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1 Introduction

There is a growing body of work which shows that individual investors do not always act

as maximizers of expected utility. One of the most prominent alternative explanations of

individual decision making is Tversky and Kahneman’s (1992) prospect theory (PT). PT

has several innovations relative to expected utility, including reference levels, risk seeking

behavior on losses and probability weighting.1 Probability weighting has been successfully

linked, both theoretically and empirically, to a wide range of financial phenomena.2 In this

paper, we contribute to this broad agenda by showing that in the setting of dynamic models

of trading, PT can generate realistic behavior including the use of stop-loss strategies and

the desire for right skewness and can match empirically observed levels of the disposition

effect. Probability weighting plays a crucial role in our conclusions and we cannot obtain

our main results from the reference level, loss aversion and risk-seeking on losses features of

prospect theory alone.

We study the behavior of an investor with PT preferences who chooses when to sell an

asset. The inclusion of probability weighting introduces new challenges, and to our knowledge

this is the first paper to solve a dynamic liquidation model in continuous time for a pre-

committing investor under a complete specification of realistic PT preferences which include

all the features of Tversky and Kahneman (1992). Our model nests the models of Kyle,

Ou-Yang and Xiong (2006) and Henderson (2012) which consider an optimal sale problem

1Many experimental and empirical studies (Tversky and Kahneman (1992), Camerer and Ho (1994),

Wu and Gonzales (1996), and Polkovnichenko and Zhao (2013)) have found strong support for probability

weighting. These studies confirm the inverse-S shape of the weighting function identified by Tversky and

Kahneman (1992) which is associated with individuals overweighting the tails of the distribution.
2An overview can be found in Barberis (2013). Barberis and Huang (2008) show that, in a financial market

where investors evaluate risk according to prospect theory, probability weighting leads to the prediction

that the skewness will be priced. This idea has been used to explain low average returns of IPO stocks

(Green and Hwang (2012)), the apparent overpricing of out-of-the-money options and the variance premium

(Polkovnichenko and Zhao (2013), Baele et al (2017)), the lack of diversification in household portfolios

(Polkovnichenko (2005)) and many other puzzles. On an aggregate scale, De Giorgi and Legg (2012) show

that probability weighting is useful in generating a large equity premium - and can do so independently of

loss aversion (Benartzi and Thaler (1995)). Probability weighting has also been helpful in understanding the

popularity of casino gambling (Barberis (2012)).
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for an investor with PT value function but no probability weighting, and is a continuous

time version of the discrete time binomial model of Barberis (2012).

Our theoretical contribution is to determine the optimal prospect. For a class of pref-

erence structures and asset price dynamics, including many popular specifications from the

literature, we determine the optimal prospect for an agent who can commit to an optimal

sale strategy. Our analysis leads to several predictions which closely match empirical and

laboratory findings.

Our first prediction, unique to the literature, is that PT investors should employ trading

strategies which are of threshold type on losses, but not on gains.3 Consider first the be-

havior on losses. Stop-loss strategies are in widespread use in financial markets and are also

found desirable in the laboratory experiments of Fischbacher, Hoffmann and Schudy (2017).

Existing theories, both EU and non-EU alike have struggled to justify stop-loss strategies

- often they predict that assets are never sold voluntarily at a loss, but rather sales are

deferred indefinitely. In contrast, we find that overweighting of extreme losses encourages

the investor to stop at a threshold, and sooner than might be predicted in a model without

probability weighting.

Now consider the behavior on gains. The vast majority of trading models - including those

based on expected utility and those based purely on the S shaped utility function of prospect

theory (Henderson (2012), Barberis and Xiong (2012), Ingersoll and Jin (2013) and Magnani

(2015b)) - predict investors sell stocks when the price breaches an upper threshold. Our

model predicts that the PT investor does not aim for a simple threshold strategy on gains.

Instead probability weighting encourages the investor to aim for a long-tailed distribution,

placing some mass on extremely high gains precisely because these are the outcomes which are

overweighted under the inverse-S shaped probability weighting. Our results are supported

by the fact that despite the ubiquity of stop-loss strategies in financial markets, in these

same markets, investors appear unwilling to set thresholds which limit their upside. Similar

3As PT distinguishes between gains and losses relative to a reference point, and treats them differently,

we expect asymmetric treatment of gains and losses, and potentially skew in the optimal prospect and a

disposition (or reverse disposition) effect. The claim here is not merely that investor treatment of gains and

losses is different, but rather that it is different in character: on one side it is a stop-loss threshold strategy,

whereas on the other it is much more sophisticated.
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behavior on the non-use of threshold strategies on gains has been found experimentally by

Strack and Viefers (2017) and by Fischbacher, Hoffmann and Schudy (2017).

Our second prediction is that the optimal prospect is skewed. For realistic parameter

values it is right skewed. It has a point mass on losses, but a long-tailed distribution over

gains. The S shaped value function of PT favors a negative skew — small losses are heavily

penalized and small gains are well rewarded and so the value function favours prospects

consisting of likely small gains together with rare, but larger, losses (Henderson (2012),

Ingersoll and Jin (2013)). Conversely, the inverse-S shaped probability weighting favors long

right tails and a positive skew. Starting with no probability weighting and a negative skew,

we find that as probability weighting increases in strength, the optimal prospect becomes less

negatively skewed. Indeed, for levels of probability weighting proposed in the literature, the

target distribution of the PT investor is typically right skewed, where we calculate skewness

with the Hinkley (1975) quantile based measure. Positive skewness has long been established

as an integral part of individual risk preferences in the empirical and experimental literature.

For example, Kumar (2009) documents a desire for positive skew in choices of retail investors4

and Ebert (2015) finds strong supporting evidence in the lab. Furthermore, although PT

and skewness have been linked (Barberis and Huang (2008), Spalt (2013)), this paper is the

first to make this connection in a rigorous model of the trading behavior of a PT investor. In

fact, existing PT models without probability weighting typically lead to a left skewed target

distribution rather than a right skew.

One of the most robust trading anomalies in the empirical literature on investor behavior

is the disposition effect, which refers to the stylized fact that investors have a higher propen-

sity to sell risky assets with capital gains compared to risky assets with capital losses (Shefrin

and Statman (1985)).5 Odean’s (1998) well known study computes the frequency with which

4Kumar (2009) (and others) find if investors are offered a set of investment opportunities in stocks, they

tend to choose to buy stocks with right skewed distributions rather than symmetric or left skew. Here in

our model, the situation is slightly different since the agent can effectively design the payoff whilst the game

is in progress and designs it to be right skewed.
5The disposition effect has been documented for individual investors by Odean (1998), institutional

investors (Grinblatt and Keloharju (2001)) as well as in the real estate market (Genesove and Mayer (2001))

and options markets (Poteshman and Serbin (2003)). Studies have also examined the impact of trading
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individual investors sell winners and losers relative to opportunities to sell each and finds

gains are realized at a rate around 50% higher than losses. Prospect theory provides a lead-

ing candidate explanation of the disposition effect.6 The well known static intuition from

Shefrin and Statman (1985) linking PT to the disposition effect argues that risk seeking over

losses under PT encourages investors to continue gambling, whilst risk aversion over gains

means investors tend to sell assets which have increased in value.

In an attempt to understand the implications of PT more fully, there has been a recent

program in the literature attempting to build rigorous models in a dynamic setting. Despite

the clear intuition, it is a challenge for existing prospect theory models to explain the dispo-

sition effect (Kyle, Ou Yang and Xiong (2009), Kaustia (2010), Barberis and Xiong (2009,

2012), Henderson (2012), Li and Yang (2013))7. Indeed, current models have been unsuc-

cessful. The first difficulty is that PT models without probability weighting (Ingersoll and

Jin (2013), Henderson (2012) and Barberis and Xiong (2012)) typically predict two-sided

threshold strategies. The second difficulty is that although the convexity over losses and

loss aversion do indeed act to encourage the investor to continue gambling in the domain

experience (Feng and Seasholes (2005)) and investor sophistication (Dhar and Zhu (2006), Calvett, Campbell

and Sodini (2009)) on the disposition effect. Experimental evidence from the lab (Weber and Camerer (1998)

and more recently, Magnani (2015a,b) and Fischbacher, Hoffmann and Schudy (2017)) is also supportive.
6Odean (1998) explicitly considers expected utility explanations for the asymmetry across winners and

losers based on richer specifications of the investor’s problem, finding that portfolio rebalancing, transaction

costs, taxes, and rationally anticipated mean reversion cannot explain the observed asymmetry. Weber and

Camerer (1998) find that incorrect beliefs concerning mean reversion cannot explain the disposition effect

either.
7There are theories of the reference point that can potentially generate a disposition effect, for example,

a reference point given by a weighted average of recent prices (Weber and Camerer (1998); Odean (1998)),

or by investors expectations (Koszegi and Rabin (2006)), Meng and Weng (2018), Magnani (2015b)).
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of losses, this effect tends to be too strong.8,9 In many models the investor rarely (or even

never) stops voluntarily at a loss, giving an extreme disposition effect.10

Our third prediction is that the inclusion of probability weighting allows prospect theory

to deliver a realistic level of the disposition effect. With an inverse-S shaped probability

weighting function an investor overweights the extreme outcomes - both good and bad.

Overweighting the extremely poor outcomes encourages the investor to stop in the loss

region. Overweighting the very good outcomes encourages the investor to continue when in

the region of gains. In isolation, therefore, probability weighting would work in the opposite

direction to the disposition effect - investors stop earlier when the stock is doing badly and

hold longer when it is doing well. The important observation we make in this paper is that

when probability weighting is used in tandem with the other ingredients of PT (S shaped

value function, loss aversion) it moderates the level of the disposition effect predicted by the

model to give values which are much closer to observed empirical levels. Indeed, we show the

model can match Odean’s (1998) measure of the disposition effect with realistic parameters.

In static models, and occasionally in their dynamic counterparts, the intuition from

prospect theory has been used to justify many of these stylized facts, but typically only one

feature at a time. An important paper in this vein is the binomial model of casino gambling

8Ingersoll and Jin (2013) study a realization utility model with reference dependent S-shaped preferences

and show that consideration of reinvestment improves the range of parameters over which losses are taken.

The model of Ingersoll and Jin (2013) gives an improved fit to the disposition effect, but requires considerable

adjustments on the TK value functions and how they are applied. First, the value function is applied over

rates of return rather than dollar changes, and second, the TK value function is altered so that the marginal

utility at the origin is finite. Further, an implausibly high risk seeking parameter is needed to obtain a good

fit. To obtain a better fit for plausible parameters Ingersoll and Jin (2013) mix 50-50 realization utility

investors with random Poisson traders. Although it gives a better fit, loss-incurring sales are typically the

result of events of the exogenous Poisson process, and not deliberate decisions to sell.
9Barberis and Xiong (2009) have the reverse problem - their model often predicts the opposite of the

disposition effect.
10Most of this literature finds the investor never sells at a loss. An exception is Henderson (2012), who

shows that under the Tversky and Kahneman (1992) value function, there is a loss threshold at which the

investor will sell, but this only occurs for ranges of parameters where the stock has very poor expected

returns, ie. where the investor gives up despite her loss aversion and convex preferences. For higher expected

returns, an extreme disposition effect still emerges as loss aversion and convexity are dominant forces.
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of Barberis (2012). Barberis (2012) applied PT (with TK utility and weighting functions) in

a finite horizon binomial tree, which may be viewed as a discrete-time version of our model.

11 He finds that the investor who can commit (and for whom probability weighting is the

dominant effect) aims for a right-skewed, stop-loss strategy. However, this investor continues

on gains, which means that losses are taken more readily than gains, and the reverse of the

disposition effect emerges.

In general, there is an apparent inconsistency between right skewness and the disposition

effect. Right-skewed payoffs with some large gains might be expected to arise from strategies

in which the rate of selling in the gain regime is low relative to the rate of selling in the loss

regime; the disposition effect is the reverse relationship. One of the main contributions of

this paper is to resolve this apparent paradox. The resolution comes from the fact that the

strategy on gains is not a pure threshold strategy; most of the time the investor aims for

small gains and moderate losses, with only occasional large gains. The occasional large gains

generate the positive skew in the optimal prospect, whereas the (more typical) sales at small

gains cause a disposition effect. Hence we can have both right skewness and the disposition

effect in our model. Probability weighting is key to the optimality of a non-threshold strategy

on gains and hence to a theory which simultaneously explains stop-loss, right skewness and

the disposition effect.

We close the introduction with some brief remarks concerning our technical contribution.

We study the problem facing an investor with PT preferences (and who can precommit) who

chooses when to sell an asset in a continuous-state, continuous-time model. The problem

can be cast as a infinite-horizon, optimal stopping problem for a diffusion process. The goal

is to determine an optimal stopping rule and the optimal target distribution for the stopped

process or equivalently the optimal prospect. Underpinning our results is the important

progress we make on the form of the optimal prospect. For a wide range of utility and

11Barberis (2012) also drew attention to the time inconsistency induced by probability weighting, see also

Machina (1989). Today’s optimal strategy may not be optimal at future times, and (naive) PT investors

may change their minds. In contrast to the investor who can commit, the naive investor changes his mind

and continues on losses whilst stopping on gains - a disposition-like behavior but one which is left-skewed

and not stop-loss. Moreover, Ebert and Strack (2015) in a continuous time version of the model show a naive

PT investor never stops gambling and thus cannot display the disposition effect.
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weighting functions and for general price processes we establish that the optimal prospect

takes the form of a stop-loss threshold and a distribution over gains.

We emphasize that we provide the first stopping model for a precommitment agent to

feature all the components of Tversky and Kahneman (1992) prospect theory. However, the

probability weighting aspect of PT induces time-inconsistency. There are several different

ways to model the response of investors to time-inconsistency, and in addition to agents who

can commit, we may have naive or sophisticated investors. Naive investors are aware of time-

inconsistency and continually recalculate their optimal strategy.12 Sophisticated investors

choose an optimal strategy assuming that their future selves will also behave optimally

and in a similar fashion. Recently, studies in a continuous time setting show a naive PT

agent never stops (Ebert and Strack (2015), and a sophisticated agent never gets started

(Ebert and Strack (2017)). By extending the framework of Ebert and Strack (2015) to

allow for randomized strategies, Henderson, Hobson and Tse (2017) show that a naive PT

investor may voluntarily sell or cease gambling. Taken together, these works highlight the

challenges involved in modeling the stopping behavior of PT agents in dynamic settings and

demonstrate that each type of agent behaves very differently and certainly deserves its own

study.

2 A Model of asset liquidation under Prospect Theory

2.1 Prospect theory preferences and weighting

Under prospect theory, utility is evaluated in terms of gains and losses relative to a reference

point, rather than over final wealth. Denote by Z a random variable and by R the reference

point or level and let Y = Z − R denote the gain or loss relative to the reference level.

Let U be the (continuous, strictly increasing, twice differentiable away from zero) utility or

value function defined over the range of Y such that U(0) = 0. Under prospect theory, U is

concave over gains and convex over losses. It also exhibits loss aversion, whereby a loss has

a larger impact than a gain of equal magnitude.

12In order to understand the behavior of a naive agent it is necessary to first understand the behavior of

an agent who can pre-commit. This is the behavior we determine.
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The final ingredient of prospect theory is that the probabilities of extreme events are over-

weighted where the degree of probability weighting can differ for gain and loss outcomes.

Let w± : [0, 1] 7→ [0, 1] be a pair of (continuous, strictly increasing, differentiable) probability

weighting functions with w±(0) = 0, w±(1) = 1. Overweighting of small probabilities on

extreme events suggests the probability weighting functions w± should be inverse-S shaped

functions; in particular there exist q± such that w± is concave on [0, q±] and convex on [q±, 1].

The prospect theory value of Z is given by (see Kothiyal et al (2011))

V (Z) =

∫ ∞
0

w+(P(U(Z −R) > y))dy −
∫ 0

−∞
w−(P(U(Z −R) < y))dy. (1)

Our model is a partial equilibrium framework with an infinite horizon. An investor holds

an asset whose price at time t is given by Pt. The investor can sell or liquidate the asset at

any time in the future. At the liquidation time τ 13 of their choice, the investor receives the

payoff Z ≡ Pτ and compares it to their reference level R, which may be the breakeven level or

price paid for the asset.14 The investor uses narrow framing in her evaluations of prospects,

so that selling decisions are taken in isolation and without reference to other components of

the investor’s portfolio. Moreover, our focus is on investors who can commit to follow an

investment strategy.

The goal of the investor is to choose the best time τ to sell the asset to maximize the PT

value: i.e. to find

sup
τ
V (Pτ ), (2)

Note that if w±(p) = p so that there is no probability weighting, then V (Pτ ) = E[U(Pτ −R)]

and we recover the model of Henderson (2012) (see also Kyle, Ou-Yang and Xiong (2006)).

Note also that from (1) and (2) it follows that the problem depends on τ only through the law

of Pτ and two stopping times which yield the same probability distribution for the stopped

process will be valued as equal by the investor with prospect theory preferences. Hence the

problem of finding the optimal stopping rule can be solved via a two-stage process, first find

the optimal prospect and then find a stopping rule for which the law of the stopped process

13The liquidation time τ must be a stopping time.
14In common with the prospect theory models we compare to, we consider a fixed reference level. We set

R = P0.
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attains that prospect. The novel part of our results is in the first step. For the second step,

we can use the theory of Skorokhod embeddings. This theory tells us how to find stopping

rules which attain the given law and that, in general, there are many different stopping rules

which are all optimal. The exception is the case where the original prospect is a distribution

over one or two points (as is the case in classical stopping problems without probability

weighting). Then there is a unique optimal stopping rule which is the first exit time from

an interval.

Suppose the price process P is a time-homogeneous diffusion with state space which is

an interval with endpoints aJ < bJ .15 Let s be the scale function for P so that X = s(P )

is a (local) martingale.16 Set v(x) = U(s−1(x) − R). The following proposition converts

the problem from an optimization over stopping times to an optimization over prospects.

The change of scale means that the optimization takes place over a simple space of target

distributions. These distributions have zero mean, because X has zero expected return.

Proposition 1. Suppose s(aJ) > −∞. The investor’s objective can be rewritten as to find

sup
X

(∫ 1

1−P(X>0)

v(GX(u))w′+(1− u)du+

∫ P(X<0)

0

v(GX(u))w′−(u)du

)
, (3)

where the supremum is taken over random variables (or prospects) X with mean X0 and sup-

port on [s(aJ), s(bJ)]. Here GX is the quantile17 function of X. If X∗ is an optimal prospect,

then there exists a stopping time τ ∗ such that Xτ∗ has the same law as X∗. Moreoever any

stopping time τ ∗ constructed such that Xτ∗ has the same law as X∗ is optimal.

If X∗ is the optimizer for this problem, then the optimal prospect P ∗ has CDF FP ∗(p) =

FX∗(s(p)). Moreover Pτ∗ has the same law as P ∗.

15The main model of interest is to take P to be geometric Brownian motion. Then Pt = P0e
σBt+(κ− 1

2σ
2)t

with expected return κ ≥ 0. In this case aJ = 0 and bJ =∞ and the scale function is s(p) = pβ −P β0 where

β = 1− 2κ
σ2 . Then Xt = s(Pt) is a translation of a geometric Brownian motion and has zero expected return.

Note that s(aJ) = s(0) = −P β0 > −∞.
16See Henderson (2012) or Xu and Zhou (2013) for use of the same transformation in a related context.
17If FX is the cumulative distribution function (CDF) of X so that FX(x) = P(X ≤ x) then the quantile

function GX is the inverse of FX .
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2.2 The main result

Our first theorem describes the optimal prospect.

Theorem 1. Suppose the value function and probability weighting functions are those of

Tversky and Kahneman (1992), and suppose that the price P is geometric Brownian motion.

Suppose that the parameter values are such that the problem is well-posed.

Then the optimal prospect has a distribution which consists of a point mass in the loss

regime at some level L and a point mass at some level A in the gains regime, together with

a continuous distribution on the unbounded interval (A,∞).
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Figure 1: The cumulative distribution function (CDF) of the optimal prospect in the model

with Tversky and Kahneman value and weighting functions (see Section 5). The optimal

distribution consists of a single loss threshold at L together with a distribution over the

gains region. Here we take the reference level R = 1 and initial asset price P0 = 1. Other

parameters are α+ = 0.5, α− = 0.9, TK probability weighting parameters δ+ = δ− = 0.7,

loss aversion parameter k = 1.25, β = 1 − 2κ/σ2 = 0.9 (where κ is the asset’s expected

return and σ the volatility of asset returns). The base case TK model and parameters are

described in detail in Section 5.

Theorem 1 is a special case of a more general result (Theorem 2 in the Appendix A.3)

which has the same conclusion, but holds under a wide class of model specifications. The
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precise form of the optimal prospect is given in Proposition 9 in Appendix A.5.3.

Our main technical contribution is to solve for the optimal prospect (for an agent who

can commit) for a wide class of prospect theory specifications including those of Tversky

and Kahneman (1992) and for asset prices following a time-homogeneous diffusion. For an

S-shaped value function and inverse-S shaped probability weighting functions we take a

sequential optimization approach and split the problem into two subproblems - a concave

maximization (via a Lagrangian) over gains and a convex maximization over losses. Each

of these subproblems can be analysed using the results of Xu and Zhou (2013) for one-sided

(gains or losses) optimal stopping problems. Then, under some additional assumptions on

the value and probability weighting functions18 which we can show hold in the base case

model of Tversky and Kahneman (1992) and for a wide set of value and weighting functions

used in the literature, we can solve for the optimal prospect with both gains and losses by

finding the optimal allocation of mass over gains and losses subject to a mean constraint.

The full development of our technical results is contained in Appendix A with the proofs

given in Appendix B and C.

For a particular set of parameter values, the optimal prospect is displayed graphically in

Figure 1. Note that the reference level and the initial asset price are both set equal to 1.

The base case TK model and parameters are described in detail in Section 5. We display the

cumulative distribution function (CDF). The distribution on losses is a point mass. (In this

example the location of this mass is strictly positive, although this need not be the case). The

investor places just over 0.4 of the probability onto the single loss threshold L which is about

0.7, that is, at a 30% loss relative to the reference level. The remainder of the probability is

distributed over the gains. There is probability of just under 0.3 at A which is about 1.1, ie.

at a 10% gain relative to the reference level. The rest of the probability is distributed above

this point, tailing off at around 2.4. (More precisely, the level 2.4 represents the upper 99th

percentile of the distribution.)

18A key point is that although the full problem involves a delicate interaction between the value and

probability weighting functions, these assumptions apply separately to the value and weighting functions.
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2.3 Implications of the main result

Theorem 1 has several implications for the behavior of commitment-based investors which

we highlight here, and with the exception of the final implication, discuss in more detail in

later sections.

First, the investor follows a strategy which treats gains and losses differently. This is

consistent with the premises of PT which treat gains and losses separately, and in different

ways.

Second, all the mass on losses in the optimal prospect is concentrated at a single point.

This means that the corresponding strategy must be stop loss. Conversely, the optimal

prospect for a PT investor includes a long-tailed distribution on gains. This means that the

optimal strategy is not take-gain, and the optimal strategy need not be of threshold type.

Third, the optimal prospect is skewed. When there is no probability weighting the optimal

prospect is left-skewed. However, we show below that as probability weighting increases the

optimal target distribution becomes right-skewed.

Fourth, given the optimal target distribution we can calculate a model-based version of

Odean’s disposition ratio. For reasonable parameter values we find a good fit to the empirical

results of Odean (1998). Probability weighting plays a key role and is necessary for a good

match between model-based values of the disposition effect and empirical results.

Finally, the optimal prospect is never a single point mass. A point mass at the current

price of the asset would signify that if the investor were to buy the asset for the current

price, then the investor would choose to sell it instantly. More pertinently, in such a scenario

the investor would not buy the asset in the first place. As we find that the optimal prospect

is always non-trivial, we conclude that the agent would always choose to buy the asset for

it’s current price, in the knowledge that under narrow framing, and with the reference level

set to be the price paid, buying the asset yields a strictly positive value under prospect

theory preferences. For this reason we express the investor’s problem in terms of an initial

endowment of the asset and the desire to select an optimal liquidation strategy.19

19In Barberis’s (2012) discrete model the situation is different. He finds that for some parameter com-

binations the investor may choose to sell instantly (or, in his framework, to never gamble in the casino).

The difference between our results and those of Barberis is driven by the distinction between discrete and
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3 PT and investor behavior

3.1 PT trading and stop-loss strategies

Figure 1 shows that a prospect theory investor with S-shaped utility, loss aversion and prob-

ability weighting will trade to achieve a distribution over gains but will desire a stop-loss

threshold over losses. This difference in how the investor trades gains and losses matches very

well how investors behave in financial markets. Stop-loss strategies are in widespread usage

in practice but stop-gain or take-gain strategies are much rarer. This mismatch in the useage

of stop-loss versus take-gain has been found in a recent experimental study of Fischbacher,

Hoffmann and Schudy (2017). In a laboratory experiment where participants can actively

buy and sell assets, Fischbacher, Hoffmann and Schudy (2017) investigate whether partici-

pants make use of additional opportunities to pre-specify stop-loss and take-gain thresholds

at which assets are automatically sold. Participants with access to automatic limits had a

significant increase in the frequency of realized losses but no change in realized gains. This

was due to participants setting loss limits closer to the current asset price, i.e. deliberately

setting a stop-loss, but setting the gain threshold at levels which are unlikely to be breached.

Despite the fact that stop-loss strategies are “ubiquitous” in financial markets, they are

not that easily justified by financial theory (Kaminski and Lo (2007)). In our PT model, all

the mass on losses in the optimal prospect is concentrated at a single point. This concentra-

tion of mass arises from the probability weighting and the overweighting of extreme losses.

It also means that the strategy is stop-loss. The loss threshold may be at zero (in which case,

since geometric Brownian motion approaches zero but does not hit zero, the agent defers

selling indefinitely), or when probability weighting is strong enough, it may be at a strictly

positive level.

Standard expected utility settings can predict a stop-gain threshold at which an investor

continuous models. In the binomial model there is a smallest gamble size, and if loss aversion is too great,

then it can be optimal to not gamble (i.e. to never purchase the asset). In continuous models there is no

smallest gamble and the probability weighting element of PT is sufficient to ensure that there is always a

prospect which is preferred to a unit probability mass at the current wealth. This result, due to Ebert and

Strack (2015), underpins their work on naive agents under prospect theory.
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should sell but tend to put any lower threshold at −∞ (see Strack and Viefers (2017)), or in

our case, since the asset has limited liability, at zero. Two exceptions are Henderson (2012)

and Ingersoll and Jin (2013). Henderson (2012) studies a problem with S shaped utility

but without probability weighting, and finds a strictly positive stop-loss threshold, but only

in parameter combinations for which the asset has negative expected return. Ingersoll and

Jin (2013) consider a realization utility model (see also Barberis and Xiong (2012)) with

a modified value function and no probability weighting in which the problem restarts each

time an asset is sold. Ingersoll and Jin find that the opportunity to reset the reference level

gives investors an incentive to take losses at strictly positive values. Both Henderson (2012)

and Ingersoll and Jin (2013) find that the optimal strategy is stop-loss and take-gain.

We find that whether our model predicts a strictly positive threshold at which the asset

is sold (and voluntary realization of losses) or whether our model predicts losses are only

taken when the asset price falls to zero (which cannot happen in finite time in our geometric

Brownian motion model) depends on the degree of probability weighting. In Figure 2 we

plot the cumulative distribution functions (CDFs) of the optimal prospect for four different

values of the probability weighting parameter. When there is no probability weighting, or

when probability weighting is weak (δ is close to 1) the optimal prospect has an atom at

zero (and the investor never sells at a loss). With no probability weighting, the convexity of

the S shaped utility on losses encourages the investor to continue gambling. It is only when

probability weighting is sufficiently strong (δ far enough from 1), and the overweighting of

large losses incentivizes against taking extreme losses, that we see a prospect with an atom

in the interval (0, 1). For our base parameters the critical value is when δ is about 0.74.20

20Typically, we find that the convexity of the value function on losses means that a loss threshold of

zero is preferred to a very small loss threshold. However, the prospect value is not a unimodal function of

the parameters, and there is another local maximum in the interior of the domain. Which of these gives

the global maximum depends on the level of probability weighting. At the critical value of δ there is a

discontinuity in the optimal prospect. A similar discontinuity arises in the model of Ingersoll and Jin (2013),

see Figure 3 of that paper.
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Figure 2: Cumulative distribution function (CDF) plots for the optimal prospect in the

model with Tversky and Kahneman value and weighting functions, for different values of

probability weighting parameter δ = δ+ = δ−. For weak probability weighting (δ > 0.74)

the mass on losses is at zero, but for sufficiently strong probability weighting (δ < 0.74) the

mass on losses is at a strictly positive level. We set the reference level R = 1 and initial

asset price P0 = 1. Other base parameters are α+ = 0.5, α− = 0.9, loss aversion parameter

k = 1.25, β = 1 − 2κ/σ2 = 0.9 (where κ is the asset’s expected return and σ the volatility

of asset returns). The base case TK model and parameters are described in Section 5.
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3.2 PT trading and non-threshold strategies on gains

Classical EU models (and also PT models without probability weighting such as Henderson

(2012) and Ingersoll and Jin (2013)) typically tend to predict that investors stop at a thresh-

old on gains.21 In contrast, we find that the optimal prospect for a PT investor includes

a long-tailed distribution on gains, see Figure 2. This fundamental difference in behavior

with regard to losses and gains in our model mirrors very well what we see in the financial

markets.

It is worth highlighting that our finding of a long-tailed gains distribution holds under

very general model assumptions including the popular TK utility and weighting functions.

The long tail on gains arises from the impact of the probability weighting on gains. Extreme

gains are overweighted: this promotes behaviors which sometimes generate large gains.

Since the investor stops at more than one value of gains, the optimal stopping rule cannot

be a pure threshold strategy. Indeed, although there is a unique optimal prospect, there are

many optimal stopping rules, and it is possible for an investor who is behaving optimally to

stop at a gain level at which they have previously decided that it is optimal to continue. In

this way our PT model predicts non-threshold stopping rules on gains, a prediction which is

supported by recent evidence (Strack and Viefers (2017), Fischbacher, Hoffmann and Schudy

(2017)). Strack and Viefers (2017) conduct an experiment in a sophisticated asset selling task

whereby subjects played sixty-five rounds during which they could sell their stock. In each

round they observe a path of the market price which follows a random walk with positive

expected return. Since their subjects receive zero payoff if they wait, their experiment is only

concerned with gains. Strack and Viefers (2017) present evidence that players do not play

cut-off or threshold strategies over gains - they do not behave time-consistently within rounds

75% of the time, and visit the same price level three times on average before stopping at it.

In their study of the impact of automatic selling devices on experimental trading behavior,

Fischbacher, Hoffman and Schudy (2017) find that participants tend to set any upper limit

further away from the current price than any lower limits and use the upper limit less

21In a binomial model with TK probability weighting, Barberis (2012) finds the investor who can precommit

tends to continue on gains. He, Hu, Ob lój and Zhou (2015) extend the binomial model to an infinite horizon

but only in the case of concave (power) weighting functions rather than inverse-S shaped functions.
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frequently. In fact, there is no significant difference in the proportion of gains realized in

their treatments with and without automatic limits, implying that the upper limits are not

being used.

Our research also has implications for the design of future experimental studies. Mag-

nani (2015b)’s recent experimental evidence to support the disposition effect is predicated on

the behavior of subjects being well approximated by threshold rules. Our theoretical find-

ings, combined with Strack and Viefer’s experimental observations, point to threshold-type

behavior providing an incomplete description of individual behavior.

3.3 PT trading and skewness

Prospect theory and skewness have been heavily linked in the extant literature. When we use

the Hinkley (1975) quantile-based measure of skewness we find that the skewness is sensitive

to the parameter values (of the value function, weighting function, and price process) and

the model may predict left- or right-skewness depending on these values. The impact of the

S-shaped value function in isolation is to encourage investors to aim for small gains at the

risk of occasionally incurring a large loss. This leads to a left-skewed optimal prospect. The

impact of the probability weighting works in the opposite direction. On gains, the probability

weighting acts to encourage prospects with some very large values, and a distribution with

a long right-tail. On losses the overweighting of the largest losses is an incentive to avoid

the worst cases. Thus an increase in the degree of probability weighting (decrease in δ)

makes the skew of the optimal prospect more positive. Either the value function effect or

the probability weighting effect may dominate, but the stronger the probability weighting,

the more right-skewed the prospect.

To demonstrate the role of probability weighting on skewness in our model, we calculate

a measure of skewness for the optimal distribution under our base model with Tversky and

Kahneman value and weighting functions, as detailed in Section 5 below. We use the robust,

tail or quantile based measure of skewness of Hinkley (1975) (see Ebert and Hilpert (2015),

Green and Hwang (2012) and Conrad, Dittmar, and Ghyssels (2013)):

Γ(0.99) =
F−1(0.99) + F−1(0.01)− 2F−1(1/2)

F−1(0.99)− F−1(0.01)
=
G(0.99) +G(0.01)− 2G(1/2)

G(0.99)−G(0.01)
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where F is the cumulative distribution function and G is the quantile function. Note that

skewness is an attempt to summarize the shape of a distribution in a single statistic, which

is often a difficult task. Γ(0.99) depends only on the quantiles at 0.01, 0.5 and 0.99.
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Figure 3: Skewness measure for the optimal distribution in the model with Tversky Kah-

neman value and weighting functions. The skewness measure Γ(0.99) is plotted for varying

values of the probability weighting parameter δ±. The vertical dashed line indicates the base

parameter value of δ± = 0.7. Other base parameters are α+ = 0.5, α− = 0.9, loss aversion

parameter k = 1.25, β = 0.9, reference level R = 1 and P0 = 1.

In Figure 3 we plot skewness, as measured by Γ(0.99), across different levels of the

probability weighting parameter δ±. The corresponding optimal distributions for the same

parameter choice (with varying δ) were displayed earlier in Figure 2. We first observe that

skewness can be positive or negative, and can take values over the full range of +1 and -1,

depending on the level of probability weighting.

Without probability weighting, PT investors take small gains frequently, with some occa-

sional large losses (Henderson (2012), Ingersoll and Jin (2013)). This typically leads to a left

or negatively skewed distribution. In particular, F−1(0.01) is zero, whereas both F−1(0.5)

and F−1(0.99) are equal and both just above P0 (the agent follows a two-sided threshold

strategy). It follows Γ(0.99) = −1 when δ± = 1. With an S shaped utility and no probability

weighting, investors prefer left skewed return distributions.

Once probability weighting is included, the skewness measure is no longer -1. Then the
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investor does not follow a two-sided threshold and looks for a long-tailed distribution on gains.

This tail gets larger as δ± decreases, although for δ± close to one, the return distribution

remains negatively skewed. For δ± greater than about 0.74 the optimal prospect includes

an atom at zero and the skewness statistic is negative. However, at δ± ∼ 0.74 the optimal

prospect undergoes a step change and the mass on losses moves from zero to a strictly

positive level. This leads to a jump in the skewness statistic, which now becomes positive.

As δ± decreases further, the right tail on the optimal prospect becomes larger and F−1(0.99)

and the skewness increase further from about 0.2 to 0.6. Now the investor is taking losses

of moderate size, regular small gains, and occasional large gains.

The second jump in the skewness statistic occurs when the total mass on losses reaches

0.5 and is an artifact of Hinkley’s measure of skewness. For values of δ± below about 0.65,

F−1(0.01) = F−1(0.5) < P0 < F−1(0.99) and Γ(0.99) = +1. The optimal prospect now

places more than half the mass on losses and the skewness measure simplifies in a way which

does not depend on either the location of this mass, nor on the location of the point F−1(0.99)

describing the size of the right tail. Nonetheless, as probability weighting increases, the size

of this right tail increases, see Figure 2, even if this change cannot be captured in the skewness

statistic.

To summarize, as the strength of probability weighting increases the investor’s return

distribution changes from left or negatively skewed to right or positively skewed and the

right tail becomes fatter. Most of this change is captured in the skewness statistic.

4 Explaining the disposition effect: Odean’s measure

The disposition effect is a tendency for investors to sell winners sooner than losers. Odean

(1998) quantifies this tendency by comparing the frequency at which winners are sold relative

to the opportunities to sell winners with the corresponding frequency for losses. In this

section we translate the empirical Odean measure into a model-based disposition ratio. An

important attribute of our definition is that our model-based variable depends on the optimal

prospect, but not on the stopping rule used to generate that prospect. As a result we can

use the form of the optimal prospect implicit in Theorem 1 to calculate the disposition ratio.
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Odean (1998) compares the proportion of gains realized (PGR) to the proportion of losses

realized (PLR) by 10 000 individual investors with accounts at a discount brokerage firm over

a six year period. Each time a stock is sold, the price of all unsold stocks in the investors’

portfolio are checked and it is recorded if they are trading at a gain, loss or neither on that

day. The PGR (PLR) is the number of times a gain (loss) is realized as a fraction of the total

number of times a gain (loss) could have been realized. Odean (1998) reports PGR=0.148

and PLR = 0.098, giving a disposition ratio of 1.51, or equivalently, investors realize gains

at a 50% higher rate than losses. Using data over a different time period, Dhar and Zhu

(2006) obtain a slightly higher ratio of 2.06.

Since we are working in continuous time, to capture the opportunities the investor had

to sell at a gain (loss) we calculate the expected amount of time the price spent in the gain

(loss) regime before a sale. A model-based measure of the rate of selling at gains (losses),

denoted RG (respectively, RL) is found by dividing the probability of selling at a gain (loss)

by the expected time the price spent above (below) the initial price:

RG =
P(Pτ > P0)

E(
∫ τ
0

1(Pu>P0)du)
, RL =

P(Pτ < P0)

E(
∫ τ
0

1(Pu<P0)du)

where τ is an optimal sale time in the model.

Then, following Henderson (2012) (see also Magnani (2015a)) we define the disposition

ratio D by

D =
RG

RL

=
P(Pτ > P0)

E(
∫ τ
0

1(Pu>P0)du)

E(
∫ τ
0

1(Pu<P0)du)

P(Pτ < P0)
. (4)

This is the continuous time analog of Odean’s measure. We say the disposition effect occurs

when the ratio D is in excess of one.

Proposition 2. D depends on the optimal prospect, but not on the stopping rule used to

generate that prospect.

If we assume the investor is a PT value maximizer, then his optimal scaled prospect can

be computed from the optimal quantile function (see (A-12) in the Appendix), and we can

calculate D without making any assumption about how the investor trades to achieve the

optimal distribution. We prove Proposition 2 in a more general setting in Appendix D.
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Figure 4: Base-10 logarithm of the disposition ratio D given in (4). Panel (a) varies proba-

bility weighting, keeping other parameters fixed (including loss aversion fixed at k = 1.25).

Panel (b) varies loss aversion, keeping probability weighting on gains and losses δ± fixed at

0.7. Other base parameters used are α+ = 0.5, α− = 0.9, β = 0.9. The reference level is

R = 1, and the current price is P0 = 1. The horizontal dashed lines mark Odean’s disposition

estimate of log10 1.51 ≈ 0.18.
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Figure 4 plots the (base-10 logarithm of the) disposition ratio D against the Tversky and

Kahneman (1992) weighting parameter in panel (a), and loss aversion in panel (b). Other

parameters are our base values. The horizontal dashed line in each panel represents Odean’s

PGR/PLR of log10 1.51 ≈ 0.18.

We first comment on the extreme case of no probability weighting, δ± → 1. In this case

the disposition ratio becomes extremely large, and we recover the model studied in Henderson

(2012) where the calibrated disposition measure was much greater than that found in the

empirical data. In this case, there is a stop-gain threshold close to the reference level and a

stop-loss threshold much further away. This results in many more sales at the gain threshold

than the loss threshold, and a too extreme disposition ratio emerges. Ingersoll and Jin (2013)

show it is difficult to improve the match to Odean’s statistic, even when reinvestment is

introduced. In fact, they only improve the match by mixing reference-dependent realization

utility traders with random Poisson traders in a 50-50 ratio.

Our main finding is that probability weighting can reduce these extreme values of the

disposition effect. Indeed, for realistic values of probability weighting we can recover the

magnitude of the values seen in data. In contrast to PT models without probability weight-

ing, our model incorporating weighting can indeed deliver Odean’s estimate. In Figure 4 (a),

we see that for a probability weighting parameter δ± of about 0.675, we obtain a disposition

ratio of about 1.5. In panel (b), holding other parameters fixed and varying loss aversion, we

see that for a loss aversion of around 2.25, the disposition ratio is again about 1.5. Dhar and

Zhu (2006)’s disposition measure of 2.06 (log10 2.06 ≈ 0.313) can be obtained with slightly

less probability weighting or a lower level of loss aversion. Thus, probability weighting does

indeed help PT explain realistic levels of the disposition effect and we can explain empirical

levels of the disposition effect for the group of investors who can commit to their initial plan.

It is worth highlighting that the model has delivered Odean’s estimate of the disposition

effect with an analysis of a single investor.
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5 The Tversky & Kahneman (1992) model and com-

parative statics

Tversky and Kahneman (1992) propose power functions of the form:

U(y) =

y
α+ , y > 0;

−k(−y)α− , y < 0

(5)

where 0 < α± < 1. The parameters 1−α+ and 1−α− represent the coefficients of risk aversion

and risk seeking, respectively. The parameter k > 1 governs loss aversion, introducing an

asymmetry about the origin. Experimental results of Tversky and Kahneman (1992) give

estimates of α+ = α− = 0.88 and k = 2.25. The TK parameters arise from experimental

settings with small gamble sizes and we would expect higher levels of risk aversion in a

financial trading setting. Wu and Gonzalez (1996) estimate α+ = 0.5 when they use the TK

weighting parameterization. Furthermore, Ingersoll and Jin (2013) consider α+ = 0.5, α− =

0.9 as one of their base parameter sets. For consistency, we will also adopt α+ = 0.5,

α− = 0.9 as our base case.22 Our base loss aversion parameter level is k = 1.25. For all

parameters we will consider a range of values when we look at comparative statics.

Tversky and Kahneman (1992) propose the probability weighting functions

w±(p) =
pδ±

(pδ± + (1− p)δ±)1/δ±
(6)

for 0.28 < δ± 6 1. Alternative forms of w± proposed in the literature include Goldstein and

Einhorn (1987) and Prelec (1998).

Estimates of the TK probability weighting parameters have been quite consistent across

experimental and empirical studies. TK estimate the probability weighting parameters as:

δ+ = 0.61, δ− = 0.69 (Barberis (2012)). Wu and Gonzalez (1996) find experimentally that

δ+ = 0.71. Baele, Driessen, Ebert, Londono and Spalt (2017) estimate the degree of prob-

ability weighting from S&P 500 equity and option data and report a range of 0.72-0.79.

Reflecting these findings, we take base parameters of δ+ = δ− = 0.7.

22Ingersoll and Jin (2013) comment that weak risk aversion on gains is a problem, even in the absence of

probability weighting, and they would require unreasonable values for their discount parameter if they used

the TK value for α+.
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The final ingredient of our model is a specification of the asset price process. We will

assume that the price process follows geometric Brownian motion so that P = (Pt)t≥0 solves

dPt = Pt(κdt+ σdBt) (7)

for constant expected return κ and volatility σ with κ < σ2/2. The hypothesis that κ < σ2/2

ensures the price does not reach arbitrarily high levels with probability one. Recall the

definition β := 1 − 2κ
σ2 which involves the return-for-risk-per-unit-variance κ/σ2 and thus

reflects the expected performance of the asset. We assume κ ≥ 0 so that in expectation P

is non-decreasing and then β ≤ 1. Our assumption κ < σ2/2 implies that β > 0.

We require a further parameter restriction given in the following proposition. This is

to avoid situations leading to infinite expected value whereby the investor simply waits

indefinitely to take advantage of the favourable asset.23

Proposition 3. For the problem to be well-posed we need α+ < βδ+.

To simultaneously satisfy each of these restrictions whilst respecting our choices of other

parameters, we take a base parameter for β of 0.9. We will also assume R = P0 = 1;

then losses are bounded by 1. The model we have described here (TK value and weighting

functions, geometric Brownian motion, with the associated parameter values) is the model

used to generate the figures and numerical results in the paper.

We first recap the form of the solution in the absence of probability weighting, when

δ+ = δ− = 1. In this case (see Henderson (2012)), the optimal strategy is a threshold sale

strategy. There will be a gain threshold level and a loss threshold level, and the optimal

strategy is to stop the first time the price process leaves this interval. The corresponding

prospect is a distribution on exactly two points. Typically the gain threshold is very close to

the reference level. For realistic price parameters, the loss threshold is at zero, and it is never

optimal to sell at a loss. (Instead, sales in the loss regime are postponed indefinitely). The

convexity of the utility and loss aversion together mean that the investor prefers to continue

to gamble and delay any losses.24

23Similar conditions arise in standard infinite horizon portfolio problems.
24When expected return κ is negative there will be a positive loss threshold, which is usually much further
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5.1 The impact of probability weighting

In this section we are interested in the impact of probability weighting upon the optimal

prospect. We assume that the probability weighting functions on gains and losses are identi-

cal and consider varying δ = δ+ = δ−. As we introduce probability weighting by reducing the

values of δ, we see the optimal prospect on gains completely changes character and switches

from a point mass to a distribution with unbounded support. The tail of this distribution

gets larger as probability weighting increases in strength. Why is this the case? Risk aversion

alone makes small gains attractive. However now the investor overweights extreme events

— in particular, extreme gains — and this encourages him to place some probability mass

on these extreme wins. His distribution over gains is right-skewed in that most mass is still

concentrated on lower gain levels, but probability weighting causes him to want to gamble

on the best wins by placing some mass there.

Rather than present the quantile functions for each δ, in Figure 5 we summarize the

distribution of the optimal prospect with three numbers: the location of the mass on losses

(given by the dot-dash line), the location of the mass on gains and the location of the 99th

percentile (given by the solid lines). The 99th percentile is a proxy for the upper tail of the

distribution which is unbounded.

As probability weighting becomes sufficiently strong (δ± below about 0.75 in Figure 5

thus including our base parameter of 0.7), we see that there will also be a strictly positive

lower loss threshold at which the investor voluntarily takes losses. There are two forces

driving this. First, the convexity and loss aversion are encouraging the investor to wait and

avoid taking a loss. But now the investor overweights extreme events - in particular, extreme

losses - which encourages him to cut-losses at some threshold. Importantly, the parameter

region where a non-trivial loss threshold is present includes the levels of probability weighting

commonly estimated in experimental and empirical studies.

Also clear from Figure 5 is that as probability weighting becomes stronger, the investor

places more and more mass on extreme wins. However the location of the atom on gains is

from the reference level than the gain threshold. Thus, if losses are realized, they are typically much larger

in size than gains. This is because the marginal utility of a gain or loss is decreasing with size, so small gains

and large losses are preferable.
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largely insensitive to δ.
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Figure 5: Summary statistics for the optimal quantile function in the model with Tversky

and Kahneman value and weighting functions. The figure shows the location of the single

loss threshold and the location of the mass on gains together with the upper 99th percentile

of the distribution, each as a function of the probability weighting parameter δ+ = δ− = δ.

The vertical dashed line indicates the base parameter value of δ± = 0.7. Base parameters

used are α+ = 0.5, α− = 0.9, loss aversion parameter k = 1.25, β = 0.9, reference level

R = 1 and P0 = 1. Note that a loss threshold of zero in the figures represents the situation

where the investor never voluntarily realizes losses.

5.2 The impact of other model parameters

In Figure 6 we consider the impact of the individual probability weighting parameters and

the loss aversion and risk aversion/risk seeking parameters. Panels (a) and (b) vary the

probability weighting parameters individually whilst keeping the other fixed. As might be

expected, we see that the main impact of δ+ is on the tail of the distribution on gains. As
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Figure 6: Comparative statics with respect to parameters with TK value and weighting functions.

The optimal distribution consists of a single loss threshold together with a distribution over the

gains region. We display summary statistics consisting of the loss threshold together with the lower

bound and upper 99th percentile of the distribution over the gains regime. Each panel varies one

parameter at a time, keeping the others fixed at base values. The vertical line marks the location

of the relevant base parameter in each panel. Base parameters used are α+ = 0.5, α− = 0.9,

δ+ = δ− = 0.7, loss aversion parameter k = 1.25, β = 0.9, reference level R = 1 and P0 = 1.
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probability weighting on gains increases (δ+ decreases) the incentive to sometimes try for

extreme gains increases, and the optimal prospect on gains becomes more disperse. This is

clearly seen in the 99th percentile, and is also evident in the location of the atom on gains

which decreases as probability weighting becomes stronger.

The dependence of the optimal prospect on δ− is more complicated. In panel (b) and

in other panels we see that the optimal prospect is not continuous in the parameters. This

is because the objective function in the optimization of Proposition 1 is complicated, and

it may have several local maxima. A small change in parameters may result in the global

maximum being attained at a different mode. The primary impact of δ− is to govern whether

the distribution on losses contains an atom strictly above zero, or whether it contains an

atom at zero. If probability weighting is too small, then the convexity of the value function

on losses means that the investor aims for extreme losses, and the prospect contains an atom

at zero. When probability weighting is larger the atom moves to an interior point. When

probability weighting on losses is too strong, we again find that the agent never voluntarily

incurs a loss.

Panels (c) and (d) vary the risk aversion and risk seeking parameters separately, whilst

holding all other parameters fixed at their base values. In panel (c) we observe that higher

levels of risk aversion (lower α+) results in the distribution over gains being pulled down

closer to the reference level. If risk aversion over gains is sufficiently strong, below about 0.4

in the panel, the investor no longer realizes losses. At the other extreme, we know that if

risk aversion over gains is not strong enough, it violates the condition in Proposition 3 and

the investor instead waits indefinitely. For the parameters in the graph, this would occur for

values of α+ > 0.63. In particular, we see that under the original TK parameter α+ = 0.88

(particularly low level of risk aversion), the investor violates the condition in Proposition

3 and thus waits forever to sell, unless the expected return on the asset is unrealistically

large and negative. Ingersoll and Jin (2013) encounter a similar issue (even in the absence

of probability weighting) hence their choice of α+ = 0.5.

In panel (d) we see that when the value function on losses is close to linear (α− near to 1)

probability weighting dominates and there is a positive loss threshold. This means we are able

to take the TK choice of the risk seeking parameter α− = 0.9. However, for α− small enough,
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risk seeking on losses means that the agent prefers a prospect which places mass at zero.

Further changes in α− beyond this point make no difference as U(−1) = −k| − 1|α− = −k

and the value function does not depend on α−. As seen in Figure 6, for α− below about 0.82

the optimal prospect is insensitive to α−.

In panel (e) we vary loss aversion. As loss aversion becomes stronger, the investor chooses

a loss threshold which is closer to the reference level. We can understand this dependence by

considering the problem in the absence of probability weighting. As loss aversion increases

the investor becomes less willing to tolerate losses and wants to take losses sooner, and is

even prepared to accept smaller gains. This has the impact of concentrating the optimal

prospect closer to zero. The same intuition applies in the case with probability weighting.

6 Concluding remarks

Prospect theory has been very successful in explaining puzzles from economics and finance.

The intuition associated with loss aversion and risk-seeking behavior on losses, and the

overweighting of probabilities of extreme events, fits well with observed behavior in static

situations, including many laboratory experiments. However, investors often face more com-

plicated dynamic problems and decisions, and models based on the S shaped value function of

PT have been only partially successful in explaining empirical patterns of behavior. Adding

probability weighting to the analysis brings major technical challenges. However, it is im-

portant to overcome these challenges since probability weighting significantly alters the form

of the PT investor’s optimal strategy. In this paper we investigate the impact of probability

weighting. Understanding the implications of probability weighting in a dynamic setting is

crucial in understanding the behavior of PT investors.

The trading behavior of PT investors in dynamic models but in the absence of probability

weighting has been studied by Ingersoll and Jin (2013), Henderson (2012) and Barberis and

Xiong (2012). They find that the optimal stopping rule in this setting is a two-sided threshold

strategy. This is a poor match to empirical data and laboratory findings on gains (although

there is support for stop-loss strategies). Moreover, the locations of the stop-loss and stop-

gain thresholds are such that a gain is much more likely than a loss, corresponding to a
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target law with a negative skew and an extreme disposition effect (well beyond that found

in empirical data).

We show that introducing probability weighting greatly improves the predictive power of

models of PT investors in all these aspects. With probability weighting set to levels estimated

in the literature we find the PT investor has an optimal stopping rule which is stop-loss but

not take-gain. Instead, the investor trades to achieve an optimal prospect which on gains is

a long-tailed distribution chosen to reflect the overweighting of extreme gains. Overall, her

target prospect can have right skew, and yet simultaneously have a model-based disposition

ratio which matches the levels predicted by Odean (1998).

In this paper we provide the first stopping model for a precommitment agent to feature all

the components of Tversky and Kahneman’s prospect theory - S shape value function, loss

aversion and probability weighting. We find that the PT agent with probability weighting

provides a better fit to observed behavior than the PT agent without probability weighting,

or a classical maximizer of expected utility. A caveat is that we have studied a partial

equilibrium model and it may be difficult to extend to general-equilibrium implications.

An assumption throughout this paper is that the investor commits to an optimal strategy

at time zero. However, it is well known (see eg. Machina (1989), Barberis (2012)) that prob-

ability weighting induces time inconsistency. There are several alternative ways in which we

may model the reaction of agents to time-inconsistency, and each of these alternatives de-

serve their own study. Recent conclusions from PT stopping models for naive agents (naive

agents “never stop”, Ebert and Strack (2015)) and sophisticated agents without committ-

ment (sophisticates “never get started”, Ebert and Strack (2017)) highlight the challenges

in modeling the stopping behavior of PT agents. In the case where agents can commit, we

have shown that we can obtain model-based predictions for PT investors which closely match

experimental and empirical results.
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Appendix
The Appendix contains four sections. The main development of our solution to the optimal

stopping problem for the prospect theory investor is presented in Section A where Theorem 1 (which

provides a qualitative description of the optimal prospect) and Proposition 9 (which provides a

quantitative description) are given. Proofs of some of the results used in Section A are deferred to

Section B. Detailed proofs to show that the assumption on self-elasticity holds (Assumption 2 and

Proposition 5) for several popular classes of value functions and probability weighting functions are

given in Section C. Finally, a general version of Proposition 2 concerning the disposition ratio is

deferred to Section D.

A Solution of the optimal stopping problem

Our goal in Section A is to prove Theorem 1 and Proposition 9. We define the concept of self-

elasticity (see Section A.2) and give results (Propositions 4 and 5) which are required to demonstrate

that Assumption 2 (Elasticity Assumption) holds. In Section A.4 we describe known key results

from Xu and Zhou (2013). A.5 constructs the main result.

A.1 Asset price dynamics and optimal prospects

In general, we can model the asset price P = (Pt)t>0 by a time-homogeneous diffusion with state

space J , given by

dPt = κP (Pt)dt+ σP (Pt)dBt. (A-1)

Here B = (Bt)t>0 is a standard Brownian motion and κP : J → R and σP : J → (0,∞) are Borel

functions. We assume J is an interval with endpoints −∞ ≤ aJ < bJ ≤ ∞ and that P is regular

in (aJ , bJ). We will later specialize to the most popular asset price specification where P is a

geometric Brownian motion (or equivalently P is lognormal). In that case J = (0,∞), κP (p) = κp

and σP (p) = σp for constants κ and σ.

Following Henderson (2012) it is convenient to reformulate the objective (2) by transforming

the asset price into a martingale. We define Xt := s(Pt) where the scale function s ensures X is

a (local) martingale.25 We are free to normalize s such that s(R) = 0, and hence Xt > 0 when

Pt > R and Xt 6 0 when Pt 6 R. Then Xt represents the transformed gains and losses relative to

25The scale function of P can be identified as the increasing, non-degenerate solution (which is unique up
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the reference level. If we take the reference level to be the initial asset price R = P0, then X0 = 0,

but unlike in the main text, in the appendix we allow P0 6= R and X0 6= 0.

The state space of X is an interval with endpoints L = s(aJ) and M = s(bJ). Then L <

0 represents the potential maximum loss. We assume L > −∞ to ensure the problem is non-

degenerate.

Proof of Proposition 1. Define v(x) := U
(
s−1(x)−R

)
= U (p−R). Then the investor’s objective

(2) can be rewritten as

sup
τ

(∫ v(M)=U(bJ−R)

0
w+ (P (v(Xτ ) > y)) dy −

∫ 0

U(aJ−R)=v(L)
w− (P (v(Xτ ) < y)) dy

)
. (A-2)

One of the insights of Xu and Zhou (2013) is that the argument in (A-2) only depends on the law

of Xτ . Hence, (A-2) can in turn be rewritten as

sup
ν∈A

(∫ v(M)

0
w+

(
1− Fν(v−1(y))

)
dy −

∫ 0

v(L)
w−
(
Fν(v−1(y))

)
dy

)
(A-3)

where A is the set of attainable laws of Xτ and Fν is the cumulative distribution function of the

law ν. The set of attainable laws A can be characterized by A = {ν :
∫
yν(dy) = X0}.26 After a

change of variables this can be written as (3).

Our investor evaluates (A-3) at the outset and commits today to achieve the desired target

distribution or prospect.

to positive affine transformation) to the ordinary differential equation

1

2
σ2
P (p)s′′(p) + κP (p)s′(p) = 0.

Then X = (Xt)t≥0 defined by Xt := s(Pt) is a (local) martingale. We assume that κP (.) and σP (.) are

sufficiently regular that there exists a weak solution to the stochastic differential equation (A-1) and that

the scale function s exists (see Revuz and Yor (1999)).
26At this point the fact that X is a local martingale is important since it allows us to give a simple char-

acterization of the space of attainable laws. Since L > −∞ and X is bounded below, it is a supermartingale

and any attainable law ν must satisfy
∫
yν(dy) = E[Xτ ] ≤ X0 = s(P0); conversely the theory of Skorokhod

embeddings tells us that for every law ν with
∫
yν(dy) ≤ X0 there is a stopping rule τ such that Xτ ∼ ν.

Finally, since U is increasing, in searching for the supremum in (A-3) we may restrict attention to laws

satisfying
∫
yν(dy) = X0. Hence we may set A = {ν :

∫
yν(dy) = X0}. If ν∗ is the optimal law arising in

(A-3), so that the optimal prospect for the process in natural scale is ν, then the optimal prospect for P has

law µ∗ where Fµ∗(p) = Fν∗(s(p)). If ν∗ is an optimal prospect then any stopping time τ∗ constructed such

that Xτ∗ has the law as ν∗ is optimal. Then we also have that P ∗τ has law µ∗.
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A.2 Self-elasticity: definition

In this section we introduce a quantity we call the self-elasticity measure. This is key to our

proof of Theorem 2 of which Theorem 1 is a special case. Elasticity is generally a ratio of the

partial derivatives of a function with respect to two different variables. Self-elasticity is the ratio

of two different representations of the derivative of a univariate function, one local and non-local.

The monotonicity of the self-elasticity function, applied separately to the value and probability

weighting functions, gives a simple sufficient condition for the monotonicity of the prospect value

in the location of the point mass on losses.

Definition 1 (Self-elasticity). For a monotonic and continuously differentiable function f : S → R,

the self-elasticity measure (parameterized by x) relative to a reference point c is defined as

Ef,c(x) = E(x; f, c) =
(x− c)f ′(x)

f(x)− f(c)
=

f ′(x)
f(x)−f(c)

x−c

where x, c ∈ S and x 6= c. At x = c, and provided f ′(c) 6= 0, we define E(c; f, c) = 1 by L’Hôpital’s

rule.

A useful property which we make use of is the following, the proof of which is deferred to

Appendix C.

Proposition 4. Let ι denote the identity function ι(x) = x, and suppose f and g are monotonic

and continuously differentiable. Let a 6= 0 and b be constants. Then E(x; aι + b, c) = 1 and

E(x; g ◦ f, c) = E(x; f, c)E(f(x); g, f(c)).

Proposition 4 is key to showing the following elasticity properties hold. The first result is stated

for the TK value function (see Section 5) but in Appendix C it is shown to hold for a variety of

value functions. The second result holds for the common weighting functions and the details are

given in Appendix C.

Proposition 5. 1. Suppose 0 < α− < 1 and 0 < β ≤ 1. If v(x) = −k
(
R− (x+Rβ)1/β

)α−
for

L ≤ x ≤ 0 then E(x; v, c) is increasing in x for x ∈ [L, 0] for fixed c ∈ [L, 0).

2. If the weighting function w is of the form proposed by Tversky and Kahneman (1992), Gold-

stein and Einhorn (1987) or Prelec (1998) and has inflexion point q then E(p;w, r) is de-

creasing in p for 0 ≤ p ≤ min{r, q} for any r in [0, 1].

We will use Proposition 5 in the next section where we will make an Elasticity Assumption on

value and weighting functions which will be key to our main result.

38



A.3 The main result

In what follows we assume that U is S shaped, w± is inverse-S shaped, L = s(aJ) > −∞ and

M = s(bJ) =∞.

Assumption 1 (S shaped Assumption on v). v is concave on [0,∞) and convex on [L, 0]. Further,

v′(0+) =∞ and limx↑∞ v
′(x) = 0.

In our base case of geometric Brownian motion and TK preferences it is simple to check by

differentiation that v is concave on [0,∞) and convex on [L, 0]. Assumption 1 is also satisfied

whenever U ′(0+) =∞, limp↑bJ=∞ U
′(p) = 0 and P is a martingale whence the scale function is the

identity function. More generally it depends on the interplay between the value function U and

the dynamics of the price process.

Assumption 2 (Elasticity Assumption). E(x; v, L) is increasing in x for x ∈ [L, 0] and E(p;w−, r)

is decreasing in p for 0 ≤ p ≤ min{r, q} for any r in [0, 1].

By Proposition 5 both parts of the Elasticity Assumption are satisfied in the TK base case model

and we show in Appendix C that the assumption is also satisfied for a range of other probability

weighting and value functions.

Our main theoretical result is the following. The precise form of the optimal prospect is given

in Proposition 9 in Appendix A.5.3, but here we describe the qualitative form of the solution to

(3).

Theorem 2. Suppose Assumptions 1 and 2 hold. Then the optimal prospect has a distribution

which consists of a point mass in the loss regime and a point mass at some point A in the gains

regime, together with a continuous distribution on the unbounded interval (A,∞).

It follows that the optimal strategy for a PT investor is a stop-loss combined with a strategy

yielding a long-tailed distribution on gains.

A.4 Existing results

Xu and Zhou (2013) consider an optimal stopping problem with probability weighting in which

asset returns are always in the gain regime. In this section we summarize the relevant results.

Recall that the quantile function of a random variable Y , denoted GY (or G if the random variable

is clear), is the (left-continuous) inverse of the cumulative distribution function.
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Proposition 6 (Lemmas 3.1 and 3.2 of Xu and Zhou (2013)). Suppose the scaled asset price process

X = (Xt)t>0 is always non-negative and X0 > 0. Then the probability-weighted optimal stopping

problem

sup
τ

∫ ∞
0

w (P (v(Xτ ) > x)) dx (A-4)

has a dual representation in terms of the quantile function G = GX of Xτ in the form

sup
G∈AX0

∫ 1

0
v(G(x))w′(1− x)dx (A-5)

where

Az = {G| G : (0, 1)→ [0,∞) is a left-continuous quantile function,

∫ 1

0
G(x)dx = z}.

In particular, if G∗ is an optimizer of (A-5) with ν∗ being the associated probability law, then

there exists a stopping time τ∗ such that Xτ∗ ∼ ν∗, and such τ∗ is optimal for (A-4).

The optimal prospects in this one-sided problem can be identified under some particular forms

of v and w. The two results below are the most relevant to our current problem.

Proposition 7 (Theorem 5.2 and Lemma 4.1 of Xu and Zhou (2013)). The optimizer of (A-5)

can be characterized under the two cases below:

1. Suppose the target prospect can take values on [0,∞), and that the mean is constrained to be

less than or equal to z. If v is concave and w is inverse S-shaped such that it is concave on

[0, q] and convex on [q, 1], then the optimizer G is of the form

G(x) = a1(0,1−q] +

(
a ∨ (v′)−1

(
λ

w′(1− x)

))
1(1−q,1) (A-6)

for some a > 0 and λ > 0, where a and λ are chosen such that they respect the constraint∫ 1
0 G(x)dx = z. The optimal prospect is an atom at a of size at least 1− q combined with a

continuous distribution on (a ∨ (v′)−1( λ
w′(q)),∞).

2. Suppose the target prospect is bounded such that it can only take values on [0,K] for some

0 < K < ∞. If v is convex and w is a general probability weighting function, the optimizer

G is a step-function taking values on 0, K and some b ∈ (0,K). The optimal prospect is a

three-point distribution with masses at 0, b and K.27

27Although Xu and Zhou (2013) do not directly consider the problem with bounded payoff, their Lemma

4.1 can be trivially extended to a set of quantile functions with bounded range on [0,K].
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The results in the second part of the Proposition 7 translate directly to a one-sided problem

involving losses. Thus, we can deduce from the results of Xu and Zhou (2013) that in the loss

regime the optimal prospect consists of up to three point masses.

Our main technical contribution is to solve for the optimal prospect for a wide class of prospect

theory specifications. The results we present are not valid for all set-ups. Rather, we make some

additional assumptions involving our self-elasticity condition which are satisfied under our base

case, and more widely under many standard formulations of the problem. Under these additional

assumptions we can prove that the optimal prospect has extra structure beyond that which can be

deduced from Proposition 7. This extra structure allows us to solve for the optimal prospect in the

general case with probability weighting and both gains and losses.

First, on the gain regime we show that a and λ are such that a ≥ (v′)−1( λ
w′(q)). Hence the

point a is simultaneously the location of a point mass in the optimal prospect and the lower limit

in the continuous part of the optimal prospect on gains. Second, on the loss regime, we show that

the optimal prospect is a single point mass (and not three point masses) located at some point

b ∈ [L, 0).

A.5 General construction of the optimal solution

In this subsection, we solve (A-3) assuming that the scaled value function v is concave on the gain

regime [0,∞) and convex on the loss regime [L, 0]. The probability weighting functions w± are

inverse-S shaped, concave on [0, q±] and convex on [q±, 1]. The starting level of the scaled price

process X0 is a given fixed constant. Our base case fits into this setting. Detailed proofs are given

in Appendix B.

A.5.1 The problem for gains

Suppose we are given φ+ ∈ (0, 1] and z+ > X+
0 which are the probability mass allocated to gains

and the mean of gains. The gain problem is to find

D+(φ+, z+) = sup
G∈A+

φ+,z+

∫ 1

1−φ+
v(G(x))w′+(1− x)dx (A-7)

where

A+
φ,z = {G| G : (0, 1)→ [0,∞) is a quantile function,

∫ 1

1−φ
G(x)dx = z, G(x) = 0 on (0, 1− φ]}.
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The gain problem involves an optimization for concave v and inverse-S shaped w+. The first

part of Proposition 7 can be applied to identify the form of the optimal quantile function on

(1− φ+, 1).28 From (A-6), with q+ the point of inflexion of w+ we deduce that the optimizer is of

the form

G+(x) = G+(x;φ+, z+; a, λ) = a1(1−φ+,(1−q+)∨(1−φ+)]+

(
a ∨ (v′)−1

(
λ

w′+(1− x)

))
1((1−q+)∨(1−φ+),1)

(A-8)

for some constants a > 0 and λ > 0. (Note that G+ = 0 on (0, 1 − φ+].) The optimal values a∗

and λ∗ of a and λ are obtained by maximizing the objective function in (A-7) over A+
φ+,z+

. The

next result is proved in Appendix B.

Lemma 1. Suppose v′ is continuous with v′(0+) =∞ and limx↑∞ v
′(x) = 0. Then for the optimal

prospect we have a∗ ≥ (v′)−1
(

λ∗

w′+(q+∧φ+)

)
.

It follows that a∗ = (v′)−1
(

λ∗

w′+(ψ)

)
for some ψ ≤ q+∧φ+ and that the optimal quantile function

is of the form

G+(x) = G+(x;φ+, ψ, λ) = (v′)−1
(

λ

w′+((1− x) ∧ ψ)

)
1((1−φ+),1) (A-9)

(Then G+ is identically 0 on (0, 1 − φ+), equal to a constant on (1 − φ+, 1 − ψ) and continuous

on (1 − φ+, 1). The corresponding distribution has an atom at a∗ and a density on (a∗,∞)). For

quantile functions of the form in (A-9) the mean on gains can be written as

z+ = z+(φ+, ψ, λ) =

∫ 1

1−φ+
du(v′)−1

(
λ

w′+((1− u) ∧ ψ)

)
=

∫ φ+

0
du(v′)−1

(
λ

w′+(u ∧ ψ)

)
. (A-10)

Then instead of fixing the mass and mean on gains it is convenient to fix the mass φ+ only and

to consider a family of candidate optimizers of the form in (A-9), parameterized by φ+, λ and

ψ ≤ q+ ∧ φ+.

A.5.2 The problem for losses

Suppose now we are given φ− and z− such that φ− > 0 and X−0 6 z− 6 Kφ− where K = −L and

where φ− and z− represent the probability mass allocated to losses and the mean of losses. The

loss problem is to find

D−(φ−, z−) = sup
G∈A−φ−,z−

∫ φ−

0
v(G(x))w′−(x)dx (A-11)

28By considering a transformation of G̃(x) = G((1− φ+)(1− x) + x), one can see (A-7) can be rewritten

in form of (A-5).
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where

A−φ,z = {G| G : (0, 1)→ [L, 0] is a quantile function,

∫ φ

0
G(x)dx = −z, G(x) = 0 on (φ, 1)}.

The loss problem is a maximization problem involving a convex v and an inverse-S shaped w−

over quantile functions with fixed mean and a bounded range. Using the second part of Proposition

7, the optimal quantile function on (0, φ−) is in the form of a step-function taking values on L, 0

and some b ∈ (L, 0). Our main result is that under some mild extra assumptions on v and w− the

solution can be further simplified to a two-point distribution which has a mass at L or a mass at an

interior point, but not both, together with an atom at 0. Later we will argue that for the problem

with gains and losses there cannot be a mass at zero. Proposition 8 is proved in Appendix B.

Proposition 8. If Assumption 2 holds, then the optimal solution to problem (A-11) is a two-point

distribution with probability mass allocated to 0 and a single further point in [L, 0). The optimal

quantile function is of the form

G−(x;φ−, z−) = −z−
η

1(0,η]

for some η with − z−
L 6 η 6 φ−.

A.5.3 The combined problem for gains and losses

Proposition 9. Suppose that Assumptions 1 and 2 hold. Then the optimizer for (3) has quantile

function of the form

GX(u) =


− 1

1−φ

[∫ φ
0 dy(v′)−1

(
λ

w′+(ψ∧y)

)
−X0

]
u ≤ 1− φ

(v′)−1
(

λ
w′+(ψ)

)
1− φ < u ≤ 1− ψ

(v′)−1
(

λ
w′+(1−u)

)
1− ψ < u ≤ 1

(A-12)

for some λ > 0, φ ∈ [0, 1], ψ ≤ q+ ∧ φ such that

X+
0 ≤

∫ φ

0
dy(v′)−1

(
λ

w′+(ψ ∧ y)

)
≤ X0 − (1− φ)L. (A-13)

It follows from the proposition that the optimal prospect does not allocate any probability mass

to zero (which corresponds to the reference level prior to scaling). Moreover, Assumption 2 provides

a simple sufficient (and decoupled) condition on the behaviors of v and w− leading to the feature

that there is only one single atom on loss.
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B Proofs in the derivation of the optimal prospect

This Appendix is devoted to the proofs of several of our key results presented in Appendix A,

namely Lemma 1, Propositions 8 and 9 and finally, Proposition 3.

Proof of Lemma 1. We begin by showing that the optimizer (A-6) to the one-sided gain-problem

(A-5) with v concave has its parameter a ≥ (v′)−1( λ
w′+(q+)

).

Let L(x;G,λ) = v(G)w′+(1 − x) − λG. This is maximized over G by G = yL(x;λ) :=

(v′)−1
(

λ
w′+(1−x)

)
. If v′(0) = ∞ and limx↑∞ v

′(x) = 0, then yL(x;λ) is well-defined and strictly

positive for all 0 < x < 1. Now suppose G0 is an optimal solution to (A-5) which has the form of

(A-6) with parameters (a0, λ0). Consider another quantile function G1 which is in form of (A-6)

with parameters (a1, λ1) where a1 := (v′)−1
(

λ1
w′+(q+)

)
> a0 and the value of λ1 is implied by the

constraint
∫ 1
0 G1(x)dx = z.

On 0 < x 6 1 − q+, G0(x) = a0 < a1 = G1(x) 6 yL(x;λ1). As yL( · ;λ1) is the maximizer of

L( · ;G,λ1) we have L(x;G1, λ1) > L(x;G0, λ1). On 1 − q+ < x < 1, G1(x) = yL(x;λ1) and then

trivially L(x;G1, λ1) > L(x;G0, λ1). This shows L(x;G1, λ1) > L(x;G0, λ1) for all 0 < x < 1 (with

strict inequality holding for some x). It contradicts the assumption that G0 is an optimal solution.

By extension, the optimizer (A-8) for the sub-problem of gains (A-7) must have its parameter

a ≥ (v′)−1
(

λ
w′+(q+)

)
. Two things follow. First we can rewrite the optimal solution in (A-8) as

G+(x) = (v′)−1
(

λ

w′+(ψ+ ∧ (1− x))

)
1(1−φ+,1)

where λ is chosen such that ∫ 1

1−φ
dx(v′)−1

(
λ

w′+(ψ+ ∧ (1− x))

)
= z+

Second, since a > 0, an optimal solution on gains must allocate all the available probability mass

on gains. This also implies the value of the gain problem D+(φ+, z) is always strictly increasing in

the available probability mass φ+.

Proof of Proposition 8. From the results of Xu and Zhou (2013) we know that on losses, the optimal

prospect consists of masses at up to three points, two of which must be at 0 and L. We want to

show that under Assumption 2, the optimal prospect contains a single mass on the loss regime,

with potentially a second mass at the origin. Suppose that the probability that the prospect takes

a positive value and the mean of gains element of the prospect are given. Then the probability of

the prospect taking a value on losses, and the mean loss z may also be considered as given.
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Consider prospects on losses in form29 of P = (L, pL;x, px; 0, p0) with L < x < 0. We have the

relationships pL + px + p0 = φ and LpL + xpx = −z for fixed φ ∈ (0, 1) and z ∈ (0,−L]. To show

that under the stated assumptions the optimal prospect on losses is a two-point distribution, it is

sufficient to show the existence of some feasible two-point prospects which are at least as good as

P.

Recall that w− is an inverse S-shaped function which is concave on [0, q−] and convex on [q−, 1].

By the Elasticity Assumption, E(p;w−, c) is decreasing in p ∈ [0,min(c, q−)] for any c ∈ [0, 1]. The

prospect value of P is given by

V = w−(pL)v(L) + (w−(pL + px)− w−(pL))v(x) = w−(pL)v(L) + (w−(φ− p0)− w−(pL))v(x).

Since L ≤ x ≤ 0 we must have L(φ− p0) ≤ −z else there is no feasible solution. Fix p0 and z and

consider varying x, pL and px. The feasible range of x is given by L 6 x 6 − z
φ−p0 . From the mean

constraint pLL+ pxx = −z and the fact that pL + px = φ− p0, we have

dpL
dx

= −dpx
dx

=
px

x− L
.

Differentiation of the prospect value function with respect to x gives

∂V

∂x
= (w−(φ− p0)− w−(pL))v′(x)− px

x− L
w′−(pL)(v(x)− v(L))

=
(w−(φ− p0)− w−(pL))(v(x)− v(L))

x− L

(
(x− L)v′(x)

v(x)− v(L)
−

pxw
′
−(pL)

w−(φ− p0)− w−(pL)

)
=

(w−(φ− p0)− w−(pL))(v(x)− v(L))

x− L
(E(x; v, L)− E(pL;w−, φ− p0)).

Case 1: px + pL = φ− p0 6 q−.

Then pL ≤ q− ∧ (φ − p0) and E(pL;w−, φ − p0) is decreasing in pL and in turn decreasing in

x. Together with the fact that E(x; v, L) is increasing in x, ∂V
∂x is either positive for all x ∈

[L,− z
φ−p0 ], negative for all x over the same range, or changes sign from negative to positive as x

increases. Hence, either V is monotonic, or V has a minima, and the maximal prospect value is

attained at either x = − z
φ−p0 or x = L. The corresponding prospects are (− z

φ−p0 , φ− p0; 0, p0) and

(L, z
|L| ; 0, φ− z

|L|). Since z ≤ (φ− p0)|L| we have φ− z
|L| > p0 > 0 and both prospects are feasible

two-point solutions with at most one mass at a non-zero location.

Case 2: φ− p0 > q− and pL ≤ q−.

Then again by the fact that E(pL;w−, φ− p0) is decreasing in pL and E(x; v, L) is increasing in x,

29Following Barberis (2012), we write a prospect P corresponding to a discrete random variable with n

atoms at x1 < x2 < ... < xn of sizes p1, p2, ..., pn as P = (x1, p1;x2, p2; ...;xn, pn).
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the maximal prospect value (as we let pL range between 0 and q−) is attained at either pL = 0,

whence x = − z
φ−p0 , or pL = q−, whence x = − z+Lq−

φ−q−−p0 .

The former corresponds to a feasible two-point prospect (− z
φ−p0 , φ − p0; 0, p0). The latter

corresponds to a prospect (L, q−;− z+Lq−
φ−q−−p0 , φ− p0 − q−; 0, p0). We show in the next case that this

is not an optimal prospect, since the prospect value can be further increased by increasing pL above

q−.

Case 3: φ− p0 > q− and pL ≥ q−.

We compare the prospect (L, pL;x, px; 0, p0) with another feasible prospect which places all its mass

at L and 0 and show that the latter has at least as large a PT value as the former. We have

V = w−(pL)v(L) + (w−(φ− p0)− w−(pL))v(x)

6 w−(pL)v(L) + (w−(φ− p0)− w−(pL))
|x|
|L|

v(L)

= v(L)

(
|x|
|L|

w−(φ− p0) +

(
1− |x|
|L|

)
w−(pL)

)
6 v(L)w−

(
|x|
|L|

(φ− p0) +

(
1− |x|
|L|

)
pL

)
= v(L)w−

(
pL +

|x|
|L|

(φ− p0 − pL)

)
where we have used the fact that v is convex on [L, 0] in the second line and the fact that w− is convex

on [q−, 1] in the fourth line (together with v(L) < 0). But v(L)w
(
pL + x

L(φ− p0 − pL)
)

is the value

of a feasible two-point prospect
(
L, pL + |x|

|L|(φ− p0 − pL); 0, p0 + (1− |x||L|)(φ− p0 − pL)
)

.

Proof of Proposition 9. With the optimal quantile functions from the previous sub-problems for

gains and losses, the combined-problem is to find

sup
(φ±,z±)∈H

(D+(φ+, z+) +D−(φ−, z−))

where H = {(φ±, z±) : φ± > 0, φ+ + φ− 6 1, z+ − z− = X0, z+ > X+
0 , z− ∈ [X−0 ,−L], }.

Under the assumption that v′(0+) = ∞, by the remarks at the end of the proof of Lemma 1

we have φ− = 1 − φ+. Moreover, suppose that a candidate optimal solution of the problem

includes a mass at the origin in the loss-component. We could reclassify this mass as part of the

gain-distribution. But then, the prospect value could be improved by redistributing this mass to

become strict gains. Hence the candidate solution cannot be optimal, and there cannot be any

mass at zero in the optimal prospect.
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We have that the mean on gains must be greater than or equal to X+
0 . Then using (A-12) we

have the left-hand inequality in (A-13). Conversely, the location of the mass on losses, as described

by the first line of (A-12), must be greater than or equal to L. After some algebra we get the

right-hand inequality in (A-13).

Proof of Proposition 3. Let ŵ(p) = pδ+ . Then obviously limp↓0
ŵ(p)
w+(p) = 1. Then for some fixed

ε > 0 there exists p∗ > 0 such that ŵ(p) < (ε+ 1)w+(p) for 0 < p < p∗.

Consider a two-point zero-mean prospect (−a, b
a+b ; b,

a
a+b) with b being large enough such that

a
a+b < p∗. Then the prospect value is given by

V (a, b) = w+

(
a

a+ b

)
v(b) + w−

(
b

a+ b

)
v(−a)

>
1

ε+ 1
ŵ

(
a

a+ b

)
v(b) + v(−a)

=
1

ε+ 1

(
a

a+ b

)δ+
((b+ P β0 )

1
β − P0)

α+ + v(−a)

→∞

as b→∞ if δ+ < α+

β .

To prove the well-posedness property under δ+ > α+

β , it is sufficient to show that the gain-part

value D+(φ+, µ) is finite for any φ+ and µ. Using the cumulative distribution function formulation,

we can rewrite the gain-part value as

D+(φ+, z) = sup
F∈Bφ+,z

∫ ∞
0

w+(F (x))v′(x)dx

where

Bφ,z = {F | F : [0,∞)→ [0, 1] is a decreasing function,

∫ ∞
0

F (x)dx = z, F (0) = φ}.

Since w+(p) 6 ŵ(p) = pδ+ for all p, it is sufficient to show that D̂+(φ+, z) is finite where

D̂+(φ+, z) := supF∈Bφ+,z

∫∞
0 ŵ(F (x))v′(x)dx. Since ŵ is concave, the optimizer for D̂ can be

obtained by solving a simple Lagrangian problem where the solution is

F
∗
(x) = min

(
φ+, (ŵ

′)−1
(

λ

v′(x)

))
= min

φ+,((α+δ+
λβ

)
1

(x+ P β0 )
β−1
β ((x+ P β0 )

1
β − P0)1−α+

) 1
1−δ+
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and the optimal value is in form of

D̂+(φ+, µ) =

∫ ∞
0

w+(F
∗
(x))v′(x)dx

= C +

∫ ∞
K

(
δ+
λ

) δ+
1−δ+

((
α+

β

)
1

(x+ P β0 )
β−1
β ((x+ P β0 )

1
β − P0)1−α+

) 1
1−δ+

dx

for some constants C and K. This indefinite integral is convergent if δ+ > α+

β .

C On Elasticity measures of popular utility and

weighting functions

In this Appendix, we first prove Proposition 4. For several popular classes of convex value functions

v and inverse-S shaped probability weighting functions w, this proposition allows us to give simple

proofs to show that Assumption 2 holds and prove Proposition 5.

Proof of Proposition 4. The fact that E(x; ax+ b; c) = 1 is immediate from the definition. Also

E(x; f, c)E(f(x); g, f(c)) =
(x− c)f ′(x)

f(x)− f(c)

(f(x)− f(c))g′(f(x))

g(f(x))− g(f(c))
=

(x− c)(g ◦ f)′(x)

(g ◦ f)(x)− (g ◦ f)(c)
= E(x; (g◦f), c)

C.1 Value functions

C.1.1 Power function

Suppose v has the form of v(x) = xα defined on [0,∞) and α > 0. Then

E(x; v, c) =
α(x− c)xα−1

xα − cα

with c > 0. Differentiation gives

E′(x; v, c) =
αxα−2(cxα − αxcα + (α− 1)cα+1)

(xα − cα)2
.

Consider H(x) = cxα − αxcα + (α − 1)cα+1 and note that H(c) = 0. We have ∂H/∂x = H ′(x) =

αc(xα−1− cα−1) and note that H ′(c) = 0. Then for α > 1 we have H(x) is convex in x and H ≥ 0.

If α < 1 then H is concave in x and H ≤ 0. It follows that E is monotonic increasing in x if α > 1

and monotonic decreasing in x if α < 1.

48



C.1.2 Exponential function

For v(x) = eαx on [0,∞) and α > 0,

E(x; v, c) =
α(x− c)eαx

eαx − eαc
=
α(x− c)eα(x−c)

eα(x−c) − 1
.

Note that eα(x−c) > 1 + α(x− c). Then differentiation gives

E′(x; v, c) =
αeα(x−c)(eα(x−c) − α(x− c)− 1)

(eα(x−c) − 1)2
> 0

so that E(x; v, c) is monotonic increasing in x.

C.1.3 Reverse-power function

Consider v(x) = Kα − (K − x)α on x ∈ [0,K] for some K > 0 and 0 < α < 1. Then v is a

non-negative convex function with v(0) = 0. For x, c ∈ [0,K], we have using Proposition 4 twice,

E(x; v, c) = E(x; (K − x)α, c) = E(K − x;xα,K − c).

Since E(y;xα, z) is decreasing in y we conclude that E(x; v, c) is increasing in x.

C.1.4 Scaled power function from TK value function

We now prove Proposition 5 (1). Consider v(x) = −k(h − (x + hβ)1/β)α for −hβ < x < 0 with

α, β > 0. Then, for −hβ ≤ c < 0,

E(x; v, c) = E(x; v(z) = (h− (z + hβ)1/β)α, c)

= E(x+ hβ; v(z) = (h− z1/β)α, c+ hβ)

= E((x+ hβ)1/β; v(z) = (h− z)α, (c+ hβ)1/β)E(x+ hβ; y1/β, c+ hβ)

= E(h− (x+ hβ)1/β; v(z) = zα, h− (c+ hβ)1/β)E(x+ hβ; y1/β, c+ hβ).

Now suppose that 0 < α, β < 1. Then 0 < α < 1 < 1/β and from the discussion of the power

functions in C.1.1, C.1.3 both of E(h−(x+hβ)1/β; v(z) = zα, h−(c+hβ)1/β) and E(x+hβ; y1/β, c+

hβ) are increasing in x. Hence the product is increasing in x.

C.2 General probability weighting functions

Let w be an inverse-S shaped weighting function which is concave on [0, q] and convex on [q, 1].

We want to show that for common families of weighting function E(x;w, c) is decreasing in x for
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0 6 x 6 min(c, q) for any 0 6 c 6 1, and thus prove Assumption 2 holds (and prove Proposition 5

(2)).

Let G(x, c) = ∂
∂x lnE(x;w, c) = − 1

c−x + w′′(x)
w′(x) + w′(x)

w(c)−w(x) . It is necessary and sufficient to show

that G(x, c) 6 0 for all 0 6 x 6 min(c, q) and 0 6 c 6 1. Fix some x with 0 6 x 6 q. Then by a

repeated application of l’Hôpital’s rule

lim
c↓x

G(x, c) = lim
c↓x

(
− 1

c− x
+
w′′(x)

w′(x)
+

w′(x)

w(c)− w(x)

)
=

w′′(x)

2w′(x)
6 0

since w′′(x) 6 0 for x 6 q. Then, if one could show that G(x, c) is decreasing in c ∈ [x, 1], then

G(x, c) 6 G(x, x) 6 0, and the result will follow.

Hence, for our desired conclusion it is sufficient to show that ∂
∂cG(x, c) = 1

(c−x)2−
w′(x)w′(c)

(w(c)−w(x))2 6 0

for x ≤ c, or equivalently f(x, c) = f(x, c;w) ≥ 0 for x ≤ c where

f(x, c) = w′(c)w′(x)−
(
w(c)− w(x)

c− x

)2

. (A-14)

In the remainder of this section, we use this approach to give a proof for the Goldstein and Ein-

horn (1987) weighting function and some analysis for the Tversky and Kahneman (1992) function.

This property can also be shown to hold for the Prelec (1998) weighting function but we omit the

detailed proof.

C.2.1 The Goldstein and Einhorn (1987) weighting function

The Goldstein and Einhorn (1987) weighting function is given by

wGE± (p) =
γ±p

d±

γ±pd± + (1− p)d±
(A-15)

for parameters 0 < γ±, d± < 1. Set γ = γ±, d = d±, and abbreviate wGE± to w. Then differentiation

gives

w′(x) =
d

γx2

(
1

x
− 1

)d−1(
1 +

1

γ

[
1

x
− 1

]d)−2
and in turn, with z = 1

x − 1 and y = 1
c − 1

f(x, c) =
d2

γ2x2c2
zd−1yd−1

(
1 +

zd

γ

)−2(
1 +

yd

γ

)−2
− 1

(c− x)2

 1

1 + zd

γ

− 1

1 + yd

γ

2

=
1

γ2(c− x)2

(
1 +

zd

γ

)−2(
1 +

yd

γ

)−2(
d2
(

1

x
− 1

c

)2

zd−1yd−1 −
(
zd − yd

)2)
.
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Since x ≤ c we have y 6 z. The condition for f(x, y) > 0 is then

d2(z − y)2zd−1yd−1 − (zd − yd)2 > 0. (A-16)

On writing z = λy with λ > 1, (A-16) is equivalent to d(λ − 1)λ
d
2
− 1

2 − (λd − 1) > 0 and in turn

gd(λ) ≥ 0 where

gd(λ) := d(λ1/2 − λ−1/2)− (λd/2 − λ−d/2) > 0. (A-17)

Write λ = e2θ for θ ≥ 0. Then gd(λ) = h(θ) where h(θ) = 2d sinh θ − 2 sinh(dθ). But h(0) = 0 and

h′(θ) = 2d[cosh θ− cosh(dθ)] ≥ 0 since d < 1. Hence gd is increasing in λ for λ ≥ 1. Since gd(1) = 0

the result follows.

C.2.2 Tversky and Kahneman (1992) weighting function

The Tversky and Kahneman (1992) probability weighting function is given in (6) as: w(x) =

xδ

(xδ+(1−x)δ)1/δ . The decreasing elasticity property on the concave regime seems difficult to verify

analytically. In Figure 7 we plot the function −G(x, c) = − ∂
∂x lnE(x;w, c) = 1

c−x−
w′′(x)
w′(x) −

w′(x)
w(c)−w(x)

for several values of δ over 0 6 x 6 min(c, q) and 0 6 c 6 1 where q is the inflexion point of w. All

the plots show positive values which verify the decreasing elasticity property of w on the required

range.

D A proof of a general version of Proposition 2

Suppose P is a regular time-homogeneous diffusion. Let X = s(P ) be in natural scale and let ν be

the probability law of the optimal prospect for X. Suppose X is sufficiently regular that it satisfies

an SDE dXt = ξ(Xt)dBt with initial condition X0 = s(P0) = 0. Let LX = (LXt (x))t≥0,s(aJ )≤x≤s(bJ )

be the local time of X at level x by time t using the standard normalization of, say, Revuz and Yor

(1999). (No confusion should arise between L = s(aJ) and the local time LXt (x) since the former

never has any sub- or superscripts.) By the occupation times formula (Revuz and Yor (1999)

[Theorem VI.1.6]), for any Borel function Φ,∫
Φ(a)LXt (a)da =

∫ t

0
Φ(Xs)d[X]s. (A-18)

Proposition 2 is contained in the following result.
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Figure 7: Plot of −G(x, c) = − ∂
∂x

lnE(x;w, c) with w taken to be the Tversky-Kahneman

(1992) probability weighting function for several values of parameter δ. To conclude that

E(x;w, c) is decreasing in x for 0 ≤ x ≤ min{c, q} we need −G(x, c) ≥ 0 over the relevant

range.
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Proposition 10. The disposition ratio D (recall (4)) depends on the optimal prospect, but not on

the stopping rule used to generate that prospect. Further, the disposition ratio can be rewritten in

the form

D =

∫∞
0 ν(dx)∫∞

0
1

ξ2(x)
(uν(x)− x) dx

∫ 0
L

1
ξ2(x)

(uν(x) + x) dx∫ 0
L ν(dx)

(A-19)

where uν(x) = EX∼ν [|X − x|].

Proof. Suppose ν is the probability law of the target scaled prospect, or equivalently suppose that

under an optimal stopping rule Xτ ∼ ν. Clearly, P(Pτ > P0) = P(Xτ > 0) =
∫∞
0 ν(dx). Similarly

P(Pτ < P0) =
∫ 0
L ν(dx). Then

E
(∫ τ

0
1(Pu>P0)du

)
= E

(∫ τ

0
1(Xu>0)du

)
= E

(∫ τ

0

1(Xu>0)

ξ2(Xu)
d[X]u

)
= E

(∫
1(x>0)

ξ2(x)
LXτ dx

)
=

∫ ∞
0

E(Lxτ )

ξ2(x)
dx

where we use (A-18) for the penultimate equality. But, by Tanaka’s formula E(Laτ ) = E|Xτ − a| −

|X0 − a|. Hence, writing uν(x) :=
∫
|z − x|ν(dz)

E
(∫ τ

0
1(Pu>P0)du

)
=

∫ ∞
0

1

ξ2(x)
(E|Xτ − x| − |X0 − x|) dx =

∫ ∞
0

1

ξ2(x)
(uν(x)− x) dx

which is independent of the stopping rule used to realize ν. Similarly we can establish

E
(∫ τ

0
1(Pu<P0)du

)
=

∫ 0

L

1

ξ2(x)
(uν(x) + x) dx.

The representation (A-19) follows.
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