UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

The Madingley general ecosystem model predicts bushmeat yields, species extinction rates and ecosystem-level impacts of bushmeat harvesting

Barychka, T; Mace, GM; Purves, DW; (2021) The Madingley general ecosystem model predicts bushmeat yields, species extinction rates and ecosystem-level impacts of bushmeat harvesting. OIKOS 10.1111/oik.07748. Green open access

[thumbnail of oik.07748.pdf]
Preview
Text
oik.07748.pdf - Published Version

Download (974kB) | Preview

Abstract

Traditional approaches to guiding decisions about harvesting bushmeat often employ single-species population dynamic models, which require species- and location-specific data, are missing ecological processes such as multi-trophic interactions, cannot represent multi-species harvesting and cannot predict the broader ecosystem impacts of harvesting. In order to explore an alternative approach to devising sustainable harvesting strategies, we employ the Madingley general ecosystem model, which can simulate ecosystem dynamics in response to multi-species harvesting given nothing other than location-specific climate data. We used the model to examine yield, extinctions and broader ecosystem impacts, for a range of harvesting intensities of duiker-sized endothermic herbivores. Duiker antelope (such as Cephalophus callipygus and Cephalophus dorsalis) are the most heavily hunted species in sub-Saharan Africa, contributing 34–95% of all bushmeat in the Congo Basin. Across a range of harvesting rates, the Madingley model gave estimates for optimal harvesting rate, and extinction rate, that were qualitatively and quantitatively similar to the estimates from conventional single-species Beverton–Holt model. Predicted yields were somewhat greater (around five times, on average) for the Madingley model than the Beverton–Holt, which is partly attributable to the fact that the Madingley simulates multi-species harvesting from an initially pristine ecosystem. Also, the Madingley model predicted a background local extinction probability for the target species of at least 10%. At medium and high levels of harvesting of duiker-sized herbivores, the Madingley model predicted statistically significant, but moderate, reductions in the densities of the targeted functional group; increases in small-bodied herbivores; decreases in large-bodied carnivores; and minimal ecosystem-level impacts overall. The results illustrate how general ecosystem models such as the Madingley model could potentially be used more widely to help estimate sustainable harvesting rates, bushmeat yields and broader ecosystem impacts across different locations and target species.

Type: Article
Title: The Madingley general ecosystem model predicts bushmeat yields, species extinction rates and ecosystem-level impacts of bushmeat harvesting
Open access status: An open access version is available from UCL Discovery
DOI: 10.1111/oik.07748
Publisher version: https://doi.org/10.1111/oik.07748
Language: English
Additional information: This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Genetics, Evolution and Environment
URI: https://discovery.ucl.ac.uk/id/eprint/10137161
Downloads since deposit
101Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item