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Abstract

Generative models aim to simulate the process by which a set of data is generated.

They are intuitive, interpretable, and naturally suited to learning from unlabelled

data. This is particularly appealing in natural language processing, where labels

are often costly to obtain and can require significant manual input from trained

annotators. However, traditional generative modelling approaches can often be

inflexible due to the need to maintain tractable maximum likelihood training.

On the other hand, deep learning methods are powerful, flexible, and have achieved

significant success on a wide variety of natural language processing tasks. In recent

years, algorithms have been developed for training generative models that incorporate

neural networks to parametrise their conditional distributions. These approaches

aim to take advantage of the intuitiveness and interpretability of generative models

as well as the power and flexibility of deep learning.

In this work, we investigate how to leverage such algorithms in order to develop

deep generative models for natural language. Firstly, we present an attention-based

latent variable model, trained using unlabelled data, for learning representations of

sentences. Experiments such as missing word imputation and sentence similarity

matching suggest that the representations are able to learn semantic information

about the sentences. We then present an RNN-based latent variable model for per-

forming machine translation. Trained using semi-supervised learning, our approach

achieves strong results even with very limited labelled data. Finally, we present a

locally-contextual conditional random field for performing sequence labelling tasks.

Our method consistently outperforms the linear chain conditional random field and

achieves state of the art performance on two out of the four tasks evaluated.
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Introduction

Generative models posit the process by which a set of data is generated. The

parameters of this process are typically learnt by maximising the likelihood of the

observed data under the model. Generative models are intuitive, interpretable and

are naturally suited to learning from unlabelled data. This is particularly appealing

in natural language processing, where labels can be costly to obtain and can require

significant manual input form trained annotators. Generative models have achieved

success on a variety of tasks including part-of-speech tagging [Kupiec, 1992, Lafferty

et al., 2001], named entity recognition [Bikel et al., 1999] and topic modelling [Blei

et al., 2003]. However, traditional generative modelling approaches can often be

inflexible due to the need to maintain tractable maximum likelihood training.

On the other hand, deep learning methods (which broadly encompass a class

of approaches which use neural networks to learn the underlying structure of a

set of data) are powerful and flexible. They are very popular in modern natural

language processing, achieving significant success on a wide variety of tasks. Earlier

methods were typically based on convolutional and recurrent networks [Hochreiter

and Schmidhuber, 1997, Sutskever et al., 2014, Kim, 2014] however more recently,

state of the art results have been achieved using contextual embedding models

parametrised with Transformer networks [Vaswani et al., 2017, Radford et al., 2018,

Devlin et al., 2019].

In recent years, algorithms have been developed for training generative models

that incorporate neural networks to parametrise their conditional distributions

[Kingma and Welling, 2014, Rezende et al., 2014, Burda et al., 2016]. Known as deep

generative modelling, these approaches aim to take advantage of the intuitiveness

and interpretability of generative models as well as the power and flexibility of deep
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learning. This thesis investigates how to leverage such algorithms in order to develop

deep generative models for natural language.

In Chapter 1, we present the foundations for deep generative modelling. We first

review traditional generative modelling techniques including latent variables and

the expectation maximisation algorithm. We then review deep learning approaches

including feedforward and recurrent neural networks as well as non-contextual and

contextual word embeddings. Finally, we look at how generative modelling and deep

learning can be combined with the stochastic gradient variational Bayes algorithm.

This also includes a discussion of the ‘KL collapse’ phenomenon, a common problem

when training such models.

A cornerstone task in natural language processing is to learn representations of

sequences of text. Prior deep generative modelling approaches to this task were

typically based on recurrent neural networks. However they suffered from the KL

collapse phenomenon whereby the approximate posterior distribution would not learn

an informative representation of a sequence of text. DRAW [Gregor et al., 2015]

showed that using an attention mechanism to ‘paint’ locally on a canvas produces

images of remarkable quality. In Chapter 2, we investigate whether a similar approach

could work well for modelling natural language. We introduce a deep generative

model which uses an RNN with a dynamic attention mechanism to iteratively update

a canvas that parametrises the probability distribution over the sentence’s text. By

viewing the canvas at intermediate stages, and where the RNN is placing its attention,

we gain insight into how the model constructs a sentence. As well as learning a

meaningful latent representation for each sentence, the model generates coherent

sentences and successfully imputes missing words.

Whilst the model in Chapter 2 learns representations of individual sentences, one

may consider that using data from multiple modalities allows for richer representations

to be learned than from a single modality alone. In natural language processing,

the same sentence expressed in different languages offers the potential to learn

a representation of the sentence’s meaning. In Chapter 3, we introduce a deep

generative model of sentences expressed in two languages. We use a latent variable

as a language agnostic representation which is encouraged to learn the semantic
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meaning of the sentence. We use this model to perform multilingual translation,

and leverage monolingual sentences during training. We evaluate the model on

machine translation where it achieves competitive BLEU scores (particularly when

the amount of paired training data is limited) and is especially effective at translating

long sentences. When there are missing words in the source sentence, the model is

able to use its learned representation to infer what those words may be and produce

good translations accordingly.

Although representations provided by latent variable models such as those de-

scribed in Chapters 2 and 3 have certain appealing properties, deterministic contextual

token embeddings provided by pre-trained language models have recently become

more and more popular. However the typical paradigm for using these embeddings

involves ‘fine-tuning’ the language model on the downstream task of interest. This

can be computationally expensive, depending on the footprint of the language model.

If hardware constraints prevent fine-tuning, it can be necessary to design the archi-

tecture for the downstream task to extract the most useful information from the

embeddings. Sequence labelling tasks are usually performed using CRFs [Lafferty

et al., 2001], which model the label for a given word as dependent on its embedding

as well as the labels of the neighbouring words. However it is often necessary to

use the neighbouring words themselves when predicting the label for a given word.

Therefore in Chapter 4 we enhance the CRF by directly incorporating the neigh-

bouring words (local context) when predicting the label for a given word and by

using deep, nonlinear potential functions. Our locally-contextual nonlinear CRFs

can serve as a drop-in replacement for linear chain CRFs, and they have the same

computational complexity for training and inference. We find improved results on

several sequence labelling tasks, and show that both the local context and nonlinear

potentials consistently provide improvements compared to CRFs.

We conclude with a review of the contributions of this dissertation and potential

avenues for future work. The work presented in this thesis has been published in

Shah et al. [2018], Shah and Barber [2018], Shah et al. [2021].



Chapter 1

Foundations

In this chapter, we introduce the technical concepts required for the remainder of

the dissertation. We review generative models, deep learning, and how the two can

be combined to provide intuitive yet powerful models of data generating processes.

1.1 Generative modelling

Generative models aim to simulate the process by which a set of data is generated.

They are often represented using graphs. These are intuitive diagrams which specify

the statistical dependencies between random variables. In a graph, the nodes

correspond to random variables and an edge linking two nodes indicates dependence

between those two variables.

Probability distributions are governed by a set of global parameters which will

be denoted as θ throughout this dissertation. We do not consider the parameters

as random variables but as deterministic. We learn their values using maximum

likelihood estimation. To avoid clutter, we do not show the parameter set θ in our

graphical models.

1.1.1 Latent variables

It is often the case that high dimensional observed data points correspond to lower

dimensional manifolds within the high dimensional space. This phenomenon can

be represented using latent random variables. These are variables which we assume
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z1 z2 · · · zL

x1 x2 · · · xL

Figure 1.1: The HMM graphical model.

to exist, but are unobserved. For example in natural language processing, latent

variables can be used to represent the semantic meaning of a piece of text because

this is not something that is directly observed in a sequence of words but instead

must be inferred. Because they are not observed, latent variables are marginalised

out during maximum likelihood estimation.

Throughout, we use shaded circular nodes to denote observed variables and clear

circular nodes to denote latent variables. Rhombus-shaped nodes denote deterministic

functions of the input variables.

1.1.2 Directed vs. undirected graphs

In this dissertation, we consider two types of graphical model: directed and undi-

rected. Directed graphs represent the factorisation of a distribution into conditional

probabilities of variables dependent on their ‘parents’ in the graph. This means that

they follow the chain rule of probability. In contrast, undirected graphs indicate

dependence between variables but do not follow the chain rule of probability. Note

that each type of graph can represent certain families of distributions that the other

cannot.

1.1.2.1 Directed graphs

An example of a directed graph used in natural language processing is the Hidden

Markov Model (HMM) shown in Figure 1.1 [Rabiner and Juang, 1986]. Used for

unsupervised learning, the HMM posits a sequence of discrete-valued hidden states

z1, . . . , zL for a corresponding sequence of words x1, . . . , xL. Each hidden state zl

represents an unobserved characteristic of word xl. The likelihood specified by this
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x1 x2 · · · xL

y1 y2 · · · yL

Figure 1.2: The CRF graphical model.

graph is

p(x1:L|θ) =
∑
z1:L

L∏
l=1

p(zl|zl−1; θ)p(xl|zl; θ). (1.1)

In directed graphs, each node is associated with a normalised distribution. In this

example, for each hidden state zl the distribution is p(zl|zl−1; θ) and for each word

xl the distribution is p(xl|zl; θ).

Because the words and hidden states are all discrete, the conditional distributions

p(zl|zl−1; θ) and p(xl|zl; θ) are simply parametrised using probability tables, the

entries of which make up the parameter set θ.

1.1.2.2 Undirected graphs

An example of an undirected graph used in natural language processing is the linear

chain conditional random field (CRF) shown in Figure 1.2 [Lafferty et al., 2001].

The CRF is used for modelling a sequence of words x1, . . . , xL and a corresponding

sequence of linguistic tags y1, . . . , yL (e.g. part of speech). It assumes that each label

yl is correlated with its neighbours yl−1 and yl+1 but does not assume a left-to-right

ordering like the HMM in Figure 1.1. The conditional likelihood specified by this

graph is

p(y1:L|x1:L; θ) =

∏L
l=1 ψ(yl−1, yl; θ)η(yl, xl; θ)∑

y1:L

∏L
l=1 ψ(yl−1, yl; θ)η(yl, xl; θ)

. (1.2)

The terms ψ(yl−1, yl; θ) and η(yl, xl; θ) are referred to as the potentials, which are

positive valued functions. Unlike the directed setting, in undirected graphs the

potentials themselves are not necessarily normalised. Rather, the distribution as

a whole is normalised by summing over the product of the potentials, as in the
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denominator in Equation (1.2). This term is called the normalisation constant.

1.1.3 EM algorithm

Consider the graph in Figure 1.3. For simplicity, we assume that the latent variable

z is continuous (however the algorithm also applies when z is discrete). The log

likelihood is

log p(x|θ) = log

∫
p(z|θ)p(x|z; θ)dz. (1.3)

Depending on the functional forms of p(z|θ) and p(x|z; θ), this integral may not

be tractable, in which case the likelihood cannot easily be computed. In this case,

the expectation maximisation (EM) algorithm can be used [Dempster et al., 1977].

It introduces an ‘inference’ distribution, q(z|x) in order to lower bound the log

likelihood using Jensen’s inequality as follows:

log p(x) = log

∫
p(z|θ)p(x|z; θ)dz (1.4)

= log

∫
q(z|x)

q(z|x)
p(z|θ)p(x|z; θ)dz (1.5)

≥
∫
q(z|x) log

p(z|θ)p(x|z; θ)

q(z|x)
dz (1.6)

≡ L(x; q, θ). (1.7)

The EM algorithm then iteratively increases this lower bound on the log likelihood

by alternating between:

• E-step: maximise L(x; q, θ) with respect to q(z|x) while holding the parameters

θ fixed.

• M-step: maximise L(x; q, θ) with respect to the parameters θ while holding

q(z|x) fixed.

Note that L(x; q, θ) can be expressed as

L(x; q, θ) =

∫
q(z|x) log

p(z|θ)p(x|z; θ)

q(z|x)
dz (1.8)
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z x

Figure 1.3: A basic latent variable model.

=

∫
q(z|x) log

p(x|θ)p(z|x; θ)

q(z|x)
dz (1.9)

=

∫
q(z|x) log p(x|θ)dz +

∫
q(z|x) log

p(z|x; θ)

q(z|x)
dz (1.10)

= log p(x|θ)−DKL[q(z|x)||p(z|x; θ)]. (1.11)

DKL[q||p] ≥ 0 and DKL[q||p] = 0 if and only if q = p. Therefore in the E-step,

L(x; q, θ) is maximised by setting q(z|x) = p(z|x; θ). After an E-step, the lower

bound is equal to the log likelihood. This means that after an E-step and M-step,

the log likelihood is guaranteed to increase.

1.2 Deep learning

Deep learning broadly encompasses a class of methods which use neural networks to

learn the underlying structure of a set of data.

1.2.1 Neural networks

A neural network is a sequence of layers, each of which applies a (usually nonlinear)

deterministic function to the output of the previous layer [LeCun et al., 2015,

Schmidhuber, 2015, Goodfellow et al., 2016]. Each layer typically has one or more

parameters, known as weights.

The simplest type of neural network is a feedforward network, as shown in Figure

1.4. A feedforward network with D layers maps input x to output hD as follows:

h0 = x (1.12)

h1 = σ1(W1 · h0) (1.13)

h2 = σ2(W2 · h1) (1.14)

. . . (1.15)
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Figure 1.4: A feedforward neural network.

hD = σD(WD · hD). (1.16)

The values h1, . . . ,hD are the hidden states (or activations), the matrices W1, . . . ,

WD are the weights, and the functions σ1, . . . , σD are nonlinear transformations, e.g.

ReLU [Glorot et al., 2011]. The output hD can then be used for the task of interest.

For example in classification, the softmax function can be applied to hD to provide

probabilities for a class label y as follows:

p(y = a|x) ∝ exp(wT
ahD). (1.17)

The optimal values for the weights of a neural network are usually learned using

stochastic gradient descent or one of its variants [Nesterov, 1983, Kingma and Ba,

2015].

Neural networks have been shown to be universal function approximators [Hornik,

1991]. This has allowed them to achieve significant success when modelling complex

datasets.



1.2. Deep learning 22

x1 x2 · · · xL

h1 h2 · · · hL

y1 y2 · · · yL

Figure 1.5: A recurrent neural network.

1.2.1.1 Recurrent neural networks

Feedforward networks are generally suitable when the input is a single observation

(e.g. an image). When the input is a sequence (e.g. a sequence of words making

up a sentence/document), recurrent neural networks (RNNs) are more appropriate.

RNNs, as shown in Figure 1.5, process each step of the input sequentially. They

maintain a hidden state which is a representation of the information from all of the

past inputs.

Given a sequence of inputs x1, . . . ,xL, an RNN computes the sequence of hidden

states for l = 1, . . . , L as

hl = σl(Wx · xl + Wh · hl−1). (1.18)

With RNNs, the weight matrices Wx and Wh are shared across time steps. The

probabilities for each class label yl for l = 1, . . . , L can then be computed as

p(yl = a|x1:L) ∝ exp(wT
ahl). (1.19)

Long Short-Term Memory RNNs often struggle to model very long sequences.

The long-short term memory (LSTM) [Hochreiter and Schmidhuber, 1997] was

developed to address this issue by using a gating mechanism as follows:

il = σi(Wxi · xl + Whi · hl−1) (1.20)

fl = σf (Wxf · xl + Whf · hl−1) (1.21)

ol = σo(Wxo · xl + Who · hl−1) (1.22)
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cl = fl � cl−1 + il � σc(Wxc · xl + Whc · hl−1) (1.23)

hl = ol � σh(cl). (1.24)

where � denotes elementwise multiplication. The state cl is referred to as the memory

cell. The forget gate fl determines how much of the memory to remove and the input

gate il determines the new information to commit to the memory. The output gate

ol controls the dependence of the hidden state hl on the memory cell.

1.2.2 Word embeddings

In natural language processing, words (or tokens) are usually considered as elements

of a set known as the vocabulary. The naive way to represent a word would be

to encode it as a one-hot vector. This is a vector whose length is the size of the

vocabulary, with 0s everywhere except in one position (corresponding to that word’s

position in the vocabulary), where the value is 1.

However, one-hot word representations present several problems. The size of the

vocabulary is often in the tens or hundreds of thousands, therefore encoding each

word as a one-hot vector can be prohibitively expensive. Also, the model parameters

for words that do not occur frequently in the training data could be poorly estimated.

In addition, one-hot representations do not convey any similarity information about

words. Once the model has been trained, it cannot work with words which were not

present in the training data.

Instead of using one-hot vectors, word embeddings encode words using lower-

dimensional, real-valued vectors. They are also known as distributed representations

because the semantic information is spread throughout the dimensions of the vectors

[Bengio et al., 2003, Collobert and Weston, 2008]. We typically find that words with

similar meanings have representations which are close together in embedding space

[Mikolov et al., 2013a,b].

Word embeddings can either be trained with the task of interest or pre-trained

using an unlabelled corpus. When trained together with the task, the embedding

vector for each word is simply a parameter of the model whose value is learned

according to the task’s objective function. However in modern natural language
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processing, the far more common paradigm is to use pre-trained embeddings. This

has been shown to offer significant improvements over embeddings learned from

scratch [Turian et al., 2010].

Pre-trained word embeddings are usually trained based on the word co-occurrence

statistics from a large corpus of text. In this dissertation, we focus on GloVe

embeddings [Pennington et al., 2014]. GloVe embeddings are built on the idea that

the co-occurrence probabilities contain information about semantic meaning. X

denotes the co-occurrence matrix, i.e. Xi,j is the number of times word j occurs

in the context of word i. pi,j =
Xi,j∑
kXi,k

is the probability that word j occurs in the

context of word i. Pennington et al. [2014] use the example of i = “ice” and j =

“steam”. They suggest (and show empirically) that words k related to “ice” and not

to “steam” (e.g. k = “solid”) should have a high ratio
pi,k
pj,k

and vice versa. Therefore,

they train the GloVe embeddings to minimise the least-squares objective

J =
∑
i,j

f(Xi,j)(w
T
i w̃j + bi + b̃j − log Xi,j)

2 (1.25)

where wi and bi are the word vector and bias of word i, w̃j and b̃j are the context

vector and bias of word j, and f(·) is a function that assigns relatively lower weight

to rare and frequent co-occurrences. After training, the final embedding for word i is

given by

ei = [wi; bi] + [w̃i; b̃i] (1.26)

where [x; y] denotes the concatenation of x and y.

1.2.2.1 Contextual embeddings

Traditional word embeddings, such as GloVe described above, are ‘non-contextual’.

This means that the embedding for any given word is the same regardless of the

context (e.g. sentence) it appears in. Recently however, contextual embeddings

have become more popular, having improved the state of the art on several natural

language processing tasks. Contextual embeddings modify the representation for
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Figure 1.6: The Gen-LSTM graphical model.

each word depending on the other words in the sequence. This is particularly useful

because many words can have different meanings in different contexts (e.g. “bank”

can refer to the land alongside a river or a financial institution).

A popular contextual embedding model is BERT [Devlin et al., 2019]. BERT

operates on sub-word tokens rather than on words. This means that the sentence is

split into units which may be smaller than words. For example, the words {“waited”,

“waiter”, “waiting”, “waits”} may be tokenised as {“wait + ed”, “wait + er”, “wait

+ ing”, “wait + s”}, all sharing the same stem. The tokenised sentences are then fed

into a large Transformer network [Vaswani et al., 2017] which is trained based on

two unsupervised tasks:

• Masked language modelling: A percentage of the input tokens are masked

and the model is tasked to predict them based on the unmasked ones.

• Next sentence prediction: Two sentences are fed into the Transformer

network and the model is tasked to predict whether or not the second follows

the first in the original corpus.

Once trained, a sentence can be tokenised and fed into the network and either a

sequence of word embeddings or a single sentence embedding (typically using the

network’s final layer) can be returned as output.

1.3 Deep generative models

The ideas from deep learning discussed in Section 1.2 can be combined with the

generative models from Section 1.1 to form powerful, flexible and intuitive models of
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data generating processes.

One such example is the model presented by Bowman et al. [2016], which we

refer to as Gen-LSTM. Shown in Figure 1.6, Gen-LSTM is a generative model of a

sentence x with words x1, . . . , xL. It posits a sentence-level latent variable z with a

standard Gaussian prior

p(z) = N (0, I). (1.27)

The latent z and the previous word in the sentence xl−1 are used as the inputs to an

LSTM whose states are h1, . . . ,hL. The probability for each word conditioned on

the previous words and the latent representation is

p(xl = v|x1:l−1, z; θ) ∝ exp(e(v)TW · hl) (1.28)

where e(v) is the embedding of word v and W is a parameter of the model. This

model is trained using maximum likelihood, where the likelihood is

p(x|θ) =

∫
p(z)p(x|z; θ)dz. (1.29)

This integral is intractable. In addition, the posterior distribution p(z|x; θ) cannot

easily be computed, therefore the EM algorithm cannot directly be applied. Stochastic

gradient variational Bayes is an approximate maximum likelihood algorithm which

can be used in such situations.

1.3.1 SGVB

Stochastic gradient variational Bayes (SGVB) [Kingma and Welling, 2014, Rezende

et al., 2014] parametrises an inference distribution q(z|x;φ) with parameters φ. It

then maximises the same lower bound on the log likelihood as in the EM algorithm

with respect to both the generative parameters θ and inference parameters φ as

follows:

log p(x) ≥
∫
q(z|x;φ) log

p(z)p(x|z; θ)

q(z|x;φ)
(1.30)
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= Eq(z|x;φ)[log p(x|z; θ)]−DKL[q(z|x;φ)||p(z)] (1.31)

≡ L(x; θ, φ). (1.32)

This bound is commonly referred to as the evidence lower bound (ELBO). The first

term in Equation (1.31) is known as the ‘reconstruction’ term, and the second is the

KL divergence from the inference distribution to the prior. The ELBO is maximised

using Monte Carlo integration as follows:

∇θ,φL(x; θ, φ) '

[
1

S

S∑
s=1

∇θ,φp(x|z(s); θ)

]
−∇φDKL[q(z|x;φ)||p(z)] (1.33)

where z(s) ∼ q(z|x;φ).

However, the gradient estimate with respect to φ in the first term has high variance

[Paisley et al., 2012]. Therefore the so-called ‘reparametrisation trick’ is used instead.

Reparametrisation trick Under certain conditions outlined by Kingma and

Welling [2014], a random variable z ∼ q(z|x;φ) can be a reparametrisation of an

auxiliary variable εεε using a differentiable transformation gφ(εεε,x) as follows:

εεε ∼ p(εεε) (1.34)

z = gφ(εεε,x). (1.35)

A common choice for q(z|x;φ) is a Gaussian N (µµµφ(x), diag(σσσ2
φ(x))), where µµµφ(x)

and σσσ2
φ(x) are neural networks which take x as input and whose weights are denoted

by φ. In this case

εεε ∼ N (0, I) (1.36)

z = µµµφ(x) + σσσφ(x)� εεε. (1.37)

1.3.1.1 KL collapse

In models such as Gen-LSTM, the reconstruction term of the ELBO in Equation (1.31)

can achieve a high value while ignoring the latent representation z. This phenomenon
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is known as ‘KL collapse’. This can happen because the representational power

of the LSTM combined with the previous words x1:l−1 is often sufficient to predict

the current word xl. When this happens, the objective encourages φ to be set such

that q(z|x;φ) = p(z) and therefore DKL[q(z|x;φ)||p(z)] = 0. This eliminates any

potential advantages to be had from using the latent representation. To mitigate

this, Bowman et al. [2016] use the following two techniques:

• KL divergence annealing: The KL divergence term of the ELBO in Equation

(1.31) is multiplied by a constant weight which is annealed from 0 to 1 during

the early iterations of training.

• Word dropout: During training, a random proportion of the words are

replaced with an ‘unknown’ token before being passed to the next LSTM state

(i.e. in the path from xl to hl+1 in Figure 1.6).

Other types of latent variable model such as the Wasserstein Auto-Encoder [Tolstikhin

et al., 2018] do not suffer from this issue. However they typically maximise an

objective which is no longer a lower bound on the log-likelihood.



Chapter 2

Unsupervised Representation

Learning

The work presented in this chapter was published in [Shah et al., 2018].

In the previous chapter, we presented the foundations for deep generative models.

We reviewed generative modelling concepts including latent variables and the EM

algorithm. We also reviewed deep learning, a paradigm which uses neural networks

to learn the underlying structure of a set of data. Finally, we looked at how to

combine deep learning and generative models including the SGVB training algorithm

for deep latent variable models.

In this chapter, we present a deep latent variable model for learning representations

of sentences. Our approach uses an attention mechanism to iteratively update a canvas

that parametrises the probability distribution over the sentence’s text. Experiments

such as missing word imputation and sentence similarity matching suggest that the

representations are able to learn semantic information about the sentences.

2.1 Introduction

Representation learning is considered to be one of the major steps towards making

progress in artificial intelligence. A good representation is one whose posterior

distribution captures the underlying explanatory factors behind the observed data

[Bengio et al., 2013].
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As discussed in Section 1.2.2, most natural language processing models make use

of distributed representations of words, known as word embeddings [Bengio et al.,

2003, Collobert and Weston, 2008]. Representations can also be learned for longer

spans of text, such as sentences or documents. For such representations to be useful,

they should ideally be able to capture long range dependencies from the text.

Language models, such as that presented in Section 1.3, are a natural way to

learn representations of sentences or documents. They can be used to generate text,

inspection of which can provide insight into the quality of the learned representations.

Graves [2014] models sentences using a stacked RNN architecture at the character

level. The distribution of a given character is dependent on the previous ones in the

sentence. However, this model does not map each sentence to a single representation.

This means that even though the model can be used to generate sentences that

are syntactically coherent and may show local semantic consistency, it does not

encourage the sentences to have long range semantic coherence.

Bowman et al. [2016] use a word level RNN, and in order to model the long

range features of the text, augment it with a sentence level latent variable. Samples

from the prior produce well-formed, coherent sentences, and the model is effective at

imputing missing words. However, as discussed in Section 1.3.1.1, the KL divergence

term of the log-likelihood lower bound reduces to 0 during training. This implies

that the model ignores the latent representation and collapses to a standard RNN

language model, similar to that of Graves [2014]. Word dropout is used to alleviate

this problem, and this allows the model to generate sentences with more varied

vocabulary and to perform better at imputing missing words than the RNN language

model.

In the context of computer vision, DRAW [Gregor et al., 2015] showed that using

an attention mechanism to ‘paint’ locally on a canvas produces images of remarkable

quality. A natural question therefore is whether a similar approach could work well

for natural language. To this end we introduce the Attentive Unsupervised Text

(W)riter (AUTR), which is a word level generative model for text [Shah et al., 2018].

AUTR uses an RNN with a dynamic attention mechanism to iteratively update a

canvas that parametrises the probability distribution over the sentence’s text.
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Using an attention mechanism in this way can be very powerful. It allows the

model to use the RNN to focus on local parts of the sentence at each time step

whilst relying on the latent representation to encode global sentence features. By

viewing the canvas at intermediate stages, and where the RNN is placing its attention,

we gain insight into how the model constructs a sentence. Additionally, we verify

that AUTR attains competitive lower bounds on the log-likelihood whilst being

computationally efficient. As well as learning a meaningful latent representation

for each sentence, the model generates coherent sentences and successfully imputes

missing words.

2.2 Model

AUTR models the probability distribution of a sentence x with L words x1, x2, . . . , xL

as

p(x|θ) =

∫
p(z)p(x|z; θ)dz (2.1)

where θ denotes the set of model parameters and

p(x|z; θ) =
L∏
l=1

p(xl|x1:l−1, z; θ). (2.2)

For the prior of the sentence level latent variable z, we use a standard Gaussian

p(z) = N (0, I). (2.3)

To model p(x|z; θ), AUTR uses an RNN which iteratively updates a canvas that

parametrises the probability distribution over the sentence’s text. Using E to denote

the word embedding size, the canvas C ∈ RL×E is a 2 dimensional array with L

‘slots’, one for each word in the sentence.

We use T to denote the number of time steps in the RNN. At each time step, an

attention mechanism selects the canvas’ slots to be updated; Ct denotes the state of

the canvas at time step t. Note that T is a hyperparameter of the model.
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z

h1 h2 · · · hT

C1 C2 · · · CT

(a) Generating the canvas. z is the latent representation and Ct denotes the state of the
canvas at step t. ht denotes the LSTM state at step t; it reads from the previous canvas
state Ct−1 and updates the canvas Ct.

CT
1 CT

2 CT
3 · · · CT

L

x1 x2 x3 · · · xL

(b) Generating the sentence conditioned on the final canvas state CT . CT
1 , . . . ,C

T
L are the

L ‘slots’.

Figure 2.1: The AUTR graphical model. Figure 2.1a shows the construction of the
canvas and Figure 2.1b shows the generation of the sentence conditioned on the final
canvas state.

Figure 2.1 shows the graphical model for AUTR. A summary of the generative

process is given in Algorithm 1 and full details follow in Section 2.2.1.

2.2.1 Generative process

For a given sample of the latent representation z, each RNN state ht is computed as

a function of this sample, as well as the previous RNN state and the canvas so far as

follows:

ht = f(ht−1, [z; Ct−1]). (2.4)

In our experiments, we use the LSTM for f(·) [Hochreiter and Schmidhuber, 1997].

Allowing the RNN hidden state to see what has been written to the canvas so far
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Algorithm 1: AUTR generative process

Sample: z ∼ N (0, I)
Initialise: h0 = 0 and C0 = 0
for t = 1, . . . , T do

Compute: ht = f(z,ht−1,Ct−1)

Compute: g̃tl =
exp[(1−

∑t−1
τ=1 g̃

τ
l )(Wg ·ht)l]∑L

λ=1 exp[(1−
∑t−1
τ=1 g̃

τ
λ)(Wg ·ht)λ]

(1−
∑t−1

τ=1 g̃τl )

Update: Ct = (1− g̃t)�Ct−1 + g̃t �Wu · ht
end
Generate: x ∼ p(x|z,CT ; θ)

allows the model to maintain the sentence’s long range semantic coherence because

the hidden state can anticipate the words that will be written at the end of the

sentence and adjust the beginning accordingly, and vice versa.

Each hidden state ht is then used to determine where to write (or more specifically,

how ‘strongly’ to write to each of the canvas’ slots).

2.2.1.1 Attention mechanism

We denote the ‘gate’ as gt ∈ [0, 1]L (i.e. a vector of length L with all values between

0 and 1). gt determines how strongly to write to each of the L slots of the canvas. A

softmax attention mechanism would be

gtl =
exp[(Wg · ht)l]∑L
λ=1 exp[(Wg · ht)λ]

(2.5)

where Wg is a parameter of the model. This would ensure that (at each time step)

the attention for each slot is between 0 and 1 and the total attention across all slots

is 1.

Instead, we use a modified attention mechanism as follows:

g̃tl =
exp[stl(Wg · ht)l]∑L
λ=1 exp[stλ(Wg · ht)λ]

stl (2.6)

where

stl = 1−
t−1∑
τ=1

g̃τl . (2.7)
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Intuitively, in order to encourage the model to write to those slots where it hasn’t

yet written, we multiply each element of the softmax by one minus the accumulated

attention so far (denoted by stl). Then, to ensure that the cumulative attention over

time applied to any of the slots is no greater than 1, we multiply the softmax itself

by stl . Empirically, we found this modification to perform favourably compared to

the standard softmax mechanism. Note that, once a slot has been written to with a

cumulative attention of 1 (i.e.
∑t−1

τ=1 g̃τl = 1), it cannot be updated further.

One of the key computational advantages of AUTR is that it works well with

T < L, because it writes to multiple slots at each RNN time step. This is shown to

work well empirically in Section 2.4.

2.2.1.2 Updating the canvas

The content to be written to the canvas is a linear function of the hidden state at

that time step as follows:

Ut = Wu · ht (2.8)

where Wu is a parameter of the model. Then, using � to denote element-wise

multiplication, the canvas is updated as

Ct = (1− g̃t)�Ct−1 + g̃t �Ut. (2.9)

gtl = 0 means that the lth slot from the previous time step carries over exactly to

the current time step (i.e. no updating takes place), whereas gtl = 1 means that the

previous values of the lth slot are completely forgotten and new values are entered in

their place.

We tested a fixed mechanism instead of one with attention to update the canvas,

but found that the RNN didn’t use the T computational steps available. At the final

time step it simply overwrote everything it had previously written.



2.2. Model 35

2.2.1.3 Generating the sentence

Conditioned on the final canvas, we first considered a model that generated each

word independently. However, this was ineffective in our experiments since local

consistency between words was lost. Therefore, we sample the sentence’s text from

a Markov model where the sampled word at position l depends on the lth slot of

the final canvas CT
l and on all of the l − 1 words that have been generated so far.

We first compute the ‘context’ x̃l , which is a weighted average of the previously

generated words; this is then used to modify the word probabilities that would have

been assigned by the canvas alone. Specifically

x̃l =
l−1∑
l′=1

wl,l′(z)e(xl′) (2.10)

where e(x) is the embedding of word x and

wl,l′(z) =
exp[(Wl · z)l′ ]∑l−1
l′=1 exp[(Wl · z)l′ ]

(2.11)

where Wl for l = 1, . . . , L are parameters of the model. Then, denoting bl =

CT
l + Wx · x̃l + Wz · z

p(xl = a|x1:l−1, z; θ) =
exp[e(a)Tbl]∑
v∈V exp[e(v)Tbl]

(2.12)

where Wx and Wz are parameters of the model.

2.2.2 Inference

Due to the intractability of the true posterior p(z|x; θ), we perform (approximate)

maximum likelihood estimation using SGVB, as described in Section 1.3.1. We use a

Gaussian inference distribution with parameters φ

q(z|x;φ) = N (µµµφ(x), diag(σσσ2
φ(x))). (2.13)

The mean and variance are parametrised using an LSTM, which takes as input each
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word embedding in order [Bowman et al., 2016]. The final LSTM state is passed

through a feedforward network with two output layers to produce the mean and

variance of the inference distribution.

Using this inference distribution, we train the model to maximise the ELBO

L(x; θ, φ) = Eq(z|x;φ)[log p(x|z; θ)]−DKL[q(z|x;φ)||p(z)]. (2.14)

2.3 Related work

The AUTR canvas based model with its dynamic attention mechanism is largely

inspired by DRAW [Gregor et al., 2015], which iteratively updates the canvas that

parametrises the final distribution over the observed image. One of the primary

differences between DRAW and AUTR is that conditioned on the final canvas, DRAW

treats each pixel independently. This is not too constraining in the image domain,

because small localised variations in pixel colours do not significantly affect the global

quality of generated images. However in the natural language setting, because the

embedding of a generated word may differ significantly from the entry in that slot

of the canvas, it is necessary to condition on all previously generated words in the

sentence when sampling the next word.

For natural language, deep latent variable models were popularised by Gen-LSTM,

which uses an LSTM for the generative model, outputting a single word at each time

step [Bowman et al., 2016]. However, this model suffers from the latent variable

being ignored, as discussed in Section 1.3.1.1. It has been shown that greater reliance

can be placed on the latent variable by using convolutional networks rather than

RNNs in the generative model [Semeniuta et al., 2017, Yang et al., 2017]. Shen et al.

[2019] develop a hierarchical model which produces more coherent and less repetitive

long text compared to the shallower models.

More recently, models which make use of the Transformer architecture [Vaswani

et al., 2017] have become popular for representation learning in natural language

processing. Most notably, GPT [Radford et al., 2018] and BERT [Devlin et al., 2019]

are large, pre-trained language models based on the Transformer architecture. In



2.4. Experiments 37

both cases, the network’s internal states are used as the sentence level or word level

representations for various downstream tasks, achieving significant gains over strong

baselines.

2.4 Experiments

We train our model on the Book Corpus dataset [Zhu et al., 2015], which is composed

of sentences from 11,038 unpublished books. We report results on language modelling

tasks and compare against the LSTM model presented by Bowman et al. [2016],

which we refer to as Gen-LSTM.

2.4.1 Preprocessing

We convert the text to lower case and restrict the vocabulary size to 20,000 words,

keeping sentences with a maximum length of 40 words. Of the 53M sentences that

meet these criteria, we use 90% for training and 10% for testing.

2.4.2 Model architecture

2.4.2.1 Generative model

For both AUTR and Gen-LSTM, we use a 50 dimensional latent representation z

and the LSTM states have 500 units. As explained in section 2.1, one of the key

advantages of AUTR is that it works well with T < L = 40. Therefore, we compare

results with T ∈ {30, 40}.

2.4.2.2 Inference distribution

We train both AUTR and Gen-LSTM using SGVB. We use the architecture described

in Section 2.2.2 for the inference distribution of both models; the LSTM states have

500 units.
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2.4.2.3 Parameters and speed

For both models, we use 300 dimensional word embeddings, which are learned jointly

with the generative and inference parameters. AUTR and Gen-LSTM have 10.9M

and 10.3M parameters respectively. They take, on average, 0.19 and 0.17 seconds per

training iteration and 0.06 and 0.05 seconds for sentence generation respectively.1

2.4.3 Training

We optimise the ELBO, shown in Equation 2.14, using stochastic gradient ascent.

We train both models for 1,000,000 mini-batch iterations, using Adam with an initial

learning rate of 0.0001 and mini-batches of size 200. To ensure training is fast, we

use a single sample z per data point from the inference distribution at each iteration.

2.4.3.1 Optimisation challenges

As mentioned in Section 1.3.1.1, the KL divergence term of the ELBO can collapse

to 0 when training models of this type.

KL divergence annealing We multiply the KL divergence term by a constant

prefactor, which we anneal from 0 to 1 over the first 50,000 iterations of training

[Bowman et al., 2016, Sønderby et al., 2016].

Word dropout To encourage Gen-LSTM to make better use of the latent repre-

sentation, Bowman et al. [2016] randomly drop out a proportion of the words when

training the generative RNN. Without this, they find that the model collapses to a

simple RNN language model which ignores the latent representation. Following this,

when training Gen-LSTM, we randomly replace 30% of the words with the unknown

token. In order to assess whether or not AUTR needs the dropout mechanism to

prevent the KL divergence term from collapsing to 0, we train it both with 30%

dropout and without any dropout.

1These values are for AUTR with T = 40.
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Model ELBO KL PPL

Gen-LSTM (30% dropout) -52.3 7.1 41.9

AUTR (no dropout)
T = 30 -50.7 8.0 37.4
T = 40 -50.7 7.8 37.4

AUTR (30% dropout)
T = 30 -51.6 14.0 39.9
T = 40 -51.5 13.8 39.6

Table 2.1: Test set results on the Book Corpus dataset. We report the ELBO, the
contribution to the ELBO from the KL divergence term (DKL[q(z|x;φ)||p(z)]), and
the perplexity (PPL). For the ELBO, higher is better, and for the perplexity, lower
is better.

2.4.4 Results

We report test set results on the Book Corpus dataset in Table 2.1. We evaluate the

ELBO on the test set by drawing 1,000 samples of the latent vector z per data point.

We see that AUTR, both with T = 30 and T = 40, trained with or without dropout,

achieves a higher ELBO and lower perplexity than Gen-LSTM. Importantly, AUTR

(trained with and without dropout) relies more heavily on the latent representation

than Gen-LSTM, as is shown by the larger contribution to the ELBO from the KL

divergence term. As explained in Section 1.3.1.1, if a model isn’t taking advantage

of the latent vector z, the loss function drives it to set q(z|x;φ) equal to the prior

p(z) (disregarding x), yielding a KL divergence of zero.

2.4.5 Observing the generation process

Conditioned on a sampled z, we would like to know the most likely sentence, i.e.

arg maxx log p(x|z; θ). However, because each word depends on all of the words

generated before it, this optimisation has a computationally intractable memory

requirement. We therefore perform this maximisation approximately using beam

search [Reddy, 1977].

In Figure 2.2, we show examples of how the canvas changes as the RNN makes

updates to it. At each time step, we take the state of the canvas and plot the

sequence of words found using beam search with a beam size of 15. In Figure 2.3,

we plot an example of the cumulative attention that has been placed on each of the
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Figure 2.2: Visualising the sequential construction of sentences generated from the
learned model. We sample z from its prior, i.e. z ∼ N (0, I) and pass the sample
through p(x|z; θ), visualising the canvas at several points along the way. The darkness
indicates the cumulative attention that has been placed on that slot so far.

canvas’ slots at each RNN time step.

In Figure 2.3, the model’s attention appears to spend the first 15 time steps to

decide how long the sentence will be (19 words in this case), and then spends the

remaining 25 time steps filling in the words from left to right (even though it is not

restricted to do so). It is notable that the model is able to dynamically adjust the

length of the sentences by moving the end-of-sentence token and either inserting or

deleting words as it sees fit. The model is also able to notice sentence features such

as the open quotation marks at t = 32 in the second example of Figure 2.2, which it

subsequently closes at t = 40.

2.4.6 Generated sentences

In Tables 2.2a and 2.2b, we show samples of text generated from the prior distributions

for AUTR and Gen-LSTM, and in Table 2.3, we show posterior reconstructions

using the inference distributions. Once again, the sentences shown are found using

beam search with a beam size of 15. In both models, sampling from the prior often

produces syntactically coherent sentences. However, the AUTR samples appear to

show better long range semantic consistency. This is likely due to the canvas feedback

mechanism when computing the RNN hidden states, and the ability of the model

to place attention on the entire sentence at each time step. When attempting to
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Figure 2.3: Visualising the cumulative attention on each of the sentence’s slots for
the second example of Figure 2.2. The vertical axis is the RNN time step and the
horizontal axis indicates the position in the sentence. The darker the shade, the
more attention has been placed on that position.

Algorithm 2: Imputing missing words

Make initial ‘random’ guess for missing words;
while not converged do

E-like step: Sample {z(s)}Ss=1 from q(z|x;φ) where x is latest guess for
sentence;

M-like step: Choose missing words in x to maximise
1
S

∑S
s=1 log p(xvis,xmiss|z(s); θ) using beam search;

end

reconstruct a sentence, it appears that both models’ latent representations capture

information about meaning and length. For example, in the second sentence of Table

2.3, both models are able to recognise that there is a question. Qualitatively, the

AUTR latent representation appears to learn meaning better than Gen-LSTM, as

evident in several of the examples in Table 2.3.

2.4.7 Imputing missing words

AUTR’s latent sentence representation makes it particularly effective at imputing

missing words. To impute missing words, we use an iterative procedure inspired by

the EM algorithm [Dempster et al., 1977]. We increase a variational lower bound on

the log-likelihood of the visible and missing data, i.e. log p(xvis,xmiss|θ), by iterating
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AUTR

“do you have any idea how much i love
you when i’m with you?”

“if he didn’t want to kill me,” he said,
but he was trying to keep distance.

hundreds of thousands of stars rose
above, reflecting the sky above the
horizon.

“that sounds like a good idea,” he said,
as his voice trailed off.

(a) Sentences sampled from the trained
AUTR model.

Gen-LSTM

but i didn’t want to think of any other
way to get it.

when i reach the top of the stairs, i
feel of sight of my back into the doors
open the door swings.

i had no idea what i was going to do,
but i was wrong.

“you’re going to look at least one of
course, but i have been in the most
of course,” he said.

(b) Sentences sampled from the trained
Gen-LSTM model.

Table 2.2: Sentences sampled from the prior: z is drawn from N (0, I) and passed
through the generative model p(x|z; θ) to produce a sentence x.

between an E-like and M-like step, as described in Algorithm 2. The M-like step

treats the missing words as model parameters, and hence (approximately, using beam

search) maximises the lower bound with respect to them.

We drop 30% of the words from each of the test set sentences and run Algorithm

2 with 50 different initialisations for the missing words. We select the resulting

imputation with the highest bound on the log-likelihood. AUTR successfully imputes

34.1% of the missing words, whilst Gen-LSTM achieves 31.9%. Sampled missing

word imputations for AUTR and Gen-LSTM are shown in Table 2.4.

2.4.8 Finding similar sentences

To compare the quality of the latent representations under each model, we take a

sentence x̃ from the test set and compute the mean of its posterior distribution,

µµµφ(x̃). We then find the ‘best matching’ sentence x∗ in the remainder of the test set,

which satisfies

x∗ = arg max
x 6=x̃

log p(x|z = µµµφ(x̃); θ). (2.15)

If the latent representation does indeed capture the sentence’s meaning, x∗ ought to
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Input (x) Reconstruction
(AUTR)

Reconstruction (Gen-
LSTM)

unable to stop herself, she
briefly, gently, touched
his hand.

unable to stop herself,
she leaned forward, and
touched his eyes.

unable to help her, and
her back and her into my
way.

why didn’t you tell me? why didn’t you tell me? why didn’t you tell me?”

a strange glow of sunlight
shines down from above,
paper white and blinding,
with no heat.

the light of the sun
was shining through the
window, illuminating the
room.

a tiny light on the door,
and a few inches from be-
hind him out of the door.

he handed her the slip of
paper.

he handed her a piece of
paper.

he took a sip of his drink.

Table 2.3: Sentences sampled from the posterior. Conditioned on a test set input
sentence x, z is drawn from the inference distribution, q(z|x;φ) and passed through
the generative model p(x′|z; θ) to produce a reconstruction x′.

appear qualitatively similar to x̃.

We show some examples of the best matching sentences using AUTR and Gen-

LSTM in Table 2.5; we see that the AUTR latent representations are generally

successful at capturing the sentences’ meanings and are able to learn sentence

features such as tense and gender as well.

2.5 Conclusion

We have introduced the Attentive Unsupervised Text (W)riter (AUTR), a latent

variable model which uses a canvas that is dynamically updated by an attention

mechanism to write natural language sentences. We visualise this canvas at interme-

diate stages to understand the sentence generation process. We find that the model

achieves a higher ELBO on the Book Corpus dataset, and relies more heavily on

the latent representation compared to a purely RNN-based generative model. In

addition, we verify that it is able to generate coherent sentences as well as impute

missing words effectively.

We have shown that the idea of using a canvas-based mechanism to generate

text is very promising and presents plenty of avenues for future research. These
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Input (x) Imputation (AUTR) Imputation (Gen-
LSTM)

“i want to draw you again,”
he says.

“i want to see you again,”
he said.

“i want to see you again,”
he said.

i believe the lie, and so i
survive another day.

i believe the lie, and so
will survive another day.

do believe the lie too and
so will survive another
day.

he was inside a house
made of cheese.

he was inside a house
made of cheese.

it is inside a house made
a cheese.

i could have saved more
of them if we had realized
back then.

i would have saved more
of them if we had realized
back there.

i should have saved more
of them than we had real-
ized back then.

Table 2.4: Imputing missing words in test set sentences, using the procedure described
in Algorithm 2. The underlined words are considered as missing.

could include investigating alternatives using fixed size canvases, as well as making

the number of RNN time steps dependent on the sentence’s latent representation.

It may also be worthwhile to consider using convolutional layers when updating

the canvas. Another particularly interesting avenue of interest is to use a similar

attention mechanism to parametrise the inference distribution. Finally, similarly to

recent work on Transformer-based language models [Radford et al., 2018, Devlin

et al., 2019], the AUTR representations could be evaluated on downstream tasks

such as natural language inference and sentiment analysis.
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Input (x̃) Best match (x∗)
(AUTR)

Best match (x∗) (Gen-
LSTM)

he wasn’t ready to face
the prospect of losing her
when he’d only just got-
ten her back.

he was never going to see
her again, and that was
the way it had to be.

she didn’t want to make
any promises, no matter
how much she wanted to
be with him again.

i can’t help but glare at
her.

i can’t help but smile at
her.

i couldn’t help but smile
at him.

so i stood in the doorway
of the chapel, watching it
happen.

as i sat on the bench out-
side the hospital, i looked
up.

when he reached the bot-
tom of the hill, he slowed
his pace.

dina lets a breath out on
the other side of the line.

there is a long pause on
the other end of the line.

he reached into his pocket
and pulled out a piece of
paper.

Table 2.5: Finding the ‘best matching’ sentence using the latent representation.



Chapter 3

Generative Neural Machine

Translation

The work presented in this chapter was published in [Shah and Barber, 2018].

In the previous chapter, we discussed the benefits of using latent variable models

for learning representations of sentences. We presented an approach which used an

attention mechanism to iteratively update a canvas that parametrised the probability

distribution over the sentence’s text. Experiments such as missing word imputation

and sentence similarity matching suggested that the representations were able to

learn semantic information about the sentences.

In this chapter, we demonstrate the use of latent variable language models for

machine translation. Specifically, we use a latent variable as a language-agnostic

representation which is encouraged to learn the semantic meaning of the sentence.

We train the model using both labelled and unlabelled data and perform multilingual

translation. This framework significantly reduces overfitting when there is limited

paired data available, and is effective for translating between pairs of languages not

seen during training.

3.1 Introduction

Data from multiple modalities (e.g. an image and a caption) can be used to learn

representations with more understanding about their environment compared to when
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only a single modality (an image or a caption alone) is available. Such representations

can then be included as components in larger models which may be responsible for

several tasks. However, it can often be expensive to acquire multi-modal data even

when large amounts of unlabelled data may be available.

In the machine translation context, the same sentence expressed in different

languages offers the potential to learn a representation of the sentence’s meaning.

Variational Neural Machine Translation (VNMT) [Zhang et al., 2016] attempts to

achieve this by augmenting a baseline model with a latent variable intended to

represent the underlying semantics of the source sentence, achieving higher BLEU

scores than the baseline. However, because the latent representation is dependent on

the source sentence it can be argued that it doesn’t serve a different purpose to the

encoder hidden states of the baseline model. As we demonstrate empirically, this

model tends to ignore the latent variable therefore it is not clear that it learns a

useful representation of the sentence’s meaning.

We introduce Generative Neural Machine Translation (GNMT) [Shah and Barber,

2018], whose latent variable is more explicitly designed to learn the sentence’s

semantic meaning. Unlike the majority of neural machine translation models (which

model the conditional distribution of the target sentence given the source sentence),

GNMT models the joint distribution of the target sentence and the source sentence.

To do this, it uses the latent variable as a language agnostic representation of the

sentence, which generates text in both the source and target languages. By giving

the latent representation responsibility for generating the same sentence in multiple

languages, it is encouraged to learn the semantic meaning of the sentence. We show

that GNMT achieves competitive BLEU scores on translation tasks, relies heavily on

the latent variable and is particularly effective at translating long sentences. When

there are missing words in the source sentence, GNMT is able to use its learned

representation to infer what those words may be and produce good translations

accordingly.

We then extend GNMT to facilitate multilingual translation whilst sharing

parameters across languages. This is achieved by adding two categorical variables

to the model in order to indicate the source and target languages respectively. We



3.2. Model 48

z

x y

Figure 3.1: The GNMT graphical model

show that this parameter sharing helps to reduce the impact of overfitting when the

amount of available paired data is limited, and proves to be effective for translating

between pairs of languages which were not seen during training. We also show that

by setting the source and target languages to the same value, monolingual data can

be leveraged to further reduce the impact of overfitting in the limited paired data

context, and to provide significant improvements for translating between previously

unseen language pairs.

3.2 Model

GNMT models the joint probability of the source sentence x with words x1, . . . , xL

and the target sentence y with words y1, . . . , yM by using a latent variable z as a

language agnostic representation of the sentence. The graphical model is shown in

Figure 3.1; the joint distribution is factorised as

p(x,y|θ) =

∫
p(z)p(x|z; θ)p(y|z,x; θ)dz (3.1)

where θ denotes the set of model parameters and the prior distribution is Gaussian

p(z) = N (0, I). (3.2)

This architecture means that z models the commonality between the source and

target sentences, which is the semantic meaning.
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3.2.1 Generative process

3.2.1.1 Source sentence

To compute p(x|z; θ), we use a model similar to that presented by Bowman et al.

[2016]. The conditional probabilities for l = 1, . . . , L are

p(xl = vx|x1:l−1, z; θ) ∝ exp[e(vx)
TWx · hxl ] (3.3)

where e(v) denotes the embedding of word v, Wx is a parameter of the model and

hxl is computed as

hxl = fx(hxl−1, [z; e(xl−1)]). (3.4)

In our experiments, we use the LSTM for fx(·) [Hochreiter and Schmidhuber, 1997].

3.2.1.2 Target sentence

To compute p(y|z,x; θ), we modify RNNSearch [Bahdanau et al., 2015] to accommo-

date the latent variable z.

Firstly, RNNSearch encodes the source sentence using a bidirectional LSTM. The

encoder states for l = 1, . . . , L are computed as

−−→
hencl =

−−→
f enc(

−−→
hencl−1, e(xl)) (3.5)

←−−
hencl =

←−−
f enc(

←−−
hencl+1, e(xl)) (3.6)

hencl = [
−−→
hencl ;

←−−
hencl ] (3.7)

where LSTMs are used for
−−→
f enc(·) and

←−−
f enc(·). Then, the decoder states for m =

1, . . . ,M are computed as

hdecm = fdec(hdecm−1, [e(ym−1); cm]) (3.8)

where again, an LSTM is used for for fdec(·) and cm is a weighted sum of the encoder
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states and is computed as

cm =
L∑
l=1

αl,mhencl (3.9)

αl,m =
exp(Wα · [hdecm−1; hencl ])∑L
λ=1 exp(Wα · [hdecm−1; hencλ ])

(3.10)

where Wα is a parameter of the model.

To modify RNNSearch to accommodate the latent variable z, we simply concate-

nate z to the embedding e(xl) in Equations (3.5) and (3.6) and to the embedding

e(ym−1) in Equation (3.8).

Finally, the conditional probabilities for m = 1, . . . ,M are

p(ym = vy|y1:m−1,x, z; θ) ∝ exp[e(vy)
TWy · hdecm ]. (3.11)

3.2.2 Training

To learn the model parameters θ, we perform (approximate) maximum likelihood

estimation using SGVB, as described in Section 1.3.1. To do this, we parametrise a

Gaussian inference distribution with parameters φ

q(z|x,y;φ) = N (µµµφ(x,y), diag(σσσ2
φ(x,y))). (3.12)

This allows us to maximise the lower bound on the log likelihood

log p(x,y|θ) ≥ Eq(z|x,y;φ)[log p(x,y|z; θ)]−DKL[q(z|x,y;φ)||p(z)]. (3.13)

For the functions µµµφ(x,y) and σσσ2
φ(x,y), as per VNMT we first encode the source

and target sentences, for l = 1, . . . , L and m = 1, . . . ,M , as

−−→
hq,xl =

−−→
f q,x(
−−→
hq,xl−1, e(xl)) (3.14)

←−−
hq,xl =

←−−
f q,x(
←−−
hq,xl+1, e(xl)) (3.15)

hq,xl = [
−−→
hq,xl ;

←−−
hq,xl ] (3.16)
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Algorithm 3: Generating translations

Make initial ‘random’ guess for target sentence y;
while not converged do

E-like step: Sample {z(s)}Ss=1 from q(z|x,y;φ) where y is latest guess
for target sentence;

M-like step: Choose words in y to maximise 1
S

∑S
s=1 log p(y|z(s),x; θ)

using beam search;

end

−−→
hq,ym =

−→
f q,y(
−−−→
hq,ym−1, e(ym)) (3.17)

←−−
hq,ym =

←−
f q,y(
←−−−
hq,ym+1, e(xm)) (3.18)

hq,ym = [
−−→
hq,ym ;

←−−
hq,ym ] (3.19)

where we use LSTMs for the functions
−−→
f q,x(·),

←−−
f q,x(·),

−→
f q,y(·) and

←−
f q,y(·). We then

concatenate the averages of the two sets of hidden states, and use this vector to

compute the mean and variance of the Gaussian inference distribution

hq =

[
1

L

L∑
l=1

hq,xl ;
1

M

M∑
m=1

hq,ym

]
(3.20)

µµµφ(x,y) = Wµ · hq (3.21)

σσσ2
φ(x,y) = exp(Wσ · hq). (3.22)

3.2.3 Generating translations

Once the model has been trained, we fix the sets of parameters θ and φ. Then, given a

source sentence x, we want to find the target sentence y which maximises p(y|x; θ) =∫
p(y|z,x; θ)p(z|x; θ)dz. However, this integral is intractable and so p(y|x; θ) cannot

be easily computed. Instead, because arg maxy p(y|x; θ) = arg maxy p(x,y|θ), we can

perform approximate maximisation using a procedure inspired by the EM algorithm,

similar to that described in Section 2.4.7. We increase a variational lower bound on

log p(x,y|θ) by iterating between an E-like step and an M-like step, as described in

Algorithm 3.
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Algorithm 4: Translating with missing words

Make initial ‘random’ guess for missing words in source sentence xmiss and
target sentence y;

while not converged do
E-like step: Sample {z(s)}Ss=1 from q(z|x,y;φ) where x is latest guess

for source sentence and y is latest guess for target sentence;
M-like step (1): Choose words in xmiss to maximise

1
S

∑S
s=1 log p(xvis,xmiss|z(s); θ) using beam search;

M-like step (2): Choose words in y to maximise
1
S

∑S
s=1 log p(y|z(s),x; θ) using beam search, where x

is latest guess for source sentence;

end

3.2.4 Translating with missing words

Unlike architectures which model the conditional probability of the target sentence

given the source sentence, p(y|x; θ), GNMT is naturally suited to performing trans-

lation when there are missing words in the source sentence because it can use the

latent representation to infer what those missing words may be.

Given a source sentence with visible words xvis and missing words xmiss, we want

to find the settings of xmiss and y which maximise p(xmiss,y|xvis; θ). However, as

in Section 3.2.3 this quantity is intractable. Therefore, we use a procedure similar

to Algorithm 3. Specifically, we increase a lower bound on log p(xvis,xmiss,y|θ), as

described in Algorithm 4.

3.2.5 Multilingual translation

We extend GNMT to facilitate multilingual translation, referring to this version of

the model as GNMT-Multi. We add two categorical variables to GNMT, ix and iy

(encoded as one-hot vectors), which indicate what the source and target languages

are respectively. The joint distribution becomes

p(x,y|ix, iy; θ) =

∫
p(z)p(x|z, ix; θ)p(y|z,x, ix, iy; θ)dz. (3.23)

This structure allows for parameters to be shared regardless of the input and output

languages, and when the amount of available paired translation data is limited, this
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parameter sharing can significantly mitigate the risk of overfitting. The forms of

the neural networks in GNMT-Multi are identical to those in GNMT (as described

in Sections 3.2.1 and 3.2.2), except that ix and iy are now concatenated to the

embeddings e(xl) and e(ym) respectively.

3.2.6 Semi-supervised learning

Monolingual data can be used within the GNMT-Multi framework to perform

semi-supervised learning. This is simply done by setting the source and target

language variables ix and iy to the same value, in which case the model must attempt

to reconstruct the input sentence, rather than translate it. We refer to this version

of the model as GNMT-Multi-SSL.

In Section 3.4, we show that when the amount of available paired translation data

is limited, using monolingual data in this way further reduces overfitting compared to

cross-language parameter sharing alone. Note that we are not concerned about the

encoder simply copying the sentence across to the decoder, because the cross-language

parameter sharing prevents this.

3.3 Related work

Whilst there have been many attempts at designing generative models of text

[Bowman et al., 2016, Dieng et al., 2017, Yang et al., 2017], their usage for translation

has been limited. Most closely related to our work is Variational Neural Machine

Translation (VNMT) [Zhang et al., 2016], which introduces a latent variable z with the

aim of capturing the source sentence’s semantics. It models the conditional probability

of the target sentence given the source sentence as p(y|x; θ) =
∫
p(y|z,x; θ)p(z|x; θ)dz.

The authors find that VNMT achieves improvements over modeling p(y|x; θ) directly

(i.e. without a latent variable). The primary difference compared to our work is

that VNMT does not model the probability distribution of the source sentence. We

believe that learning the joint distribution is a more difficult task than learning the

conditional, however this is not without benefit because when learning the joint

distribution, the latent variable is more explicitly encouraged to learn the semantic
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meaning, as shown in the examples in section 3.4. In addition, because the VNMT

latent representation is dependent on the source sentence, it is not clear that it serves

a different purpose to the encoder hidden states.

Also related is the work of Shu et al. [2017], which presents an approach for using

unlabeled data for conditional density estimation. The authors propose a hybrid

framework that regularizes the conditionally trained parameters towards the jointly

trained parameters. Experiments on image modeling tasks show improvements over

conditional training alone.

In work similar to GNMT-Multi, Johnson et al. [2017] perform multilingual

translation whilst sharing parameters by prepending, to the source sentence, a

string indicating the target language. Unlike GNMT-Multi, this approach does not

indicate the source language.

There have also been various attempts to leverage monolingual data to improve

translation models. Zhang and Zong [2016] use source language monolingual data

and Sennrich et al. [2016] use target language monolingual data to create a synthetic

dataset with which to augment the original paired dataset. This is done by passing

the monolingual data through a pre-trained translation model (trained using the

original paired data), thus creating a new synthetic dataset of paired data. This

is combined with the original paired data to create a new, larger dataset which is

used to train a new model. In both papers, the authors find that their methods

obtain improvements over using paired data alone. However, these procedures do

not directly integrate monolingual data into a single, unified model.

3.4 Experiments

We train GNMT, GNMT-Multi and GNMT-Multi-SSL on the 6 permutations of

language pairs between English (EN), Spanish (ES) and French (FR) i.e. EN → ES,

ES → EN, EN → FR, etc. We compare the performance of our models against that

of VNMT, the most closely related model to our work.

The procedure for generating translations using GNMT is described in Algorithm
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3. For VNMT, the conditional likelihood is

p(y|x; θ) =

∫
p(z|x; θ)p(y|z,x; θ)dz (3.24)

This can be maximized by drawing a set of samples {z(s)}Ss=1 from p(z|x; θ) and then

maximizing 1
S

∑S
s=1 p(y|z(s),x; θ). This is done approximately, using beam search

[Reddy, 1977].

3.4.1 Data

We use paired data provided by the Multi UN corpus [Eisele and Chen, 2010,

Tiedemann, 2012]. We train each model with a small, medium and large amount

of paired data, corresponding to 40K, 400K and 4M paired sentences respectively.

For each language pair, we create validation sets of size 5K and test sets of size 10K

paired sentences respectively. For the monolingual data used to train GNMT-Multi-

SSL, we use the News Crawl articles from 2009 to 2012, provided for the WMT’13

translation task. There are 20.9M, 2.7M and 4.5M monolingual sentences for EN,

ES and FR respectively.

3.4.1.1 Preprocessing

For each language, we convert all characters into lowercase and use a vocabulary of

the 20,000 most common words from the paired data, replacing words outside of

this vocabulary with an unknown word token. We exclude sentences which have a

proportion of unknown words greater than 10% and which are longer than 50 words.

3.4.2 Training

We optimize the ELBO, shown in Equation (3.13), using stochastic gradient ascent.

For all models, the latent representation z has 100 dimensions, each of the RNN

hidden states has 1,000 units, and the word embeddings are 300-dimensional. To

ensure training is fast, we use only a single sample of z per data point from the

inference distribution at each iteration. We perform early stopping by evaluating the

ELBO on the validation set every 1,000 iterations.
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3.4.2.1 Optimisation challenges

As mentioned in Section 1.3.1.1, the KL divergence term of the ELBO can collapse

to 0 when training models of this type.

KL divergence annealing We multiply the KL divergence term by a constant

prefactor, which we anneal from 0 to 1 over the first 50,000 iterations of training

[Bowman et al., 2016, Sønderby et al., 2016].

Word dropout In Equation (3.4), the dependence of the hidden state on the

previous word means that the RNN can often afford to ignore the latent variable

whilst still maintaining syntactic consistency between words. To prevent this from

happening, during training we randomly replace the word being passed to the next

RNN hidden state with the unknown word token, as suggested by Bowman et al.

[2016]. This is parametrised by a drop rate, which we set to 30%. Note that this is

only applied to the source sentence x.

Word dropout significantly weakens translation performance for VNMT (since it

would be applied to the target sentence y), therefore we use KL divergence annealing

when training both models, but only use word dropout when training GNMT.

3.4.3 Results

3.4.3.1 Translation

We report results on translation tasks in Table 3.1. When trained with 40K and

400K paired sentences, GNMT has a small advantage over VNMT in terms of BLEU

scores across all language pairs. However, both models tend to overfit on these

relatively small amounts of paired data. As a result, GNMT-Multi achieves much

higher BLEU scores with both 40K and 400K paired sentences, due to the parameter

sharing between languages. Adding monolingual data produces yet another significant

increase in BLEU scores. In fact, GNMT-Multi-SSL trained with only 400K paired

sentences achieves performance comparable with GNMT trained with 4M paired

sentences. Even with 4M paired sentences, adding monolingual data is still helpful,
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Paired
data

System EN
→
ES

ES
→
EN

EN
→
FR

FR
→
EN

ES
→
FR

FR
→
ES

40K

VNMT 12.45 12.30 12.20 12.98 12.19 13.44

GNMT 13.55 12.84 12.47 13.84 13.26 14.95

GNMT-
Multi

16.32 15.36 15.99 16.92 16.80 18.21

GNMT-
Multi-SSL

23.44 22.25 20.88 20.99 22.65 24.51

400K

VNMT 33.27 31.96 27.71 27.69 28.76 31.22

GNMT 33.87 32.75 28.55 28.98 29.41 31.33

GNMT-
Multi

40.08 38.56 35.55 37.28 36.31 38.68

GNMT-
Multi-SSL

43.96 41.63 37.37 39.66 38.09 40.79

4M

VNMT 44.10 43.03 38.06 38.56 35.28 40.27

GNMT 44.52 43.83 37.97 38.44 35.96 40.55

GNMT-
Multi

44.43 43.91 38.02 38.67 35.57 40.79

GNMT-
Multi-SSL

45.94 45.08 39.41 40.69 38.97 42.05

Table 3.1: Test set BLEU scores on translation for models trained with varying
amounts of paired sentences.

with GNMT-Multi-SSL outperforming the other models.

In Table 3.2, we report the values of the KL divergence term for the models

trained with 4M paired sentences. The higher values for GNMT, GNMT-Multi and

GNMT-Multi-SSL clearly indicate that these models are placing higher reliance on

the latent variable than is VNMT.

BLEU by sentence length It is argued by Tu et al. [2016] that attention based

translation models suffer from ‘coverage’ issues, particularly on long sentences,

because they do not keep track of the number of times each source word is translated

to a target word. However, because the latent variable in GNMT is explicitly

encouraged to model the sentence’s semantics, it helps to alleviate these issues. This

is demonstrated in Figure 3.2 and in the example in Table 3.3, both of which show
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System VNMT GNMT GNMT-Multi GNMT-Multi-SSL

DKL 1.104 5.581 9.661 10.915

Table 3.2: Test set KL divergence values (DKL[q(z|x,y;φ)||p(z)]) for the models
trained with 4M paired sentences, averaged across languages.

Figure 3.2: Test set BLEU scores on translation, by sentence length, evaluated using
the model parameters trained with 4M paired sentences.

that GNMT tends to perform better than VNMT on long sentences, reducing the

problems of translating the same phrase multiple times and neglecting to translate

others at all.

3.4.3.2 Missing word translation

In order to demonstrate that GNMT does indeed learn a useful representation of

the sentence’s semantic meaning, we perform missing word translation (i.e. where

the source sentence has missing words). The model is forced to rely on its learned

representation in order to infer what the missing words could be, and then to produce

a good translation accordingly.

To produce the missing word data, for each sentence we randomly sample a missing

word mask where each word (independently) has a 30% chance of being missing.

The procedure for generating translations using GNMT is described in Algorithm 4.
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Source dans ce décret, il met en lumière les principales réalisations de
la république d’ouzbékistan dans le domaine de la protection
et de la promotion des droits de l’homme et approuve le
programme d’activités marquant le soixantième anniversaire
de la déclaration universelle des droits de l’homme.

Target the decree highlights major achievements by the republic of
uzbekistan in the field of protection and promotion of human
rights and approves the programme of activities devoted to
the sixtieth anniversary of the universal declaration of human
rights.

VNMT in this regard, the decree highlights the main achievements
of the uzbek republic in the promotion and promotion and
protection of human rights and supports the activities of the
sixtieth anniversary of the human rights of human rights.

GNMT in this decree, it highlights the main achievements of the repub-
lic of uzbekistan on the protection and promotion of human
rights and approves the activities of the sixtieth anniversary
of the universal declaration of human rights.

Table 3.3: An example of a long sentence translation, showing the ability of GNMT
to capture long range semantics.

System EN
→
ES

ES
→
EN

EN
→
FR

FR
→
EN

ES
→
FR

FR
→
ES

VNMT 26.99 27.39 23.79 23.51 22.46 25.75
GNMT 33.23 33.46 29.84 28.27 29.83 33.09

Table 3.4: Test set BLEU scores for missing word translation. We use the model
parameters trained with 4M paired sentences.

To generate translations using VNMT, we replace the missing words in the source

sentence with the unknown word token and then conduct the same conditional

likelihood maximization described in Section 3.4. The results are reported in Table

3.4. From the BLEU scores, it is evident that GNMT has a significant advantage

over VNMT in this scenario, thanks to the quality of its learned representations.

We show an example missing word translation in Table 3.5, where the difference in

quality between GNMT and VNMT is clear.



3.5. Conclusion 60

Source we look forward at this session to further measures to
strengthen the beijing declaration and platform for action.

Target esperamos que en este peŕıodo de sesiones se adopten nuevas
medidas para consolidar la declaración y la plataforma de
acción de beijing.

VNMT consideramos que el peŕıodo se refiere a las medidas de fort-
alecimiento de la plataforma de acción de beijing.

GNMT esperamos con interés en este peŕıodo de sesiones un examen
de medidas para fortalecer la declaración y la plataforma de
acción de beijing.

Table 3.5: A randomly sampled test set missing word translation from English to
Spanish. The underlined words are considered as missing.

3.4.3.3 Unseen language pair translation

Because GNMT-Multi shares parameters across languages, it should be naturally

suited to performing translations between pairs of languages that it never saw during

training. For both VNMT and GNMT, to translate, say, from English to Spanish,

we first translate from English to French then from French to Spanish (because we

assume the English to Spanish parameters are not available). For GNMT-Multi

and GNMT-Multi-SSL, we train new models where the respective language pairs

are excluded during training. Once trained, we can directly translate from the source

to the target language without having to translate to an intermediate language first.

In Table 3.6, we report results on translation between previously unseen language

pairs. In this context, VNMT and GNMT perform similarly in terms of BLEU scores.

However, both models are consistently outperformed by GNMT-Multi (albeit only

by a small amount). Using monolingual data is very effective in this context, with

GNMT-Multi-SSL outperforming all other models.

3.5 Conclusion

In this chapter, we have introduced Generative Neural Machine Translation (GNMT),

a latent variable architecture which aims to model the semantic meaning of the

source and target sentences. For translation tasks, GNMT performs competitively
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(EN, ES) unseen (EN, FR) unseen (ES, FR) unseen

System EN
→
ES

ES
→
EN

EN
→
FR

FR
→
EN

ES
→
FR

FR
→
ES

VNMT 35.58 33.59 31.34 31.95 32.31 35.86

GNMT 35.35 33.76 31.55 31.38 32.39 35.85

GNMT-
Multi

36.72 35.05 32.81 32.62 32.94 36.77

GNMT-
Multi-SSL

38.80 37.43 34.79 34.98 33.57 38.11

Table 3.6: Test set BLEU scores for unseen pair translation. We use the VNMT
and GNMT parameters trained with 4M paired sentences. For GNMT-Multi and
GNMT-Multi-SSL, we train new models with 4M paired sentences, but with the
respective language pairs excluded during training.

with a comparable conditional model, places higher reliance on the latent variable

and achieves higher BLEU scores when translating long sentences. When there are

missing words in the source sentence, GNMT has superior performance.

We extend GNMT to facilitate multilingual translation without adding parameters

to the model. This parameter sharing reduces the impact of overfitting when the

amount of available paired data is limited, and proves to be effective for translating

between pairs of languages which were not seen during training. We also show that

this architecture can be used to leverage monolingual data, which further reduces

the impact of overfitting in the limited paired data context, and provides significant

improvements for translating between previously unseen language pairs.

Whilst we chose to factorize the joint distribution as per Equation (3.1), this

was not the only option we considered. The primary alternative was to use the

factorisation

p(x,y|θ) =

∫
p(z)p(x|z; θ)p(y|z; θ)dz. (3.25)

One could argue that this is in fact more natural for learning sentence semantics,

since z wouldn’t be able to rely on knowing x explicitly to help generate y through

p(y|z,x; θ). However, experimentally we found that the model struggled to gener-
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ate grammatically coherent translations which also retained the source sentence’s

meaning.

We have shown that the idea of using the same sentence in different languages

also allows for a useful latent representation to be learned. Using these sentence

representations could be very promising for use in downstream tasks where ‘under-

standing’ of the environment would be helpful, e.g. question answering, dialogue

generation, etc.



Chapter 4

Sequence Labelling

The work presented in this chapter was published in [Shah et al., 2021].

In the previous chapter, we presented a generative approach to machine translation

which uses a latent variable as a language-agnostic representation that is encouraged

to learn the semantic meaning of the sentence. We trained the model using semi-

supervised learning and performed multilingual translation. This approach performed

well even with limited paired data, and was effective at translating between pairs of

languages not seen during training.

In this chapter, we propose locally-contextual nonlinear CRFs for sequence

labelling. This approach directly incorporates information from the neighbouring

embeddings when predicting the label for a given word. This model serves as a

drop-in replacement for the linear chain CRF, consistently outperforming it in our

ablation study. In particular, this approach outperforms the previous state of the

art on two out of the four tasks evaluated.

4.1 Introduction

In natural language processing, sequence labelling tasks involve labelling every

word in a sequence of text with a linguistic tag. These tasks were traditionally

performed using shallow linear (in graphical structure) models such as hidden

Markov models (HMMs) [Kupiec, 1992, Bikel et al., 1999] and linear chain conditional

random fields (CRFs) [Lafferty et al., 2001, McCallum and Li, 2003, Sha and Pereira,
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2003]. These approaches model the dependencies between adjacent word-level labels.

However when predicting the label for a given word, they do not directly incorporate

information from the surrounding words in the sentence (known as ‘context’). As a

result, linear chain CRFs combined with deeper models which do use such contextual

information (e.g. convolutional and recurrent networks) gained popularity [Collobert

et al., 2011, Graves, 2012, Huang et al., 2015, Ma and Hovy, 2016].

Recently, contextual word embeddings such as those provided by pre-trained

language models have become more prominent [Peters et al., 2018, Radford et al.,

2018, Akbik et al., 2018, Devlin et al., 2019]. Contextual embeddings incorporate

sentence-level information, therefore they can be used directly with linear chain

CRFs to achieve state of the art performance on sequence labelling tasks [Yamada

et al., 2020, Li et al., 2020b].

Contextual word embeddings are typically trained using a generic language mod-

elling objective. This means that the embeddings encode contextual information

which can generally be useful for a variety of tasks. However, because these embed-

dings are not trained for any specific downstream task, there is no guarantee that they

will encode the most useful information for that task. Certain tasks such as sentiment

analysis and textual entailment typically require global, semantic information about

a sentence. In contrast, for sequence labelling tasks it is often the neighbouring

words in a sentence which are most informative when predicting the label for a given

word. Although the contextual embedding of a given word may encode information

about its neighbouring words, this is not guaranteed. It can therefore be beneficial

to design the sequence labelling architecture to directly extract this information from

the embeddings [Bhattacharjee et al., 2020].

We therefore propose locally-contextual nonlinear CRFs for sequence labelling.

Our approach extends the linear chain CRF in two straightforward ways. Firstly,

we directly incorporate information from the neighbouring embeddings when pre-

dicting the label for a given word. This means that we no longer rely on each

contextual embedding to have encoded information about the neighbouring words in

the sentence. Secondly, we replace the linear potential functions with deep neural

networks, resulting in greater modelling flexibility. Locally-contextual nonlinear
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h1 h2 h3 · · · hL

y1 y2 y3 · · · yL

Figure 4.1: The graphical model of the linear chain CRF.

CRFs can serve as a drop-in replacement for linear chain CRFs, and they have the

same computational complexity for training and inference.

We evaluate our approach on chunking, part-of-speech tagging and named entity

recognition. On all tasks, our results are competitive with those of the best published

methods. In particular, we outperform the previous state of the art on chunking

on CoNLL 2000 and named entity recognition on OntoNotes 5.0 English. We also

perform an ablation study which shows that both the local context and nonlinear

potentials consistently provide improvements compared to linear chain CRFs.

4.2 Linear chain CRFs

Linear chain CRFs [Lafferty et al., 2001], as reviewed in Section 1.1.2.2, are popular

for various sequence labelling tasks. These include chunking, part-of-speech tagging

and named entity recognition, all of which involve labelling every word in a sequence

according to a predefined set of labels.

We denote the sequence of words x = x1, . . . , xL and the corresponding sequence

of labels y = y1, . . . , yL. We assume that the words have been embedded using

either a non-contextual or contextual embedding model; we denote the sequence of

embeddings h = h1, . . . ,hL. If non-contextual embeddings are used, each embedding

is a function only of the word at that time step, i.e. hl = f emb−NC(xl). If contextual

embeddings are used, each embedding is a function of the entire sentence, i.e.

hl = f emb−C
l (x).

The linear chain CRF is shown graphically in Figure 4.1; ‘linear’ here refers to

the graphical structure. The conditional distribution of the sequence of labels y
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given the sequence of words x is parametrised as

p(y|x, θ) =

∏
l ψlηl∑

y

∏
l ψlηl

(4.1)

where θ denotes the set of model parameters. The potentials ψl and ηl are defined as

ψl = ψ(yl−1, yl; θ) (4.2)

ηl = η(yl,hl; θ). (4.3)

The potentials are constrained to be positive and so are parametrised in log-space.

Linear chain CRFs typically use log-linear potential functions

logψl = i(yl−1)
TA · i(yt) (4.4)

log ηl = i(yl)
TB · ht (4.5)

where i(y) denotes the one-hot encoding of y, and A and B are parameters of the

model. Note that ‘log-linear’ here refers to linearity in the parameters. Henceforth,

we refer to linear chain CRFs simply as CRFs.

4.2.1 Incorporating contextual information

When predicting the label at a given time step yl, it is often necessary to use

information from words in the sentence other than only xl; we refer to this as

contextual information. For example, below are two sentences from the CoNLL 2003

named entity recognition training set [Tjong Kim Sang and De Meulder, 2003]:

One had threatened to blow it up unless it was refuelled and they were

taken to [LOC London] where they intended to surrender and seek political

asylum.

[ORG St Helens] have now set their sights on taking the treble by winning

the end-of-season premiership which begins with next Sunday’s semifinal

against [ORG London].
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In each example, the word “London” (xl) has a different label (yl) and so it is

necessary to use contextual information to make the correct prediction.

In Figure 4.1, we see that there is no direct path from any hj with j 6= l to yl.

This means that in order to use contextual information, CRFs rely on either/both of

the following:

• The transition potentials ψ(yl−1, yl; θ) and ψ(yl, yl+1; θ) carrying this informa-

tion from the labels at positions l − 1 and l + 1.

• The (contextual) embedding hl encoding information about words xj with

j 6= l.

Relying on the transition potentials may not always be effective because knowing

the previous/next label is often not sufficient when labeling a given word. In the

above examples, the previous/next labels indicate that they are not part of a named

entity (i.e. yl−1 = O, yl+1 = O). Knowing this does not help to identify whether

“London” refers to a location, an organisation, or even a person’s name.

In the first example, knowing that the previous word (xl−1) is “to” and the next

word (xl+1) is “where” indicates that “London” is a location. In the second example,

knowing that the previous word (xl−1) is “against” indicates that “London” is a

sports organisation. Therefore, to label these sentences correctly, a CRF relies on

the embedding hl to encode the identities of the neighbouring words.

However, contextual embedding models are usually trained in a manner that

is agnostic to the downstream tasks they will be used for. Tasks such as senti-

ment analysis and textual entailment typically require global sentence-level context

whereas sequence labelling tasks usually require local contextual information from

the neighbouring words in the sentence, as shown in the example above. Because

different downstream tasks require different types of contextual information, it is

not guaranteed that task-agnostic contextual embeddings will encode the most use-

ful contextual information for any specific task. It can therefore be beneficial to

design the architecture for the downstream task to directly extract the most useful

information from the embeddings.
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h1 h2 h3 · · · hL

y1 y2 y3 · · · yL

Figure 4.2: The graphical model of the CRF⊗.

4.3 The CRF⊗ model

We introduce the CRF⊗, which extends the CRF by directly using the neighbouring

embeddings when predicting the label for a given word. We also replace the log-linear

potential functions with neural networks to provide greater modelling flexibility. We

call our model CRF⊗, where × refers to the locally-contextual structure and # refers

to the nonlinear potentials.

The graphical model is shown in Figure 4.2. The conditional distribution of the

labels y given the sentence x is parametrised as

p(y|x, θ) =

∏
l ψlφlηlξl∑

y

∏
l ψlφlηlξl

(4.6)

where ψl and ηl are the same as in Section 4.2 and the additional potentials φl and

ξl are defined as

φl = φ(yl,hl−1; θ) (4.7)

ξl = ξ(yl,hl+1; θ). (4.8)

With this structure, the embeddings hl−1 and hl+1, in addition to hl, are directly

used when modelling the label yl. This means that the model no longer relies on

the embedding hl to have encoded information about the neighbouring words in the

sentence. We evaluate a more general parametrisation in Section 4.9.2 but find its

empirical performance to be worse. We also evaluate a wider contextual window in

Section 4.9.3 but find that it does not provide improved results.

Since the labels yl are discrete, the parametrisation of logψl remains the same as

in Equation (4.4). However unlike the log-linear parametrisation in Equation (4.5),

log ηl along with log φl and log ξl are each parametrised by feedforward networks
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which take as input the embeddings hl−1, hl and hl+1 respectively [Peng et al., 2009]

log φl = i(yl)
Tfφ(hl−1) (4.9)

log ηl = i(yl)
Tfη(hl) (4.10)

log ξl = i(yl)
Tf ξ(hl+1) (4.11)

where fφ, fη and f ξ are the feedforward networks.

Training

We train the model to maximise log p(y|x, θ) with respect to the set of parameters

θ = {A, φ, η, ξ}. The objective can be expressed as

log p(y|x, θ) =
∑
l

[logψl + log φl + log ηl + log ξl]

− log
∑
y

∏
l

ψlφlηlξl. (4.12)

The first term is straightforward to compute. The second term can be computed using

dynamic programming, analogous to computing the likelihood in HMMs [Rabiner,

1989]. We initialise

α(y1) = ψ1η1. (4.13)

Then, for l = 2, . . . , L

α(yl) =
∑
yl−1

α(yl−1)ψlφlηlξl−1. (4.14)

Finally

∑
y

∏
l

ψlφlηlξl =
∑
yL

α(yL). (4.15)

Denoting Y as the set of possible labels, the time complexity of this recursion is

O(L|Y|2), the same as for the CRF.
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h1 h2 h3 · · · hL

g1 g2 g3 · · · gL

y1 y2 y3 · · · yL

Figure 4.3: The graphical model of the CRF⊗ combined with a bidirectional LSTM.

Inference

During inference, we want to find y∗ such that

y∗ = arg max
y

log p(y|x). (4.16)

This can be done using the Viterbi algorithm [Viterbi, 1967], which simply replaces

the sum in Equation (4.14) with a max operation.

The key advantage of the CRF⊗ is that it uses enhanced local contextual infor-

mation while retaining the computational tractability and parsimony of the CRF. As

discussed in Section 4.2.1, sequence labelling tasks will benefit from this enhanced

local context, as demonstrated empirically in the experiments and ablation study in

Sections 4.6 and 4.7 respectively.

4.3.1 Combination with bi-LSTMs

Huang et al. [2015] augment the CRF with a bidirectional LSTM layer in order to

use global, sentence-level contextual information when predicting the label for a

given word. The CRF⊗ can similarly be combined with a bidirectional LSTM layer.

Figure 4.2 shows that with the CRF⊗, there is still no direct path from any hl±j

with j ≥ 2 to yl. Therefore, particularly when using non-contextual embeddings,

encoding wider contextual information by using a bidirectional LSTM can be very

useful.

The graphical model of the CRF⊗ combined with a bidirectional LSTM is shown

in Figure 4.3. The sequence of embeddings h1, . . . ,hL is fed to a bidirectional LSTM
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to produce a sequence of states g1, . . . ,gL. These states are then used as the inputs

to the feedforward networks in Equations (4.9) to (4.11) instead of the embeddings.

4.4 Related work

There have been several approaches to directly incorporate contextual information

into sequence labelling architectures. The Conv-CRF [Collobert et al., 2011], biLSTM-

CRF [Huang et al., 2015], and biLSTM-CNN-CRF [Ma and Hovy, 2016] each augment

the CRF with either a convolutional network, a bidirectional LSTM, or both in order

to use contextual features when labelling a given word. More recently, Zhang et al.

[2018] propose an alternative LSTM structure for encoding text which consists of

a parallel state for each word, achieving improved results over the biLSTM-CRF

for sequence labelling tasks. GCDT [Liu et al., 2019] improves an RNN-based

architecture by augmenting it with a sentence-level representation which captures

wider contextual information. Luo et al. [2020] learn representations encoding both

sentence-level and document-level features for named entity recognition using a

hierarchical bidirectional LSTM. Luoma and Pyysalo [2020] leverage the fact that

BERT can represent inputs consisting of several sentences in order to use cross-

sentence context when performing named entity recognition.

We compare our approach against the best of these methods in Section 4.6.

Note that in work done concurrently to ours, Hu et al. [2020] also evaluate locally-

contextual parametrisations of the CRF and find that the local context consistently

improves results.

4.5 Datasets

We evaluate the CRF⊗ on the classic sequence labelling tasks of chunking, part-

of-speech tagging, and named entity recognition. We use the following datasets

(summary statistics for each are shown in Table 4.1):

Chunking Chunking consists of dividing sentences into syntactically correlated

parts of words according to a set of predefined chunk types. This task is evaluated
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Dataset Task Labels Train Validation Test

CoNLL 2000 Chunking 11 7,936* 1,000* 2,012
Penn Treebank POS 45 38,219 5,527 5,462
CoNLL 2003 NER 4 14,987 3,466 3,684
OntoNotes NER 18 59,924 8,528 8,262

Table 4.1: Statistics of each of the datasets used. We use the standard splits for all
datasets.
*The CoNLL 2000 dataset does not include a validation set. We therefore randomly
sample 1,000 sentences from the training set to use for validation.

using the span F1 score.

We use the CoNLL 2000 dataset [Tjong Kim Sang and Buchholz, 2000]. An

example sentence from the training set is shown below:

[NP He] [VP reckons] [NP the current account deficit] [VP will narrow]

[PP to] [NP only # 1.8 billion] [PP in] [NP September].

Part-of-speech tagging Part-of-speech tagging consists of labelling each word in

a sentence according to its part-of-speech. This task is evaluated using accuracy.

We use the Wall Street Journal portion of the Penn Treebank dataset [Marcus

et al., 1993]. An example sentence from the training set is shown below:

[NN Compound] [NNS yields] [VBP assume] [NN reinvestment] [IN of]

[NNS dividends] [CC and] [IN that] [DT the] [JJ current] [NN yield]

[VBZ continues] [IN for] [DT a] [NN year].

Named entity recognition Named entity recognition consists of locating and

classifying named entities in sentences. The entities are classified under a pre-defined

set of entity categories.

We use the CoNLL 2003 English [Tjong Kim Sang and De Meulder, 2003] and

OntoNotes 5.0 English [Pradhan et al., 2013] datasets. The CoNLL 2003 dataset

consists of 4 high-level entity types while the OntoNotes 5.0 dataset involves 18

fine-grained entity types. An example from the OntoNotes 5.0 training set is shown

below:
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[NORP Japanese] Prime Minister [PERSON Junichiro Koizumi] also

arrived in [GPE Pusan] [TIME this afternoon], beginning his [ORG

APEC] trip this time.

These are all important tasks in natural language processing and play vital

roles in downstream tasks such as dependency parsing, question answering and

relation extraction. Even small improvements on sequence labelling tasks can provide

significant benefits for these downstream tasks [Nguyen and Verspoor, 2018, Park

et al., 2015, Liu et al., 2017, Yamada et al., 2020].

4.6 Experiments

4.6.1 Model architectures and training

We train four different versions of the CRF⊗ and compare against the best published

results on each dataset. The variants are as follows:

• CRF⊗(GloVe):

– This uses 300-dimensional GloVe embeddings [Pennington et al., 2014]

combined with the CRF⊗.

• CRF⊗(GloVe, biLSTM)

– This uses 300-dimensional GloVe embeddings combined with a biLSTM

and the CRF⊗. The forward and backward LSTM states each have 300

units.

• CRF⊗(BERT)

– This uses the final (768-dimensional) layer of the BERT-Base model

[Devlin et al., 2019] with the CRF⊗. BERT embeddings are defined on

sub-word tokens rather than on words. Therefore if the BERT tokeniser

splits a word into multiple sub-word tokens, we take the mean of the

sub-word embeddings as the word embedding.
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Model F1

CRF⊗(GloVe) 96.12
CRF⊗(GloVe, biLSTM) 96.14
CRF⊗(BERT) 97.40
CRF⊗(Flair) 97.52

Liu et al. [2019] 97.30
Clark et al. [2018] 97.00
Akbik et al. [2018] 96.72

Table 4.2: Chunking results on the test set of the CoNLL 2000 dataset.

• CRF⊗(Flair)

– This uses Flair embeddings [Akbik et al., 2018] with the CRF⊗. Akbik

et al. [2018] recommend concatenating 100-dimensional GloVe embeddings

to their forward and backward language model embeddings. The resulting

Flair embeddings are 4196-dimensional.

Note that the GloVe embeddings are non-contextual whereas the BERT and Flair

embeddings are contextual. Throughout training, we update the embeddings in the

GloVe versions but do not update the BERT or Flair embedding models.

In early experiments, we also trained CRF⊗(BERT, biLSTM) and CRF⊗(Flair,

biLSTM) models but found that these did not improve performance compared to

using the CRF⊗ without the bidirectional LSTM. This is unsurprising because the

BERT and Flair embeddings are already trained to encode sentence-level context.

In each model, for the feedforward networks fφ, fη and f ξ referred to in Equations

(4.9), (4.10) and (4.11), we use 2 layers with 600 units, ReLU activations and a

skip connection. We train each model using stochastic gradient descent with a

learning rate of 0.001 and Nesterov momentum of 0.9 [Nesterov, 1983]. We train for

a maximum of 100,000 iterations, using early stopping on the validation set.

4.6.2 Results

The results for the four datasets are shown in Tables 4.2, 4.3, 4.4, and 4.5. Across

all of the tasks, our results are competitive with the best published methods. We

find that the previous state of the art is outperformed by both CRF⊗(BERT) and
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Model Accuracy

CRF⊗(GloVe) 97.15
CRF⊗(GloVe, biLSTM) 97.15
CRF⊗(BERT) 97.24
CRF⊗(Flair) 97.56

Bohnet et al. [2018] 97.96
Akbik et al. [2018] 97.85
Ling et al. [2015] 97.78

Table 4.3: Part-of-speech tagging results on the test set of the Penn Treebank dataset.

Model F1

CRF⊗(GloVe) 91.81
CRF⊗(GloVe, biLSTM) 91.34
CRF⊗(BERT) 93.82
CRF⊗(Flair) 94.22

Yamada et al. [2020] 94.30
Luoma and Pyysalo [2020] 93.74
Baevski et al. [2019] 93.50

Table 4.4: Named entity recognition results on the test set of the CoNLL 2003
dataset.

CRF⊗(Flair) on chunking on CoNLL 2000 and by CRF⊗(BERT) on named entity

recognition on OntoNotes 5.0.

We find that on all of the tasks, the BERT and Flair versions outperform both

of the GloVe versions. With CRF⊗(Glove, biLSTM), the bidirectional LSTM does

encode sentence-level contextual information. However, it is trained on a much

smaller amount of data than the BERT and Flair embedding models, likely resulting

in its lower scores.

In general, there is little difference in performance between CRF⊗(Glove) and

CRF⊗(Glove, biLSTM). This may suggest that the local context used by the CRF⊗

is sufficient for these tasks and that the wider context provided by the bidirectional

LSTM does not add significant value when using the CRF⊗. This is consistent with

the results provided in Section 4.9.3.
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Model F1

CRF⊗(GloVe) 88.70
CRF⊗(GloVe, biLSTM) 89.04
CRF⊗(BERT) 92.17
CRF⊗(Flair) 91.54

Li et al. [2020b] 92.07
Yu et al. [2020] 91.30
Li et al. [2020a] 91.11

Table 4.5: Named entity recognition results on the test set of the OntoNotes 5.0
dataset.

4.7 Ablation study

In this section, we attempt to understand the effects of the local context and nonlinear

potentials when compared to the CRF.

To this end, we train three additional variants of each of the model versions

described in Section 4.6.1. In each case, we replace the CRF⊗ component with one

of the following:

• CRF×

– This is the same as the CRF⊗, but with linear (instead of nonlinear)

potential functions.

• CRF#

– This removes the local context, i.e. it is the same as the CRF⊗ but

with the φl and ξl potentials removed. The ηl potential function is still

nonlinear.

• CRF

– This is the linear chain CRF. It is the same as the CRF#, but the ηl

potential function is linear instead of nonlinear.
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Figure 4.4: Results of the ablation study on each of the test sets. We compare the
results when augmenting the CRF with locally-contextual connections, nonlinear
potential functions, and both.

4.7.1 Results

Figure 4.4 shows the results with each of these variants. In all cases, we see that

the local context is helpful: for each set of embeddings, the results for the CRF⊗

are higher than for the CRF# and the results for the CRF× are higher than for the

CRF. The story is similar for the nonlinear potentials; in almost all cases, the CRF⊗

is better than the CRF× and the CRF# is better than the CRF.

Table 4.6 shows example sentences from the two named entity recognition test sets

where CRF⊗(BERT) and CRF⊗(Flair) make correct predictions but CRF(BERT)

and CRF(Flair) do not. In the first example, CRF(BERT) mistakes the length of the

organisation “St Pius X High School”. This does not happen with CRF⊗(BERT),

most likely because the model is aware that the word after “High” is “School”

and therefore that this is a single organisation entity. Similarly, in the second

example both CRF(BERT) and CRF(Flair) struggle to identify whether or not the
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quantities are cardinals or if they are related to the time measurements. In contrast,

CRF⊗(BERT) and CRF⊗(Flair) do not suffer from the same mistakes.

While the CRF⊗ models work well, it is interesting to examine where they still

make errors. Table 4.7 shows example sentences from the named entity recognition

test sets where CRF⊗(BERT) and CRF⊗(Flair) make incorrect predictions. We see

that in both examples, both models correctly identify the positions of the named

entities but struggle with their types. The first example is one that even a human

may struggle to label without any external knowledge beyond the sentence itself. In

the second example, both models fail to recognise the one long entity and instead

break it down into several smaller, plausible entities.

4.7.2 Computational efficiency

Table 4.8 in Section 4.9.1 shows the detailed computational efficiency statistics of

each of the models we train. In summary, we find that the CRF⊗ takes approximately

1.5 to 2 times longer for each training and inference iteration than the CRF. The

CRF× and CRF⊗ models have approximately 3 times as many parameters as the

CRF and CRF# respectively.

4.8 Conclusion

We propose locally-contextual nonlinear CRFs for sequence labelling. Our approach

directly incorporates information from the neighbouring embeddings when predicting

the label for a given word, and parametrises the potential functions using deep

neural networks. Our model serves as a drop-in replacement for the linear chain

CRF, consistently outperforming it in our ablation study. On a variety of tasks, our

results are competitive with those of the best published methods. In particular, we

outperform the previous state of the art on chunking on CoNLL 2000 and named

entity recognition on OntoNotes 5.0 English.

Compared to the CRF, the CRF⊗ makes it easier to use locally-contextual

information when predicting the label for a given word in a sentence. However if

contextual embedding models such as BERT and Flair were jointly trained with
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h1 h2 h3 · · · hL

y1 y2 y3 · · · yL

Figure 4.5: The graphical model of the CRF⊗-Concat.

sequence labelling tasks, this may eliminate the need for the additional locally-

contextual connections of the CRF⊗; investigating this would be a particularly

interesting avenue for future work.

The example sentences discussed in Section 4.7 showed that the CRF⊗ model

could benefit from being combined with a source of external knowledge (for example,

the knowledge that “Busang” is a location in the first example in Table 4.7). Therefore

another fruitful direction for future work could be to augment the CRF⊗ with a

knowledge base. This has been shown to improve performance on named entity

recognition in particular [Kazama and Torisawa, 2007, Seyler et al., 2017, He et al.,

2020].

4.9 Appendix

4.9.1 Computational efficiency

Table 4.8 shows the detailed computational efficiency statistics of each of the models

we train. For a given embedding model, we find that the CRF⊗ takes approximately

1.5 to 2 times longer for each training and inference iteration than the CRF. When

not using the bidirectional LSTM, the CRF× and CRF⊗ have approximately 3 times

as many parameters as the CRF and CRF# respectively. However when using the

bidirectional LSTM, this component dominates the number of parameters. This

means that the CRF×(GloVe, biLSTM) has approximately the same number of

parameters as the CRF(GloVe, biLSTM) and the CRF⊗(GloVe, biLSTM) only has

approximately 1.6 times as many parameters as the CRF#(GloVe, biLSTM).
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4.9.2 A more general parametrisation

A more general parametrisation of the local context would, at each time step, have a

single potential for hl−1, hl, hl+1 and yl instead of three separate ones as in Section

4.3.

The graph of this model, which we refer to as CRF⊗-Concat, is shown in Figure

4.5. We define the potential

σl = σ(yl,hl−1,hl,hl+1; θ). (4.17)

Then, the model is parametrised as

p(y|x, θ) =

∏
l ψlσl∑

y

∏
l ψlσl

. (4.18)

The parametrisation of logψl remains the same as in Equation (4.4). We parametrise

log σl as

log σl = i(yl)
Tfσ([hl−1; hl; hl+1]) (4.19)

where fσ is a feedforward network which takes as input the concatenated embeddings

hl−1, hl, and hl+1.

We train this model with BERT and Flair embeddings. As per Section 4.6.1, fσ

has 2 layers with 600 units, ReLU activations and a skip connection. This means that

for any choice of word embeddings, CRF⊗ and CRF⊗-Concat have approximately

the same number of parameters.

The results are shown in Table 4.9. We see that in all cases, CRF⊗ performs

better than CRF⊗-Concat. This result is likely due to CRF⊗ being easier to train

than CRF⊗-Concat: as well as having better test set scores, we find that CRF⊗

consistently achieves a higher value for the training objective than CRF⊗-Concat,

which suggests that it finds a better local optimum.
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h1 h2 h3 · · · hL

y1 y2 y3 · · · yL

Figure 4.6: The graphical model of the CRF⊗-Wide.

4.9.3 Widening the contextual window

The CRF⊗ as described in Section 4.3 has a local context of width 3. That is, the

embeddings hl−1, hl and hl+1 are directly used when modelling the label yl. One may

consider that the performance of the model would be better with a wider context.

The graph of this model, which we refer to as CRF⊗-Wide, is shown in Figure

4.6. In addition to the potentials in Equations (4.2), (4.3), (4.7) and (4.8), we define

πl = π(yl,hl−2; θ) (4.20)

ζl = ζ(yl,hl+2; θ). (4.21)

The model is then parametrised as

p(y|x, θ) =

∏
l ψlπlφlηlξlζl∑

y

∏
l ψlπlφlηlξlζl

. (4.22)

As with the parametrisation of the potentials φl, ηl and ξl in Equations (4.9) to

(4.11), log πl and log ζl are parametrised using feedforward networks fπ and f ζ whose

inputs are the embeddings hl−2 and hl+2 respectively as

log πl = i(yl)
Tfπ(hl−2) (4.23)

log ζl = i(yl)
Tf ζ(hl+2). (4.24)

We train this model with BERT and Flair embeddings. As per Section 4.6.1, fπ and

f ζ each have 2 layers with 600 units, ReLU activations and a skip connection.

The results are shown in Table 4.10. In general, we see that there is very little

difference in performance between CRF⊗ and CRF⊗-Wide. This suggests that the

local context used by the CRF⊗ is sufficiently wide for the tasks evaluated.
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Dataset Model Prediction

CoNLL
2003

Ground truth &
CRF⊗(BERT) &
CRF⊗(Flair)

[PER Mike Cito], 17, was expelled
from [ORG St Pius X High School]
in [LOC Albuquerque] after an Oc-
tober game in which he used the
sharpened chin strap buckles to in-
jure two opposing players and the
referee.

CRF(BERT) [PER Mike Cito], 17, was expelled
from [ORG St Pius X] High School
in [LOC Albuquerque] after an Oc-
tober game in which he used the
sharpened chin strap buckles to in-
jure two opposing players and the
referee.

CRF(Flair) [PER Mike Cito], 17, was expelled
from [LOC St Pius X High School]
in [LOC Albuquerque] after an Oc-
tober game in which he used the
sharpened chin strap buckles to in-
jure two opposing players and the
referee.

OntoNotes
5.0

Ground truth &
CRF⊗(BERT) &
CRF⊗(Flair)

It is [TIME three hours] by car to
[GPE Hong Kong] and [TIME one
and a half hours] by boat to [GPE
Humen].

CRF(BERT) It is [CARDINAL three] hours
by car to [GPE Hong Kong] and
[TIME one and a half hours] by
boat to [GPE Humen].

CRF(Flair) It is [TIME three hours] by
car to [GPE Hong Kong] and
[CARDINAL one] and [TIME a
half hours] by boat to [GPE Hu-
men].

Table 4.6: Example sentences from the named entity recognition test sets where
the CRF⊗(BERT) and CRF⊗(Flair) models make the correct predictions but the
CRF(BERT) and CRF(Flair) models make the incorrect predictions.
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Dataset Model Prediction

CoNLL
2003

Ground truth [ORG Bre-X], [ORG Barrick] said
to continue [LOC Busang] talks.

CRF⊗(BERT) [ORG Bre-X], [PER Barrick] said
to continue [ORG Busang] talks.

CRF⊗(Flair) [LOC Bre-X], [ORG Barrick] said
to continue [MISC Busang] talks.

OntoNotes
5.0

Ground truth In the near future, [EVENT the
Russian Tumen River Region Nego-
tiation Conference] will also be held
in [GPE Vladivostok].

CRF⊗(BERT) In the near future, the [NORP Rus-
sian] [LOC Tumen River] [ORG
Region Negotiation Conference] will
also be held in [GPE Vladivostok].

CRF⊗(Flair) In the near future, the [NORP Rus-
sian] [LOC Tumen River Region]
[EVENT Negotiation Conference]
will also be held in [GPE Vladivos-
tok].

Table 4.7: Example sentences from the named entity recognition test sets where the
CRF⊗(BERT) and CRF⊗(Flair) models make the incorrect predictions.
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Model CoNLL 2000 Penn Treebank
Prms Trn Inf Prms Trn Inf

CRF(GloVe) <0.1 0.05 0.08 <0.1 0.07 0.10
CRF×(GloVe) <0.1 0.07 0.10 <0.1 0.10 0.14
CRF#(GloVe) 0.7 0.05 0.09 0.8 0.08 0.13
CRF⊗(GloVe) 2.2 0.10 0.15 2.3 0.13 0.18

CRF(GloVe, biLSTM) 1.6 0.07 0.10 1.6 0.09 0.13
CRF×(GloVe, biLSTM) 1.6 0.11 0.15 1.7 0.13 0.18
CRF#(GloVe, biLSTM) 2.4 0.07 0.12 2.4 0.11 0.16
CRF⊗(GloVe, biLSTM) 3.8 0.12 0.18 3.9 0.16 0.22

CRF(BERT) <0.1 0.05 0.09 <0.1 0.12 0.17
CRF×(BERT) 0.1 0.09 0.14 0.1 0.14 0.21
CRF#(BERT) 1.3 0.07 0.11 1.3 0.15 0.20
CRF⊗(BERT) 3.9 0.11 0.18 4.0 0.22 0.29

CRF(Flair) 0.1 0.20 0.27 0.2 0.36 0.42
CRF×(Flair) 0.3 0.29 0.39 0.6 0.38 0.43
CRF#(Flair) 5.5 0.25 0.35 5.6 0.36 0.45
CRF⊗(Flair) 16.5 0.35 0.48 16.9 0.52 0.63

Model CoNLL 2003 OntoNotes 5.0
Prms Trn Inf Prms Trn Inf

CRF(GloVe) <0.1 0.07 0.11 <0.1 0.10 0.13
CRF×(GloVe) <0.1 0.11 0.16 <0.1 0.14 0.18
CRF#(GloVe) 0.7 0.09 0.14 0.8 0.10 0.15
CRF⊗(GloVe) 2.2 0.16 0.20 2.3 0.17 0.22

CRF(GloVe, biLSTM) 1.6 0.11 0.16 1.6 0.13 0.17
CRF×(GloVe, biLSTM) 1.6 0.14 0.19 1.7 0.16 0.22
CRF#(GloVe, biLSTM) 2.4 0.13 0.17 2.4 0.13 0.18
CRF⊗(GloVe, biLSTM) 3.8 0.16 0.23 3.9 0.20 0.28

CRF(BERT) <0.1 0.13 0.19 <0.1 0.18 0.23
CRF×(BERT) <0.1 0.16 0.23 0.1 0.18 0.26
CRF#(BERT) 1.3 0.15 0.21 1.3 0.18 0.25
CRF⊗(BERT) 3.9 0.22 0.31 4.0 0.23 0.33

CRF(Flair) <0.1 0.46 0.58 0.2 0.50 0.64
CRF×(Flair) 0.1 0.55 0.65 0.5 0.56 0.67
CRF#(Flair) 5.4 0.46 0.60 5.6 0.54 0.66
CRF⊗(Flair) 16.3 0.62 0.74 16.7 0.68 0.81

Table 4.8: Computational efficiency statistics of each the models trained. The Prms
column shows the number of parameters, in millions. Trn shows the average time
taken, in seconds, for a training iteration with a batch of 128 sentences. Inf shows
the average time taken, in seconds, to infer the most likely labels for a batch of 256
sentences. All values were computed using the same GPU.
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Model CoNLL 2000 Penn Treebank
F1 Accuracy

CRF⊗(BERT) 97.40 97.24
CRF⊗-Concat(BERT) 97.23 97.10

CRF⊗(Flair) 97.52 97.56
CRF⊗-Concat(Flair) 97.48 97.44

Model CoNLL 2003 OntoNotes 5.0
F1 F1

CRF⊗(BERT) 93.82 92.17
CRF⊗-Concat(BERT) 93.10 91.80

CRF⊗(Flair) 94.22 91.54
CRF⊗-Concat(Flair) 93.90 91.30

Table 4.9: Test set results with a more general parametrisation of the local context.

Model CoNLL 2000 Penn Treebank
F1 Accuracy

CRF⊗(BERT) 97.40 97.24
CRF⊗-Wide(BERT) 97.39 97.19

CRF⊗(Flair) 97.52 97.56
CRF⊗-Wide(Flair) 97.50 97.53

Model CoNLL 2003 OntoNotes 5.0
F1 F1

CRF⊗(BERT) 93.82 92.17
CRF⊗-Wide(BERT) 93.81 92.15

CRF⊗(Flair) 94.22 91.54
CRF⊗-Wide(Flair) 94.23 91.44

Table 4.10: Test set results with a wider local context.



Conclusion

Generative models aim to simulate the process by which a set of data is generated.

They are intuitive, interpretable and are naturally suited to learning from unlabelled

data. Traditional generative modelling approaches have achieved success on several

natural language processing tasks, however they can often be inflexible due to the

need to maintain tractable maximum likelihood training. In contrast, deep learning

methods are powerful and flexible, and are very popular in modern natural language

processing. In recent years, algorithms have been developed for training generative

models that incorporate deep learning. In this work, we have shown several ways to

leverage such algorithms to develop intuitive and powerful deep generative models

for natural language which achieve competitive performance on a variety of tasks.

In Chapter 2 we presented a latent variable model to learn representations of

sentences in an unsupervised manner. Prior deep generative modelling approaches to

this task were typically based on recurrent neural networks. However they suffered

from the KL collapse phenomenon whereby the approximate posterior distribution

would not learn an informative representation of a sequence of text. Instead, inspired

by a successful approach from image modelling, we presented a model which uses a

dynamic attention mechanism to iteratively update a canvas that parametrises the

probability distribution over the sentence’s text. We found that this method alleviates

the KL collapse issue suffered by prior approaches, allowing for useful semantic

representations to be inferred. As a result, the model is able to generate diverse,

coherent sentences, to successfully impute missing words, and to find semantically

similar sentences.

We then hypothesised that using sentences expressed in multiple languages

allows for richer representations to be learned than from a single language alone.



Conclusion 87

Therefore in Chapter 3 we presented a model for machine translation which uses

a latent variable as a language-agnostic representation that is encouraged to learn

the semantic meaning of the sentence. We used this model to perform multilingual

translation, and leverage monolingual sentences during training. This approach

achieves competitive BLEU scores (particularly when the amount of paired training

data is limited) and is especially effective at translating long sentences. When

there are missing words in the source sentence, the model is able to use its learned

representation to infer what those words may be and produce good translations

accordingly. This work has subsequently been built upon in various interesting ways.

For example, Eikema and Aziz [2019] use our model but generate translations using

a non-iterative procedure based on an approximation to the inference distribution.

Zheng et al. [2020] modify our graphical model by using a mirrored structure in order

to directly model bidirectional translation. Zhang et al. [2019] adapt our model for

jointly modelling sentences and their syntactic trees.

In recent years, deterministic contextual token embeddings provided by pre-trained

language models have become more and more popular. However, these language

models are trained in a manner that is agnostic to the downstream task they will

eventually be used for. It can therefore be necessary to design the architecture

for the downstream task to directly extract the most useful information from the

embeddings. To this end, in Chapter 4 we presented a locally-contextual CRF for

sequence labelling tasks. This approach enhanced the CRF by directly incorporating

the neighbouring words when predicting the label for a given word and by using

deep, nonlinear potential functions. We found improved results on several sequence

labelling tasks, and showed that both the local context and nonlinear potentials

consistently provide improvements compared to CRFs.

This dissertation presents several potential avenues for future work:

Learning semantic representations We have not fully evaluated the limits of

the representations learned in this thesis. Do they really ‘understand’ the meaning

of the sentences they represent? How can we measure this? In this direction, there

is straightforward future work which involves assessing the performance of these
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representations on tasks which test their ability to understand text.

One may also ask the question: are the proposed tasks optimal for learning

representations which understand sequences of text? For example, we have recently

seen significant performance gains from methods which use self-supervised contrastive

learning. Could this, or other paradigms, be better ways to train our models?

Learning at scale In the past few years, contextual embedding methods (e.g.

BERT, Flair, etc.) have become extremely popular. By using the outputs of these

pre-trained models, state of the art results have been achieved on a wide range of

tasks. These methods typically operate at a very large scale, both in terms of model

size and the amount of training data. The latent variable models proposed in this

work have certain inherent benefits, but have few parameters and have been trained

on relatively small amounts of data. Can we realise the benefits of latent variable

models at scale? How will we address the various challenges that training large such

models is likely to bring about (e.g. instability, KL collapse, etc.)?

Multi-task learning For a model to truly be considered ‘intelligent’, it will likely

have to be able to perform multiple tasks with data from multiple modalities. In the

future, we hope to develop such a model using some of the techniques from this work,

particularly those of Chapter 3. This will present a number of challenges (including

parameter sharing, overcoming catastrophic forgetting, dealing with different data

types, etc.) which will need to be addressed.

Advances in generative modelling The models presented throughout this thesis

are arguably very simple in terms of their graphical structures, the functional forms

used to parametrise the various distributions, and the maximum likelihood objectives

used to train them. Although this can be beneficial (e.g. in terms of intuitiveness and

interpretability), it raises the question: does the simplicity of these models limit how

well they perform in practice? In recent years, there have been significant advances

in generative modelling both in terms of how to design models as well as how to

train them (e.g. flow-based models, energy-based models, diffusion models, etc.).

How can we adopt these methods and apply them to the models/tasks in this work?



Bibliography

A. Akbik, D. Blythe, and R. Vollgraf. Contextual String Embeddings for Sequence

Labeling. In Proceedings of the 27th International Conference on Computational

Linguistics, 2018.

A. Baevski, S. Edunov, Y. Liu, L. Zettlemoyer, and M. Auli. Cloze-driven Pretraining

of Self-attention Networks. In Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and the 9th International Joint Conference

on Natural Language Processing, 2019.

D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine Translation by Jointly Learning

to Align and Translate. In International Conference on Learning Representations,

2015.

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A Neural Probabilistic Language

Model. Journal of Machine Learning Research, 3, 2003.

Y. Bengio, A. Courville, and P. Vincent. Representation Learning: A Review and New

Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,

35, 2013.

K. Bhattacharjee, M. Ballesteros, R. Anubhai, S. Muresan, J. Ma, F. Ladhak, and

Y. Al-Onaizan. To BERT or Not to BERT: Comparing Task-specific and Task-

agnostic Semi-Supervised Approaches for Sequence Tagging. In Proceedings of the

2020 Conference on Empirical Methods in Natural Language Processing EMNLP,

2020.

D. M. Bikel, R. Schwartz, and R. M. Weischedel. An Algorithm That Learns What‘s

in a Name. Machine Learning, 34, 1999.



BIBLIOGRAPHY 90

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation. Journal of

Machine Learning Research, 3, 2003.

B. Bohnet, R. McDonald, G. Simões, D. Andor, E. Pitler, and J. Maynez. Mor-

phosyntactic Tagging with a Meta-BiLSTM Model over Context Sensitive Token

Encodings. In Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics, 2018.

S. R. Bowman, L. Vilnis, O. Vinyals, A. Dai, R. Jozefowicz, and S. Bengio. Generating

Sentences from a Continuous Space. In Proceedings of The 20th SIGNLL Conference

on Computational Natural Language Learning, 2016.

Y. Burda, R. Grosse, and R. Salakhutdinov. Importance Weighted Autoencoders. In

International Conference on Learning Representations, 2016.

K. Clark, M.-T. Luong, C. D. Manning, and Q. Le. Semi-Supervised Sequence

Modeling with Cross-View Training. In Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing, 2018.

R. Collobert and J. Weston. A Unified Architecture for Natural Language Processing:

Deep Neural Networks with Multitask Learning. In Proceedings of the 25th

International Conference on Machine Learning, 2008.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa.

Natural Language Processing (Almost) from Scratch. Journal of Machine Learning

Research, 12, 2011.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete

Data via the EM Algorithm. Journal of the Royal Statistical Society, 39, 1977.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. In Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational

Linguistics, 2019.



BIBLIOGRAPHY 91

A. B. Dieng, C. Wang, J. Gao, and J. Paisley. TopicRNN: A Recurrent Neural

Network with Long-Range Semantic Dependency. In International Conference on

Learning Representations, 2017.

B. Eikema and W. Aziz. Auto-Encoding Variational Neural Machine Translation. In

Proceedings of the 4th Workshop on Representation Learning for NLP, 2019.

A. Eisele and Y. Chen. MultiUN: A Multilingual Corpus from United Nation

Documents. In Proceedings of the Seventh International Conference on Language

Resources and Evaluation, 2010.

X. Glorot, A. Bordes, and Y. Bengio. Deep Sparse Rectifier Neural Networks. In

Proceedings of the Fourteenth International Conference on Artificial Intelligence

and Statistics, 2011.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

A. Graves. Supervised Sequence Labelling with Recurrent Neural Networks. Springer,

2012.

A. Graves. Generating Sequences With Recurrent Neural Networks. CoRR,

abs/1308.0850, 2014.

K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra. DRAW: A

Recurrent Neural Network For Image Generation. In Proceedings of the 32nd

International Conference on Machine Learning, 2015.

Q. He, L. Wu, Y. Yin, and H. Cai. Knowledge-Graph Augmented Word Representa-

tions for Named Entity Recognition. In Proceedings of the Thrity-Fourth AAAI

Conference on Artificial Intelligence, 2020.

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation,

9, 1997.

K. Hornik. Approximation Capabilities of Multilayer Feedforward Networks. Neural

Networks, 4, 1991.



BIBLIOGRAPHY 92

Z. Hu, Y. Jiang, N. Bach, T. Wang, Z. Huang, F. Huang, and K. Tu. An Investigation

of Potential Function Designs for Neural CRF. In Findings of the Association for

Computational Linguistics: EMNLP 2020, 2020.

Z. Huang, W. Xu, and K. Yu. Bidirectional LSTM-CRF Models for Sequence Tagging.

CoRR, abs/1508.01991, 2015.

M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen, N. Thorat, F. Viégas,

M. Wattenberg, G. Corrado, M. Hughes, and J. Dean. Google’s Multilingual Neural

Machine Translation System: Enabling Zero-Shot Translation. Transactions of the

Association for Computational Linguistics, 5, 2017.

J. Kazama and K. Torisawa. Exploiting Wikipedia as External Knowledge for Named

Entity Recognition. In Proceedings of the 2007 Joint Conference on Empirical

Methods in Natural Language Processing and Computational Natural Language

Learning, 2007.

Y. Kim. Convolutional Neural Networks for Sentence Classification. In Proceedings

of the 2014 Conference on Empirical Methods in Natural Language Processing,

2014.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In

International Conference on Learning Representations, 2015.

D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In International

Conference on Learning Representations, 2014.

J. Kupiec. Robust Part-of-Speech Tagging Using a Hidden Markov Model. Computer

Speech & Language, 6, 1992.

J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional Random Fields:

Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceedings

of the 18th International Conference on Machine Learning, 2001.

Y. LeCun, Y. Bengio, and G. Hinton. Deep Learning. Nature, 521, 2015.



BIBLIOGRAPHY 93

X. Li, J. Feng, Y. Meng, Q. Han, F. Wu, and J. Li. A Unified MRC Framework

for Named Entity Recognition. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, 2020a.

X. Li, X. Sun, Y. Meng, J. Liang, F. Wu, and J. Li. Dice Loss for Data-imbalanced

NLP Tasks. In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, 2020b.

W. Ling, C. Dyer, A. W. Black, I. Trancoso, R. Fermandez, S. Amir, L. Marujo,
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