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c© 2021 The Author(s)
https://doi.org/10.1007/s00023-021-01111-7 Annales Henri Poincaré
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Abstract. Recent work has characterized rigorously what it means for one
quantum system to simulate another and demonstrated the existence of
universal Hamiltonians—simple spin lattice Hamiltonians that can repli-
cate the entire physics of any other quantum many-body system. Previous
universality results have required proofs involving complicated ‘chains’ of
perturbative ‘gadgets.’ In this paper, we derive a significantly simpler
and more powerful method of proving universality of Hamiltonians, di-
rectly leveraging the ability to encode quantum computation into ground
states. This provides new insight into the origins of universal models and
suggests a deep connection between universality and complexity. We ap-
ply this new approach to show that there are universal models even in
translationally invariant spin chains in 1D. This gives as a corollary a
new Hamiltonian complexity result that the local Hamiltonian problem
for translationally invariant spin chains in one dimension with an expo-
nentially small promise gap is PSPACE-complete. Finally, we use these
new universal models to construct the first known toy model of 2D–1D
holographic duality between local Hamiltonians.
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1. Introduction

Analog Hamiltonian simulation is one of the most promising applications of
quantum computing in the NISQ (noisy, intermediate scale, quantum) era,
because it does not require fully fault-tolerant quantum operations. Its poten-
tial applications have led to an interest in constructing a rigorous theoretical
framework to describe Hamiltonian simulation.

Recent work has precisely defined what it means for one quantum sys-
tem to simulate another [1] and demonstrated that—within very demanding
definitions of what it means for one system to simulate another—there exist
families of Hamiltonians that are universal, in the sense that they can simulate
all other quantum Hamiltonians. This work was recently extended, with the
first construction of a translationally invariant universal family of Hamiltoni-
ans [2].

Previous universality results have relied heavily on using perturbation
gadgets, and constructing complicated ‘chains’ of simulations to prove that
simple models are indeed universal. In this paper, we present a new simplified
method for proving universality. This method makes use of another technique
from Hamiltonian complexity theory: history state Hamiltonians [3]. Leverag-
ing the fact that it is possible to encode computation into the ground state of
local Hamiltonians, we show that it is possible to prove universality by con-
structing Hamiltonian models which can compute the energy levels of arbitrary
target Hamiltonians.

In order to ensure that the universality constructions preserve the entire
physics of the target system (and not just the energy levels), we make use
of an idea originally from [4] and used recently in [5–7]: ‘idling to enhance
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coherence.’ Before computing the energy levels of the target system, the com-
putation encoded in the simulator system ‘idles’ in its initial state for time L.
By choosing L to be sufficiently large, we can ensure that with high probability
there is a fixed set of spins in the simulator system which map directly to the
state of the target system.

As well as providing a route to simplifying previous proofs, this ‘history-
state simulation method’ also offers more insight into the origins of universality
and the relationship between universality and complexity. The classification of
two-qubit interactions by their simulation ability in [1], which showed that the
universal class was precisely the set of QMA-complete interactions, was sug-
gestive of a connection between simulation and complexity. And a complexity
theoretic classification of universal models already exists in the classical case
[42]. But until now, it was not clear whether a connection existed for general
quantum interactions, or whether it was merely an accident in the two-qubit
case. Previous methods for proving universality in the quantum case did not
offer a route to classifying universal models, and the more complicated non-
commutative structure of quantum Hamiltonians meant that the techniques
from the classical proof couldn’t be applied. By demonstrating that it is pos-
sible to prove universality by leveraging the ability to encode computation
into ground states, we have provided a route to showing that the connection
between universality and complexity holds more generally. In a companion pa-
per [41], we make this insight rigorous, by deriving a full complexity theoretic
classification of universal quantum Hamiltonians.

We also use the ‘history-state simulation method’ to provide a simple
construction of two new universal models. Both of these are translationally
invariant systems in 1D, and we show that one of these constructions is efficient
in terms of the number of spins in the universal construction (yet not in terms
of the simulating system’s norm):

Theorem 1.1. There exists a two-body interaction h(1) depending on a single
parameter h(1) = h(1)(φ), and a fixed one-body interaction h(2) such that the
family of translationally invariant Hamiltonians on a chain of length N ,

Huniv(φ,Δ, T ) = Δ
∑

〈i,j〉
h

(1)
i,j (φ) + T

N∑

i=0

h
(2)
i , (1)

is a universal model, where Δ, T and φ are parameters of the Hamiltonian,
and the first sum is over adjacent sites along the chain. The universal model
is efficient in terms of the number of spins in the simulator system.

By tuning φ, T and Δ, this model can replicate (in the precise sense of
[1]) all quantum many-body physics.

This is the first translationally invariant universal model which is effi-
cient in terms of system size overhead. Its existence implies that, for problems
which preserve hardness under simulation, complexity theoretic results for gen-
eral Hamiltonians can also apply to 1D, translationally invariant Hamiltonians
(though care must be taken when applying this, as the construction is not ef-
ficient in the norm of the simulating system). This is, for instance, the case
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for a reduction from a PreciseQMA-hard local Hamiltonian (LH) problem, for
which the reduction to a translationally invariant version preserves the correct
promise gap scaling. This in turn implies that the local Hamiltonian problem
remains PSPACE-hard for a promise gap that closes exponentially quickly,
even when enforcing translational invariance for the couplings. This stands in
contrast to a promise gap which closes as 1/poly in the system size, in which
case the variant is either QMA (for non-translational invariance) or QMAEXP

(for translational invariance) complete.
Furthermore, Theorem 1.1 allows us to construct the first toy model

of holographic duality between local Hamiltonians from a 2D bulk to a 1D
boundary, extending earlier work on toy models of holographic duality in [8]
and [9].

We also construct a universal model which is described by just two free
parameters, but where the model is no longer efficient in the system size over-
head:

Theorem 1.2. There exists a fixed two-body interaction h(3) and a fixed one-
body interaction h(2) such that the family of translationally invariant Hamil-
tonians on a chain of length N ,

Huniv(Δ, T ) = Δ
∑

〈i,j〉
h

(3)
i,j + T

N∑

i=0

h
(2)
i , (2)

is a universal model, where Δ and T are parameters of the Hamiltonian, and
the first sum is over adjacent sites along the chain.

By varying the size of the chain N that this Hamiltonian is acting on,
and tuning the Δ and T parameters in the construction, this Hamiltonian can
replicate (again in the precise sense of [1]) all quantum many-body physics.
We are able to demonstrate that constructing a universal model with no free
parameters is not possible, but the existence of a universal model with just
one free parameter is left as an open question.

The remainder of the paper is set out as follows. In Sect. 2, we cover
the necessary background regarding the theory of simulation, and encoding
computation into ground states of QMA-hard Hamiltonians. In Sect. 3, we
give an overview of the new method for proving universality and our two new
universal constructions. Reading these sections should be enough to gain an
intuitive understanding of our approach and our results. The full proofs of our
results are given in Sect. 4—this section may be skipped on an initial reading
if you are primarily interested in understanding the general approach, or the
applications of the results. The complexity theory implications are discussed in
Sect. 5, while in Sect. 6 the new toy model of holographic duality is constructed.
Avenues for future research are discussed in Sect. 7.
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2. Preliminaries

2.1. Universal Hamiltonians

2.1.1. Hamiltonian Encodings. Any simulation of a Hamiltonian H by another
Hamiltonian H ′ must involve ‘encoding’ H in H ′ in some fashion. In [1], it was
shown that any encoding map E(A) which satisfies three basic requirements

i) E(A) = E(A)† for all A ∈ Hermn

ii) spec(E(A)) = spec(A) for all A ∈ Hermn

iii) E(pA + (1 − p)B) = pE(A) + (1 − p)E(B) for all A,B ∈ Hermn and all
p ∈ [0, 1]

must be of the form

E(A) = V
(
A ⊗ P + A ⊗ Q

)
V †, (3)

where V is an isometry, A denotes complex conjugation, and P and Q are
orthogonal projectors. Moreover, it is shown that, under any encoding of the
form given in Eq. (3), E(H) will also preserve the measurement outcomes, time
evolution and partition function of H.

A local encoding is an encoding which maps local observables to local
observables, defined as follows.

Definition 2.1. (Local subspace encoding (Definition 13 from [1])) Let

E : B
(⊗n

j=1Hj

) → B
(⊗n

j=1H ′
j

)

be a subspace encoding. We say that the encoding is local if for any operator
Aj ∈ Herm(Hj) there exists A′

j ∈ Herm(H ′
j) such that:

E(Aj ⊗ 1) = (A′
j ⊗ 1)E(1).

It is shown in [1] that if an encoding E(M) = V (M ⊗ P + M ⊗ Q)V †

is local, then the isometry V can be decomposed into a tensor product of
isometries V = ⊗iVi, for isometries Vi : Hi ⊗Ei → H ′

i , for some ancilla system
Ei.1

In this paper, all of the encodings we work with are of the simpler form
E(A) = V AV †.

2.1.2. Hamiltonian Simulation. Building on encodings, [1] developed a rigor-
ous formalism of Hamiltonian simulation, formalizing the notion of one many-
body system reproducing identical physics as another system, including the
case of approximate simulation and simulations within a subspace. We first
describe the simpler special case of perfect simulation. If H ′ perfectly simu-
lates H, then it exactly reproduces the physics of H below some energy cutoff
Δ, where Δ can be chosen arbitrarily large. For brevity, we abbreviate the low-
energy subspace of an operator A via S≤Δ(A):= span{|ψ〉 : A |ψ〉 = λ |ψ〉 ∧λ ≤
Δ}.

1There is a more general definition of simulation which doesn’t require the isometries to be
tensor product [27]. However, these types of simulations do not preserve the local structure
of the Hamiltonian. So while they are interesting from a complexity theoretic perspective,
they are not as useful for physical simulation.
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Definition 2.2 (Exact simulation, [1, Def. 20]). We say that H ′ perfectly sim-
ulates H below the cutoff energy Δ if there is a local encoding E into the
subspace SE such that

i. SE = S≤Δ(H′), and
ii. H ′|≤Δ = E(H)|SE .

We can also consider the case where the simulation is only approximate:

Definition 2.3 (Approximate simulation, [1, Def. 23]). Let Δ, η, ε > 0. A Hamil-
tonian H ′ is a (Δ, η, ε)-simulation of the Hamiltonian H if there exists a local
encoding E(M) = V (M ⊗ P + M ⊗ Q)V † such that

i. There exists an encoding Ẽ(M) = Ṽ (M⊗P +M⊗Q)Ṽ † into the subspace
SẼ such that SẼ = S≤Δ(H′) and ‖Ṽ − V ‖ ≤ η; and

ii. ‖H ′
≤Δ − Ẽ(H)‖ ≤ ε.

Note that the role of Ẽ is to provide an exact simulation as per Definition 2.2.
However, it might not always be possible to construct this encoding in a local
fashion. The local encoding E in turn approximates Ẽ, such that the subspaces
mapped to by the two encodings deviate by at most η. ε controls how much
the eigenvalues are allowed to differ.

If we are interested in whether an infinite family of Hamiltonians can
be simulated by another, the notion of overhead becomes interesting: if the
system size grows, how large is the overhead necessary for the simulation, in
terms of the number of qudits, operator norm or computational resources? We
capture this notion in the following definition.

Definition 2.4 (Simulation, [1, Def. 23]). We say that a family F ′ of Hamil-
tonians can simulate a family F of Hamiltonians if, for any H ∈ F and any
η, ε > 0 and Δ ≥ Δ0 (for some Δ0 > 0), there exists H ′ ∈ F ′ such that H ′ is
a (Δ, η, ε)-simulation of H.

We say that the simulation is efficient if, in addition, for H acting on
n qudits and H ′ acting on m qudits, ‖H ′‖ = poly(n, 1/η, 1/ε,Δ) and m =
poly(n, 1/η, 1/ε,Δ); H ′ is efficiently computable given H, Δ, η and ε; each local
isometry Vi in the decomposition of V is itself a tensor product of isometries
which map to O(1) qudits; and there is an efficiently constructable state |ψ〉
such that P |ψ〉 = |ψ〉.

As already outlined, in [1] it is shown that approximate Hamiltonian
simulation preserves important physical properties. We recollect the most im-
portant ones in the following.

Lemma 2.5 ( [1, Lem. 27, Prop. 28, Prop. 29]). Let H act on (Cd)⊗n. Let H ′

act on (Cd′
)⊗m, such that H ′ is a (Δ, η, ε)-simulation of H with corresponding

local encoding E(M) = V (M ⊗ P + M ⊗ Q)V †. Let p = rank(P ) and q =
rank(Q). Then, the following holds true.
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i. Denoting with λi(H) (resp. λi(H ′)) the ith-smallest eigenvalue of H (resp.
H ′), then for all 1 ≤ i ≤ dn, and all (i − 1)(p + q) ≤ j ≤ i(p + q),
|λi(H) − λj(H ′)| ≤ ε.

ii. The relative error in the partition function evaluated at β satisfies

|ZH′(β) − (p + q)ZH(β)|
(p + q)ZH(β)

≤ (d′)me−βΔ

(p + q)dne−β‖H‖ + (eεβ − 1). (4)

iii. For any density matrix ρ′ in the encoded subspace for which E(1)ρ′ = ρ′,
we have

‖e−iH′tρ′eiH′t − e−iE(H)tρ′eiE(H)t‖1 ≤ 2εt + 4η. (5)

Definition 2.4 naturally leads to the question in which cases a family of
Hamiltonians is so versatile that it can simulate any other Hamiltonian: in
that case, we call the family universal.

Definition 2.6 (Universal Hamiltonians [1, Def. 26]). We say that a family of
Hamiltonians is a universal simulator—or simply is universal—if any (finite-
dimensional) Hamiltonian can be simulated by a Hamiltonian from the family.
We say that the universal simulator is efficient if the simulation is efficient for
all local Hamiltonians.

2.2. Circuit-to-Hamiltonian Mappings

The key idea behind our universal constructions is that it is possible to encode
computation into the ground state of local Hamiltonians. This technique was
first proposed by Feynman in 1985 and is the foundation for many prominent
results in Hamiltonian complexity theory, such as QMA-hardness of the local
Hamiltonian problem [3,10].

For the constructions we develop in this paper, we will make use of the
ability to encode an arbitrary quantum computation into the ground state of
a local Hamiltonian. These are often called ‘circuit-to-Hamiltonian mappings,’
though the mappings may involve other models of quantum computation than
the circuit model. These Hamiltonians are typically constructed in such a way
that their ground states are ‘computational history states.’ A very general
definition of history states was given in [11]; we will only require the simpler
‘standard’ history states here.

Definition 2.7. (Computational history state) A computational history state
|Φ〉CQ ∈ HC ⊗ HQ is a state of the form

|Φ〉CQ =
1√
T

T∑

t=1

|ψt〉 |t〉 ,

where {|t〉} is an orthonormal basis for HC and |ψt〉 = Πt
i=1Ui |ψ0〉 for some

initial state |ψ0〉 ∈ HQ and set of unitaries Ui ∈ B(HQ).
HC is called the clock register and HQ is called the computational reg-

ister. If Ut is the unitary transformation corresponding to the tth step of a
quantum computation, then |ψt〉 is the state of the computation after t steps.
We say that the history state |Φ〉CQ encodes the evolution of the quantum
computation.
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Note that Ut need not necessarily be a gate in the quantum circuit model.
It could also, e.g., be one time-step of a quantum Turing machine, or even a
time-step in some more exotic model of quantum computation [12], or an
isometry [13]. In the particular constructions, we make use of in this work, Ut

will be a time-step of a quantum Turing machine.

3. Overview of Construction

3.1. High-level Outline of the Construction

As mentioned in Sect. 2.2, the key technique we make use of in our universality
constructions is the ability to encode computations into the ground states
of local Hamiltonians. The model of computation we encode is the quantum
Turing machine (QTM) model—standard techniques for encoding QTMs in
local Hamiltonians give translationally invariant Hamiltonians [14,15].

In both the constructions, we develop in this work a description of the
Hamiltonian to be simulated (the ‘target’ Hamiltonian, Htarget) is encoded
in the binary expansion of some natural number, x ∈ N. Details of this en-
coding are given in Sect. 3.2. The natural number x is then itself encoded in
some parameter of the universal Hamiltonian (see Sect. 3.3 for two methods
of encoding natural numbers in parameters of universal Hamiltonians).

The Hamiltonian we use to construct the universal model has as its
ground state computational history states (cf. Definition 2.7) which encode
two QTMs (M1 and MPE) which share a work tape. The two computations
are ‘dovetailed’ together—the computation M1 occurs first, and the result of
this computation is used as input for MPE. The first QTM, M1, extracts the
binary expansion of x from the parameter of the Hamiltonian. At the end of
M1’s computation, the binary expansion of x is written on the work tape which
M1 shares with MPE. An outline of the methods we use to extract x and write
it on the Turing machine tape are given in Sect. 3.3.

The second QTM, MPE reads in x, which contains a description of Htarget,
from the work tape which it shares with M1. It also reads in an input state
|ψ〉—this is unconstrained by the computation (it can be thought of as carrying
out the same role as a witness in a QMA verification circuit). It then carries
out phase estimation on |ψ〉 with respect to the unitary generated by Htarget.

The Hamiltonian which encodes M1 and MPE has a zero-energy degener-
ate ground space, spanned by history states with all possible input states |ψ〉.
In order to recreate the spectrum of Htarget, we need to break this degeneracy.
We achieve this by adding one-body projectors to the universal Hamiltonian
which give the correct energy to the output of MPE to reconstruct the spectrum
of Htarget.

With this construction, the energy levels of the universal Hamiltonian
recreate the energy levels of Htarget. To ensure that the eigenstates are also
correctly simulated, before M1 carries out its computation, it ‘idles’ in its ini-
tial state for some time L. By choosing L large enough, we show that this



Translationally Invariant Universal Quantum

construction can approximately simulate any target Hamiltonian. A more de-
tailed sketch of how we use idling and phase estimation to achieve simulation
is given in Sect. 3.4, while rigorous proofs are given in Sect 4.

3.2. A Digital Representation of a Local Hamiltonian

As discussed in Sect. 3.1, we need to encode a description of the target Hamil-
tonian Htarget in some parameter of the universal Hamiltonian. In Sect. 3.3, we
outline the two methods we use to encode a natural number in the parameter
of a Hamiltonian. But how do we represent Htarget =

∑m
i=1 hi in the binary

expansion of a natural number x ∈ N, irrespective of its origin?
We will assume that Htarget is a k-local Hamiltonian, acting on n spins

of local dimension d. We emphasize that k can be taken to be n, i.e., the
system size—and therefore we can simulate any Hamiltonian, not just local
ones. However, we keep track of the locality parameter k as it is relevant when
deriving the overhead of our simulations.

Every value needed to specify the k-local simulated system Htarget will
be represented in Elias-γ′ coding, which is a simple self-delimiting binary code
which can encode all natural numbers [16,17]. For the purpose of the encoding,
we will label the n spins in the system to be simulated by integers i = 1, . . . , n.

The encoding of Htarget begins with the three meta-parameters n (spin
count), followed by k (locality), and then m (number of k-local terms). Each
of the m k-local terms in H is then specified by giving the label of the spins
involved in that interaction, followed by a description of each term of the
dk × dk Hermitian matrix describing that interaction. Each such matrix entry
is specified by giving two integers a and b. The matrix entry can be recovered
by calculating a

√
2 − b, which is accurate up to a small error. 2

Specifying Htarget to accuracy δ requires each such matrix entry to be
specified to accuracy δ/(md2k). Therefore, the length of the description of
Htarget is

md2k log
(‖Htarget‖md2k/δ

)
= poly

(
n, dk, log(‖H‖/δ)

)
(6)

Finally, the remaining digits of x specify Ξ—the bit precision to with
which the phase estimation algorithm should calculate the energies (i.e., we
require QPE to extract Ξ binary digits), and L—the length of time the system
should ‘idle’ in its initial state before beginning its computation.

So, the binary expansion B(x) of x has the following form:

B(x):=γ′(n) · γ′(k) · γ′(m) ·
[
γ′(i)·k · (γ′(aj) · γ′(bj))

4k
]·m

· γ′(Ξ) · γ′(L).

(7)

Here, γ′(n) denotes n in Elias-γ′ coding and · denotes concatenation of bit
strings.

2Note that by Weyl’s equidistribution theory
√

2a mod 1 uniformly covers [0, 1]; the set

T = {a
√

2 − b | a, b ∈ Z+} is dense in R.
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With regard to the identification of a real number n =
√

2a−b, we observe
that it is clearly straightforward to recover n from a and b (by performing basic
arithmetic). The other direction works as follows.

Remark 3.1. Let n ∈ N, and let Ξ ∈ N denote a precision parameter. Then,
we can find numbers a, b ∈ N such that

∣∣∣n −
√

2a + b
∣∣∣ ≤ 2−Ξ,

and the algorithm runs in O(poly(Ξ, log2 n)).

Proof. We solve 2Ξn = �2Ξ
√

2�a − 2Ξb as a linear Diophantine equation in
the variables a and b, with largest coefficient O(2Ξn). This can be done in
polynomial time in the bit precision of the largest coefficient, for instance, by
using the extended Euclidean algorithm [18]. �

In Sect. 4, we describe a construction to (Δ′, η, ε′)-simulate the Hamilton-
ian described by x, but note that this will only give a (Δ′, η, ε′ + δ)-simulation
of the actual target Hamiltonian Htarget.

3.3. Encoding the Target Hamiltonian in Parameters of the Simulator Hamil-
tonian

In Sect. 3.2, we describe how we encode the information about the Hamiltonian
we want to simulate, Htarget in a natural number x. Now we require a method
to encode x in some parameter of the universal Hamiltonian, and a method
to write its binary expansion on the Turing machine tape shared by M1 and
MPE. We develop two constructions, building on the mappings in [14] and
[15]. The first construction is efficient in terms of the number of spins in the
simulator system, while the second construction is not efficient, but requires
less parameters to specify the universal model. In both cases the computation
encoded in the ground state of the Hamiltonian is a QTM, and the mapping
from a QTM to the Hamiltonian gives a translationally invariant Hamiltonian.

3.3.1. Encoding the Target Hamiltonian in a Phase of the Simulator Hamil-
tonian. First, we consider the construction building on the work in [14]. Here,
we encode the natural number x ∈ N in a phase φ = x/2�log2 x	 of the Hamil-
tonian.

The Hamiltonian for this construction is given by H =
∑N

i=1 h(i,i+1)

where N is the number of spins in the simulator system, and h is a two-body
interaction of the form [21, Theorem 32]:

h = A + (eiπφB + eiπ2−|φ|
C + h.c.) (8)

where A is a fixed Hermitian matrix and B,C are fixed non-Hermitian matri-
ces. For a detailed construction of the terms in the Hamiltonian, we refer the
interested reader to [21, Section 4].

The circuit-to-Hamiltonian map encodes two Turing machine computa-
tions ‘dovetailed’ together, where the two Turing machines share a work tape.
The first computation is a phase estimation algorithm. It extracts the phase
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φ from the Hamiltonian, and writes its binary expansion onto the work tape.
The second computation will be outlined in Section 3.4.

In order to extract a digits from a phase φ = 0.φ1φ2 · · · φaφa+1 · · · , we
require a runtime of 2a. In our case, we have a = |x| = poly

(
n, dk, log(‖H‖/δ)

)
,

where |x| denotes the number of digits in the binary expansion of x. As our
computation is encoded as a computational history state, this in turn means
that the spectral gap of the history state Hamiltonian necessarily closes as
O(2− poly(n,dk,log(‖H‖/δ))) [11,19,20]. This scaling of the spectral gap means
that the universal model constructed via this method is not efficient in terms
of the norm of the simulator system (see Theorem 4.5 for full discussion of the
scaling).

However, it is important to note that using the construction from [14] it
is possible to encode a computation with exponential runtime into a Hamil-
tonian on polynomially many spins. Details of the construction are given in
[21, Section 4.5] (in particular the relevant scaling is discussed on [21, Page
81]). We will not give the details of the construction here, but note that it
encodes a Turing machine which runs for O(N exp(N)) time steps in a Hamil-
tonian acting on N spins [21, Proposition 45]. Therefore, the universal model
constructed via this method is efficient in terms of the number of spins in the
simulator system.

3.3.2. Encoding the Target Hamiltonian in the Size of the Simulator System.
Our second construction builds on the mapping in [15]. Here, we encode the
description of the Htarget into the binary expansion of N—the number of spins
the universal Hamiltonian is acting on.

The circuit-to-Hamiltonian map encodes two Turing machine computa-
tions ‘dovetailed’ together, where again the two Turing machines share a work
tape. The first Turing machine is a binary counter Turing machine. After it
has finished running, the binary expansion of N is written on the Turing ma-
chine’s work tape. In our construction, the binary expansion of N contains the
description of Htarget. We will discuss the second computation in Sect. 3.4.

The binary counter QTM takes time N to write out the binary expansion
of N on its work tape. Since Htarget is encoded in the binary expansion of N ,
this run time, as well as the size of the simulator system is exponential in the
size of the target system. Moreover, since the runtime is exponential in the
size of the target system, the spectral gap of the universal Hamiltonian closes
exponentially fast. Therefore, the universal model constructed via this method
is not efficient in terms of number of spins or the norm of the simulator system.
See Theorem 4.6 for a full discussion of the scaling of this universal model.

In this case, the interactions of the Hamiltonian are entirely fixed—they
enforce that the ground state of the Hamiltonian is a history state encoding a
QTM computation (for a detailed construction of the terms in the Hamilton-
ian we refer readers to [15]. There are two additional global parameters in the
Hamiltonian which depend on the accuracy of the simulation—we defer dis-
cussion of those parameters to the technical proofs of Lemma 4.3 and Theorem
4.6. All the information about the target Hamiltonian (the Hamiltonian to be
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simulated) is entirely encoded in the binary expansion of N—the number of
spins in the simulator system.

3.4. Dovetailing for Simulation

After the computation carried out by M1 has finished, the binary expansion of
x is written out on the work-tape shared by M1 and MPE. We then construct
(using standard techniques from [14,15]) a Hamiltonian such that the two
Turing machines M1 and MPE share a work tape. At the beginning of its
computation, MPE reads in a description of the target Hamiltonian H that
we wish to simulate. MPE then carries out phase estimation on some input
state |ψ〉 (left unconstrained, just like a QMA witness)3 with respect to the
unitary generated by the target Hamiltonian, U = eiHτ for some τ such that
‖Hτ‖ < 2π. It then outputs the eigenphase φ in terms of a pair of natural
numbers (a, b) such that φ = a

√
2−b (which can be done efficiently via Remark

3.1).
The ground space of the Hamiltonian which encodes the computation of

M1 and MPE has zero energy and is spanned by history states in a superpo-
sition over all possible initial states |ψ〉. In general the Hamiltonian we want
to simulate doesn’t have a highly degenerate zero energy ground state, so we
need to break this degeneracy and construct the correct spectrum for Htarget.
In order to break the degeneracy and reconstruct the spectrum of Htarget, we
add one body projectors to the universal Hamiltonian, which are tailored such
that the QPE output (a, b) identifies the correct energy penalty to inflict.

In order to ensure that the encoding of Htarget in the universal Hamil-
tonian is local, we make use of an idea originally from [4] and used recently
in [5–7], which has been called ‘idling to enhance coherence.’ Before carrying
out the phase-estimation computation, the system ‘idles’ in its initial state for
time L. By choosing L appropriately large, we can ensure that with high prob-
ability the input spins (the spins which form the unconstrained input |ψ〉 to
MPE) are found in their initial states. This means that (with high probability)
there are a subset of spins on the simulator system whose state directly maps
to the state which is being simulated in the target system. This ensures that
the encoding is (approximately) local (see Lemma 4.3 for detailed analysis of
how idling is used to achieve universality).

4. Universality

4.1. Translationally Invariant Universal Models in 1D

In this section, we prove our main result: there exist translationally invariant,
nearest neighbor Hamiltonians acting on a chain of qudits, which are universal
quantum simulators.

3Although quantum phase estimation takes as input an eigenvector of the unitary, we show
in the proof that this suffices, as the argument then extends to general input states by
linearity.
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All the ‘circuit-to-Hamiltonian’ mappings we make use of in this work
are what are known as ‘standard form Hamiltonians.’ Where ‘Standard form
Hamiltonians’ are a certain class of circuit-to-Hamiltonian constructions, de-
fined in [22]. We refer interested readers to [22] for the full definition—and
simply note that it encompasses the Turing-machine-based mappings which
we make use of in this work [14,15]. In [22], the following result was shown,
which we will make use of in our proofs:

Lemma 4.1 (Standard form ground states; restatement of [22, Lem. 5.8,
Lem. 5.10]). Let HSF be a Standard Form Hamiltonian encoding a compu-
tation U , which takes (classical) inputs from a Hilbert space S, and which sets
an output flag with certainty if it is given an invalid input. For |ψμ〉 ∈ S and
ΠT

t=1Ut = U we define

|Φ(U,ψμ)〉 :=
1√
T

T∑

t=1

Ut . . . U1 |ψμ〉 |t〉 .

Then, L = span{|Φ(U,ψμ)〉}dn

μ=1 defines the kernel of HSF , i.e., HSF|L = 0.
The smallest nonzero eigenvalue of HSF scales as 1 − cos π/2T .

We also require a digital quantum simulation algorithm, summarized in
the following lemma:

Lemma 4.2 (Implementing a Local Hamiltonian Unitary). For a k-local Hamil-
tonian H =

∑m
i=1 hi on an n-partite Hilbert space of local dimension d, and

where m = poly n, there exists a QTM that implements a unitary Ũ such that

Ũ = eiHt + O(ε),

and which requires time poly(1/ε, dk, ‖H‖t, n).

Proof. Follows directly from [23,24]. �

The polynomial time bound in Lemma 4.2 suffices for our purposes; a
tighter (and more complicated) bound, also for the more general case of sparse
Hamiltonians, can be found in [25].

We can now start our main analysis by proving that ‘dovetailing’ quantum
computations—rigorously defined and constructed in [14, Lem. 22]—can be
used to construct universal simulators.

Lemma 4.3 (Dovetailing for simulation). Let M1 be a QTM which writes out
the binary expansion of some x ∈ N on its work tape. Assume there exists a
standard form Hamiltonian which encodes the Turing machine M1. Then, there
also exists a standard form Hamiltonian HSF(x), which encodes the computa-
tion M1 dovetailed with a QTM MPE, such that the family of Hamiltonians

Huniv(x) = ΔHSF(x) + T

N−1∑

i=0

(√
2Πα − Πβ

)
(9)

can simulate any quantum Hamiltonian. Here Δ and T are parameters of the
model, and Πα and Πβ are one-body projectors,
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Table 1. Local Hilbert space decomposition for HSF

Track Purpose

1 Input track, contains input state |ψ〉 ∈ C2 followed by string of |0〉s
2 Turing machine work tape (shared by M1 and MPE )

3 Tape head and state for M1

4 Tape head and state for MPE

5, 6, . . . Clock tracks for standard form clock construction

Proof of Lemma 4.3. To prove this, we show that the Huniv(x) can satisfy the
definition to be an approximate simulation of an arbitrary ‘target Hamilton-
ian’ Htarget, to any desired accuracy. We break up the proof into multiple
parts. First, we construct a history state Hamiltonian HSF(x), which encodes
two Turing machine computations: M1 which extracts a description of Htarget

from a parameter of HSF, and MPE which carries out phase estimation on the
unitary generated by Htarget. Then, we define the one-body projectors Πα and
Πβ which break up the ground space degeneracy of HSF, and inflict just the
right amount of penalty to approximately reconstruct the spectrum of Htarget

in its entirety.
Construction of H SF. HSF is a standard form history state Hamiltonian
with a ground space laid out in Lemma 4.1. The local states of the spins on
which HSF acts are divided into multiple ‘tracks.’ There are a constant number
of these, hence a constant local Hilbert space dimension. The exact number
will depend on the standard form construction being used. Each track serves
its own purpose, as outlined in Table 1. See [14,15] for more detail.

The QTM MPE reads in the description of Htarget—provided as integer
x ∈ N output by the Turing machine M1 whose worktape it shares. MPE

further reads in the unconstrained input state |ψ〉 (see Table 1 for details of
the local Hilbert space decomposition). But instead of proceeding immediately,
MPE idles for L time-steps (where L is specified in the input string x, as
explained in Sect. 3.2), before proceeding to carry out the quantum phase
estimation algorithm.

The quantum phase estimation algorithm is carried out with respect to
the unitary U = eiHtargetτ for some τ such that ‖Htargetτ‖ < 2π. It takes as
input an eigenvector |u〉 of U , and calculates the eigenphase φu. The output
of MPE is then the pair of integers (au, bu) (corresponding to the extracted
phase φu =

√
2au − bu as explained in Remark 3.1), specified in binary on

an output track. To calculate λu—the eigenvalue of Htarget—to accuracy ε re-
quires determining φu to accuracy O(ε/‖Htarget‖) which takes O(‖Htarget‖/ε)
uses of U = eiHtargetτ . The unitary U must thus be implemented to accu-
racy O(ε/‖Htarget‖), which is done using Lemma 4.2; the latter introduces an
overhead poly(n, dk, ‖Htarget‖, τ, 1/ε) in the system size n, local dimension d,
locality k, and target accuracy ε. The error overhead of size poly 1/ε due to
the digital simulation of the unitary is thus polynomial in the precision, as are
the ∝ 1/ε repetitions required for the QPE algorithm. The whole procedure
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takes time

TPE:= poly(dk, ‖Htarget‖/ε, n). (10)

In our construction, the input to MPE is not restricted to be an eigenvec-
tor of |u〉, but it can always be decomposed as |ψ〉 =

∑
u mu |u〉. By linearity,

for input |ψ〉 =
∑

u mu |u〉 the output of MPE will be a superposition in which
the output (au, bu) occurs with amplitude mu.

After MPE has finished its computation, its head returns to the end of
the chain. A dovetailed counter then decrements au, au − 1, . . . , 0 and bu, bu −
1, . . . , 0.4 For each timestep in the counter au, au − 1, . . . , 0 the Turing ma-
chine head changes one spin to a special flag state |Ωa〉 which does not ap-
pear anywhere else in the computation, while for each timestep in the counter
bu, bu − 1, . . . , 0 the Turing machine head changes one spin to a different flag
state |Ωb〉. (See, e.g., [26, Lem. 16]) for a construction of a Turing machine
with these properties.)

By Lemma 4.1, the ground space L of HSF is spanned by computational
history states as given in Definition 2.7 and is degenerate since any input state
|ψ〉 yields a valid computation. Therefore,

ker(HSF) = L = span|ψ〉

(
1√
T

T∑

t=1

|ψ(t)〉 |t〉
)

(11)

where |ψ(t)〉 denotes the state of the system at time step t if the input state
was |ψ〉.
A Local Encoding. In order to prove that Huniv(N) can simulate all quantum
Hamiltonians, we need to demonstrate that there exists a local encoding E(M)
such that the conditions of Definition 2.3 are satisfied. To this end, let

|Φidling(ψ)〉 :=
1√
L′

L′∑

t=1

|ψ(t)〉 |t〉

where L′ = T1 + L, and where T1 is the number of time steps in the M1

computation. This is the history state up until the point that MPE begins its
computation (i.e., the point at which the ‘idling to enhance coherence’ ends).
So, throughout the computation encoded by this computation the spins which
encode the information about the input state remain in their initial state, and
we can write:

|Φidling(ψ)〉 = |ψ〉 ⊗ 1√
L′

L′∑

t=1

|t〉

The rest of the history state we capture is

|Φcomp(ψ)〉 :=
1√

T − L′

T∑

t=L′+1

|ψ(t)〉 |t〉 ,

4For general input state |ψ〉 =
∑

u mu |u〉 there will be a superposition where the counter

au, au − 1, . . . , 0 and bu, bu − 1, . . . , 0 occurs with amplitude mu.
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such that the total history state is

|Φ(ψ)〉 =

√
L′

T
|Φidling(ψ)〉 +

√
T − L′

T
|Φcomp(ψ)〉 .

We now define the encoding E(M) = V MV † via the isometry

V =
∑

i

|Φidling(i)〉 〈i| . (12)

where |i〉 are the computational basis states (any complete basis will suffice).
E is a local encoding, which can be verified by a direct calculation:

E(Aj ⊗ 1) =
∑

ik

|Φidling(i)〉 〈i| (Aj ⊗ 1) |k〉 〈Φidling(k)|

=
∑

ik

|i〉 〈i| (Aj ⊗ 1) |k〉 〈k| ⊗ 1
L

L∑

tt′=1

|t〉 〈t′|

= (Aj ⊗ 1)
∑

i

|i〉 〈i| ⊗ 1
L

L∑

tt′=1

|t〉 〈t′|

=
(
Aphys

j ⊗ 1
) ∑

i

|Φidling(i)〉 〈Φidling(i)|

=
(
Aphys

j ⊗ 1
)
E(1),

(13)

where Aphys
j is the operator A acting on the Hilbert space corresponding to

the jth qudit.
We now consider the encoding E′(M) = V ′MV ′†, defined via

V ′ =
∑

i

|Φ(i)〉 〈i| . (14)

We have that

‖V ′ − V ‖2 =

∥∥∥∥∥
∑

i

(|Φ(i)〉 〈i| − |Φidling(i)〉 〈i|)
∥∥∥∥∥

2

=

∥∥∥∥∥
∑

i

(√
T − L′

T
|Φcomp(i)〉 〈i| +

(√
L′

T
− 1

)
|Φidling(i)〉 〈i|

)∥∥∥∥∥

2

≤ 2

(
1 −

√
L′

T

)
≤ 2

T − L′

T
= 2

TPE

T
.

(15)

By Lemma 4.1, SE′ is the ground space of HSF.
Splitting the Ground Space Degeneracy of H SF. What is left to show
is that there exist one body-projectors Πα and Πβ which add just the right
amount of energy to states in the kernel L(HSF) to reproduce the target Hamil-
tonian’s spectrum. We first choose the one body terms in Huniv to be projec-
tors onto local subspaces which contain the two states which are outputs of
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the MPE computation—|Ωa〉 and |Ωb〉:

Πa:=
N∑

i=1

|Ωa〉〈Ωa|i and Πb:=
N∑

i=1

|Ωb〉〈Ωb|i .

We have shown that if the input state is |u〉, which is an eigenstate of U

with eigenphase φu = au

√
2 − bu, then the history state will contain au terms

with one spin in the state |Ωa〉 and bu terms with one spin in the state |Ωb〉
(each term in the history state will have amplitude 1

T ). If the input is a general
state |ψ〉 =

∑
u mu |u〉, then for each u the history state will contain au terms

with one spin in the state |Ωa〉 and bu terms with one spin in the state |Ωb〉,
where now each of these terms has amplitude mu/T .

Let Π:=
∑

i |Φ(i)〉 〈Φ(i)| for some complete basis |i〉, and we define
H1:=T (

√
2Πa − Πb), where T is the total time in the computation. It thus

follows that the energy of |Φ(u)〉 with respect to the operator ΠH1Π is given
by φu + O(ε).

Finally, we need the following technical lemma from [27].

Lemma 4.4 (First-order simulation [27]). Let H0 and H1 be Hamiltonians
acting on the same space and Π be the projector onto the ground space of H0.
Suppose that H0 has eigenvalue 0 on Π and the next smallest eigenvalue is at
least 1. Let V be an isometry such that V V † = Π and

‖V HtargetV
† − ΠH1Π‖ ≤ ε/2. (16)

Let Hsim = ΔH0 + H1 . Then there exists an isometry Ṽ onto the space
spanned by the eigenvectors of Hsim with eigenvalue less than Δ/2 such that

1. ‖V − Ṽ ‖ ≤ O(‖H1‖/Δ)
2. ‖Ṽ HtargetṼ

† − Hsim<Δ/2‖ ≤ ε/2 + O(‖H1‖2/Δ)

We will apply Lemma 4.4 with H0 = 2T 2HSF and H1 = T (
√

2Πa −
Πb). We have λmin(HSF) = 0 and the next smallest nonzero eigenvalue of
HSF is (1 − cos(π/2T ) ≥ 1/2T 2) by Lemma 4.1, so H0 = 2T 2HSF has next
smallest nonzero eigenvalue at least 1. Moreover, ‖H1‖ =

√
2T . Note that V ′,

as defined in Eq. (14), is an isometry which maps onto the ground state of
H0. By construction, we have that the spectrum of Htarget is approximated to
within ε by H1 restricted to the ground space of HSF; thus, ‖ΠH1Π−Ẽ(H)‖ ≤ ε.

Lemma 4.4 therefore implies that there exists an isometry Ṽ that maps
exactly onto the low energy space of Huniv such that ‖Ṽ − V ′‖ ≤ O(

√
2T/

(Δ/2T 2)) = O(T 3/Δ). By the triangle inequality and Eq. (15), we have:

‖V − Ṽ ‖ ≤ ‖V − V ′‖ + ‖V ′ − Ṽ ‖ ≤ O

(
T 3

Δ
+

TPE

T

)
. (17)

The second part of the lemma implies that

‖Ṽ HtargetṼ
† − Huniv<Δ′/2‖ ≤ ε/2 + O((

√
2T )2/(Δ/2T 2)) = ε/2 + O(T 4/Δ).

(18)
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Therefore, the conditions of Definition 2.3 are satisfied for a (Δ′, η, ε′)-
simulation of Htarget, with η = O

(
T 3/Δ + TPE/T

)
, ε′ = ε + O(T 4/Δ) and

Δ′ = Δ/2T 2. Therefore, we must increase L so that T ≥ O(TPE/η) =
poly(n, dk, ‖H‖, 1/ε, 1/η) by Eq. (10) (thereby determining x), and increase
Δ so that

Δ ≥ Δ′T 2 +
T 3

η
+

T 4

ε
(19)

to obtain a (Δ′, η, ε)-simulation of the target Hamiltonian. The claim follows.
�

We can now prove our main theorem:

Theorem 4.5. There exists a two-body interaction depending on a single pa-
rameter h(φ) such that the family of translationally invariant Hamiltonians
on a chain of length N ,

Huniv(φ,Δ, T ) = Δ
∑

〈i,j〉
h(φ)i,j + T

N−1∑

i=0

(√
2Πα − Πβ

)

i
, (20)

is a universal model, where Δ, T and φ are parameters of the Hamiltonian, and
the first sum is over adjacent site along the chain. Furthermore, the universal
model is efficient in terms of the number of spins in the simulator system.

Proof. The two-body interaction h(φ) makes up a standard form Hamiltonian
which encodes a QTM, M1 dovetailed with the phase-estimation computation
from Lemma 4.3. The QTM M1 carries out phase estimation on the parameter
φ in the Hamiltonian, and writes out the binary expansion of φ (which contains
a description of the Hamiltonian to be simulated) on its work tape. There is a
standard form Hamiltonian in [14] which encodes this QTM, so by Lemma 4.3
we can construct a standard form Hamiltonian which simulates all quantum
Hamiltonians by dovetailing M1 with MPE.

The space requirement for the computation is O(|φ|), where |φ| denotes
the length of the binary expansion of φ, and the computation requires time
T1 = O(|φ|2|φ|) [21, Theorem 10] As we commented in Sect. 3.3.1, the standard
form clock construction set out in [21, Sect. 4.5] allows for computation time
of O(|φ|2|φ|) using a Hamiltonian on |φ| spins. We therefore find that for a
k-local target Hamiltonian Htarget acting on n spins of local dimension d, the
number of spins required in the simulator system for a simulation that is ε
close to Htarget is given by N = O(|φ|) = poly

(
n, dk, ‖H‖, 1/η, 1/ε

)
.

Therefore, the universal model is efficient in terms of the number of spins
in the simulator system as defined in Definition 2.4. �

Note that this universal model is not efficient in terms of the norm
‖Huniv‖. This is immediately obvious, since ‖Huniv‖ = Ω(Δ), and using the
relations between Δ′, η, ε, and T and Δ from Lemma 4.3 and Eq. (19),

T = T1 + L + TPE

= O

(
2x + poly

(
n, dk, ‖Htarget‖,

1
ε
,
1
η

))
and Δ ≥ Δ′T 2 +

T 3

η
+

T 4

ε
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by Eq. (10), so T,Δ are both poly (2x, ‖Htarget‖,Δ′, 1/ε, 1/η). For a k-local
Hamiltonian Htarget with description x as presented in Sect. 3.2, |x| =
Ω

(
md2k log(‖Htarget‖md2k/δ)

)
.

However, if we only wish to simulate a translationally invariant k-local
Hamiltonian Htarget, this can be specified to accuracy δ with just
log(‖Htarget‖md2k/δ) bits of information. In this case (for d, k = O(1) and
taking δ = ε), the interaction strengths are then poly(n, ‖Htarget‖,Δ′, 1

η , 1
ε ),

and the whole simulation is efficient.
Lemma 4.3 also allows the construction of a universal quantum simulator

with two free parameters.

Theorem 4.6. There exists a fixed two-body interaction h such that the family
of translationally invariant Hamiltonians on a chain of length N ,

Huniv(Δ, T ) = Δ
∑

〈i,j〉
hi,j + T

N−1∑

i=0

(√
2Πα − Πβ

)

i
, (21)

is a universal model, where Δ and T are parameters of the Hamiltonian, and
the first sum is over adjacent sites along the chain.

Proof. As in Theorem 4.5, the two-body interaction h makes up a standard
form Hamiltonian which encodes a QTM M1 dovetailed with the phase-
estimation computation from Lemma 4.3. It is based on the construction from
[15].

Take M1 to be a binary counter Turing machine which writes out N—the
length of the qudit chain—on its work tape. We will choose N to contain a
description of the Hamiltonian to be simulated, as per Sect. 3.2. There is a
standard form Hamiltonian in [15] which encodes this QTM, so by Lemma 4.3
we can construct a standard form Hamiltonian which simulates all quantum
Hamiltonians by dovetailing M1 with MPE.

Since B(N), as defined in Eq. (7), contains a description of the Hamil-
tonian to be simulated, we have that

N = poly
(
2poly(n,‖Htarget‖,1/η,1/ε)

)
.

The standard form clock used in the construction allows for computation time
polynomial in the length of the chain, so exp(poly)-time in the size of the
target system. As before, by Eq. (10), we require

T = T1 + L + TPE

= O

(
N + poly

(
n, dk, ‖Htarget‖,

1
ε
,
1
η

))
and Δ ≥ Δ′T 2 +

T 3

η
+

T 4

ε
.

�

According to the requirements of Definition 2.3, the universal simulator
of the second theorem is not efficient in either the number of spins, nor in the
norm. However—as was noted in [2]—this is unavoidable if there is no free
parameter in the universal Hamiltonian which encodes the description of the
target Hamiltonian: a translationally invariant Hamiltonian on N spins can
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be described using only O(poly log(N)) bits of information, whereas a k-local
Hamiltonian which breaks translational invariance in general requires poly(N)
bits of information. So, by a simple counting argument, we can see that it is
not possible to encode all the information about a k-local Hamiltonian on n
spins in a fixed translationally invariant Hamiltonian acting on poly(n) spins.

We observe that the parameters Δ and T are qualitatively different to φ,
in that they do not depend on the Hamiltonian to be simulated, but only the
parameters (Δ′, ε, η) determining the precision of the simulation.

4.2. No-Go for Parameterless Universality

Is an explicit Δ-dependence of a simulator Hamiltonian Huniv necessary to
construct a universal model? Note that an implicit dependence of Huniv on Δ
is possible via the chain length N = N(Δ) in Theorem 4.5. In the following,
we prove that such an implicit dependence is insufficient, by giving a concrete
counterexample for which an explicit Δ-dependence is necessary.

To this end, we note that it has previously been shown [28] that a degree-
reducing Hamiltonian simulation (in a weaker sense of simulation, namely
gap-simulation where only the ground state(s) and spectral gap are to be
maintained) is only possible if the norm of the local terms is allowed to grow.
In order to construct a concrete example in which an explicit Δ-dependence
is necessary, we first quote Aharonov and Zhou’s result and then translate the
terminology to our setting.

Theorem 4.7 (Aharonov and Zhou ( [28, Thm. 1])). For sufficiently small con-
stants ε ≥ 0 and ω̃ ≥ 0, there exists a minimum system size N0 such that for
all N ≥ N0 there exists no constant-local [r,M, J ] = [O(1),M,O(1)] gap sim-
ulation (where r is the interaction degree, M the number of local terms, and
J the local interaction strength of the simulator) of the Hamiltonian

HA:=
1
4

N∑

i=1

∑

j<i

(1 − σ(i)
z ) ⊗ (1 − σ(j)

z ) =
N∑

i=1

∑

j<i

|1〉〈1|(i) ⊗ |1〉〈1|(j)

with a localized encoding, ε-incoherence, and energy spread ω̃, for any number
of Hamiltonian terms M .

Corollary 4.8. Consider a universal family of Hamiltonians with local interac-
tions and bounded-degree interaction graph. Hamiltonians in this family must
have an explicit dependence on the energy cut-off (Δ) below which they are
valid simulations of particular target Hamiltonians.

Proof. We first explain the notation used in Theorem 4.7. As mentioned, the
notion of gap simulation is weaker than Definition 2.3. Only the (quasi-) ground
space L of HA, rather than the full Hilbert space, needs to be represented ε-
coherently: ‖HA|L − H̃A|L‖ < ε, where ·|L denotes the restriction to L). And
only the spectral gap above the ground space, rather than the full spectrum,
must be maintained: γ̃ = Δ(H̃A) ≥ γ = Δ(HA). The rest of the spectrum in
the simulation can be arbitrary. Energy spread in this context simply means
the range of eigenvalues within L spreads out at most such that |λ0−λ̃0| ≤ ω̃γ.
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A [O(1),M,O(1)] simulation with the above parameters then simply
means an ε-coherent gap simulation, constant degree and local interaction
strength, where M—the number of local terms in the simulator—is left un-
constrained, and the eigenvalues vary by at most ω̃γ.

It is clear that this notion of simulation falls within our more generic
framework of simulation (cf. [28, Sec. 1.1]): a simulation of HA also defines a
valid gap simulation of HA. Since by Definition 2.4 this simulation can be made
arbitrarily precise, with parameters ε, ω̃ arbitrarily small, and has constant
interaction degree by assumption, this contradicts Theorem 4.7. �

5. Applications to Hamiltonian Complexity

As already informally stated, the Local Hamiltonian problem is the ques-
tion of approximating the ground state energy of a local Hamiltonian to a
certain precision. Based on a history state embedding of a QMA verifier cir-
cuit and on Feynman’s circuit-to-Hamiltonian construction [10], Kitaev proved
in 2002 that Local Hamiltonian with a promise gap that closes inverse-
polynomially in the system size is QMA-complete [3].

To be precise, let us start by defining the Local Hamiltonian problem.
We note that variants of this definition can be found throughout literature
which commonly omit one or more of the constraints presented herein, in
particular with regard to the bit precision to the input matrices. In order to
be precise, we explicitly list the matrix entries’ bit precision as extra parameter
Σ in the following definition.

Local Hamiltonian (f,Σ)
Input: Local Hamiltonian H =

∑m
i=1 hi on an N -partite Hilbert

space of constant local dimension, and m ≤ poly(N). Each
hi:=hSi

⊗ 1Sc
i

acts non-trivially on at most |Si| ≤ k sites,
and ‖hi‖ ≤ 1. Two numbers α, β > 0. The bit complexity of
the matrix entries of hi is O(Σ(N)).

Promise: β − α ≥ f(N), and λmin(H) either ≥ β, or ≤ α.
Question: YES if λmin(H) ≥ β, else NO.

Kitaev’s QMA-completeness result was shown for a promise gap f(N) =
poly N [3, Th. 14.1]. Following the proof construction therein reveals that this
was done for a bit complexity of the matrix entries Σ(N) = O(1) (assuming a
discrete fixed gateset for the encoded QMA verifier). Since his seminal result,
the statement has been extended and generalized to ever-simpler many-body
systems [29–31]. Some of these results allow a coupling constant to scale in the
system size, e.g., as poly N—i.e., the matrix entries now feature a bit precision
of Σ(N) = poly log N .

We remark that despite the apparent relaxation in the bit precision, these
results are not weaker than Kitaev, Shen, and Vyalyi’s. Since the number of
local terms m = poly N , a polynomial number of local terms of O(1) bit
complexity acting on the same sites can already be combined to create k-local
interactions with polynomial precision (logarithmic bit-precision, Ω(1/poly)∩
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O(poly)). (Similar to how the encoding in Section 3.2 and Remark 3.1 works
by adding up integers to approximate a number in the interval [0, 1].) We also
emphasize that the overall bit complexity of the input is already poly N , as
there are that many local terms to specify in the first place. Indeed, many times
in the literature, the matrix entries of the Local Hamiltonian problem are
simply restricted to bit precision Σ = poly N (e.g., [32]).

However, translationally invariant spin systems are common in condensed
matter models of real-world materials, whereas models with precisely tuned
interactions that differ from site to site are less realistic. It is known that QMA-
hardness of approximating the ground state energy to 1/poly precision in the
system size is a property of non-translationally invariant couplings, that pre-
vails even when those couplings are arbitrarily close to identical [33, Cor. 21].
But even small amounts of disorder can radically change the properties of quan-
tum many-body systems compared to strict translational invariance, which is
the intuition behind this result. A variant of Local Hamiltonian for the
strictly translationally invariant case can be formulated as follows:5

TI-Local Hamiltonian (f,Σ)
Input: Translationally invariant local Hamiltonian H =

∑
i∈Λ hi

on an N -partite Hilbert space (Cd)⊗Λ of constant local di-
mension d. Each hi:=(h)Si

⊗ 1Sc
i

for some fixed Hermitian
operator h acts non-trivially and in a translationally invari-
ant fashion on at most |Si| ≤ k sites, and ‖hi‖ ≤ 1. Two
numbers α, β > 0. The bit complexity of the matrix entries
of hi is O(Σ(N)).

Promise: β − α ≥ 1/f(N), and λmin(H) either ≥ β, or ≤ α.
Question: YES if λmin(H) ≥ β, else NO.

Gottesman and Irani proved in 2009 that TI-Local Hamiltonian (poly, 1)
is QMAEXP -complete [15], which has since been generalized to systems with
lower local dimension [12,34], variants of which again introduce a polyno-
mially scaling local coupling strength. We emphasize that while Gottesman
and Irani’s definition restricts the bit precision Σ to be constant, the input
size to the problem—namely the chain length N—is already of size log N . A
poly-time reduction thus does not change the complexity class, and allowing
matrix entries of size poly log N is arguably natural. As noted in [12, Sec. 3.3],
an equivalent definition for TI-Local Hamiltonian can thus be obtained by
relaxing the norm of the local terms to ‖hi‖ ≤ poly N , given the promise gap
f(N) = Ω(poly N).

Care has to be taken in defining QMAEXP for the right input scaling.
For TI-Local Hamiltonian (poly, 1), the input size is given by the system
size only, as all the local terms are specified by a constant number of bits.
This means that TI-Local Hamiltonian (poly, 1) is indeed QMAEXP hard,
but for an input of size �log(N)�, where N is the size of the system. As Karp

5Naturally, translational invariance is defined with respect to the Hilbert space’s interaction
graph on Λ.
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reductions are allowed for QMAEXP , this does not change if we allow the
local terms to scale polynomially in the system size; the problem input is
still of size at most poly log, and thus constitutes a well-defined input for
QMAEXP with respect to this input size. Informally, QMAEXP (‘poly log(N)-
sized input’) < QMA (‘poly N -sized input’), as only that scaling allows to both
saturate and maintain the 1/poly promise gap. In short, the problem is easier
for translationally invariant systems, as expected. (We refer the reader to the
extended discussion in [12, Sec. 3.4].)

How does the situation change if we allow a promise gap that scales dif-
ferently? In particular, how hard is Local Hamiltonian (exp poly)? In [35]
the authors characterize this setup, which they use for a reduction from Pre-
ciseQMA. The PreciseQMA verifier has a 1/ exp poly promise gap, instead of
QMA’s usual 1/poly promise gap. (Note that it is this very promise gap which
naturally maps to the Local Hamiltonian’s promise gap on the ground state
energy.) They show that Local Hamiltonian (1/ exp poly) is complete for
PreciseQMA, which they further show equals PSPACE. We emphasize that
the authors did not explicitly restrict the bit precision. Yet a natural restric-
tion in this context is again Σ(N) = poly N , as there are m = poly N local
terms to specify. And a larger bit precision makes the input size too large for
containment in PreciseQMA.

A natural question to ask is thus: how hard is TI-Local Hamiltonian
(exp poly,Σ(N)) for either Σ(N) = poly N or poly log N? Furthermore, is it
easier because of the translational invariance, as it was for the poly-promise-
gap case? We show that this is not the case, and prove the following result.

Theorem 5.1. TI-Local Hamiltonian (exp poly,poly) is PSPACE-complete.

Proof. The result follows by Theorem 4.5. Specifying all the local terms in
H requires an exponentially long QPE computation to extract poly(N) many
bits from a phase. Because a PreciseQMA-complete local Hamiltonian H al-
ready has a 1/ exp poly(N)-closing promise gap, this does not attenuate the
resulting promise gap by more than another exponential factor. Containment
in PSPACE follows by [35]. �

Theorem 5.1 illustrates a curious mismatch: irrespective of the promise
gap scaling or matrix bit precision, TI-Local Hamiltonian features the
system size N as input. A 1/poly N promise gap and poly log N bit precision
saturate this input, and yield a QMAEXP -complete construction, as discussed
above. Yet when we need to specify a 1/ exp N promise gap, that bit precision
is the dominant input. So we might as well specify the local terms to the same
poly N bit precision, which in turn allows the translationally invariant system
to simulate a non-translationally invariant one.

6. Applications to Holography

We can use the universal Hamiltonian constructions in this paper to construct
a 2D-to-1D holographic quantum error correcting code (HQECC) with a local
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boundary Hamiltonian. HQECCs are toy models of the AdS/CFT correspon-
dence which capture many of the qualitative features of the duality [8,36,37].
Recently, a HQECC was constructed from a 3D bulk to a 2D boundary which
mapped local Hamiltonians in the bulk to local Hamiltonians in the boundary
[9]. The techniques in [9] require at least a 2D boundary, and it was an open
question whether a similar result could be obtained in lower dimensions.

Here, we construct a HQECC from a 2D bulk to a 1D boundary which
maps any (quasi-)local Hamiltonian in the bulk to a local Hamiltonian in
the boundary. A quasi-k-local Hamiltonian is a generalization of a k-local
Hamiltonian, where instead of requiring that each term in the Hamiltonian
acts on only k-spins, we require that each term in the Hamiltonian has Pauli
rank at most k,6 along with some geometric restrictions on the interaction
graph. More precisely:

Definition 6.1 (Quasi-local hyperbolic Hamiltonians). Let H2 denote d-
dimensional hyperbolic space, and let Br(x) ⊂ H2 denote a ball of radius
r centered at x. Consider an arrangement of n qudits in H2 such that, for
some fixed r, at most k qudits and at least one qudit are contained within any
Br(x). Let Q denote the minimum radius ball BQ(0) containing all the qudits
(which without loss of generality we can take to be centered at the origin). A
quasi-k-local Hamiltonian acting on these qudits can be written as:

Hbulk =
∑

Z

h(Z) (22)

where the sum is over the n qudits and each term can be written as:

h(Z) = h
(Z)
localh

(Z)
Wilson (23)

where:
• h

(Z)
local is a term acting non-trivially on at most k qudits which are con-

tained within some Br(x)
• h

(Z)
Wilson is a Pauli operator acting non-trivially on at most O(L−x) qudits

which form a line between x and the boundary of BQ(0)

The extension to quasi-local bulk Hamiltonians allows us to consider
using the HQECC to construct toy models of AdS/CFT with gravitational
Wilson lines in the bulk theory.7

With this definition, we obtain the following result.

Theorem 6.2. Consider any arrangement of n qudits in H2, such that for some
fixed r at most k qudits and at least one qudit are contained within any Br(x).
Let Q denote the minimum radius ball BQ(0) containing all the qudits. Let
Hbulk =

∑
Z hZ be any (quasi) k-local Hamiltonian on these qudits.

Then, we can construct a Hamiltonian Hboundary on a 1D boundary man-
ifold M with the following properties:

6The Pauli rank of an operator is the number of terms in its Pauli decomposition.
7Although in [9] the result is only proved for local Hamiltonians, the proof can trivially be
extended to encompass quasi-local bulk Hamiltonians in the 3D-2D setting too.
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1. M surrounds all the qudits and has diameter O (max (1, log(k)/r) Q+
log log n).

2. The Hilbert space of the boundary consists of a chain of qudits of length
O (n log n).

3. Any local observable/measurement M in the bulk has a set of correspond-
ing observables/measurements {M ′} on the boundary with the same out-
come. A local bulk operator M can be reconstructed on a boundary region
A if M acts within the greedy entanglement wedge of A, denoted E[A].8

4. Hboundary consists of 2-local, nearest-neighbor interactions between the
boundary qudits.

5. Hboundary is a (ΔL, ε, η)-simulation of Hbulk in the sense of Definition
2.3, with ε, η = 1/poly(ΔL), ΔL = Ω(‖Hbulk‖), and where the interac-
tion strengths in Hboundary scale as maxij |αij | = O ((ΔL + 1/η + 1/ε)

poly(eR2eR

)
)
.

Proof. There are three steps to this simulation. The first two steps follow
exactly the same procedure as in [9].
Step 1. Simulate Hbulk with a Hamiltonian which acts on the bulk indices of
a HQECC in H2 of radius R = O (max (1, log(k)/r) L).

In order to do this, we embed a tensor network composed of perfect
tensors in a tessellation of H2 by a Coxeter polygon with associated Coxeter
system (W,S), and growth rate τ . Note that in a tessellation of H2 by Coxeter
polytopes the number of polyhedral cells in a ball of radius r′ scales as O(τ r′

),
where we are measuring distances using the word metric, d(u, v) = lS(u−1v).
(See [9] for a detailed discussion.)

If we want to embed a Hamiltonian Hbulk in a tessellation we will need
to rescale distances between the qudits in Hbulk so that there is at most one
qudit per polyhedral cell of the tessellation. If τ r′

= k, then
r′

r
=

log(k)
log(τ)r

= O
(

log(k)
r

)
.

If log(k)/r ≥ 1, then the qudits in Hbulk are more tightly packed than the
polyhedral cells in the tessellation, and we need to rescale the distances be-
tween the qudits by a factor of O (log(k)/r). If log(k)/r < 1, then the qudits
in Hbulk are less tightly packed than the cells of the tessellation, and there is
no need for rescaling. The radius R of the tessellation needed to contain all
the qudits in Hbulk is then given by

R =

{
O (log(k)/rL) , if log(k)/r ≥ 1
O(L) otherwise.

(24)

After rescaling, there is at most one qudit per cell of the tessellation.
There will be some cells of the tessellation which do not contain any qudits.

8The entanglement wedge, EA is a bulk region constructed from the minimal area surface
used in the Ryu–Takayanagi formula. It has been suggested that on a given boundary re-
gion, A, it should be possible to reconstruct all operators which lie in EA [38]. The greedy
entanglement wedge is a discretized version defined in [8, Definition 8]
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We can put ‘dummy’ qudits in those cells which do not participate in any
interactions, so their inclusion is just equivalent to tensoring the Hamiltonian
with an identity operator. We can upper and lower bounds the number of
‘real’ qudits in the tessellation. If no cells contain dummy qudits, then the
number of real qudits in the tessellation is given by nmax = N = O(τR),
where N is the number of cells in the tessellation. By assumption, there is at
least one real qudit in a ball of radius r′. Thus, the minimum number of real
qudits in the tessellation scales as nmin = O(τR/τ r′

) = O(τR) = O(N), and
n = Θ(τR) = Θ(N).

If the tessellation of H2 by Coxeter polytopes is going to form a HQECC,
the Coxeter polytope must have at least 5 faces [9, Theorem 6.1]. From the
HQECC constructed in [8], it is clear that this bound is achievable, so we will
without loss of generality assume the tessellation we are using is by a Coxeter
polytope with 5 faces. The perfect tensor used in the HQECC must therefore
have 6 indices.

It is known that there exist perfect tensors with 6 indices for all local
dimensions d [39]. We will restrict ourselves to stabilizer perfect tensors with
local dimension p for some prime p. These can be constructed for p = 2 [8]
and p ≥ 7 [40]. Qudits of general dimension d can be incorporated by embed-
ding qudits into a d-dimensional subspace of the smallest prime which satisfies
p ≥ d and p = 2 or p ≥ 7. We then add one-body projectors onto the orthog-
onal complement of these subspaces, multiplied by some Δ′

S ≥ |Hbulk| to the
embedded bulk Hamiltonian. The Hamiltonian H ′

bulk on the n p-dimensional
qudits is then a perfect simulation of Hbulk.

We can therefore simulate any Hbulk which meets the requirements stated
in the theorem with a Hamiltonian which acts on the bulk indices of a HQECC
in H2.
Step 2. Simulate Hbulk with a Hamiltonian HB on the boundary surface of
the HQECC.

We first set HB :=H ′ + ΔSHS , where H ′ satisfies H ′ΠC = V (H ′
bulk ⊗

1dummy)V †. Here, V is the encoding isometry of the HQECC, ΠC is the pro-
jector onto the code-subspace of the HQECC, 1dummy acts on the dummy
qudits and HS is given by

HS :=
∑

w∈W

(1 − ΠC(w)) . (25)

ΠC(w) is the projector onto the codespace of the quantum error correcting code
defined by viewing the wth tensor in the HQECC as an isometry from its input
indices to its output indices (where input indices are the bulk logical index,
plus legs connecting the tensor with those in previous layers of the tessellation).

Provided ΔS ≥ ‖H ′
bulk‖, [9, Lemma 6.9] ensure that HB meets the con-

ditions in Definition 2.2 to be a perfect simulation of H ′
bulk below energy ΔS ,

and hence—as simulations compose—a perfect simulation of Hbulk.
Naturally, there is freedom in this definition as there are many H ′ which

satisfy the condition stated. We will choose an H ′ where every bulk operator
has been pushed out to the boundary, so that a 1-local bulk operator at radius
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x corresponds to a boundary operator of weight O(τR−x). We will also require
that the Pauli rank of every bulk operator has been preserved (see [9, Theorem
D.4] for proof we can choose H ′ satisfying this condition).
Step 3. Simulate HB with a local, nearest neighbor Hamiltonian using the
technique from Theorem 4.5.

In order to achieve the scaling quoted, we make use of the structure of
HB due to the HQECC. It can be shown [9] that HB will contain O(τx) Pauli
rank-1 operators of weight τR−x for 0 ≤ x ≤ R. A Pauli rank-1 operator of
weight w can be specified using O(w) bits of information. So, if we encode HB

in the binary expansion of φ as

B(φ) = γ′(R) ·Rx=0

[
γ′(i)·τR−x · (γ′(aj) · γ′(bj) · P1 · . . . · PτR−x)

]·τx

· γ′(L),

we have |φ| = O(RτR) = O(n log n). The number of boundary spins in the final
Hamiltonian therefore scales as O(n log n). The final boundary Hamiltonian is
a (Δ, ε, η)-simulation of Hbulk.

In order to preserve entanglement wedge reconstruction [8], the location
of the spins containing the input state on the Turing machine work tape has to
match the location of the original boundary spins. So, instead of the input tape
at the beginning of the MPE computation containing the input state, followed
by a string of |0〉s, the two are interspersed. Information about which points
on the input tape contain the input state can be included in the description
of the Hamiltonian to be simulated.

It is immediate from the definition of the greedy entanglement wedge [8,
Definition 8] that bulk local operators in E(A) can be reconstructed on A.
The boundary observables/measurements {M ′} corresponding to bulk observ-
ables/measurements {M} which have the same outcome, because by definition
simulations preserve the outcome of all measurements. The claim follows. �

It should be noted that the boundary model of the resulting HQECC does
not have full rotational invariance. In order to use the universal Hamiltonian
construction the spin chain must have a beginning and end, and the point in
the boundary chosen to ‘break’ the chain also breaks the rotational invariance.
However, it is possible to construct a HQECC with full rotational symmetry
by using a history state Hamiltonian construction with periodic boundary
conditions, as in [15, Section 5.8.2].

In [15, Section 5.8.2], a Turing machine is encoded into a local Hamilton-
ian acting on a spin chain of length N with periodic boundary conditions. The
ground space of the resulting Hamiltonian is 2N fold degenerate. It consists
of history states, where any two adjacent sites along the spin chain can act as
boundary spins for the purpose of the Turing machine construction - giving
rise to 2N distinct ground states.9

We can apply this same idea to construct a rotationally invariant HQECC,
which maps a (quasi-)local bulk Hamiltonian, Hbulk in H2 to a local Hamilton-
ian Hboundary acting on a chain of N qudits. The code-space of the HQECC is

9The factor of two arises because there is freedom about which of the two adjacent sites is
assigned to be the ‘left’ boundary, and which is the ‘right’ boundary.
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2N -fold degenerate, and below the energy cut-off Hboundary has a direct sum
structure:

Hbulk → Hboundary|≤ Δ
2

=

⎛

⎜⎜⎜⎝

Hbulk 0 . . . 0
0 Hbulk . . . 0
...

...
. . . 0

0 0 . . . Hbulk

⎞

⎟⎟⎟⎠ (26)

where each factor in the direct sum acts on one of the possible rotations of the
boundary Hilbert space.

Observables are mapped in the same way as the Hamiltonian. In order to
preserve expectation values, we choose the map on states to be of the form:10

ρboundary = Estate (ρbulk) =

⎛

⎜⎜⎜⎝

ρbulk 0 . . . 0
0 0 . . . 0
...

...
. . . 0

0 0 . . . 0

⎞

⎟⎟⎟⎠ (27)

We can choose that the bulk state maps into the ‘unrotated’ boundary
Hilbert space, so that the geometric relationship between bulk and boundary
spins is preserved.11

7. Discussion

In this work, we have presented a conceptually simple method for proving uni-
versality of spin models. The reliance of this novel method on the ability to
encode computation into the low-energy subspace of a Hamiltonian suggests
that there is a deep connection between universality and complexity. This
insight is made rigorous in [41], where we derive necessary and sufficient con-
ditions for spin systems to be universal simulators (as was done in the classical
case [42]).

This new simpler proof approach is also stronger, allowing to prove that
the simple setting of translationally invariant interactions on a 1D spin chain is
sufficient to give universal quantum models. Furthermore, we have provided the
first construction of translationally invariant universal model which is efficient
in the number of qudits in the simulator system.

Translationally invariant interactions are more prevalent in condensed
matter models than interactions which require fine tuning of individual inter-
action strengths. However, a serious impediment to experimentally engineering
either of the universal constructions in this paper is the local qudit dimension,
which is very large—a problem shared by the earlier 2d translationally invari-
ant construction in [2].

10See [1, Section 7.1] for a discussion of maps on states in simulations.
11Although the bulk states maps into one factor of the direct sum structure, every state in
the low-energy portion of the boundary does have a bulk interpretation. But most of these
states are rotated with respect to the bulk geometry.
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An important open question is whether it is possible to reduce the local
state dimension in these translationally invariant constructions, while preserv-
ing universality. One possible approach would be to apply the techniques from
[12], which were used to reduce the local dimension of qudits used in transla-
tionally invariant QMA-complete local Hamiltonian constructions.

It would also be interesting to explore what other symmetries universal
models can exhibit. This is of particular interest for constructing HQECC,
where we would like the boundary theory to exhibit (a discrete version of)
conformal symmetry.

Acknowledgements

J. B. acknowledges support from the Draper’s Junior Research Fellowship
at Pembroke College. T. S. C. is supported by the Royal Society. T. K. is
supported by the EPSRC Centre for Doctoral Training in Delivering Quan-
tum Technologies [EP/L015242/1]. This work was supported by the EPSRC
Prosperity Partnership in Quantum Software for Simulation and Modelling
(EP/S005021/1).

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Cubitt, T., Montanaro, A., Piddock, S.: Universal Quantum Hamiltonians. Pro-
ceedings of theNationalAcademy of Sciences 115(38), 9497–9502 (2018). https://
doi.org/10.1073/pnas.1804949115

[2] Piddock, S., Bausch, J.: Universal Translationally-Invariant Hamiltonians.
(2020). arXiv:2001.08050 [quant-ph]

[3] Kitaev, A., Shen, A., Vyalyi M.: Classical and quantum computing. In: Quantum
Information, pp. 203–217. Springer, NewYork (2002). https://doi.org/10.1007/
978-0-387-36944-0 13

[4] Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adi-
abatic quantum computation is equivalent to standard quantum computation.
SIAM J. Comput. 37(1), 166–194 (2007)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1073/pnas.1804949115
https://doi.org/10.1073/pnas.1804949115
http://arxiv.org/abs/2001.08050
https://doi.org/10.1007/978-0-387-36944-0_13
https://doi.org/10.1007/978-0-387-36944-0_13


T. Kohler et al. Ann. Henri Poincaré
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