machine reasoning with

regulation through the use of a knowledge base system. The project provides a

means to capture machine readable and executable semantics of regulatory rules

that could be used to automate financial services regulation. It demonstrates how

the techniques proposed in the project can be applied to the FCA Handbook. The

use of a “white-box” solution (compared to a “black-box” Machine Learning solu-

tion) has been validated by the regulator’s approval in using it internally.

6.1. Contributions & Future Work 153

The second project presents a solution to enable regulators and firms (within fi-

nancial services) to share regulatory reporting data in a manner that is agile, almost

real-time and promotes data standardisation across the industry, through the use of

distributed ledger technology and smart contracts. Automating regulatory reporting

is a growing problem 1for the industry as regulation gets more complex and systems

and processes within the industry 2 are increasingly being automated.

The third project explores the use of Federated Learning and DLT to provide trusted

data access for singular algorithmic purposes (e.g. for an Anti-Money-Laundering

use case). It provides a means to automate the orchestration of Federated learning

through a trusted data infrastructure that relies on tokenization. Although more

work is being carried out, it provides an approach that is validated through a use

case with industrial collaborators.

6.1 Contributions & Future Work

6.1.1 Using AI to Automate the Regulatory Handbook

The work in capturing regulatory semantics has made the following contributions:

1. A semi-formal model capable of reasoning with financial regulation has been

developed. The model has been used to represent regulation from the FCA

Regulatory Handbook, proving that it is capable of representing and reasoning

with financial regulation.

2. The model has been developed into a working reasoning engine

3. The reasoning engine has been incorporated into a platform that is capable

integrating existing regulatory systems or be used as a standalone tool for

regulatory advice

Although the project has been able to develop as system capable of reasoning with

regulation. Its reasoning engine requires thorough testing with regulation in the

1The Bank of England recognise that is costing the UK Economy 4 Billion annually and growing
2Other than regulation

6.1. Contributions & Future Work 154

real-world. Future work could involve the revision and improvement of the parsing

engine and its implementation based upon feedback and testing from this.

A large number of “business” oriented features still need to be implemented onto

the platform. For instance, the platform requires a user authentication mechanism

and a better user experience. Possible future work can also revolve around these.

This work presents the design for a system capable of reasoning and representing

regulation as machine readable and executable semantics - it is the first component

in Treleaven et al.’s Algorithmic Regulation system. It can be further used to encode

Smart Contracts for Digital Regulatory Reporting.

The work in this project is part of a long-term goal and collaboration with the

FCA to deliver a system capable of reasoning with regulation. The work provides

the groundwork needed to realise this goal through the development of a system

capable of reasoning with regulation. The proof-of-concept, based on this work,

has also been used by the FCA for their internal regulatory guidance for providing

licenses. The work presented in this chapter has also fed into a Master’s dissertation

on reasoning with regulation.

6.1.2 SmartReg

SmartReg has explored the design of a new approach to financial regulation. It

combines traditional banking infrastructure with a shared distributed ledger to offer

a hybrid system that combines the benefits of both technologies. By leveraging

Quorum, a version of Ethereum that supports private state, data can move within

private channels on a shared network, offering privacy and permissioning between

competing entities on the same network.

Whilst we proposed the core concepts of SmartReg in this thesis, there are still

areas for extension. It is our hope that future work, will take the ideas described in

the project and yield a compelling, production ready solution for modernising reg-

6.1. Contributions & Future Work 155

ulatory compliance. First, there exists the issue of standardisation. The regulatory

functions rely on the assumption that certain standards exist to enable their suc-

cessful execution across a variety of environments. These assumptions include the

existence of a standardised interfacing for running regulatory functions that enables

execution support across all supporting nodes. Also, the output of the functions

should conform to some standard format, such that the interpretation of the func-

tion result can be automated. These standardisation efforts should possibly exist

as an open source specification, so that members of the community can propose

changes and raise concerns.

Secondly, it will be important to regularly revisit the smart contract source code in

light of future Solidity language updates. Many of the limitations explored in the

Implementation section are on the roadmap for fixes in future versions.

Finally, communication with major institutions in this sector will be vital. No

large scale change, like the one proposed in this paper, can take place in isolation

and a successful integration of SmartReg will need the support of large banks and

regulators. To this end, the central ideas and concepts behind SmartReg should be

made publicly available and an effort made to actively gain feedback from mul-

tiple relevant parties. Although not qualitatively assessed the impact of the work

presented in this chapter can be seen from the following benefits 3:

1. Easier compliance- Machine executable rules offer a more efficient less error

prone process of interpreting regulatory rules. SmartReg offers a mechanism

that is automated and does not rely on intensive human input (which translates

to an expensive process currently)

2. More precise and agile regulation- Machine executable rules can be thought

of as software; traditional agile software development practices can be inte-

grated for quicker regulatory policy enforcement

3Confirmed by the collaborators

6.1. Contributions & Future Work 156

3. Accurate and real-time information- SmartReg proposes a solution that can

bring down reporting times from weeks to seconds, regulators can have a

financial “view” of their world in almost-real time. This can allow them to

act more proactively.

4. Standardisation- A single peer to peer reporting infrastructure can potentially

integrate multiple disparate systems and promote standardisation through the

industry

5. Improved Systemic Risk Control- Almost real time reporting data can allow

regulators to address systemic risk more quickly

The design decisions made in SmartReg have informed a wider project carried out

by the regulator and a number of banks. This is the Digital Regulatory Reporting

Project (DRR). DRR has become a priority for the regulator, banks and the UK

financial services industry [12, 13]. This has been the greatest impact of the work

presented in this chapter.

6.1.3 RegNet

RegNet provides a framework and infrastructure for trusted data access for singular

algorithmic purposes in a manner that is compliant with data regulation. Through

the use of Federated Learning and Tokenization, it removes the need to explic-

itly share data, for the purposes of analytics, and provides access in an auditable,

privacy preserving manner that is able comply with data policies such as GDPR.

Tokenization also offers the ability to provide a means to administer data gover-

nance, particularly at the channel level. The work undertaken within this chapter

proves the use of both technologies for trusted data access (also validated by its

application on an applied use case within industry).

The need for such a trusted infrastructure that is compliant with data regulation

has been further strengthened by a report released recently by the UK AI Council.

It recognises that AI advances with diverse data and stresses the need for trustwor-

thy accessible data. It also recognises that need for making public sector data safely

6.1. Contributions & Future Work 157

and securely available. To achieve this goal and further validate our approach, a use

case is being explore with a UK Government body. Throughout our work we have

identified a number of open technical problems in FL and our approach, as listed

below.

• Data characteristics - Data is also categorised by the ‘unbalancedness’ (i.e.

non- Independent and Identically Distributed) of local data samples: a) co-

variate shift - local samples have different statistical distributions; b) prior

probability shift - local nodes may store labels that have different statistical

distributions; c) concept shift dividing into: i) local nodes share the same

labels but have different features, and ii) local nodes the same features but

different labels; and d) unbalancedness - the data available at the local nodes

may vary significantly in size.

• Model characteristics - Given the way in which FL works- it often is a chal-

lenge to inspect the training data or a subset of it, it leads to the problem of

choosing the hyperparameters and configuring optimisers (for DNNs espe-

cially). For instance, these hyperparameters could include parameters such

as the number of layers for a DNN, the number of nodes, the structures of

the RNN/CNN etc. Optimisers could include identifying batch sizes. More

research work needs to be done to provide mechanisms that mitigate/ address

this challenge; we propose the use of synthetic datasets to partly address this

problem

• Communications- Some FL techniques such as Vertical Federated Learning

require constant communication across each of its training peers as, each peer

will be training their part of the model. Given that the training process needs

to be mediated by a provisioning algorithm that specifies the computation

order across the peers; peers have dependent communications and need to

speak with each other to exchange intermediate results throughout training.

This communications overhead needs to be managed in a manner that ensures

that optimum data transfer speed. Slow data transfer across peers can result

6.1. Contributions & Future Work 158

in inefficient utilisation of computational resources (participants may not be

able to start their training if they haven’t received all the intermediate training

results).

• Performance - PPML requires the use of privacy preserving cryptographic

techniques. These add an additional computation complexity to an already

computationally intensive process- machine learning. For the same amount

of compute resources, an FL process takes a lot more time than its traditional

machine learning counterpart, this can impact training times and can tie up

resources. This overhead will always be present, given the additional com-

plexity introduced, however optimisations may help reduce this overhead.

• Disparate systems - Given that FL happens across multiple peers, each that

may have different systems, hosting/ cloud environments and other disparate

infrastructural components, there is a major challenge to create a FL univer-

sal infrastructure that enables these systems to easily speak with each other.

Most enterprises tend to employ their own infrastructure (including their own

virtual private cloud environments and firewalls), in order to protect their sen-

sitive data, that makes the deployment of federated learning infrastructure dif-

ficult. Developing infrastructure agnostic frameworks and tooling may help

address this challenge. RegNet also facilitates the use of any ML orchestra-

tion framework within a channel and is left to the channel members to decide

this.

• Availability - FL processes that require the exchange of intermediate results

and constant communication of participating peers(e.g. during Vertical FL,

as explained above). All the peers need to be reliable, if one goes down (e.g.

network failure or crashes), it may interrupt the entire training process that

may render all the work done by the other peers as void. Fault-Tolerance

and high availability needs to be architected into the infrastructure to address

this. Further research work is being done to incentivise Federated Learning

through tokenization and reputation.

6.1. Contributions & Future Work 159

Whilst we proposed the core concepts of RegNet, there are still areas of extension.

It is our hope that future work will take the ideas described in the project and apply

them to a more complete set of industry-related use cases to further validate the

need and approach of the RegNet. To that end work is still being done with a num-

ber of enterprise collaborators within the Legal, Insurance, Accountancy, Financial

Services and Government sectors. A grant application for further funding on this

work has been made to UK Research and Innovation (UKRI).

Appendix A

Z Notation

This appendix presents the syntax of Z notation used in chapters 1 and

2. It also provides the Z operations used for defining formulae in those

chapters.

Z notation [75] is a formal specification language developed in the 70s and 80s. It

is used to describe and model computing systems and provides a means to denote a

clear, concise specification for computer programs and other information systems.

Syntactic Conventions

In Z notation, there exists a special type constructor referred to as schema. The

schema presents the definition for the binding of identifiers or variables to their

values.

The following notational conventions are used:

1. Variables, values and other conventions

(a) User defined types are noted in UPPERCASE

(b) Z Operators are noted in bold

(c) Comments are written in italic

(d) The declaration of variables that bind identifiers with values are written

above the dividing line

(e) The properties that must hold between each of the values and identifiers

must be written below the dividing line

(f) Identifiers below the line belong to the same declarative scope declared

above the line

(g) For a set defined as S, then #S represents the cardinality of the set S

161

(h) The concatenation of two sequences S and T can be represented as ST̂

(i) If we let S represent an ordered triple then S.1 is the first element of the

triple, S.2 is the second element of the triple and S.3 is the third element

of the triple1

2. Z Operations

(a) f : X ↔ Y represents the notion that f is the relation between types X

and Y

(b) f : X 9Y represents the notion that f is a partial function from set X to

the set Y

(c) dom f is the domain of f if f is a relation or function

(d) ran f is the domain of f if f is a relation or function

1The intuition applies to other ordered sizes of S (other than just triples)

Appendix B

Representing FCA Handbook

regulation

This appendix presents a flows of regulation from the Perimeter Guid-

ance section of the FCA Handbook and an accompanying table that

presents the encoding of these rules into the Formally Specified Rea-

soning Engine.

The example below has been taken from the “Perimeter Guidance Manual Section”

of the regulatory handbook [9]. It deals with authorisations for firms. We need

to identify the above parameters for each node in the diagram. The rulename is

a unique id that we can arbitrarily allocate although it is best if we let a hashing

algorithm handle this to avoid collisions as this has to be unique 1. We need our

facts to be those that are asserted in the working memory such that the rule will fire.

Thus we can either have “y” or “n” to represent this. Our start states are simply

those the nodes that point to our node. Actions are the new rules that need to be

fired given the response (i.e. the transitions). Our changes are the new rules that

are fired as well as any other data such as recommendations made during inference.

Based on this we can easily “translate” figure B.1 to the table B.1.

We can therefore see that it is possible to “translate” rule-based regulation into

formally specified rules. However, there are times that the recommendations may

not be presentable due to the their arbitrary nature.

1An annotated version of the diagram is represented in figure B.2, it shows which node corre-
sponds to which unique rulename

163

Figure B.1: FCA Handbook Authorisations Regulation, from [9]

164

Figure B.2: Annotated FCA Handbook Authorisations Regulation, from [9]

165

Ta
bl

e
B

.1
:A

m
od

el
re

pr
es

en
ta

tio
n

of
FC

A
H

an
db

oo
k

A
ut

ho
ri

sa
tio

ns
R

eg
ul

at
io

n

ru
le

na
m

e
r1

r2
r3

r4
r5

r6
r7

r8
r9

r1
0

r1
1

r1
2

r1
3

r1
4

r1
5

r1
6

fa
ct

s
y

y
y

y
y

y
y

y
y

y
y

y
y

y
y

y

st
ar

t
st

ar
t

r1
r2

r3
r4

r5
r6

r7
r8

r9
r1

r1
1

r1
2

r4
,r5

,r6
,r7

,r8
,r9

,r1
0

,r1
1,

r1
2,

r1
3

r1
3

r1
3

ac
tio

ns
r2

r5
r5

r5
r6

r1
4

r1
4

r1
4

r1
4

r1
4

r1
2

r1
4

r1
4

te
rm

in
at

e
te

rm
in

at
e

te
rm

in
at

e
ch

an
ge

s
r2

x
a2

r5
x

a2
r5

x
a3

r5
x

a4
r6

x
a5

r1
4

x
a1

2
r1

4
x

a1
2

r1
4

x
a1

2
r1

4
x

a1
2

r1
4

x
a1

2
r1

2
r1

4
x

a1
2

r1
4

x
a1

2
te

rm
in

at
e

te
rm

in
at

e
te

rm
in

at
e

fa
ct

s
n

n
n

n
n

n
n

n
n

n
n

n
n

n
n

n

st
ar

t
st

ar
t

r1
r2

r3
r4

r5
r6

r7
r8

r9
r1

r1
1

r1
2

r4
,r5

,r6
,r7

,r8
,r9

,r1
0

,r1
1,

r1
2,

r1
3

r1
3

r1
3

ac
tio

ns
r1

1
r3

r4
r1

1
r1

1
r1

1
r8

r9
r1

0
r1

3
r1

3
r1

1
r1

5
x

r1
6

te
rm

in
at

e
te

rm
in

at
e

te
rm

in
at

e

ch
an

ge
s

r1
1

r3
r4

r1
1

r1
1

r1
1

a7
x

r8
a8

x
r9

a9
x

r1
0

a1
0

x
a1

1
x

r1
3

r1
3

r1
1

x
a1

3
r1

5
x

r1
6

te
rm

in
at

e
te

rm
in

at
e

te
rm

in
at

e

Appendix C

License Registration Decision Tree

This appendix presents a flow for the registration of licenses as per the

FCA Handbook. It is the use case used for the testing of the system.

The problem considered in chapter 3.3.3 was that of license registration where a

client asks the question: “I would like to assist clients in buying equities. What

licenses do I need?”. To answer this a lawyer/ regulatory advisor must ask the

following questions.

1. Will you be buying the equities for them?

2. Will you buy the equities in your name, then sell them to your client?

3. Where will the purchased equities be held? With custodian? With bank?

4. Will you put clients in touch with other brokers?

5. Will you assist your clients in opening accounts with custodians and banks?

6. Will you assist clients by taking their purchase orders and sending them to

brokers, banks or custodians?

7. Will you put clients in touch with custodians? Or banks who provide custody?

8. Will you advise your clients on which equities to buy?

9. Will you receive money from your clients when they open an account?

10. Will you receive money from your client before they purchase equities? Or

will the money go directly to banks and other brokers?

The set of answers are logical and can be represented as a decision tree seen from

figure C.1

167

Figure C.1: License Registration Decision Tree

Appendix D

Blockchain Tokenization

This appendix presents a a paper on Blockchain Tokenization. Tok-

enization has been used in detail in chapters 4 and 5 for the Tokeniza-

tion of Regulatory Reporting and Federated Learning. The intention of

this chapter is to introduce Tokenization and how it works.

D.1 Abstract
Tokenization in the context of blockchain technology has the potential to revolu-

tionise business processes and trade, but will require legal status and regulation.

In this paper we discuss the vision, impact and challenges of tokenization. We

investigate the process of tokenization and provide a revised token taxonomy that

encapsulates the governance, technical, functional and behavioural parameters of

tokenization. We further introduce a state machine based abstraction to conceptu-

alise tokenization and discuss the technical aspects common token platforms such

as Ethereum.

D.2 Introduction
Our world is full of assets: stocks; real estate; gold; carbon credits; oil etc. Many of

these assets are difficult to physically transfer or subdivide. Representation of these

through abstraction allows us to overcome the problem of infungibility1. However,

physical representations, even paper, legal agreements and other tangible media are

cumbersome, relatively difficult to transfer, difficult to track and often difficult to
1Fungibility refers to the ability of goods or a commodity to be freely interchangeable with

another in satisfying an obligation. Gold is a fungible asset as the value of 1 kg of gold coins is the
same as 1 kg of gold ingots.

D.2. Introduction 169

authenticate. Representing assets as digital tokens solves part of the problem: it

makes them more readily ‘fungible’ and they are easier to track and manage. The

problem of maintaining authenticity however remains. Traditional systems tackle

this problem using centralised bodies to issue/manage these tokens e.g. centrally

banked currencies or registries that manage paper-based equivalents of these assets

(such as land registries and title deeds). Other examples include the issuing agents’

own platform (e.g. Game Tokens issued by the Games Developer for use within the

game) or a marketplace like Stock Exchanges that require the listing of a stock.

An obvious question is the relationship between a token and currency, since both

act as surrogates. By analogy, currency represents the obligation by the central bank

of a country to pay the owner, of the token, a sum of equal value being represented

by the token. In the example of currency, a bank note is a token; tokens abstract

the value of the object/piece of data that they represent. Conceptually a token is a

representation for a more valuable piece of information. This underlying piece of

data is what gives them intrinsic value. Thus, for currency, abstracting monetary

value in the form of currency tokens creates an instrument that is capable of being

held as a medium of exchange, store of wealth and a unit of account which makes

it useful.

Table D.1: Comparison of commonly used tokens

Type Identity Physical Object Value

Currency
Represents a universal medium
of exchange

Bank notes/ Coins
Market, regulated by a Central
Bank

Shares
Represents ownership of com-
pany

Paper certificates/ Ledger entries Company market capitalisation

Tokens
Represents an asset or piece of
information

Data structure Underlying/ piece of data

The digital tokens of these physical counterparts make them more convenient

to transfer, use and track. However, central bodies such as Exchanges and issuing

bodies are still required to maintain authenticity of the tokens. This need for central-

isation and management often means that the given tokens are restricted to specific

businesses, organisation or location. These restrictions often lead to inefficiencies,

lack of innovation, and financial exclusion [21].

D.2. Introduction 170

Decentralised computing systems such as Bitcoin and Ethereum offer an alter-

native mechanism for issuing, verifying and authenticating tokens. The novelty

in these systems is that they use network effects to function; they leverage their

network of peers to solve the problem of trust using a game theoretic consensus

mechanism. This allows tokens to be authenticated and issued by any participant

within the network.

Tokenization is a major paradigm, especially in financial and social systems, as

it provides a passage through which they can evolve into decentralised or hybrid

equivalents and support fractional ownership; referred to as ‘divisibility’. Tradi-

tionally these systems have relied on centralised governance to manage the problem

of trustworthiness, but distributed consensus within peer-to-peer network resolves

this.

D.2.1 Tokens and Tokenization

Tokens were one of the first applications using blockchain technology. They pushed

the use of the technology beyond its original use as a simple distributed, network

incentivised accounting ledger2. These tokens initially were implemented within

the infrastructure layer (figure D.1) of the blockchain technology stack. They were

closely coupled with the network and its subsistence.

At the protocol layer (figure D.1), tokens evolved to outsourced extensions of

Bitcoin’s core protocol. Instead of being integrated as a feature on a software level,

the first tokens were created based on misappropriating data fields in Bitcoin trans-

actions 3.The premise of this was simple; it was possible to encode some metadata

into existing Bitcoin transactions, these bits of metadata could be used to refer to

something else whilst taking advantage of the strong immutability that the Bitcoin

blockchain and its network provided. Often referred to as coloured coins, they

2As such Bitcoin could be thought of as the first token that made use of this accounting ledger
3Such as encoding data in the amount or op_return field

D.2. Introduction 171

functioned as units of account keeping track of who owns how much of the data

value they were used to represent.

Figure D.1: A Blockchain Technology Stack, tokens evolved from being implemented in
the infrastructure layer to the protocol, services and application layers

That strategy of extending Bitcoin’s feature set came at the cost of having

to develop an additional set of stand-alone client software that implemented the

protocol needed to decode the meta-information hidden in Bitcoin transactions.

From there, tokens have evolved significantly, from blockchains being understood

as dumb accounting ledgers towards general-purpose state machines with arbitrarily

complex (Turing-complete) state transition rules (Application and Service Layers,

figureD.1) that operate on an immutable ledger. Smart contracts, which are another

name for a collection of transition rules of distributed state machines, enable the

creation of tokens with complex behaviours attached, easily from within the core

protocol. Instead of having to develop standalone software to allow people to make

use of tokens, they can now be created and handled from within all clients support-

ing the core protocol of such a new type of blockchain. Most tokens are created at

this layer.

There are four main aspects to understanding tokenization:

• Tokens - Tokens are the digital identity of something that can be owned by

D.2. Introduction 172

someone. Based on that premise, tokens can have a representational dimen-

sion, stretching into the physical, the virtual or the legal realm respectively.

• Coins - although tokens and crypto coins are often used interchangeably,

coins are cryptocurrencies that function as a currency or medium of ex-

change. Coins are tokens that act as currencies.

• Tokenization - the process of designing and issuing tokens. For instance,

the process of converting rights to real-world assets into a digital token. This

is a form of ‘securitization’ through tokens; turning a set of assets into a

(financial) security tokens.

• Tokenomics - an evolving field of study that explores token design with re-

spect to incentive mechanisms, business models, network effects and other

socio-economic factors that enable the token to function

Two closely related issues to these are:

• ICOs - Initial coin offerings are a means of crowdfunding centred on cryp-

tocurrencies, which can be a source of capital for start-up companies. ICO

tokens supposedly become functional units of currency if or when the ICO’s

funding goal is met and the project launches.

• STOs - Security token offerings, they are a means of issuing tokenized secu-

rities. These are traditional securities contracts 4 implemented as tokens via

smart contracts.

4A Securities Contract by definition is one that satisfies the Howey Test [70]

D.2. Introduction 173

For instance, tokenization may be viewed as a natural evolution from physical as-

sets, through paper-based derivatives, to digital tokens secured on a blockchain (see

Table D.1) Although commodity exchanges have replaced ‘paper’ with electronic

transactions, and standardised legal agreements, financial institutions are now tri-

alling tokenized (cf. computer protocols intended to digitally facilitate transactions)

to reduce the existing enormous overheads [21].

As discussed, tokenization of physical or digital assets potentially provides: better

security, anonymity, global tradability, transferability, liquidity, instance settlement

etc. [7]. An example is the authentication of diamonds. Diamonds are notoriously

difficult to inspect, authenticate, secure, sell, own and transport. Using tokenization

of a stock of diamonds, a customer could invest in a portion of the stock with the

grades and cuts secured in a blockchain without the trouble of having to physically

receive, store and protect the diamonds[24].

Table D.2: Evolution of “Tokenization”

Commodities Currencies Derivatives Any Assets (if tokenized)
Asset commodities, coal gold, salt etc. financial physical & digital
Token none bank note number derivative blockchain token
Transfer-
ability physical transfer physical & electronic paper & electronic electronic

Divisibility varies usually 100 sub-units not divisible varies

Traceability difficult difficult electronic trail
electronic trail (UTXO or
similar)

Security weak weak medium potentially stronger

Anonymity anonymous anonymous known
pseudo-
nymous/ known

Legal cumbersome
varies, depends on legal
framework used

varies, depends on legal
framework used

varies, potentially more diffi-
cult to wrap in a legal frame-
work

Trusted participants no no yes no

D.2.2 To Tokenize or Not Tokenize

A common misconception is that tokens are a means of fundraising. Although this

is an application of tokens, it is not the main purpose of tokens. There exist more

traditional ways to raise funds for a venture 5. Tokens should be thought of as a

product feature that integrates deeply with business models and networks rather

than a funding mechanism.

Although opportunism is driving the momentum for the development and price
5e.g. traditional venture capitals, bank loans and angel investors

D.2. Introduction 174

of tokenized assets, it is important to consider that not all use cases can sustainably

benefit from tokenization. It is first important to consider the properties of tokens

with the intended use case in mind. To fully make use of tokenization the following

need to be considered6:

Figure D.2: Do you need a token?

D.2.3 Properties of Tokens

In designing tokens, it is important to consider four important factors:

1. Purpose: This refers to the value proposition that token usage provides. It is

the reason for the token to exist. Factors that need to be considered include

the role and function of the token with respect to the platform’s business and

incentive model
6Partly based on Oliviera et al’s work [61]

D.3. A Taxonomy of Tokens 175

2. Incentive Model: This refers to the incentive alignment between the token

user, the platform and the platform’s developer and the means through which

they interact with each other

3. Operational: These are the attributes such as fungibility, expirability, trade-

ability etc that give the token functional use with respect to the platform

4. Technical: This refers to the technical stack on which the intended token is

meant to operate. This could be native to a blockchain or bootstrapped onto

an existing smart contract enabled blockchain (e.g. Ethereum)

D.3 A Taxonomy of Tokens
In [61] Oliviera et al. provides a classification table for tokens based on existing

literature and empirical data. Although this classification is detailed, arguably it

is not complete. We provide an augmented classification table with the following

additional parameters to their existing token morphological box:

1. Fractionability: This parameter belongs to the Functional attributes class.

This refers to the number of divisions that a given token can be broken into,

in some cases token have been made divisible. This has a major influence in

its incentive mechanisms and economics. For instance, with a limited supply

and divisibility, the token will have a deflationary characteristic.

2. Traceability: This parameter belongs to the Functional attribute class. This

refers to whether the token’s ownership can be traced across the ledger. Some

systems such as ZCash make use of zk-SNARKs based protocols that have

anonymous transactions which may influence its use.

D.3. A Taxonomy of Tokens 176

Table D.3: Classifying purpose parameters of the token taxonomy, based on [61]

Purpose Parameters
Class Function Role

Coin/Cryptocurrency Asset-Based Token Right
Value Exchange

Utility Token Usage Token Toll
Reward

Tokenised Security Work Token Currency
Earnings

Table D.4: Classifying governance parameters of the token taxonomy, based on [61]

Governance Parameters
Representation Digital Physical Legal

Supply Schedule Based
Pre mined,
scheduled
distribution

Pre-mined,
one-off
distribution

Discretionary

Incentive System Enter Platform Use Platform
Stay Long
Term/ Hodl

Leave
platform

There are different ways to differentiate tokens, based on their attributes and

parameters. A combination of given parameters gives rise to tokens with a different

set of behaviours. This gives rise to a token designed to fulfil a specific role. Roles

encapsulate a collection of behaviours that allow the token to function.

Tokens can be grouped in multiple ways, one such way is through the set of

behaviours 7they encapsulate. A given combination of behaviours gives rise to a

token intended for a given role. A role could be considered as an encapsulation of

behaviours.

For example, consider a token which will be designed to function as a currency

this will belong to the class Coin/Cryptocurrency. The following key parameters

(tables D.3-D.6) will give it the behaviour of a currency:

1. Function: Asset-Based

2. Role: Value Exchange, Currency

3. Spendability: Spendable

7i.e. the parameters in tables D.3-D.6

D.3. A Taxonomy of Tokens 177

Table D.5: Classifying technical parameters of the token taxonomy, based on [61]

Technical Parameters
Layer Chain
Blockchain (Native) New Chain, New Code
Protocol (Non-native) New Chain, Forked Code
Application (dApp) Forked Chain, Forked Code

Issued on top of a protocol

Table D.6: Classifying functional parameters of the token taxonomy, based on [61]

Functional Parameters
Spendability Spendable Non-Spendable
Tradability Tradeable Non-Tradeable
Burnability Burnable Non-Burnable
Expirability Expirable Non-Expirable
Fungibility Fungible Non-Fungible
Fractionability Fractionable Non-Fractionable
Traceability Anonymous Pseudonymous

4. Tradeability: Tradeable

5. Fungibility: Fungible

Common roles include:

1. Currency: A token can serve as a form of currency, with a value determined

through private trade. For example, ZCash or Bitcoin.

2. Resource: A token can represent a resource earned or produced in a sharing-

economy or resource-sharing environment. For example, a storage or CPU

token representing resources that can be shared over a network, FileCoin.

3. Asset: A token can represent ownership of an intrinsic or extrinsic, tangible

or intangible asset. For example, gold, real-estate, a car, oil, energy etc.

4. Access: A token can represent access rights and even convey access to a

digital or physical property, such as a discussion forum, an exclusive website,

a hotel room, a rental car.

5. Equity: A token can represent shareholder equity in a digital organization

(e.g. a Decentralised Autonomous Organisation, DAO) or legal fiction (e.g. a

D.4. Tokens as State Machines 178

corporation)

6. Voting: A token can represent voting rights in a digital or legal system.

7. Collectible: A token can represent a digital (e.g. CryptoKitties) or physical

collectible (e.g. a painting)

8. Identity: A token can represent a digital (e.g. avatar) or legal identity (e.g.

national ID).

9. Attestation: A token can represent a certification or attestation of fact by

some authority or by a decentralized reputation system.

Often a single token encompasses several of these roles. Sometimes it is hard to

discern between them, as the physical equivalents have always been inextricably

linked. For example, in the physical world, a driver’s license (attestation) is also an

identity document (identity) and the two cannot be separated. In the digital realm,

previously commingled functions can be separated and developed independently

(e.g. an anonymous attestation). This makes tokens malleable in function where a

single token could for instance operate as a voting right as well as an asset.

D.4 Tokens as State Machines
Conceptually, tokens could be thought of as a value encoded state machines defined

by a collection of valid states and their respective transitions functions. States are

typically a collection of valid blockchain addresses that have the ability to transform

the state machine to different states. Transitions are typically blockchain transac-

tions that carry out the transitions. These transitions have strong game theoretic

mechanisms that work together to fulfil that token’s intended role as an instrument

for transacting value. The careful design of these game theoretic incentive schemes

is part of the tokens tokenomics.

For example, consider the tokenization of a bond instrument8 in the figure D.3

8This is basic, and is intended to be an example

D.4. Tokens as State Machines 179

below. It has four states:

1. Sissuance -this is the start state where the bond issuer issues tokens via a trade

2. Shold -holders of the token can hold their token till redemption or trade with

their counterparts or receive payments (coupons)

3. Sservice -the bond is serviced e.g. coupon payments are made

4. Sredemption -this is the end state where the bond token is redeemed after its

redemption date

Figure D.3: Bond token as a state machine

The states can be transitioned through the transition functions: trade, hold, redeem

and pay.

The nodes (states) themselves could be a smaller series of sub-states with aux-

iliary transitions that work to enrich the role and function of the token.

D.5. Token Platforms 180

Alternatively, a node could encapsulate another token system with its own state

machine, where the child works on top of the parent and can inherit its parent’s

tokenomics. This is the case for tokens issued on top of Ethereum.

D.5 Token Platforms
Tokens are implemented through smart contracts9. These are computer programs

that run on blockchain platforms such as Ethereum [20, 85], Cardano [48] or

Libra[15]. Smart Contracts on these platforms are typically implemented using a

high-level language (such as Solidity in Ethereum and MoveIR in Libra) which

then compile to bytecode that runs on a virtual machine.

These platforms use an account-based model where the global state is a map-

ping from account addresses to account values. It is these values that contain the

data and execution logic for Smart Contracts. In general, to create a token (i.e. to

implement the decentralised state machine) we require:

1. A data structure that maps the account addresses to token(s), for ownership

2. The functions to manage the token e.g. transfer()

The way different platforms handle this is different. This paper looks into two dif-

ferent systems that manage tokens rather differently. Although no longer publicly

active (compared to other blockchains), Libra has been chosen to demonstrate the

stark differences between the two and their respective smart contract virtual ma-

chines.

D.5.1 Ethereum

Ethereum is the most popular ecosystem for deploying tokens currently, the ERC20

token standard is the standard most widely used in the ecosystem. It is a fungible

9A smart contract is essentially a computer program that directly controls the transfer of digital
currencies or assets between parties under certain conditions. There is nothing inherently ‘smart’
about it, nor is it a legally binding contract

D.5. Token Platforms 181

“vanilla token” standard where issuers are free to implement their desired token

behaviours through Solidity functions.

In Ethereum, each Smart Contract has its own account with its own address. The

smart contract holds the data and the code together, similar to how classes are de-

fined in object-oriented languages.

The functions transfer() and transferFrom() allow the tokens to

be traded, it is this that gives it the functional property of fungibility. The

approve() and allowance() functions facilitate the transfer() and

transferFrom() functions.

The ERC20 standard also has a number of optional to implement variables that

make the token more usable by providing meta-information about the token:

1. Name: Returns a human readable name (e.g. “US Dollars”) of the token.

2. Symbol: Returns a human readable symbol (e.g. “USD”) for the token

3. Decimals: Returns the number of decimals used to divide token amounts. For

example, if decimals is “2”, then the token amount is divided by 100 to get its

user representation

Other than the ERC20, the ecosystem has a number of token standardization pro-

posals with different use cases. For instance, Security token standards such as the

ERC1400 are being used to issue tokenized securities [52] on Ethereum as seen

from table D.7.

Table D.7: Common Ethereum Standards

Token Type ERC Standard [28] Example
Fungible Token Standard ERC20/ ERC 223 OmiseGo
Non-Fungible Token Stan-
dard

ERC721 CryptoKitties

Security Token Standard ERC1400 PolyMath

D.5. Token Platforms 182

Figure D.4: The ERC20 token standard smart contract

D.5.2 Libra

Although Libra follows the same computational model of Ethereum where a Virtual

Machine runs on a blockchain, it is different to the way it operates. In Libra (i.e.

Move), Move takes a more functional approach in that the data is separated from

the code [16].

This is unique to Move and other Smart Contract systems. The novelty of the

Move language is the way in which the data (a ‘resource’ type as labelled in Move),

is defined. It is a first-class object. This means that in In Move, we would both

deploy a new resource type (that can correspond to a token) and code, which would

allow operating on the token. These two concepts are separate. To transfer a token,

we would again invoke the smart contract. However, it would not update its internal

state -as a smart contract (referred to as a ‘module’ in Move) does not have any

state associated with it by design. We rather ‘move’ the resource from one account

to another. The data i.e. the state belongs to the user’s account, not to the contract.

D.5. Token Platforms 183

Figure D.5: Move smart contract

Conceptually, a ’resource’ is a structure datatype that utilizes an ownership

model but can never be copied only moved and borrowed. This is a core feature of

the Move language as it guarantees that no defined resource accidentally duplicates,

eliminating the possibility for double-spending or re-entrancy attacks (therefore the

notion of a ’resource’ corresponds well with the concept of tokens).

This is where the potential benefits of Move, in comparison to other Smart Contract

languages, become apparent. If we were to deposit a number of tokens, we have

to control the memory ownership of the tokens. We can only gain this ownership

by splitting an existing owned token (also known as withdrawing) or when mint-

ing fresh tokens. This unique ownership property guarantees that the same tokens

cannot exist elsewhere, eliminating bugs stemming from incorrect duplications,

allowing double-spending and other erroneous behaviour.

Additionally, the resource-ownership model also requires that an owned token

has to be either explicitly destroyed or moved to another owner. This guarantees

that the token doesn’t get accidentally locked inside a module and never to be re-

trieved again.

By design, Move offers strong asset-guarantees through the resource-ownership

D.5. Token Platforms 184

model. This can potentially enable developers to produce less error-prone code and

move faster.

D.5.3 Token Standards and Exchange Protocols

Token Standards

Common standards are being developed as the tokenization ecosystem matures

[80]. This is done through interface smart contracts. The reasons for doing this

include:

1. Improved Token Security: Smart contracts implementation is tricky; a large

number of attacks within the tokenization ecosystem have happened due to

poorly designed and implemented smart contracts 10, with multiple attack

vectors for malicious agents to exploit. Having a common standard that is

audited by the ecosystem reduces this risk.

2. Accesibility: With common token standards, it is possible to create interfaces

with exchanges and other token-based applications as they all adhere to com-

mon standards. Moreover, new start-ups may find it daunting to implement

token smart contracts from scratch, working from token standards provides

them the ability to bootstrap and grow quickly.

3. Usability and Tooling: Common standards promote the development of tools

and applications across the entire family of standards. This provides unifor-

mity and improved usability for end-users and token developers alike.

Exchange Protocols

Tokenization has enabled trading of tokenised instruments in completely differ-

ent manner: traditional markets require centralised exchanges as a marketplace to

buy and sell orders, these functions can be automated through smart contracts that

10The DAO re-entrancy attack is a critical example [51]

D.5. Token Platforms 185

operate independently once implemented- exchanges can be implemented via smart

contracts that can operate independently within the blockchain platform without

any operational oversight. This is possible because all the tokens follow particu-

lar standards that are compatible with the decentralised exchange. For example,

consider figure D.6:

1. Maker11 approves the decentralized exchange (DEX) contract to access their

balance of Token A.

2. Maker creates an order to exchange Token A for Token B, specifying a desired

exchange rate, expiration time (beyond which the order cannot be filled), and

signs the order with their private key. Maker broadcasts the order over the

internet.

3. Taker12 intercepts the order and decides that they would like to fill it

4. Taker approves the DEX contract to access their balance of Token B.

5. Taker submits the makers signed order to the DEX contract.

6. The DEX contract authenticates makers signature, verifies that the order has

not expired, verifies that the order has not already been filled, then transfers

tokens between the two parties at the specified exchange rate.

With the emergence of independent issuance and ownership and decentralised ex-

changes and protocols tokens are increasingly being traded in a new kind of market.

This has been referred to as ‘Decentralised Finance’ or ‘DeFi’.

11This refers to the Market Maker, the entity that creates the liquidity in the exchange
12This refers to the individual/institution on the other side of the of the Maker and on the other

side of the trade

D.5. Token Platforms 186

Figure D.6: Decentralised exchanges, adapted from [84]

Tokenizing Securities

Computer programs by nature are composable; smaller programs can combine with

other smaller programs to form larger more complex and capable programs. This

property of composability is also true for tokens as they are simply smart contracts

based programs. By implication, financial securities can be composable through

tokenization as seen from figure D.7.

Figure D.7: Composability of Financial Instruments through Tokenization

D.6. Tokenization challenges and advantages 187

D.6 Tokenization challenges and advantages

D.6.1 Advantages

Although not exhaustive, tokens and tokenization can bring the following benefits

to business processes, markets and society:

1. Greater automation: -Smart contracts can be used to program tokens and

their behaviours which provide greater automation

2. Programmability: - Tokens are state machines whose behaviours can be

programmed, enabling them to carry out several roles simultaneously

3. Improved Regulatory Compliance- Through smart contracts it could be

possible to write ownership and law directly into a token, the token will be

able to execute, regulate and govern itself

4. Greater efficiency and scalability: - Greater automation can make business,

trading and clearing processes quicker and more efficient, allowing them to

grow

As discussed in the previous chapter, tokens are state machines capable of trans-

acting value. These value-based transactions, of the state machine, often map to

business processes that were once difficult to automate due to the issue of trust e.g.

settlement, trading and funding.

Greater Automation

Tokenization can automate a large number of these tasks that require some sort

of trusted intermediation to perform them. For example, most digital payments

require a trusted intermediary to clear and process the activity, tokenising the pay-

ment instrument and running it on a blockchain enables disintermediation [Bitcoin,

Ethereum].

Programmability

D.6. Tokenization challenges and advantages 188

Through smart contracts, it is possible to implement a set of behaviours on a to-

kenised instrument that was previously operationally difficult to implement, for

instance consider the ability to programme the attribute of fractionability for a to-

ken, how fractionable a token is depends on the ability of the token to be “broken

down” further i.e. be further divisible. A fractionable token of a tokenised asset

such as a building can enable fractional asset ownership. This programmable at-

tribute can enable fractional ownership of large assets. This can potentially translate

into greater liquidity and inclusion into the market as it reduces the barriers to own-

ership. The asset is available to a bigger pool of investors willing to own a part of

the asset, which previously could have been available to wealthy individuals only.

Figure D.8: Creating new forms of programmable securities

This flexibility, in augmenting the features of an instrument, offers the ability

for tokens to imbibe a large number of attributes that can enable the token to func-

tion with multiple roles13.

Improved Regulatory Compliance

Although counter-intuitive as tokens are perceived to be the tool of anarchists and

criminal, tokens actually provided a better platform for compliance and regulatory

oversight. Tokenized securities can give regulators the opportunity to apply more

compliance and control, rather than less. When we look at regulators today, they are

mostly reactive. They spend a lot of time and money on identifying organisations

that break the rules. Once identified, it takes years and millions for prosecutions

and trials. The tokenization of securities can completely change this status quo,

13The roles and attributes discussed in the previous chapter D.3

D.6. Tokenization challenges and advantages 189

putting regulators back in control, enabling them to govern proactively.

Since blockchain technology and smart contracts make it possible to write own-

ership and law directly into a token, the token will be able to execute, regulate and

govern itself. For example, a Security Token can be programmed to verify who can

buy and sell it and therefore restrict Security Token holders from trading it to any

address that has not passed the required verifications, assuring the issuer that their

tokens will only be held by authorized investors. Another use case could be the

restriction on the token transfer.

Moreover, the whole audit trail and data from the Security Token’s creation

and compliance processes are uploaded to the transparent and fully auditable

blockchain. Regulators will be able to drastically reduce their compliance cost.

Greater Efficiency and Scalability

Greater automation through tokenization can translate into further efficiencies in

business processes, as a larger number of previously intermediated tasks have the

potential to be automated [73]. For instance:

• Real time trade settlements, enabled via tokenization, can reduce settlement

risks

• Disintermediation can remove transaction costs and the relative costs of car-

rying out a business activity

• Administrative complexities (such as collecting signatures for documents,

payments etc.) can be reduced as they are carried out on the token instru-

ment, via smart contracts and digital signatures

• Features such as immutability can provide better auditing and accounting

• Service provider functions, such as trade and some forms of dispute resolu-

tion, can be automated through smart contracts

D.6. Tokenization challenges and advantages 190

D.6.2 Challenges

Although tokenization has the potential to revolutionise business processes through

greater automation and decentralisation, there are a number of challenges that need

to be overcome. These include, but is not restricted to:

1. Scaling: Greater tokenization and the increased use of tokens will drive the

transactional volume of tokens on that need to be processed on blockchains.

Current networks do not have the capacity to handle these immense volumes.

2. Mass adoption: For adoption to grow beyond technically-savvy audiences

and include a broader base of individual users, accessibility of blockchain-

related technologies need to play a crucial role.

3. Regulation: Tokens are a medium to transact value and manage value. Ju-

risdictions across the world recognise this as a regulated activity but have no

clear regulatory frameworks in place to accommodate them.

4. Improved Standards: For greater adoption, scalability and uniformity to-

kens need to follow uniform standards.

Scaling

Greater tokenization and the increased use of tokens will drive the transactional

volume of tokens on blockchains. If tokens are to become widely used the prob-

lem of processing high transaction volumes and crowded the network needs to be

addressed. This has brought transactional throughput scaling challenges. For ex-

ample, in the options for addressing include14:

• Scaling Ethereum itself so that it can handle greater transaction throughput,

projects include Serenity and Casper

14Again, most other blockchains address scaling in a similar manner

D.6. Tokenization challenges and advantages 191

• Reduce the number of transactions processed on the main chain by moving

the bulk of transactions to a second layer and only using the base layer during

transaction settlement (e.g. Roll Ups, State Channels)

“Main Chain” or first layer solutions such as Sharding are on the Ethereum roadmap

and will additionally be complemented with “Layer Two” scaling mechanisms that

further provide even higher throughput, private transactions, and lower transaction

fees [42].

Before discussing second layer solutions, consider Ethereum as a settlement ledger

as opposed to a “world computer”. This means that the purpose of the ledger is to

settle transactions which have been conducted off the main chain and enforce value

transfers accordingly (It is this use case of the blockchain serving as an unbiased

third party for arbitration on which all second layer solutions operate).

At a high level, most layer two solutions follows the approach, or some variation of

it [42]:

• Two or more parties agree to a set of rules by which they will be to join and

exit the Layer Two solution.

• These parties then encode those rules into a smart contract which requires that

each party put down a security deposit.

• After putting down their security deposits, all parties can operate between

each other off-chain while submitting intermittent updates to the on-chain

smart contract.

• When one or more parties wished to exit the layer two solution, they will

typically provide some cryptographic proof that is an accurate representation

of each parties’ remaining security deposit.

• There is a challenge period where the proof can be disputed and thrown away.

If the challenge period elapses, then the related parties will exit the layer two

D.6. Tokenization challenges and advantages 192

solution with their updated balances.

Layer Two innovations e.g. Plasma are already processing real payments. Scaling

blockchains is tricky but smart contract support can enable novel scaling solutions

and greater extensibility than other chains attempting to scale with a second layer

on strictly Unspent Transaction Output (UTXO) based scripts, which aren’t as ex-

tendable, by design [42].

Mass adoption

Tokens need to invest in ‘design thinking’ as user-friendly design is at the core

of any successfully adopted technology [40]. This facilitates the engagement of

two main audiences - individual users and bigger organisations. For example,

wallet technologies that allow users to transport cryptoassets often require the un-

derstanding of highly technical concepts such as addresses and public-private key

encryption.

Additionally, not only users but also operators of exchange platforms often face

difficulties interacting with traditional fiat-money-based banking facilities in the

process of conversion of cryptocurrencies/assets to fiat currency. Nevertheless,

institutions such as banks, central banks and governmental organisations are con-

sidering adopting tokens in various contexts ranging from increasing intra-bank

transaction speed and cost effectiveness to helping ensure the transparency of over-

seas aid programmes.

Regulation

Currently, the regulations being defined and implemented and governance around

cryptocurrencies and initial coin offerings (ICOs) vary greatly across different na-

tions [70, 10, 39]. For example, Switzerland, Gibraltar and Australia have taken

a proactive and positive approach towards ICOs; Japan has legitimised Bitcoin by

D.7. Token Regulation and the Law 193

declaring it a legal currency, and allowed Ripple to develop an app to speed up

intra-bank transactions, but China took a hard line and banned all ICOs, in addition

to cryptocurrency trading and mining in 2017. Like common technical standards,

tokenization needs common regulatory standards.

Improving Standards

Although the token community has been active in the development of uniform

standards, there is still a void in the development of standardised tokens. For in-

stance, the ERC20 is a very basic standard, it does not deal with more nuanced

token behaviours and these are left for the individual to implement as they wish.

Common behaviours such as those found in [61] [80] could help create richer

standards and promote better token security.

D.7 Token Regulation and the Law

Tokens are a medium to transact and manage value. Jurisdictions across the world

recognise this as a regulated activity but have no clear regulatory frameworks in

place to accommodate them. A large part of the token eco-system is “self-regulated”

through reputation. For mass adoption, tokens will need to have a more explicit

regulatory and legal status.

Regulation through Reputation

Reputation and trust are particularly important in the token ecosystem and busi-

ness models. A good reputation system employed by the network makes the system

resilient to manipulation and gaming; and creates a safe environment for network

participants to interact and reveal their preferences truthfully. Additionally, a firm’s

good reputation and its ability to ensure trust in the ecosystem determines the firm’s

ability to signal good quality. This is essential for attracting investors, eventually

increasing user engagement and securing financial longevity. Moreover, the bad

D.7. Token Regulation and the Law 194

reputation of certain token ecosystem participants can create a negative externality

for ‘good’ actors and prevent the overall ecosystem from growing. As such reputa-

tion is seen by the token ecosystem as a mechanism for regulation.

Regulation plays an important role in correcting informational asymmetries and

negative externalities when a market is susceptible to potential deficiencies. In

the token context, a friendly regulatory environment plays an important role in in-

creasing adoption, but the global and cross-border characteristics of token business

models create problems for the traditional regulatory measures available to nation

states. This implies the necessity of a global regulatory framework or perhaps a

self-governance model in which regulation is largely replaced by good reputation

mechanisms. Currently, the regulations being defined and implemented and gover-

nance around cryptocurrencies and initial coin offerings (ICOs) vary greatly across

different nations. For instance, Switzerland, Gibraltar and Australia have taken a

proactive and positive approach towards ICOs; Japan has legitimised Bitcoin by

declaring it a legal currency, and allowed Ripple to develop an app to speed up

intra-bank transactions, but China took a hard line and banned all ICOs, in addition

to cryptocurrency trading and mining in 2017.

Regulators, financial crime regulators globally will be concerned with precisely

the same attributes (above) that make crypto-tokens so revolutionary, especially

their global tradability on decentralized exchanges. It is quite likely that all crypto-

tokens eventually be considered ”monetary equivalents” or “substitutes for value”

and therefore be subject to AML/CFT compliance. That means the industry must

prepare to comply with, at a minimum, current regulatory expectations with respect

to customer/owner identification, transactional analysis for suspicious activity de-

tection and reporting.

When it comes to regulation and the legal premise of tokens it is very impor-

tant to note that the law is technology agnostic. It regulates relationships between

D.8. Conclusions 195

people and situations. It grants rights to persons who meet certain criteria and

imposes obligations on persons who meet certain criteria. For instance, in the case

of a bilateral agreement between a company and an individual such as employment,

the law will provide for certain protections of the individual (such as minimum

wage and anti-slavery provisions). However, the commercial relationship between

the parties is left to them to agree and can be executed by any mutually acceptable

means. The wages of the employee can be as high as the company is prepared to

pay but cannot fall below the minimum legal requirement.

D.8 Conclusions

In this paper, we have discussed Tokenisation; its evolution, vision and impact, and

the requirements for legal status and regulation of tokens. Tokenization and token

use can potentially transition into mainstream used and be adopted by a global if

the challenges are addressed.

We started off by discussing the characteristics of tokens, their behaviours and

classification from literature. We provided an improved taxonomy of tokens and

discussed how these could be combined to create tokens that fulfil a given role.

We recognise that there is work that needs to be done in this area to better under-

stand the impact of each functional attribute on the token’s tokenomics. Possible

questions that arise include how anonymity, burnability and expirability affect a

tokenization.

We then investigated token standards, their importance and their use currently.

We recognise that this is a constantly evolving field and that blockchains, smart

contract languages and other tools are constantly being improved and therefore by

implication these will be improved as the ecosystem matures.

The benefits of tokenization were then discussed in detail, we recognise that greater

liquidity, improved settlement and financial inclusion are the promise of tokeniza-

D.8. Conclusions 196

tion. We realise that there isn’t much formal literature that supports these promises

other than ideological arguments put forward by the token community and therefore

point out that the extent to which tokenization will realise these arguments needs to

be analysed. For example the impact of liquidity on a class of instruments could be

analysed if they were to be tokenised or whether parallels from traditional liquidity

and risk models be translated into tokenomic equivalents.

Tokenization challenges were then discussed in detail and possible mechanisms

to address these. The token community realises that these are major issues and is

constantly working to address these (e.g. the use of Sharding to address technical

scalability and transaction throughput processing). We recognise that as the tok-

enization ecosystem evolves newer challenges will arise. However, problems such

as scalability will always be a concern as it is a relative predicament that depends

on the number of people that use it15. The important thing to understand is that

these need to be partially addressed for the benefits of tokenization to materialise.

We then discussed tokens and the law. It is important to once again reiterate

that the law is technology agnostic and as such its premise it to regulate the activity

and not the means. The law is mature enough to regulate tokens as in principle it

is the contractual activity carried out by tokens that is regulated. However, more

approachable and clear legal frameworks are required to address tokens and their

idiosyncrasies. We also discussed how tokens can be used to automate some aspects

of the law such as the issuing of certificates.

Trust scales very poorly in our society and one of the main purposes of tokens

is to make trust scale up in a world of ambiguity. Any form of value needs to be

easy to transact with, easily recognisable or verifiable by users, and easy to carry

- for it to work well as a payment system. Many commodities that are currently

15In this regard a network like the internet is still scaling, from initially scaling to process thou-
sands of emails, to large files to high definition videos network scalability is a relative measure that
depends on the processing needs of the network at a give point in time

D.8. Conclusions 197

utilised to store wealth are not easy to carry or transfer; Bitcoin (or a more evolved

cryptocurrency) offers a new alternative.

Potentially, we could even see tokenization of certain economies, in a manner

similar to dollarisation. It is also worth noting that the potential of tokens goes

well beyond merely creating new forms of money/ assets to compete with existing

fiat currencies and financial instruments. Tokenization has the potential to reshape

industries, as well as disrupt traditional business models, organisational and gover-

nance structures. It encompasses designing entirely new ecosystems and allocation

mechanisms based around tokenonomics. This is a multidisciplinary mechanism

design challenge that requires an understanding of technology, economics, business,

finance, law, psychology and geo-politics.

Appendix E

SmartReg

This appendix presents the screenshots of the UI for the submission

portal for the SmartReg project.

E.1 SmartReg UI Screenshots
Figure E.1 shows the React UI for creating a regulatory report submission. The user

can choose which regulator the report needs to be made to and the code (reporting

rules) with which their data (selected as JSON input) needs to be executed against

to generate a report.

Figure E.1: UI: Empty submissions form

E.1. SmartReg UI Screenshots 199

Figure E.2 shows what a completed form looks like. It shows the commit SHAs

of the report and the reporting parameters of from the reporting execution (as seen

from the right hand column).

Figure E.2: UI: Fully populated submission form ready to be submitted

Figure E.3 shows the GitHub integration with for the reporting code (i.e. ma-

chine readable rules).

Figure E.3: UI: List of regulatory functions available to a Bank

Bibliography

[1] Josh Aas, Richard Barnes, Benton Case, Zakir Durumeric, Peter Eckersley,

Alan Flores-López, J Alex Halderman, Jacob Hoffman-Andrews, James Kas-

ten, Eric Rescorla, et al. Let’s encrypt: An automated certificate authority to

encrypt the entire web. In Proceedings of the 2019 ACM SIGSAC Conference

on Computer and Communications Security, pages 2473–2487, 2019.

[2] AminCad. Market share of ethereum based tokens. Medium, 2018.

[3] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-

nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady

Laventman, Yacov Manevich, et al. Hyperledger fabric: a distributed oper-

ating system for permissioned blockchains. In Proceedings of the thirteenth

EuroSys conference, pages 1–15, 2018.

[4] Guy Aridor, Yeon-Koo Che, and Tobias Salz. The economic consequences of

data privacy regulation: Empirical evidence from gdpr. 2020.

[5] Douglas W Arner, Janos Nathan Barberis, and Ross P Buckley. Fintech,

regtech and the reconceptualization of financial regulation. 2016.

[6] W ArnerDouglas, P BuckleyRoss, et al. Fintech and regtech in a nutshell, and

the future in a sandbox. 2017.

[7] Tomaso Aste, Paolo Tasca, and Tiziana Di Matteo. Blockchain technologies:

The foreseeable impact on society and industry - ieee journals & magazine.

Ieeexplore.ieee.org, 2017.

Bibliography 201

[8] Auth0. Jwt handbook. Auth0.com, 2021.

[9] Financial Conduct Authority. Perg 2 annex 1 authorisation and regulated ac-

tivities. FCA Hand Book.

[10] Financial Conduct Authority. Fca cryptocurrencies guidance. URL:

https://www.fca.org.uk/publications/consultation-papers/cp19-3-guidance-

cryptoassets, 2019.

[11] Financial Conduct Authority. Digital regulatory reporting - feedback state-

ment. Fca.org.uk, 2020.

[12] Financial Conduct Authority. Digital regulatory reporting - phase 1 report.

Fca.org.uk, 2020.

[13] Financial Conduct Authority. Digital regulatory reporting - phase 2 report.

Fca.org.uk, 2020.

[14] Financial Conduct Authority. Fca handbook. URL:

https://www.handbook.fca.org.uk/, 2020.

[15] Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, François

Garillot, Zekun Li, Dahlia Malkhi, Oded Naor, Dmitri Perelman, and Alberto

Sonnino. State machine replication in the libra blockchain. The Libra Assn.,

Tech. Rep, 2019.

[16] Sam Blackshear, Evan Cheng, David L Dill, Victor Gao, Ben Maurer, Todd

Nowacki, Alistair Pott, Shaz Qadeer, Dario Russi Rain, Stephane Sezer,

et al. Move: A language with programmable resources. Avalaible at:

https://developers. libra. org/docs/move-paper (Consulted on April 1, 2020),

2019.

[17] Chris Brummer and Daniel Gorfine. Fintech: building a 21st century regula-

tors toolkit. Milken Institute, page 5, 2014.

[18] Craig Buckler. Sql vs nosql: The differences sitepoint. SitePoint, May 2017.

Bibliography 202

[19] Talha Burki. Pharma blockchains ai for drug development. The Lancet,

393(10189):2382, 2019.

[20] Vitalik Buterin. Ethereum whitepaper. URL:

https://ethereum.org/en/whitepaper/, 2013.

[21] Addison Cameron-Huff and Addison Cameron-Huff. Op ed: How tokeniza-

tion is putting real-world assets on blockchains. Bitcoin Magazine, 2020.

[22] Christopher D. Clack, Vikram A. Bakshi, and Lee Braine. Smart contract

templates: foundations, design landscape and research directions. Arxiv.org,

2016. http://arxiv.org/pdf/1608.00771.pdf.

[23] ConsenSys. Tokens on ethereum. URL:

https://medium.com/@ConsenSys/tokens-on-ethereum-e9e61dac9b4e, 2015.

[24] ConsenSys. Tokens on ethereum. ConsenSys, 2015.

[25] Nick Cook. From innovation hub to innovation culture. www.fca.org.uk, 2019.

[26] Oracle Corp. Trail: Javabeans(tm). Trail: JavaBeans(TM) (The Java Tutori-

als).

[27] Ronald Cramer, Ivan Damgrd, and Jesper Nielsen. Multiparty computation

from threshold homomorphic encryption. Lecture Notes in Computer Science,

7, 11 2000.

[28] Jean Cupe. Token ercs in ethereum: Erc-20, erc-223, erc-777 and erc-721.

Medium, 2018.

[29] Ivan Damgard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty

computation from somewhat homomorphic encryption. Lecture Notes in Com-

puter Science, pages 643–662, 2012.

[30] Liz Denhup. Understanding unidirectional data flow in react. Medium, 2021.

[31] Solidity Documentation. Solidity ethereum.

http://arxiv.org/pdf/1608.00771.pdf

Bibliography 203

[32] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differen-

tial privacy. Foundations and Trends in Theoretical Computer Science, 9(3-

4):211–407, 2014.

[33] React Facebook. React.

[34] Internet Engineering Task Force. Http authentication. Tools.ietf.org, 2021.

[35] E Friedmann-Hill. jess in action. Greenwich, CT: Manning, 2003.

[36] Rose F Gamble, PR Stiger, and RT Plant. Rule-based systems formalized

within a software architectural style. Knowledge-Based Systems, 12(1):13–

26, 1999.

[37] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael

Naehrig, and John Wernsing. Cryptonets: Applying neural networks to en-

crypted data with high throughput and accuracy. In International Conference

on Machine Learning, pages 201–210, 2016.

[38] Michelle Goddard. The eu general data protection regulation (gdpr): European

regulation that has a global impact. International Journal of Market Research,

59(6):703–705, 2017.

[39] UK Government. Crypto assets taskforce report. As-

sets.publishing.service.gov.uk, 2018.

[40] Zeynep Gurguc and William Knottenbelt. Cryptocurrencies- overcoming bar-

riers to trust and adoption. Imperial.ac.uk, 2018.

[41] Corentin Hardy, Erwan Le Merrer, and Bruno Sericola. Gossiping gans. Pro-

ceedings of the Second Workshop on Distributed Infrastructures for Deep

Learning - DIDL ’18, 2018.

[42] Hunter Hillmann. The case for ethereum scalability. Medium, 2019.

Bibliography 204

[43] Dongyan Huang, Xiaoli Ma, and Shengli Zhang. Performance analysis of

the raft consensus algorithm for private blockchains. IEEE Transactions on

Systems, Man, and Cybernetics: Systems, 50(1):172–181, 2019.

[44] A Hunt and D Thomas. Orthogonality and the dry principle. Artima.com,

2003.

[45] Sandia Inc. Jess, the rule engine for the java platform. Jess, the Rule Engine

for the Java Platform. http://www.jessrules.com/.

[46] Fleur Johns and Caroline Compton. Data jurisdictions and rival regimes of

algorithmic regulation. Regulation & Governance, 2020.

[47] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot. Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communications Secu-

rity, 2016.

[48] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.

Ouroboros: A provably secure proof-of-stake blockchain protocol. In

Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –

CRYPTO 2017, pages 357–388, Cham, 2017. Springer International Publish-

ing.

[49] Leslie Lamport. Generalized consensus and paxos. 2005.

[50] Kari Larsen, Shariq Gilani, et al. Regtech is the new black-the growth of

regtech demand and investment. Journal of Financial Transformation, 45:22–

29, 2017.

[51] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe. Reguard: Finding

reentrancy bugs in smart contracts. In 2018 IEEE/ACM 40th International

Conference on Software Engineering: Companion (ICSE-Companion), pages

65–68, 2018.

[52] Poly Math. Medium, 2018.

http://www.jessrules.com/

Bibliography 205

[53] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning

differentially private recurrent language models. arXiv.org, 2020.

[54] Georgios Meditskos and Nick Bassiliades. Clips–owl: A framework for pro-

viding object-oriented extensional ontology queries in a production rule en-

gine. Data & Knowledge Engineering, 70(7):661–681, 2011.

[55] C Mohan. Blockchains and databases: A new era in distributed computing.

In 2018 IEEE 34th International Conference on Data Engineering (ICDE),

pages 1739–1740. IEEE, 2018.

[56] MongoD.

[57] Henrique Moniz. The istanbul bft consensus algorithm. arXiv preprint

arXiv:2002.03613, 2020.

[58] JP Morgan. Quorum. URL: https://github.com/ConsenSys/quorum/blob/master/

docs/Quorum%20Whitepaper%20v0.2.pdf, 2021.

[59] Satoshi Nakamoto. Bitcoin whitepaper. URL: https://bitcoin.org/bitcoin.pdf,

2008.

[60] Crispin Niebel. The impact of the general data protection regulation on inno-

vation and the global political economy. Computer Law & Security Review,

40:105523, 2021.

[61] Luis Oliveira, Liudmila Zavolokina, Ingrid Bauer, and Gerhard Schwabe. To

token or not to token: Tools for understanding blockchain tokens. Jacobs Levy

Equity Management Center for Quantitative Financial Research Paper Series,

2020.

[62] OpenMined. What is secure multi-party computation? OpenMined Blog,

2020.

[63] Tim OReilly. Open data and algorithmic regulation. Beyond transparency:

Open data and the future of civic innovation, 21:289–300, 2013.

Bibliography 206

[64] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal

Talwar, and lfar Erlingsson. Scalable private learning with pate. arXiv.org,

2020.

[65] A Rahman. A framework for decentralised trust reasoning. University of

London, 2005.

[66] Leonard Richardson and Sam Ruby. RESTful web services. ” O’Reilly Media,

Inc.”, 2008.

[67] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks and

privacy homomorphisms. Foundations of secure computation, 4(11):169–180,

1978.

[68] Ermin Sakic and Wolfgang Kellerer. Response time and availability study of

raft consensus in distributed sdn control plane. IEEE Transactions on Network

and Service Management, 15(1):304–318, 2017.

[69] Susan V Scott and Markos Zachariadis. Origins and development of swift,

1973–2009. Business History, 54(3):462–482, 2012.

[70] Securities and Exchange Commission. Framework for investment contract

analysis of digital assets. Sec.gov, 2019.

[71] Charles Severance. Roy t. fielding: Understanding the rest style. Computer,

48(6):7–9, 2015.

[72] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–

613, 1979.

[73] Samridha Shreshtha. Why a distributed system for the trading industry instead

of a centralised one. Medium, 2018.

[74] Małgorzata Śmietanka, Hirsh Pithadia, and Philip Treleaven. Federated learn-

ing for privacy-preserving data access. Available at SSRN 3696609, 2020.

Bibliography 207

[75] J Michael Spivey and JR Abrial. The Z notation. Prentice Hall Hemel Hemp-

stead, 1992.

[76] Philip Treleaven, Bogdan Batrinca, et al. Algorithmic regulation: Automat-

ing financial compliance monitoring and regulation using ai and blockchain.

Journal of Financial Transformation, 45:14–21, 2017.

[77] AI Council — Gov UK. Ai roadmap. Assets.publishing.service.gov.uk, 2021.

[78] Tom Van Engers. Estrella- estrella project website.

[79] Huw Van Steenis. The future of finance. Bankofengland.co.uk, 2021.

[80] Fabian Vogelstellar and Vitalik Buterin. Eip-20: Erc-20 token standard.

Ethereum Improvement Proposals, 2015.

[81] Paul Voigt and Axel Von dem Bussche. The eu general data protection reg-

ulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer International

Publishing, 10:3152676, 2017.

[82] Sandra Wachter. Normative challenges of identification in the internet of

things: Privacy, profiling, discrimination, and the gdpr. Computer law & se-

curity review, 34(3):436–449, 2018.

[83] Mark Walport. Fintech futures: The uk as a world leader in financial technolo-

gies. Report to UK Government Office for Science, 2015.

[84] Amir Bandeali Will Warren. 0x protocol. URL:

https://0x.org/pdfs/0xwhitepaper.pd f ,2020.

[85] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

[86] Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu.

Federated learning. Synthesis Lectures on Artificial Intelligence and Machine

Learning, 13(3):1–207, 2019.

Bibliography 208

[87] Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu.

Federated learning. Synthesis Lectures on Artificial Intelligence and Machine

Learning, 13(3):1–207, 2019.

[88] Andrew Chi-Chih Yao. How to generate and exchange secrets - ieee confer-

ence publication. Ieeexplore.ieee.org, 1986.

[89] Karen Yeung and Martin Lodge. Algorithmic regulation. Oxford University

Press, 2019.

	Introduction
	What is Algorithmic Regulation?
	Research Motivation
	Research Objectives
	Research Methodology
	Scientific and Industry Contributions
	Machine Interpretability of Regulation
	SmartReg: Using Blockchain for Regulatory Reporting
	RegNet: Using Federated Learning and Blockchain for Privacy Preserving Data Access

	Thesis Structure

	Background and Literature Review
	Algorithmic Regulation in Financial Services
	Technical Background
	Rules and Principles
	Expert Systems
	Expert System Shell Analysis
	A formal model for expressing expert systems
	Distributed Ledger Technology
	Federated Learning

	Using AI to Automate the Regulatory Handbook
	Introduction
	Objectives

	Background
	A semi-formal model for a regulatory expert system

	System Design
	System Requirements
	System Overview
	Feature Driven Design
	Regulatory Reasoning Engine
	Database
	Front-End
	Supporting Infrastructure
	Frameworks
	Architecture

	Implementation
	The Flow Data Structure
	RESTful services and API creation
	Database
	Reasoning Engine
	UI Implementation

	Testing & Results
	Testing
	Results

	Conclusions
	Summary
	System Shortfalls
	Evaluation of the Objectives

	SmartReg: Using Blockchain for Regulatory Reporting
	Introduction
	The problem with regulatory supervision
	Objectives

	Background
	Trust models in Computing Networks
	Experiment
	Use Cases

	Systems Design
	Systems Architecture
	Reporting through Smart Contracts
	Consensus

	Implementation
	Tools & Environments
	Identity
	Experiment Implementation
	Deployment

	Testing & Results
	Testing
	Results

	Conclusions

	RegNet: Using Federated Learning and Blockchain for Privacy Preserving Data Access
	Introduction
	The Problem of Analytics, Data Sharing and Compliance
	Objectives

	Background
	A Taxonomy for Federated Learning
	Communications and Control Architecture
	Data Partition
	Federation of Nodes
	Security & Privacy
	Secure Multiparty Computation
	Homomorphic Encryption
	Differential Privacy

	Systems Design
	Concepts
	Distributed Ledgers
	Channels

	Implementation
	Distributed Ledger and RegNet Peer
	Tokenization of the FL Process

	Testing and Results
	Testing
	Results

	Conclusions

	Conclusions and Future Work
	Contributions & Future Work
	Using AI to Automate the Regulatory Handbook
	SmartReg
	RegNet

	Appendices
	Z Notation
	Representing FCA Handbook regulation
	License Registration Decision Tree
	Blockchain Tokenization
	Abstract
	Introduction
	Tokens and Tokenization
	To Tokenize or Not Tokenize
	Properties of Tokens

	A Taxonomy of Tokens
	Tokens as State Machines
	Token Platforms
	Ethereum
	Libra
	Token Standards and Exchange Protocols

	Tokenization challenges and advantages
	Advantages
	Challenges

	Token Regulation and the Law
	Conclusions

	SmartReg
	SmartReg UI Screenshots

	Bibliography

