UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Use of whole genome sequencing to determine genetic basis of suspected mitochondrial disorders: cohort study

Schon, KR; Horvath, R; Wei, W; Calabrese, C; Tucci, A; Ibañez, K; Ratnaike, T; ... Genomics England Research Consortium; + view all (2021) Use of whole genome sequencing to determine genetic basis of suspected mitochondrial disorders: cohort study. BMJ , 375 , Article e066288. 10.1136/bmj-2021-066288. Green open access

[thumbnail of bmj-2021-066288.full.pdf]
Preview
Text
bmj-2021-066288.full.pdf - Published Version

Download (1MB) | Preview

Abstract

OBJECTIVE: To determine whether whole genome sequencing can be used to define the molecular basis of suspected mitochondrial disease. DESIGN: Cohort study. SETTING: National Health Service, England, including secondary and tertiary care. PARTICIPANTS: 345 patients with suspected mitochondrial disorders recruited to the 100 000 Genomes Project in England between 2015 and 2018. INTERVENTION: Short read whole genome sequencing was performed. Nuclear variants were prioritised on the basis of gene panels chosen according to phenotypes, ClinVar pathogenic/likely pathogenic variants, and the top 10 prioritised variants from Exomiser. Mitochondrial DNA variants were called using an in-house pipeline and compared with a list of pathogenic variants. Copy number variants and short tandem repeats for 13 neurological disorders were also analysed. American College of Medical Genetics guidelines were followed for classification of variants. MAIN OUTCOME MEASURE: Definite or probable genetic diagnosis. RESULTS: A definite or probable genetic diagnosis was identified in 98/319 (31%) families, with an additional 6 (2%) possible diagnoses. Fourteen of the diagnoses (4% of the 319 families) explained only part of the clinical features. A total of 95 different genes were implicated. Of 104 families given a diagnosis, 39 (38%) had a mitochondrial diagnosis and 65 (63%) had a non-mitochondrial diagnosis. CONCLUSION: Whole genome sequencing is a useful diagnostic test in patients with suspected mitochondrial disorders, yielding a diagnosis in a further 31% after exclusion of common causes. Most diagnoses were non-mitochondrial disorders and included developmental disorders with intellectual disability, epileptic encephalopathies, other metabolic disorders, cardiomyopathies, and leukodystrophies. These would have been missed if a targeted approach was taken, and some have specific treatments.

Type: Article
Title: Use of whole genome sequencing to determine genetic basis of suspected mitochondrial disorders: cohort study
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1136/bmj-2021-066288
Publisher version: http://dx.doi.org/10.1136/bmj-2021-066768
Language: English
Additional information: This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Department of Neuromuscular Diseases
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Genetics and Genomic Medicine Dept
URI: https://discovery.ucl.ac.uk/id/eprint/10137820
Downloads since deposit
76Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item