Darvariu, V-A;
Hailes, S;
Musolesi, M;
(2021)
Goal-directed graph construction using reinforcement learning.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
, 477
(2254)
, Article 20210168. 10.1098/rspa.2021.0168.
Preview |
Text
main.pdf - Accepted Version Download (904kB) | Preview |
Abstract
Graphs can be used to represent and reason about systems and a variety of metrics have been devised to quantify their global characteristics. However, little is currently known about how to construct a graph or improve an existing one given a target objective. In this work, we formulate the construction of a graph as a decision-making process in which a central agent creates topologies by trial and error and receives rewards proportional to the value of the target objective. By means of this conceptual framework, we propose an algorithm based on reinforcement learning and graph neural networks to learn graph construction and improvement strategies. Our core case study focuses on robustness to failures and attacks, a property relevant for the infrastructure and communication networks that power modern society. Experiments on synthetic and real-world graphs show that this approach can outperform existing methods while being cheaper to evaluate. It also allows generalization to out-of-sample graphs, as well as to larger out-of-distribution graphs in some cases. The approach is applicable to the optimization of other global structural properties of graphs.
Type: | Article |
---|---|
Title: | Goal-directed graph construction using reinforcement learning |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1098/rspa.2021.0168 |
Publisher version: | https://doi.org/10.1098/rspa.2021.0168 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science |
URI: | https://discovery.ucl.ac.uk/id/eprint/10137155 |




Archive Staff Only
![]() |
View Item |