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ABSTRACT 

Acute coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is characterized by 

diverse clinical presentations, ranging from asymptomatic infection to fatal respiratory failure, 

and often associated with varied longer-term sequelae. Over the past 18 months, it has become 

apparent that inappropriate immune responses contribute to the pathogenesis of severe 

COVID-19. Researchers working at the intersection of COVID-19 and autoimmunity recently 

gathered at an American Autoimmune Related Disease Association (AARDA) Noel R. Rose 

Colloquium to address the current state of knowledge regarding two important questions: Does 

established autoimmunity predispose to severe COVID-19? And, at the same time, can SARS-

CoV-2 infection trigger de novo autoimmunity? Indeed, work to date has demonstrated that 10 

to 15% of patients with critical COVID-19 pneumonia exhibit autoantibodies against type I 

interferons, suggesting that preexisting autoimmunity underlies severe disease in some 

patients. Other studies have identified functional autoantibodies following infection with SARS-

CoV-2, such as those that promote thrombosis or antagonize cytokine signaling. These 

autoantibodies may arise from a predominantly extrafollicular B cell response that is more prone 

to generating autoantibody-secreting B cells. This review highlights the current understanding, 

evolving concepts, and unanswered questions provided by this unique opportunity to determine 

mechanisms by which a viral infection can be exacerbated by, and even trigger, autoimmunity. 

The potential role of autoimmunity in post-acute sequelae of COVID-19 is also discussed. 
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INTRODUCTION 

In December 2019, a novel coronavirus, severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2), emerged in Wuhan, Hubei Province, China, and caused the coronavirus 

disease 2019 (COVID-19) pandemic. COVID-19 presentations range from asymptomatic 

infection to mild flu-like symptoms to fatal respiratory failure. In addition, many patients 

experience long-term symptoms of COVID-19 persisting weeks to months after the initial onset 

of symptoms and extending beyond the original organ involvement, known as post-acute 

sequelae of COVID-19 (PASC) and more commonly called “long COVID.”  

 

Over the past 18 months, researchers have sought to determine mechanisms by which an 

individual’s immune system may be helpful or harmful in COVID-19. In the context of 

vaccination, it is apparent that adaptive immunity can quite effectively negate severe COVID-19. 

At the same time, it appears that preexisting autoimmunity may influence, often deleteriously, 

the course of COVID-19 in certain individuals. Of particular note, work to date has demonstrated 

that 10-15% of patients with critical COVID-19 pneumonia exhibit autoantibodies against type I 

interferons. Meanwhile, in other patients, the virus may contribute to a de novo breakdown in 

immune tolerance, triggering pathogenic autoantibodies in susceptible individuals. In some 

reports, more than 50% of patients hospitalized with moderate-to-severe COVID-19 have 

circulating autoantibodies; the extent to which these autoantibodies persist after hospital 

discharge is a question that has for the most part not been addressed.  

 

In the summer of 2021, the “Noel R. Rose COVID-19 and Autoimmunity Colloquium,” organized 

by the American Autoimmune Related Diseases Association (AARDA), brought together 

researchers working at the intersection of COVID-19 and autoimmunity to address the current 

state of knowledge regarding two important questions: Does established autoimmunity 

predispose to severe COVID-19? And, at the same time, can SARS-CoV-2 infection trigger de 

novo autoimmunity? The breadth of expertise reflected the desire to create a colloquium that 

spanned multiple medical specialties and scientific disciplines. Participants represented diverse 

fields, including biobanking, cardiovascular medicine, clinical informatics, immunology, 

pathology, and rheumatology, among others. The present Review article highlights the current 

state of knowledge regarding the intersection of COVID-19 and autoimmunity, including work 

and ideas discussed during the COVID-19 and Autoimmunity Colloquium. 
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IMMUNOPATHOLOGY OF SEVERE COVID-19 

A cardinal histopathological feature of severe COVID-19 is pulmonary microangiopathy with 

evidence of fibrin thrombi, activated platelets, and neutrophil extracellular traps (NETs) within 

vessels (1, 2). Furthermore, infiltrating neutrophils, monocytes, and macrophages are observed 

in additional organs beyond the lungs, including the heart, central nervous system, and liver (2–

4). In addition to cell activation and infiltration, local and systemic complement activation likely 

contribute to the microangiopathy. In patients with severe COVID-19, exaggerated complement 

deposition has been detected in various tissues including the lungs (5). Meanwhile, systemic 

detection of alternative complement pathway activation has also been appreciated in severe 

disease (6). 

 

A subset of patients with COVID-19 develop hyperinflammation with high cytokine and 

chemokine levels in a pattern that is similar to, but still distinct from, the auto-inflammatory 

macrophage activation syndrome (MAS) that complicates various autoimmune diseases, such 

as systemic juvenile idiopathic arthritis and systemic lupus erythematosus (SLE) (7–9). It is 

notable that immunomodulatory medications, especially dexamethasone (10), appear to 

improve survival in severe COVID-19. More targeted therapies have also been trialed in COVID-

19. These include inhibitors of cytokines (or their receptors), such as IL-6 (11), IL-1 (12), and 

granulocyte-macrophage colony-stimulating factor (GM-CSF) (13). Small molecules that block 

cytokine-mediated signaling, for instance, Janus kinase (JAK) inhibitors (14, 15), have also 

been studied. The efficacy of these targeted therapies is less proven than for dexamethasone 

and is likely highly dependent on the timing of administration and patient selection (16). 

 

ROLE OF PREEXISTING AUTOIMMUNITY 

The clinical manifestations of COVID-19 are variable, ranging from asymptomatic infection in 

many individuals to critical pneumonia in about 2-3% of patients (17). The dominant 

epidemiological risk factor for life-threatening COVID-19 is age, with the risk of death doubling 

every five years from childhood onward. Male sex and preexisting comorbidities contribute to a 

lesser extent (odds ratios typically <1.5) (18). We now also know that genetic variants (such as 

monogenic inborn errors) and—with high relevance to this review—preexisting immunological 

abnormalities may underlie the severity of disease in some individuals (19).  

 

The role of type I interferons (IFNs) in COVID-19. Type I IFNs induce the expression of many 

IFN-stimulated genes (ISGs) that are essential for antiviral immunity (Figure 1a). For at least a 
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subset of patients, SARS-CoV-2 induces only a limited type I IFN response, leading to poor 

control of SARS-CoV-2 replication and the transition to severe COVID-19 (20–22). At the same 

time, other studies have delivered a contrasting message that some patients with severe 

COVID-19 exhibit robust and sustained type I IFN responses that ultimately contribute to organ 

damage (23–26). While type I IFNs and ISGs are certainly helpful and protective in early stages 

of infection, additional work is needed to understand which specific subgroups of patients with 

severe disease are more likely to be helped or harmed by type I IFNs.  

 

Genetics and autoantibodies that disrupt type I IFN immunity. In an international cohort, 

about 3.5% of patients with severe COVID-19 carried rare loss-of-function inborn errors of 

TLR3- and IRF7-dependent type I IFN immunity that have previously been shown to underlie 

critical influenza pneumonia (27, 28). For example, four previously healthy, unrelated adults 

between 25 and 50 years of age had autosomal recessive, complete deficiency of the IFNAR1 

chain of the type I IFN receptor (n=2) or IFN regulatory factor 7 (IRF7) (n=2) (27, 28). 

 

In the same cohort (but in other patients without these inborn errors), neutralizing 

autoantibodies against type I IFNs were detected in at least 10% of patients with critical COVID-

19 pneumonia, but not in patients with asymptomatic infection (Figure 1b) (29). Importantly, 

these autoantibodies may be causal and not a consequence of critical COVID-19, as they can 

be found in at least some patients before infection (29). The autoantibodies of patients with 

critical COVID-19 primarily targeted IFN and IFN but not IFN, IFN, or IFN (29); therefore, 

patients with these antibodies could potentially still benefit from early administration of IFN 

(30). 

 

Neutralizing autoantibodies against type I IFNs have been identified since the 1980s in patients 

treated with IFN2 and IFN (31), patients with SLE (32), patients with thymoma and/or 

myasthenia gravis (33), and nearly all patients with autoimmune polyendocrinopathy type 1 

(APS-1) (34–36). Although these autoantibodies are typically clinically silent for much of life, 

most patients with APS-1 who were infected with SARS-CoV-2 developed severe COVID-19, 

further suggesting that preexisting autoantibodies against type I IFNs predispose to severe 

manifestations of COVID-19 (37). Moreover, the same autoantibodies to type I IFNs underlie 

adverse reactions to yellow fever live attenuated viral vaccine in about a third of cases (38). 

Notably, multiple centers have confirmed the above that autoantibodies to type I IFNs underlie 
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at least 10% of cases of life-threatening COVID-19 pneumonia in the general population (29, 

39–48). 

 

More recently, autoantibodies neutralizing lower, more physiological concentrations of type I 

IFNs were found in at least 15% of patients with critical COVID-19 pneumonia, including 20% of 

patients older than 80 years (49). Furthermore, these autoantibodies were found in about 20% 

of COVID-19 deaths across all ages (49, 50). Analysis of >34,000 uninfected individuals 

demonstrated that these autoantibodies were present in 0.18% of individuals between 18 and 

69 years of age, rising to 4% in individuals older than 70 years (49), a pattern that likely 

contributes to the age-associated risk of life-threatening COVID-19. 

 

In parallel to this recent work, a genome-wide, unbiased approach found that about 1% of male 

patients younger than 60 years of age with critical COVID-19 pneumonia had X-linked recessive 

TLR7 deficiency (51). Plasmacytoid dendritic cells (pDCs) isolated from these patients produced 

negligible amounts of type I IFNs in response to SARS-CoV-2 (51). When combined with the 

autosomal inborn errors of TLR3-dependent type I IFN immunity that likely impact pulmonary 

epithelial cells (28), inborn errors may underlie critical COVID-19 in 3-4% of patients, especially 

in those younger than 60 years (whereas autoantibodies are more commonly involved in 

patients older than 60 years). Collectively, inborn errors (5%) and autoantibodies associated 

with type I IFN signaling (15%) could account for about 20% of cases of critical COVID-19 

pneumonia. 

 

A two-step model seems likely whereby some patients demonstrate inadequate type I IFN 

immunity during early infection (whether mediated by inborn errors, autoantibodies, or other 

unknown factors). This contributes to unrestrained viral replication and spread, resulting in 

pulmonary and systemic hyper-inflammation (Figure 1b) (18). Therefore, the timing of therapies 

enhancing type I IFN signaling is likely to be crucial and should be administered in the first few 

days of SARS-CoV-2 infection. 

 

ROLE OF DE NOVO AUTOIMMUNITY 

Some clinical features of moderate-to-severe COVID-19 are reminiscent of those seen in 

autoimmune diseases such as antiphospholipid syndrome, inflammatory arthritis, SLE, and anti-

MDA5 syndrome (52–55). In addition, there are numerous case reports of patients developing 

classifiable autoimmune diseases, such as rheumatoid arthritis, psoriatic arthritis, and type 1 
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diabetes concomitantly or immediately following SARS-CoV-2 infection (56–64). These various 

observations have led investigators to question whether de novo autoimmunity may contribute 

to at least a subset of patients who experience a more severe course with COVID-19. 

 

Other examples of virus-associated autoimmunity. Viruses such as cytomegalovirus (CMV), 

parvovirus B19, and Epstein-Barr virus (EBV) have been postulated to be environmental 

triggers of autoimmunity in genetically predisposed individuals (65). As one example, serologic 

evidence of EBV reactivation tracks not only with the transition to SLE, but also with increased 

disease activity in individuals with established SLE (66, 67); indeed, antibodies against EBV 

nuclear antigen-1 cross-react with the SLE-associated antigens Sm and Ro (68–70), and levels 

of anti-EBV antibodies correlate with SLE-associated autoantibodies (66, 71–73). Viruses that 

trigger autoimmunity exhibit several characteristic features (Table 1), including a tendency to 

cause ubiquitous and/or persistent infection, as well as an ability to tip the host immune 

response toward loss of tolerance via production of autoreactive lymphocytes. Mechanistically, 

viruses may contribute to autoimmunity-prone immune responses in various ways. Examples 

include molecular and functional mimicry, superantigen activity, and stimulation of inflammatory 

signaling, including production of type I IFNs (74–76).  

 

Profiling the autoantigenome of COVID-19. To determine whether COVID-19 promotes 

autoantibody production, several groups have endeavored to comprehensively profile the 

autoantigenome of COVID-19. Using established antigen arrays, Chang et al. identified 

autoantibodies associated with rheumatologic diseases in 49% of patients hospitalized with 

COVID-19, compared to less than 15% of healthy controls (77).  Many of these autoantibodies 

are traditionally associated with rare autoimmune diseases, such as autoimmune myositis (77). 

In addition, 60-80% of patients hospitalized with COVID-19 had at least one anti-cytokine 

autoantibody with the potential to modulate immune responses (77).  

 

Wang et al. used a more unbiased approach and screened for autoantibodies against 

extracellular and secreted proteins, which were theorized to be the main targets for functional 

autoantibodies. Using rapid extracellular antigen profiling (REAP), in which barcoded human 

extracellular and secreted proteins are displayed on the surface of yeast (78), they identified a 

wide range of antibodies targeting immune-related antigens, such as cytokines and 

chemokines, in the plasma of patients with COVID-19 (42). Mouse surrogates of these 

autoantibodies increased disease severity in a mouse model of SARS-CoV-2 infection (42). 
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Furthermore, patients with COVID-19 exhibited autoantibodies against tissue-associated 

antigens that correlated positively with disease severity (42). Importantly, some autoantibodies 

were clearly induced following SARS-CoV-2 infection, suggesting that COVID-19 contributes to 

loss of tolerance (42, 77).  

 

Autoantigens can form affinity complexes with the glycosaminoglycan dermatan sulfate (DS). 

These complexes may then engage BCR signaling in autoreactive B1 cells and thereby induce 

autoantibody production (79–81). Self-proteins with affinity to DS are therefore more likely to be 

autoantigens. Wang et al. identified autoantigens with DS affinity from different cell lines and 

compared them to proteins altered at the protein or transcript level in SARS-CoV-2 infection 

(82–84). Notably, many of the SARS-CoV-2-altered proteins with DS affinity were associated 

with COVID-19 disease manifestations, such as neurological symptoms, thrombosis, and 

possibly PASC (82–84). 

 

Other functional autoantibodies. Abnormal coagulation, along with microvascular and 

macrovascular thrombosis, is associated with not only severe COVID-19 (85, 86), but also the 

autoimmune thromboinflammatory disease antiphospholipid syndrome. Antiphospholipid 

syndrome is characterized by the presence of antiphospholipid autoantibodies (aPL), which 

promote thrombosis by activating endothelial cells and platelets while also stimulating 

neutrophils to release NETs (Figure 2a) (87–90). Patients hospitalized with COVID-19 exhibit 

elevated levels of NETs (91), which correlate with disease severity and thrombosis (92). In one 

study, approximately half of patients hospitalized with COVID-19 had at least one type of aPL, 

while positive aPL testing was associated with neutrophil activation, more NET release, reduced 

oxygenation efficiency, and more severe disease (93). Importantly, total IgG fractions from 

patients with COVID-19 who were positive for aPL trigger NET release from healthy neutrophils 

(93), activate endothelial cells to upregulate cell adhesion molecules (94), and accelerate 

thrombosis when transferred into mice (93). All these phenotypes are similar to IgG fractions 

from individuals with established antiphospholipid syndrome. 

 

Patients with antiphospholipid syndrome and other rheumatologic diseases have elevated levels 

of antibodies that bind to NETs, impairing NET degradation and likely activating complement 

(95, 96). Levels of anti-NET antibodies are also increased in patients hospitalized with COVID-

19, with the highest levels in patients requiring mechanical ventilation (97). Anti-NET antibodies 

correlate with NET remnants in blood, COVID-19 severity, and platelet count and inversely 



11 
 

correlate with oxygenation efficiency and NET clearance (97). Taken together, these findings 

suggest a potential role in COVID-19-associated thrombosis (Figure 2a). 

 

Another study by Combes et al. found that immune cells from patients with mild COVID-19, 

including neutrophils and monocytes, expressed a strong ISG signature (98). In contrast, and in 

line with some of the studies mentioned above (20, 21), ISG-expressing cells were less likely to 

be found in patients with severe COVID-19 requiring intubation and intensive care (98). In the 

study, one of seven patients with severe COVID-19 exhibited autoantibodies against IFNα (98). 

In the remaining six patients, total IgG fractions antagonized signaling through the monocyte 

type I IFN receptor in FcγRIIb-dependent fashion (Figure 2b) (98, 99). Although the antigen 

specificity of these antibodies remains to be determined (which would allow this concept to be 

tested more broadly in additional cohorts), these data suggest that therapies inhibiting FcγRIIb 

may have the potential to restore type I IFN responses in some patients with severe COVID-19. 

 

Potential mechanisms of de novo autoimmunity in COVID-19.  Effector B cell responses can 

be activated through the germinal center or extrafollicular pathways. Unlike germinal center 

reactions, extrafollicular maturation lacks certain checkpoints to prevent autoreactivity and, as 

such, is more prone to generating autoantibodies (100). In SLE, a large proportion of antibody-

secreting cells originate from naïve B cells (as opposed to memory B cells), which are activated 

via the extrafollicular pathway in a TLR7-dependent manner (101, 102). These extrafollicular B 

cells (known as double negative [DN2] B cells) lack IgD, CD27, CXCR5, and CD21. They are 

poised to become antibody-secreting cells, tend to produce pathogenic autoantibodies, and are 

enriched in patients with active SLE, including patients with lupus nephritis (102).  

 

Reminiscent of SLE, higher levels of both circulating DN2 B cells and circulating plasma cells 

associate with greater disease severity and poor outcomes in COVID-19 (Figure 3) (100). In 

addition, patients who succumb to COVID-19 lack Bcl6+ germinal centers (103), consistent with 

a predominantly extrafollicular response. Severe COVID-19 patients also exhibited higher 

numbers of unmutated SLE-associated, autoimmune-prone IGHV4-34 antibody-secreting cells 

in circulation (100, 104). The mechanisms contributing to extrafollicular pathway activation in 

severe COVID-19 are unknown; however, TLR7 drives DN2 cell differentiation (102), and TLR7 

recognizes viral single-stranded RNA genomes, such as that of SARS-CoV-2 (105). 

Furthermore, patients with severe COVID-19 exhibit elevated plasma IL-6 levels (106), which 

correlate with DN2 cell expansion (107). Notably, patients with high extrafollicular responses 
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exhibit high titers of neutralizing antibodies against the receptor-binding domain of the SARS-

CoV-2 spike protein (100), suggesting that a lack of protective antibodies is not the main driver 

of disease severity in these patients. Together, these studies indicate that autoimmune-prone 

extrafollicular B cells dominate the B cell response in many patients with severe COVID-19, 

likely contributing to the loss of tolerance and dysregulated humoral immunity in patients with 

severe disease.  

 

Some viruses possess superantigen activity, enabling broad non-specific T cell activation via 

MHC class II or the TCR and contributing to hyperinflammation and autoimmunity (108). Using 

computational modeling, Cheng et al. demonstrated that the SARS-CoV-2 spike protein 

contains a high-affinity motif similar to bacterial superantigens that directly interacts with the 

TCR and may form a ternary complex with MHC class II (109). Interestingly, the authors found 

that some patients with severe COVID-19 have a skewed TCR repertoire consistent with 

superantigen activity (109). Multisystem inflammatory syndrome (MIS-C) is a severe 

inflammatory syndrome with multiorgan involvement that occurs in a small percentage of 

children following SARS-CoV-2 infection (110). One study of 16 children with severe MIS-C 

found significant expansion of TCR -chain variable gene 11-2 (TRBV11-2), TRBV24-1, and 

TRBV11-3 in MIS-C patients relative to febrile control patients, such that up to 24% of the clonal 

T cell space was taken up by clones using TRBV11-2 (111). In silico modeling indicated that 

polyacidic residues in the Vβ chain encoded by TRBV11-2 strongly interact with the 

superantigen-like motif of SARS-CoV-2 spike glycoprotein, suggesting that unprocessed SARS-

CoV-2 spike may directly mediate TRBV11-2 expansion. Another study found that 24 of 32 

(75%) patients with MIS-C (and none in other clinical groups) displayed TRBV11-2 (also known 

as Vβ21.3+) expansions (112). Notably, TRBV11-2 T cells correlate with MIS-C cytokine storm 

and are enriched in a cluster of patients with autoimmunity-associated immunoglobulin heavy 

chain variable region genes and increased autoantibodies targeting tissue-specific autoantigens 

(113). Therefore, superantigen-like T cells may trigger hyperinflammation and the production of 

autoantibodies following SARS-CoV-2 infection, contributing to de novo autoimmunity. The 

extent to which SARS-CoV-2 spike-mediated superantigen activity contributes to autoimmunity 

in adults with severe COVID-19 is a topic worthy of further research. 

 

DOES AUTOIMMUNITY PLAY A ROLE IN PASC? 

Whether autoimmunity contributes to PASC is only beginning to be addressed. Furthermore, as 

definitions of PASC are still being established, any available data will need to be interpreted in 
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relation to the definition used by the authors. One recent study of 96 patients found that 

antinuclear antibody (ANA) titers ≥1:160 were detected in 43.6% of patients at 12 months post 

COVID-19 symptom onset (114). In the cohort, neurocognitive symptom frequency (such as 

concentration problems) was significantly higher in the group with ANA titers ≥1:160 as 

compared with the group with titers <1:160 (107). Outstanding questions that should be 

systematically considered in the coming months and years include the following: Do preexisting 

autoantibodies predispose someone with COVID-19 to develop PASC? How commonly do de 

novo autoantibodies persist beyond the acute phase of SARS-CoV-2 infection, and will these 

patients transition to a classifiable autoimmune disease? Meanwhile, does virus-induced 

autoreactivity underlie at least some of the wide spectrum of clinical phenotypes associated with 

PASC? If so, can patients with acute disease or PASC be immunologically profiled to identify 

those who might benefit from immune-modulating therapies? Answering these questions will 

require the generation of multi-ethnic biospecimen repositories from COVID-19 patients, such 

as the Collaborative Cohort of Cohorts for COVID-19 Research (C4R), which includes 

information from before, during, and after SARS-CoV-2 infection that can potentially enable the 

necessary longitudinal investigations (115). Analysis of large-scale electronic health record data 

(EHR) (116–118) will likely also be needed to determine clinical associations with COVID-19, 

such as autoimmune manifestations. This approach has already been used to identify 

hospitalization trends, clinical and laboratory features, and predict severity in patients with 

COVID-19 (119–121) through initiatives such as the international Consortium for Clinical 

Characterization of COVID-19 by EHR (4CE; https://covidclinical.net) and the National COVID 

Cohort Collaborative (N3C; https://ncats.nih.gov/n3c). 

 

CONCLUSIONS 

Many of the studies discussed above leveraged patient samples obtained in the early months of 

the COVID-19 pandemic, prior to the regular use of dexamethasone, and certainly before the 

advent of vaccination. Understanding the extent to which these interventions (and hopefully 

additional interventions to come) change how SARS-CoV-2 interacts with the immune system is 

one important future direction. It will also be valuable to see additional studies that use affinity 

purification to characterize downstream mechanisms of specific autoantibody species. 

Furthermore, longitudinal cohorts that capture patient samples at the time of acute illness and 

then in follow-up will be important; establishing cohorts that also include pre-COVID samples 

will be even more valuable. 

 

https://covidclinical.net/
https://ncats.nih.gov/n3c
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In conclusion, data to date strongly suggest that some severe COVID-19 cases can be 

explained by preexisting autoantibodies (which interestingly provide a risk similar to rare inborn 

genetic errors in the same pathways). In terms of de novo autoantibody formation, a variety of 

such antibodies are detected when patients are hospitalized with severe COVID-19; however, 

there is still work to be done to determine whether these antibodies are important contributors to 

severe disease or an epiphenomenon of the marked inflammation. Going forward, the COVID-

19 pandemic would seem to provide a once-in-a-lifetime opportunity to more precisely 

determine how a viral infection can be exacerbated by, and even trigger, autoimmunity. 
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Table 1: SARS-CoV-2 shares some characteristic features with other viruses that 
trigger autoimmunity. 

Features of other viruses Evidence for SARS-CoV-2 

Precedes autoimmunity 
Case reports of patients developing classifiable 
autoimmune diseases following SARS-CoV-2 
infection (56–64) 

Induces type I interferons 
SARS-CoV-2 induces robust type I interferon 
responses in a subset of patients (23–26) 

Breaks tolerance 
SARS-CoV-2 induces autoantibody production in 
patients with severe COVID-19 (42, 77) 

Superantigen activity 
SARS-CoV-2 spike protein contains a superantigen 
motif and patients with severe COVID-19 exhibit TCR 
skewing consistent with superantigen activation (109) 

Inhibits apoptosis of infected cells No evidence to date 

Interferes with its own destruction No evidence to date 
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Figure legends 

Figure 1: Some patients with severe COVID-19 exhibit autoantibodies antagonizing type I 

IFN immunity. (a) Type I IFNs bind to the IFN-a/b receptor (IFNAR) to induce the expression of 

IFN-stimulated genes (ISGs) that are essential for antiviral immunity. (b) Anti-IFN 

autoantibodies block IFN binding to its receptor, preventing the upregulation of ISG expression 

and impairing antiviral immunity. Uncontrolled replication of SARS-CoV-2 may then result in 

hyperinflammation and tissue damage. 

Figure 2: Potential downstream mechanisms of autoantibodies identified in patients with 

severe COVID-19. (a) A subset of patients with severe COVID-19 have antiphospholipid 

antibodies (aPL) and/or anti-neutrophil extracellular trap (anti-NET) autoantibodies. aPL may 

activate endothelial cells and platelets and stimulate neutrophils to release NETs. Anti-NET 

antibodies bind to NETs, impairing NET degradation by DNase. Together, these autoantibodies 

may activate complement and promote thrombosis. (b) In some patients with severe COVID-19, 

antibodies can prevent the expression of IFN-stimulated genes (ISGs) by antagonizing signaling 

through the type I IFN receptor in a FcγRIIb-dependent fashion, impairing antiviral immunity.  

Figure 3: Potential mechanisms of de novo autoimmunity in COVID-19. Naïve B cells can 

be activated via both the germinal center and extrafollicular pathway. The extrafollicular 

pathway lacks some tolerance checkpoints that prevent the activation and maturation of 

autoreactive B cells and is, therefore, more prone to generating autoantibodies. Patients with 

severe COVID-19 exhibit higher levels of extrafollicular B cells lacking IgD, CD27, CXCR5, and 

CD21 (known as double negative [DN2]) cells and plasma cells. They may also lack germinal 

centers. Red arrows indicate increased or reduced levels in patients with severe COVID-19 

compared to patients with mild COVID-19. 
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