Submillimetre observations of the two-component magnetic field in M82

Kate Pattle 1,2*, Walter Gear 1, Matt Redman 1, Matthew W. L. Smith 2 and Jane Greaves 2

1Centre for Astronomy, Department of Physics, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
2School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK

ABSTRACT
We observed the starburst galaxy M82 in 850 μm polarized light with the POL-2 polarimeter on the James Clerk Maxwell Telescope (JCMT). We interpret our observed polarization geometry as tracing a two-component magnetic field: a poloidal component aligned with the galactic ‘superwind’, extending to a height ∼350 pc above and below the central bar; and a spiral-arm-aligned, or possibly toroidal, component in the plane of the galaxy, which dominates the 850 μm polarized light distribution. Comparison of our results with recent High-resolution Airborne Wideband Camera Plus (HAWC+) measurements of the field in the dust entrained by the M82 superwind suggests that the superwind breaks out from the central starburst at ∼350 pc above the plane of the galaxy.

Key words: galaxies: individual: M82 – galaxies: magnetic fields – submillimetre: galaxies.
The data were reduced using the \textit{pol2map}\footnote{http://starlink.eao.hawaii.edu/docs/sun258.htm/sun258ss73.html} script recently added to the SMURF package in the STARLINK software suite (Chapin et al. 2013). See Pattle et al. (2021) for a detailed description of the current POL-2 data reduction process. Instrumental polarization (IP) was corrected for using the ‘August 2019’ IP model.\footnote{https://www.eaobservatory.org/jcmt/2019/08/new-ip-models-for-pol2-data/} The 850 \textmu{}m data were calibrated using a flux conversion factor (FCF) of 3159 mJy arcsec\(^{-2}\) pW\(^{-1}\), the standard SCUBA-2 FCF of 2340 mJy arcsec\(^{-2}\) pW\(^{-1}\) (Dempsey et al. 2013) multiplied by a factor of 1.35 (Friberg et al. 2016).

We binned our output vector catalogue to 8-arcsec (approximately Nyquist-sampled) pixels. The per-pixel rms noise values in the vector catalogue were then remodelled using the \textit{pol2noise} script, which models map variance as the sum of three components, based on exposure time, the presence of bright sources, and residuals. The average rms noise in Stokes \textit{Q} and \textit{U} in the centre of the map on 8-arcsec pixels is 0.0052 mJy arcsec\(^{-2}\) (1.2 mJy beam\(^{-1}\)). The observed polarized intensity is given by

\[
P_p = \sqrt{Q^2 + U^2}.
\]

However, this quantity is biased by its defined-positive nature. We debiased PI using the modified asymptotic estimator (Plaszczynski et al. 2014; Montier et al. 2015):

\[
P_p^* = P_p - \frac{1}{2} \frac{\sigma_p^2}{P_p^2} \left(1 - e^{-\left(\frac{P_p^2}{2}\right)^2}\right),
\]

where \(\sigma_p^2\) is the weighted mean of the variances \(\sigma_Q^2\) and \(\sigma_U^2\),

\[
\sigma_p^2 = \frac{Q^2 \sigma_Q^2 + U^2 \sigma_U^2}{Q^2 + U^2},
\]
calculated on a pixel-by-pixel basis. Observed polarization fraction \(p\) is then given by \(p' = P_p^*/l\), and equivalently, debiased polarization fraction by \(p = P_p/l\). In the following analysis, we use \(p\) rather than \(p'\) except where specifically stated otherwise.

Polarization angle is given by

\[
\theta_p = 0.5 \arctan(U, Q).
\]

Throughout this work we assume that dust grains are aligned with their minor axis parallel to the magnetic field direction (e.g. Andersson, Lazarov & Vaillancourt 2015), and so that the plane-of-sky magnetic field direction can be inferred by rotating \(\theta_p\) by 90\(^\circ\). We discuss the validity of this assumption in Section 3.2, below. We note that the polarization angles that we detect are not true vectors, as they occupy a range in angle 0\(^\circ\)–180\(^\circ\). We note the less refer to our measurements as vectors for convenience, in keeping with the general convention in the field.

3 RESULTS

The polarization vector maps observed with POL-2 are shown in Fig. 1. We show all vectors with \(p/dp > 2\) and \(l/dl > 10\). Vector weights in Fig. 1 show signal-to-noise ratio in \(p/dp\). It can be seen that the position angles of the \(p/dp > 2\) vectors agree well with those of the \(p/dp > 3\) vectors, and so we include them in our analysis.

Our results agree well with both the original SCUPOL 850 \textmu{}m vector map of Greaves et al. (2000), and the reprocessed map of Matthews et al. (2009). We note that the SCUBA/SCUPOL and SCUBA-2/Polarized-Lazarian & Vaillancourt-2 systems have nothing in common apart from the JCMT dish itself. The POL-2 and SCUPOL measurements were made using separate polarimeters, cameras, observing modes, and data reduction algorithms, and so are fully independent.

3.1 Magnetic field morphology

We see, broadly, two behaviours: in the galactic centre, the field is perpendicular to the direction of the bar, while in the outer galaxy, the field is parallel to the spiral arm structure.

The distribution of magnetic field angles is shown in Fig. 2. The field in the galactic centre can be seen as a strong peak at 161\(^\circ\) ± 13\(^\circ\) E of N (circular mean value, calculated over vectors where \(I > 1.1\) mJy arcsec\(^{-2}\)), while the vectors associated with the outer galaxy...
Figure 2. Histograms showing the distribution of magnetic field angles in M82. Top panel: conventional histogram. Bottom panel: circular histogram, showing the wrapping of magnetic field angle at $0°/180°$. Shading denotes signal-to-noise ratio: dark green indicates vectors with $p/dp > 3$; medium green, $p/dp > 2.5$; light green, $p/dp > 2$. Note the sharp peak at $\sim 161°$ indicating vectors tracing the poloidal field in the superwind.

occupy a broad range of angles, principally but not exclusively in the range $\sim 10–100°$ E of N.

We calculated the implied galactocentric radius of each pixel if it were tracing emission from the plane of the galaxy, assuming an inclination angle of 76°.9 (Clark et al. 2018). Magnetic field angle as a function of implied galactocentric radius is shown in the central panel of Fig. 3, in which the two components of the angle distribution can be seen.

We adopted the spiral arm model of M82 proposed by Mayya et al. (2005), in which an $m=1$ logarithmic spiral arm with a pitch angle of 14° extends from each end of the 60-arcsec-long bar, which is offset by 4° from the 26° position angle of the galaxy (Telesco et al. 1991). These spiral arms are overlaid on our data in the top panel of Fig. 3. It can be seen that the poloidal $\sim 161°$ field component extends ~ 20 arcsec above and below the bar, but does not extend beyond the ends of the bar in the plane of the galaxy. Elsewhere, the field appears to be broadly toroidal around the galactic centre, or parallel to the spiral arm structure, as discussed below.

The offset between each magnetic field vector and the angle of the spiral arm component to which it is nearest is shown in the lower panel of Fig. 3. Comparison of magnetic field and spiral arm angles. Top panel: position of spiral arms (Mayya et al. 2005); vectors are colour coded by their nearest spiral arm. Middle panel: magnetic field angle as a function of implied galactocentric radius. Bottom panel: difference in angle between spiral arm structure and magnetic field as a function of implied galactocentric radius. The magnetic field appears to transition from being perpendicular to the bar in the galactic centre to being parallel to the spiral arms, or toroidal, at high galactocentric radius.
panel of Fig. 3. We can see the transition from a perpendicular, poloidal, field pattern that dominates in the galactic centre to a field approximately parallel to the spiral arms in the outer galaxy. With the exception of one data point at a radius of \(\sim 3 \) kpc that is offset from the spiral arm direction by \(\sim 80^\circ \) (RA = 09h55m49s, Dec. = +69\(^\circ\)41\arcmin\)20\arcsec), the spiral-arm-aligned component emanating from the disc appears to dominate over the poloidal component beyond a galactocentric radius \(\sim 2 \) kpc. The transition occurs at an 850 \(\mu \)m flux density \(\sim 0.6 \) mJy arcsec\(^{-2} \), at a plane-of-sky distance \(\sim 20 \) arcsec above/below the bar. Assuming an inclination of 76\(^\circ\)9 and a distance of 3.5 Mpc, this corresponds to a height above the disc of \(\sim 350 \) pc.

3.2 Grain alignment

Observations of polarized dust emission typically show a power-law dependence, \(p \propto I^{-\alpha} \), where \(0 \leq \alpha \leq 1 \) (Whittet et al. 2008; Jones et al. 2015). A steeper index (higher \(\alpha \)) indicates either poorer grain alignment with respect to the magnetic field or more variation of the magnetic field direction along the line of sight (LOS): \(\alpha = 0 \) indicates that grains are consistently aligned throughout the LOS, while \(\alpha = 1 \) implies complete randomization of either grain alignment or magnetic field direction along the LOS (Pattle et al. 2019).

We measured \(\alpha \) using the method described by Pattle et al. (2019), in which we assume that the underlying relationship between \(p \) and \(I \) can be parametrized as

\[
p = p_{\text{QU}} \left(\frac{I}{\sigma_{\text{QU}}} \right)^{-\alpha},
\]

where \(p_{\text{QU}} \) is the polarization fraction at the rms noise level of the data \(\sigma_{\text{QU}} \), and \(\alpha \) is a power-law index in the range \(0 \leq \alpha \leq 1 \). We fitted the relationship between \(I \) and observed non-debiased polarization fraction \(p' \) with the mean of the Ricean distribution of observed values of \(p \) that would arise from equation (5) in the presence of Gaussian rms noise \(\sigma_{\text{QU}} \) in Stokes \(Q \) and \(U \):

\[
p'(I) = \sqrt{\frac{\pi}{2}} \left(\frac{I}{\sigma_{\text{QU}}} \right)^{-1} L^\frac{1}{2} \left(-\frac{p_{\text{QU}}^2}{2} \left(\frac{I}{\sigma_{\text{QU}}} \right)^{2(1-\alpha)} \right),
\]

where \(L^\frac{1}{2} \) is a Laguerre polynomial of order \(\frac{1}{2} \). See Pattle et al. (2019) for a derivation of this result. We restricted our data set to the central 3-arcmin diameter region over which exposure time, and so rms noise, is approximately constant (Friberg et al. 2016).

The relationship between \(p' \) and \(I \) in M82 is shown in Fig. 4. By fitting equation (6) to the data, we measure a best-fitting index of \(\alpha = 0.25 \pm 0.08 \). This suggests that in our observations of M82, grain alignment remains quite good and that a single average field direction along the LOS dominates the 850 \(\mu \)m emission at most locations, implying a sharp transition from the poloidal component to the orthogonal toroidal component dominating the emission profile above and below the bar. We see hints of a line of null polarization at \(\sim 25 \) arcsec above and below the bar, perhaps delineating the locations where the wind and disc dust components contribute similar amounts of polarized 850 \(\mu \)m emission.

4 DISCUSSION

We posit that the polarization geometry observed at 850 \(\mu \)m can easily be reconciled with observations at other wavelengths if it traces the poloidal magnetic field in the central starburst at small galactocentric radii, and a toroidal/spiral-arm-aligned field in the disc of M82 at large galactocentric radii. In Fig. 3, we show that the magnetic field direction transitions from being broadly perpendicular to the bar in the galactic centre to being broadly parallel to the spiral arms at larger galactocentric radii.

Many previous studies have suggested the existence of a two-component magnetic field in M82 (cf. Jones 2000, fig. 5). Observations of other spiral galaxies (e.g. M51; Jones et al. 2020) show magnetic fields running parallel to the spiral arms, in keeping with the \(\alpha \)-dynamo model. We note that at the signal-to-noise ratio that we achieve in the outer parts of M82, it is difficult to definitively distinguish between a field generically toroidal around the galactic centre and one running along the spiral arms. However, both theory and previous observation lead us to expect fields to be parallel to spiral arms where such arms exist (Beck et al. 1996).

HAWC+ 53 and 154 \(\mu \)m vectors (Jones et al. 2019) are shown in Fig. 5. We see good agreement between the POL-2 and HAWC+ results in the centre of the galaxy, with all three wavelengths appearing to trace the poloidal field component. While the HAWC+ 53 \(\mu \)m...
measurements do not extend far beyond the central bar, the 154 \(\mu \)m measurements extend considerably further. The POL-2 850 \(\mu \)m and HAWC+ 154 \(\mu \)m results agree at the ends of the bar, where we do not expect the outflow to be launching material. However, the two measurements disagree in the outer galaxy both above and below (particularly above) the galactic plane.

The fact that HAWC+ observations trace the galactic wind indicates that large amounts of dust are entrained in the galactic outflow (Jones et al. 2019). Based on their 53 \(\mu \)m observations, Jones et al. (2019) infer that the poloidal field geometry extends up to 350 pc above and below the plane, while the outflow itself extends at least 11 kpc from the plane (Devine & Bally 1999).

We see the poloidal field extending to \(\sim 350 \) pc above and below the plane, in very good agreement with the extent over which the HAWC+ 53 \(\mu \)m emission is observed. However, the 154-\(\mu \)m-inferred field geometry continues to be poloidal to significantly larger distances above the plane, and the superwind field lines have been extrapolated to extend into the intergalactic medium (Lopez-Rodriguez et al. 2021). This suggests that at 850 \(\mu \)m, we are observing the poloidal magnetic field in the central starburst region. Beyond this region, our observations trace the magnetic field in the cold, high-column-density dust of the galactic plane, while 154 \(\mu \)m observations trace hot, low-column-density dust entrained in the superwind, in which the dust mass scale height is 1.4 \(\pm \) 0.3 kpc (Leroy et al. 2015). The change in behaviour at \(\sim 350 \) pc above the plane is consistent with models of M82 that call for the breakout from the starburst region to the beginning of the superwind to take place at around this vertical scale (e.g. Heckman, Armus & Miley 1990; Martin et al. 2018).

5 CONCLUSIONS

We have observed the starburst galaxy M82 in 850 \(\mu \)m polarized light using the POL-2 polarimeter on the JCMT. Our observations trace a poloidal magnetic field in the M82 central starburst region to heights \(\sim 350 \) pc above the plane of the galaxy, but trace a field in the disc parallel to the spiral arms at galactocentric radii \(\gtrsim 2 \) kpc, in good agreement with predictions for a starbursting spiral galaxy. We see a significant discrepancy between POL-2 850 \(\mu \)m and HAWC+ 154 \(\mu \)m measurements in the outer galaxy, where the HAWC+ measurements trace hot, low-column-density dust entrained by the superwind. Observations across the submillimetre/far-infrared regime are thus necessary to disentangle the multiple magnetic field components of starburst galaxies.

ACKNOWLEDGEMENTS

We thank Terry J. Jones for providing us with the HAWC+ vector catalogues. The James Clerk Maxwell Telescope is operated by the East Asian Observatory on behalf of The National Astronomical Observatory of Japan; Academia Sinica Institute of Astronomy and Astrophysics; the Korea Astronomy and Space Science Institute; Center for Astronomical Mega-Science (as well as the National Key Research and Development Program of China with No. 2017YFA0402700). Additional funding support is provided by the Science and Technology Facilities Council of the United Kingdom and participating universities and organizations in the United Kingdom, Canada, and Ireland. Additional funds for the construction of SCUBA-2 were provided by the Canada Foundation for Innovation. This research made use of ASTROPY (Astropy Collaboration et al. 2013, 2018). The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.

DATA AVAILABILITY

The reduced data used in this analysis are available at https://doi.org/10.11570/21.0006. The raw data are available in the Canadian Astronomy Data Centre archive under project code M20BP022.

REFERENCES

Astropy Collaboration et al., 2018, AJ, 156, 123

This paper has been typeset from a \(\TeX/\LaTeX \) file prepared by the author.