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Abstract

Collision-exchange process is a common physical process where system members interact with each other
to exchange materials and these individual interactions cumulatively drive a macroscopic system evolution
in time. In this paper, a compartment-based stochastic model is formulated to study the collision-exchange
process between members in a system. The discrete Markov analysis on the stochastic model presents the
analytical results that show the independence of the system equilibrium on its initial distribution, and the derived
differential equations reveal the deterministic time evolution of material amount on system members. As a
specific example of a physical system that can be described via this model, a seed coating process is presented
where the inter-particle coating variability is expressed by the stochastic model parameters. The promising
agreement between simulation predictions and experimental results demonstrates the feasibility of stochastic
modelling on the collision-exchange process and facilitates further model identification and applications to
industrial processes.

Keywords: Collision-exchange process, compartment-based modelling, stochastic simulation, stochastic Markov process,
seed coating system

1 Introduction

Collision-exchange process is a common physical process
that arises in many systems where system members interact
to engender material transfers or information exchange
over the population. The nature of collision-exchange
process in thermodynamic systems can be reflected by the
energy exchange process between neighbouring particles,
leading to a thermal conduction throughout the model
grid [1]. In epidemiology, the interaction behaviour is
mathematically formulated to study the spread of infections
and diseases that may lead to an outbreak as a result of
individual contacts [2, 3]. In chemical reaction-diffusion
systems with low molecule concentration, molecules
are formulated to react when they come across and
consequently lead to population changes in reactants and
products [4, 5]. In particle coating processes, coating

liquid is transferred between particles as a consequence of
particle contacts [6].

To understand the evolution of such systems and to
obtain a quantitative distribution of exchanged material,
it is essential to simulate the collision-exchange process
assuming proper operation conditions and interaction
mechanism. For chemical reaction-diffusion systems [4, 5]
with very small elements (i.e. molecules) or pandemic
models [3, 7] with large elements (i.e. humans), stochastic
modelling has been widely employed to investigate the
time-dependent system evolution dynamically driven by
successive member interactions. Conversely, discrete
element method (DEM) is commonly used to simulate
the collision-exchange behaviour of system members,
especially for granular particle systems [8–10]. For
such systems with elements of intermediate size, very

1



few studies have investigated the system state and its
evolution using stochastic modelling approach. The
most challenging part in DEM simulations of these
systems is to adequately trace each independent particle
and change its system state within each numerical time
interval, which is computationally demanding, especially
for systems with large population size. Besides, particle
collisions in DEM simulations usually involve the analysis
of elastic [11] and inelastic [12] collisions, to increase
the simulation precision by sacrificing computational
efficiency. Consequently, DEM simulations require
sufficiently long time to complete and produce results,
which is not conducive to further model identification
and system optimisation. Due to these limitations,
DEM is not usually adopted as an approach for process
optimisation unless advanced computing resources, such as
large computer clusters and powerful graphical processing
units, are available. Compared to the DEM, a stochastic
modelling approach is more flexible and simulation
time-saving. It assumes complex particle behaviour
as random behaviour, regardless of elastic or inelastic
collision, by applying a lower number of parameters
and resultant low computational intensity, giving much
convenience to quantitatively characterise simulation
outcomes.

In this paper, a stochastic modelling approach by
formulating a compartment-based stochastic model is
applied to investigate a system with collision-exchange
processes with the goal to characterise the state evolution
by material distribution. The model is mainly concerned
with the exchange behaviour between system members.
Material distribution is used as a specific application of
the model. To simulate the model, Gillespie’s stochastic
simulation algorithm (SSA) [4] is used to numerically
compute the state change of the system. An illustrative
example related to a seed coating process is given to
present the feasibility of the model in practical use.

The paper is structured as follows. In Section 2, a 3D
stochastic model is formulated with essential assumptions
to implement the collision-exchange processes. In this
section, we will discuss the properties of the stochastic
model and give a deterministic approximation of the
system evolution. In Section 3, stochastic simulations are
presented based on an industrial example of seed coating
process, with comparisons of simulations and experiments.
Conclusions are presented in Section 4.

2 Methodology

Stochastic models built for molecular and epidemiological
systems describe the system process in terms of model
equations considering the nature of system uncertainty.
Unlike DEM simulations giving the same output from
unchanged operating conditions, stochastic modelling
is inherently random. Repeating a simulation with
the same conditions allows to explore the variability
of the prediction. From these different simulation
realisations, an ensemble of model outputs including
uncertainty provides the statistic information missing from
deterministic models.

2.1 Stochastic modelling on neighbouring
collision-exchange process

A compartment-based model is formulated to represent
collisions between neighbouring particles as illustrated
by Figure 1. A 3D spatial domain is divided into
compartments with one particle in each compartment. The
numbers of compartments in x, y and z dimensions are
Kx, Ky and Kz , respectively. It is postulated that every
cubic compartment contains a single spheric particle of
the same size in diameter and is confined within this
subvolume. We assume that each particle tends to stay in
its own compartment and the neighbours behave as barriers
to prevent the particle to travel into another compartment,
that is to say, the order of particles remains unchanged
in the model. To illustrate the collision-exchange process
between particles from two neighbouring compartments,
the compartments and the inside particles are denoted by
the following index set

Iall = {(i, j, k) | i, j, k ∈ Z,
1 6 i 6 Kx, 1 6 j 6 Ky, 1 6 k 6 Kz}

(1)

The confined particles are assumed to collide with their
neighbours in only non-diagonal directions. We define the
following set of collision directions by which one particle
may contact one of its non-diagonal neighbours

E = {(−1, 0, 0), (1, 0, 0),

(0,−1, 0), (0, 1, 0),

(0, 0,−1), (0, 0, 1)}
= {x−, x+,

y−, y+,

z−, z+}

(2)

The non-diagonal neighbours of the particle in the
(i, j, k)-th compartment are defined by the following set

2



X

Y

Z

Lz

h

1 2 Kx··· ···
1
2

Ky

2

···
···

Lx

Ly 1

Kz

(a)

Cubic compartment

Confined particle

(b)

Figure 1: (a) Discretisation of a 3D spatial domain Lx×Ly ×Lz by cubic compartments of the same edge length h. The
domain with the number of compartments in each dimension Kx = Ky = Kz = 8 is shown on the figure; (b) Single
particle is confined in each cubic compartment where the particle has limited space to move.

where e represents the direction of one of the neighbouring
particles.

Ni,j,k = {(i, j, k) + e | (i, j, k) + e ∈ Iall, e ∈ E} (3)

Particle contact frequency
A collision is required for an extensive physical

property to be transferred between particles. A specific
example is the exchange of mass. Let cf (s−1) denote
the contact frequency to characterise the total number of
particle contacts per second in the system. It is reasonable
to assume that cf stays constant by neglecting potential
slight fluctuation when the system achieves dynamic
equilibrium. In this model we do not consider the contact
frequency of a single particle because particles at different
positions can have different contact frequencies. Tracking
every particle individually would increase computational
expense in simulations.

Material transfer mechanism
Focusing on the specific example of material transfer,

upon each collision involving two particles, see Figure 2, it
is considered that one particle would both give and receive
material from the other particle, forming an exchange
event. Let mi,j,k(t) and m(i,j,k)+e(t) denote respectively
the material amount on the (i, j, k)-th particle and one of
its neighbour (i, j, k) + e at time t. For the (i, j, k)-th
particle colliding with the neighbour (i, j, k)+e, we define
the following expression to represent the material amount
change involving two particles in the exchange event at

time t,

mi,j,k(t+ ∆t)−mi,j,k(t)

= −mi,j,k(t)KA +m(i,j,k)+e(t)KP

{(i, j, k), (i, j, k) + e} ⊂ Iall, e ∈ E
(4)

where KA represents the material amount fraction
transferred from the particle (i, j, k) to its selected
neighbour (i, j, k)+e andKP from the selected neighbour
to the particle. ∆t represents the numerical computational
time interval which will be discussed later. In this model,
we assume that the material transferred is determined only
by the material amount on the involved particles and the
transfer coefficients. To simplify the model, we consider
a process for which KA and KP can be considered as
constant (no strong variation of physical properties during
the process). The exchange process (4) is a stochastic
process for the (i, j, k)-th particle as its neighbour selected
from the set Ni,j,k is completely random. Later we
will show how we can implement a stochastic simulation
algorithm based on this exchange mechanism.

Computational time interval
After introducing the material transfer mechanism

above, the numerical time step, denoted as ∆t, needs to
be discussed. The value of ∆t applied in the simulation is
dependent on two critical factors of the system: collision
frequency cf and particle population K. One needs to
consider the following constraints when selecting of an
appropriate value of ∆t.
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Figure 2: Illustration of a two-particle collision involving
particle (i, j, k) and its neighbour (i, j, k) + e.

• ∆t is required not to be larger than K/2cf . Once
cf∆t > K/2, the simulation goes to failure as there
would be not enough particles left to be neighbours.

• ∆t should not be too small. When cf∆t � 1,
the simulation would risk “nothing happens” for a
lot of the time, which makes the simulation progress
extremely slowly.

• cf∆t should not be close to K/2 as it “forces” cf∆t
selected particles to collide at the same time (every
particle is independent in the system).

With these considerations, it is actually required a trade-off
between acceptable simulation time and forcing as less
particles to collide at the same time as possible. To apply
decent and reliable value of ∆t, in this paper, we use a
value selection criterion for ∆t that 1 6 cf∆t < K/10
where the randomly selected cf∆t particles and cf∆t
corresponding neighbours per iteration account for only
a small part of all particles in the system, ensuring
the simulations can be completed with reasonable
computational time and high reliability.

Collision propensity
During a small time interval, the particles need to

“choose” with which neighbour they would collide and
therefore exchange. This decision is related to the external
forces, like gravitational force and centrifugal force applied
on the particles. In this stochastic model, instead
of determining collision directions based on Newtonian
models (like in DEM simulations), we introduce the
concept of “collision propensity” to characterise the
probabilities that the particles would contact their
neighbour in a specific direction. Let P e

i,j,k denote the
collision propensity for the (i, j, k)-th particle in the
direction e. Evidently, we have∑

e∈E
P e
i,j,k = 1 (5)

Stochastic simulation algorithm

Prompted with considerations above, the stochastic
simulation algorithm of the particle collision-exchange
process is implemented as follows:

1. Initialise the model with the following model
parameters θ = [KA,KP , cf ]T and simulation
settings P e

i,j,k, ∆t, Ttotal and tsampling;

2. Record the system status every tsampling seconds;

3. Randomly select cf∆t particles from the model;

4. Randomly select cf∆t neighbours for the selected
particles;

5. Calculate the material change amount on all selected
particles and their involved neighbours;

6. Update the material of the corresponding particles
based on Equation (4) to reflect particle exchange
processes; set t← t+ ∆t;

7. Go to step 2 if t < Ttotal.

2.1.1 Stochastic model property

a. Property of the stochastic process
In this section, we investigate the discrete stochastic

process associated with the collision-exchange system via
a hidden stochastic Markov chain [13]. A Markov chain
analysis produces insight on the fundamental properties of
the system without running complex simulations. In fact, it
elucidates how simulations are expected to behave offering
a test for their validity.

Let us label the particles in the model from 1 toN , the
system state at time t with respect to the material amount
on all particles are denoted by

s(t)T =
(
s

(t)
1 , · · · , s(t)

l , · · · , s(t)
N

)
1 6 l 6 N (6)

where s(t)
l represents the material amount on the particle

labelled by l at time t. The system state at time t can be
obtained by updating the system state computed at time t−
∆t and Equation (4) is rewritten in matrix form.

s(t)T = s(t−∆t)TPt (7)

where Pt ∈ RN×N is the transition matrix at time t,
describing the change of the system state of all particles
in the model from t − ∆t to t. As the exchange process
is stochastic, the transition matrix applied to every update
is not constant but dependent on the randomly selected
collision particle pairs. The stochastic transition matrix is
formally written as follows,

Pt = IN −
∑
lA,lP

(elAKA − elPKP ) (elA − elP )T (8)
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where IN is the identity matrix. Indices lA and lP represent
the label of all selected particles and corresponding
neighbours at time t, respectively. elA (resp. elP ) denotes
the column vector where all entries are 0 except in position
lA (resp. lP ) where the entry is 1. The system state discrete
evolution can be expressed by the following form from its
initial state,

s(t)T = s(0)TH(t,0) (9)

where H(t,0) = P∆tP2∆t · · ·Pt−∆tPt (the right product
of a sequence of stochastic matrices) is the so-called
non-homogenous stochastic Markov chain [14].

The properties of stochastic Markov chain have been
extensively studied [15–18]. It is easy to observe that
the transition matrix Pt is a row-stochastic matrix in
which each row sum is equal to 1. When a stochastic
Markov chain formed of such matrices is long enough,
(i) its ergodic property [15] shows that the long-term
system state will be independent of its initial state and
(ii) its result is almost identical to the average of the
ensemble of simulations. According to Tahbaz-Salehi and
Jadbabaie [16], the stochastic chain H(t,0) can always lead
to convergence when t is large enough because all of the
particles are connected in the exchange network with no
isolated component, showing

H(t,0) = 1d(t)T (10)

where 1 is an N -by-1 column vector where all entries are 1
and d(t)T is the distribution vector at time t that describes
the asymptotic system state after long-run process. To
characterise the system state, the variance of material
distribution is defined as

σ(t)2 =
1

N
||s(t)−mavr1||2 (11)

where mavr is the average material amount and ||·|| is the
euclidean norm of vector. Combining Equations (9) to (11),
we have the following expression for the coefficient of
variation of material distribution in the stochastic model,

CoV (t) =
(
||d||2N − 1

)0.5
(12)

It is observed that once the particle population is given,
CoV (t) is only dependent on the distribution vector d. For
a Markov chain that has constant stochastic matrix at each
step, the system would eventually achieve an equilibrium
with deterministic convergence and constant distribution
vector [19]. In our collision-exchange system, however,
the stochastic matrix Pt at each iteration is stochastic,
which results in a random convergence and an uncertain

distribution vector [20, 21] that are significantly dependent
on the sequence of stochastic matrices. According to
Tahbaz-Salehi and Jadbabaie [18], the asymptotic state
that the system will approach is a distribution with
non-zero variance. The mean of variance at steady state
is determined by

Kvec (IN ) = E(||d||2) vec (1N×N ) (13)

where
K = lim

t→∞
[E (Pk ⊗ Pk)]t (14)

where ⊗ denotes the Kronecker product, vec(·) is the
vectorisation by stacking columns of a matrix into a single
column vector.

Let us give illustrative examples of the results
computed using Markov chain analysis (Equations (11)
and (12)) and obtained from stochastic simulations (using
simulation algorithm in Section 2.1), to present the impact
of the conditions and parameters on the model outputs.

Table 1 shows the comparisons of analytical expected
values and simulation averages of material distribution
with different model conditions and parameters. From
the table, the stochastic simulation outputs completely
agree with the Markov analysis results. The discrepancies
between E(σ) and σ (as well between E(CoV ) and
CoV ) in all examples are acceptable as the fluctuation
of numerical simulation realisation is inevitable due to
the model stochasticity. In Table 1, it is observed from
models No.1 to 4 that the expected σ and CoV of material
distribution weakly depend on the particle population for
the same transfer coefficients KA = 0.72 and KP = 0.26.
The slight change of expected σ (or expected CoV ) is
caused by the increasing number of particles in the system
because the same transfer coefficients would make the
coating material distributed more raggedly in a system with
larger particle population. This result agrees with what has
been presented in Huang et al. [22].

Models No.4 to 6 are constructed with the same
particle population K = 60 but different dimensionality,
i.e. 1D, 2D and 3D, respectively. The results show
that once transfer coefficients and number of particles are
fixed in the model, the system always tends to the same
asymptotic state as described by the analytic solution, no
matter what dimensionality the model applies. This implies
that when the process time is large enough the material
distribution at steady state is theoretically not related to
the system geometry. From an industrial point of view,
using vessels with different geometries would yield similar
results of material distribution for the same amount of
material and the same number of particles.
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Table 1: Standard deviation and coefficient of variation of material distribution at steady state calculated by formula and
by numerical simulation averages for mavr = 50.

No. Population Transfer coefficient Transfer coefficient Expected value Numerical simulation
dimensions (particle) (neighbour) average

(-) (Kx, Ky, Kz) KA KP E(σ) E(CoV ) σ CoV

1 (30,1,1) 0.72 0.26 35.71 0.714 34.44 0.689
2 (40,1,1) 0.72 0.26 35.94 0.719 34.13 0.683
3 (50,1,1) 0.72 0.26 36.08 0.722 33.57 0.676
4 (60,1,1) 0.72 0.26 36.17 0.723 32.73 0.655
5 (12,5,1) 0.72 0.26 36.17 0.723 34.23 0.685
6 (5,4,3) 0.72 0.26 36.17 0.723 33.85 0.677
7 (5,4,3) 0.91 0.18 74.13 1.483 66.87 1.337
8 (5,4,3) 0.50 0.25 18.72 0.374 16.99 0.340
9 (5,4,3) 0.62 0.37 18.09 0.362 16.58 0.332

10 (5,4,3) 0.54 0.45 6.34 0.127 6.35 0.127
11 (5,4,3) 0.52 0.49 2.10 0.042 2.07 0.041
12 (5,4,3) 0.42 0.42 0 0 0 0

In models No.6 to 11, the results are compared using
the same population dimension for the different values of
the transfer coefficients given by Table 1. It is observed
that σ and CoV of material distribution are significantly
influenced by the difference between KA and KP . For
smaller differences, σ and CoV decrease, indicating that
the material is distributed more evenly in the system. In
model No.12, the model condition is set as KA = KP .
In the result, σ = CoV = 0 implies that the system
achieves a state where all particles have identical amount
of coating material. With the condition of KA = KP , the
transition matrix Pt is known as a doubly-stochastic matrix
where both row sum and column sum are equal to 1. The
stochastic Markov chain H(t,0) will consequently always
lead to a distribution vector in which all entries are identical
[15, 16].

Analytically computing the expected value of ||d||2
allows to see the average material distribution behaviour at
steady state instead of repeating simulation multiple times
with the same input variables. However, the computational
burden on a system with a large particle population will
be terribly high as the size of stochastic matrix Pt will
be squared after Kronecker multiplication and vec(·) also
yields vectors of dreadful size. This problem can be solved
by using a regression fitting method with respect to N and
||d||2.

b. Deterministic model approximation
In Section 2.1.1 a, we have discussed the long-term

system state and the distribution of coating materials in
the particle collision-exchange model. In this section,

we study the deterministic evolution of system state.
The system is simulated by using the SSA illustrated in
Section 2.1. Re-running a stochastic simulation with the
same input condition would almost surely not reproduce
the realisation due to model stochasticity. Even though
stochastic simulations present the system uncertainty,
one still expects to see the average emergent dynamic
behaviour of the system.

Any particle (i, j, k) in the system will randomly
experience one of the following three situations in a
simulation time step.

(1) Particle (i, j, k) involved in an exchange event
associated with the transfer coefficient KA. In
this situation, the particle state m

(1)
i,j,k(t + ∆t) is

determined by Equation (4). The probability of
occurrence of situation (1) is defined as

P (1) = N−1P e
i,j,k∆t (15)

(2) Particle (i, j, k) involved in an exchange event
associated with the transfer coefficient KP . In this
situation, the particle state is written as

m
(2)
i,j,k(t+∆t) = mi,j,k(t)(1−KP )+m(i,j,k)+e(t)KA

(16)
The probability of occurrence of situation (2) is
defined as

P (2) = N−1P −e
(i,j,k)+e∆t (17)

(3) Particle (i, j, k) not involved in any exchange event
during ∆t. In this situation, the particle state will keep
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Figure 3: (a) Comparison between stochastic realisation and deterministic evolution of material amount on particles and
(b) material amount distribution in the stochastic model at t = 50s for Kx = Ky = Kz = 10, N = 1000, mavr = 10,
KA = 0.5, KP = 0.45, cf = 8000s−1, ∆t = 0.01s, P e

i,j,k = 1/6. Initially only the particles on the top two layers have
identical amount of material. The solid lines represent the stochastic realisations of the particles and the dashed lines
represent the deterministic evolution of the corresponding particles with the same colour.

unchanged so we have

m
(3)
i,j,k(t+ ∆t) = mi,j,k(t) (18)

The probability of occurrence of situation (3) is
defined as

P (3) = 1− P (1) − P (2) (19)

By using addition and multiplication laws of probability
theory, we derive the stochastic mean of the state of particle
(i, j, k) at time t+ ∆t:

mi,j,k(t+ ∆t) = P (1)m
(1)
i,j,k(t+ ∆t)

+ P (2)m
(2)
i,j,k(t+ ∆t)

+ P (3)m
(3)
i,j,k(t+ ∆t)

(20)

The collision propensities P e
i,j,k are crucial to determine

how Equation (20) can be further simplified and solved.
For systems with homogeneous isotropic turbulence, it is
plausible to assume that a particle has the same possibility
to collide with one of its neighbours, that is to say, the
particle collision is non-diagonally isotropic that all P e

i,j,k

are identical, Equation (20) can be simplified into the

following form:

dmi,j,k

dt
= ∑

(i,j,k)+e∈Iall

m(i,j,k)+e −Rmi,j,k

 (KA +KP )
cf
N
P e
i,j,k

(21)
where R is the number of valid non-diagonal neighbours
with respect to the (i, j, k)-th particle, depending on the
particle position.

Equation (21) is expected to describe the deterministic
time evolution of the material amount on the (i, j, k)-th
particle. Figure 3 compares the stochastic simulation
realisation by using the SSA and deterministic system
evolution by using Equation (21), with model inputs and
initial condition listed in the caption.

Figure 3(a) gives an example of the good
agreement between stochastic realisation (solid lines)
and corresponding deterministic evolution (dashed lines)
with respect to the material amount over individual
particles. For clarity, we plotted the time evolution of
three particles at different positions in the system. The
material is transferred between particles and gradually
spread throughout the entire system. The dashed lines
converge at around 40 seconds, indicating that the system
is approaching the steady state. Afterwards it is observed
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Table 2: Summary of modelling approaches characterising the system evolution
Stochastic process Deterministic mean field

Assumptions • Unchanged order of members • All assumptions in Stochastic process
• Binary collisions in non-diagonal directions
only

• Identical collision propensity (non-diagonally
isotropic process)

• Linear liquid transfer mechanism
• Constant model parameters
• No material quantity loss after a collision
with model boundary

Strength • Expected uncertainty of material distribution • Expected material quantity on individuals
• Revealing the relationship between
parameters and uncertainty on material
distribution

• Allowing deterministic sensitivity analysis
and experimental design with explicit model
expression

• Suitable for identifying material distribution
uncertainty in specific systems with small
population size

• Suitable for approximately identifying
transient behaviour of system

Limitation • High computational burden for large
population size

• Material distribution not investigated at
steady state

from the solid lines that the individual particle material
amount no longer dramatically varies but fluctuates around
the average value mavr. The deterministic approximation
represents the mean field of the particle states, summarised
based on all potentials at the same time. This mean field
approximation allows an explicit model expression to be
used for further studies, which would save computational
time in performing sensitivity analysis and designing
experiments.

However, the deterministic mean field evolution
is limited because it cannot predict any coefficient of
variation or material distribution at steady state which
can instead be obtained from stochastic simulations such
as the one shown in Figure 3(b) obtained at t = 50s
in stochastic simulation. This limitation may be relaxed
in the future by adding noise terms derived from the
system uncertainty to the deterministic expression, forming
stochastic differential equations.

Table 2 summarises the modelling approaches
characterising the system evolution discussed in
Section 2.1.1. In order to investigate the potential of
the collision-exchange stochastic model, in Section 3, we
will present an illustrative example of seed coating process
to discuss how we can fit the collision-exchange stochastic
model to understand the seed coating process.

3 Model application

In this section, a simple collision-based real system is
studied applying the 3D compartment model in order to

investigate feasibility, potential and possible issues. The
physical process selected as a test case is seed coating.

3.1 Seed coating process

Seed coater

Rotator
Raw seeds

Atomiser

Feeding inlet

Figure 4: Sketch of the seed coating system

In agrochemical industry, seed coating is a vital unit
operation where raw seeds are coated by some chemical
agent that reinforces seed growth performance and protects
seeds from being damaged and contaminated by ambient
surroundings. This process is affected by several factors
such as seed shape, surface texture, property of chemical
agent and coating vessel configuration. The seeds are
mixed with a coating agent in a batch coater whose
geometry is shown as in Figure 4 More details on coater
geometry, coating variability, and relevant studies have
been summarised [23].

The operating conditions of the seed coating process
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Figure 5: Flowchart for seed coating distribution measurement and estimation by using image analysis and nominal
thickness parameters t∗P , t∗F .

consist of seed loading mass, coating formulation loading
mass, average seed size, average seed mass, post-mixing
time and spray droplet size. Average seed size refers to
the average diameter of the seeds to be coated. For seeds
of irregular shape, the geometric mean diameter would be
considered. Post-mixing time represents the mixing time
applied after the coating agent is completely added to the
system.

3.2 Seed coating experiment

In the experiment, the coating amount on seed surface
is measured and compared to the stochastic simulation
results. Figure 5 presents the flowchart of experiment
design, stochastic simulations and seed coating distribution
measurement and estimation.

The operating conditions of experiments are obtained
based on Response Surface Methodology (RSM) in Design
of Experiments (DoE) [24], generating seven experiments
with experimental settings of different coating agent
amounts and post-mixing times. The input variables of
stochastic simulations are determined as follows,

• Particle population, N : determined by the seed
loading mass and the average seed mass in the system.
One kilogram of corns is applied in each run which
approximates more than 3000 number of seeds.

• Population dimensions, (Kx,Ky,Kz): determined by
the seed coater geometry, the average seed size and
the pattern of seed bed, see Figure 6. In the coater,
when the rotator is on, the seeds fed into the coating

chamber tend to stay away from the centre of the floor
and gather at the wall due to the effects of strong
centrifugal force and inevitable gravitational force.
When the moving seed bed becomes stable, the bed
forms a hollow cylinder with very limited number of
seeds escaping from the bulk.

• Average amount of material, mavr: assigned based
on the average estimated coating amount m∗avr to be
mentioned later;

• Initial distribution: the stochastic Markov analysis in
Section 2.1.1 suggests that all particles (seeds) can be
assumed to initially have identical amount of material,
i.e. m∗avr, when one focuses only on final distribution.
However, if one wants to investigate the dynamic
behaviour of the system, the initial distribution should
be consistent with realistic situations.

Image analysis is applied to obtain the coating area
to measure the coating distribution at steady state. The
coated seeds are captured by camera and then the images
are analysed to give the data that describes the coating
coverage on seed surface. As seen from Figure 5,
the analysed image shows three distinct colours, which
represent the different degrees of adsorption of coating
agent. The red region represents the area is fully coated.
The cyan region represents the area is partially coated.
And the yellow region represents no coating observed
in the area. Assuming a uniform coating thickness in
every region allows to convert the coating area distribution
into estimating coating mass distribution by introducing
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Table 3: Seed coating experimental results and corresponding stochastic simulation realisations for t∗P = 0.5 and t∗F = 1.
Experiments Simulations

No. Coating agent Post-mixing Sample Sample Average Expected Expected Transfer Transfer
fed time stddev CoV coating mass stddev CoV coefficient coefficient
(g) (s) (σ∗1 ,σ∗2 ,σ∗3) (CoV ∗1,CoV ∗2,CoV ∗3) m∗avr E(σ) E(CoV ) KA KP

1 2.80 20 (549.8, 477.3, 513.0) (0.609, 0.582, 0.632) 845.3 528.4 0.625 0.60 0.20
2 8.25 60 (460.4, 514.6, 450.4) (0.134, 0.150, 0.130) 3443.0 438.1 0.127 0.50 0.41
3 17.70 20 (473.2, 476.7, 426.2) (0.114, 0.116, 0.102) 4144.6 467.9 0.113 0.50 0.42
4 24.30 60 (454.0, 470.6, 479.5) (0.106, 0.110, 0.112) 4277.6 452.8 0.106 0.495 0.42
5 30.45 20 (450.1, 469.9, 473.1) (0.107, 0.111, 0.113) 4206.4 474.9 0.113 0.50 0.42
6 8.25 40 (451.1, 487.9, 516.6) (0.129, 0.141, 0.145) 3510.8 496.2 0.141 0.50 0.40
7 8.25 20 (435.8, 534.5, 480.9) (0.127, 0.155, 0.137) 3467.7 440.3 0.127 0.50 0.41

𝐾𝑦

𝐾𝑧

𝐾𝑥

Figure 6: Sketch of the seed bed forming a hollow cylinder
during coating process.

nominal thickness parameters t∗P and t∗F for the partially
and the fully coated regions, respectively. The coating
mass on a single seed is therefore determined by

m∗ = t∗PnP + t∗FnF (22)

where nP (resp. nF ) corresponds to the number of pixels
in the partially (resp. fully) coated region of projected area.

It is worth noting that using different values of t∗P and
t∗F would not affect the comparison between simulation
realisations and experimental results. This is because t∗P
and t∗F affect m∗ linearly and therefore m∗avr. That is to
say, using different values of t∗P and t∗F would only alter the
locations (mean value) of distribution curves of stochastic
realisations and experimental results but not change their
distribution pattern. Additionally, m∗avr would have no
impact on the value of CoVmaterial due to Equation (12). In
what follows, the experimental results would be compared
to the stochastic simulations with t∗P = 0.5 and t∗F = 1.

3.3 Model verification

In this section, we identify the impact of different
experiment operating conditions by taking proper values of
KA and KP in stochastic simulations which give similar
coating material distributions.

Table 3 on the left shows the seed coating
experimental results with different amount of coating
agent fed and post-mixing time applied and on the right
presents the simulation outputs based on the stochastic
collision-exchange model. For each experiment, three
sample sets of the coated seeds are measured to show the
standard deviation and coefficient of variation. In Table 3,
the values of transfer coefficients were estimated to ensure
we could obtain simulated material distributions that would
agree with experiments in terms of mean, variance and
distribution pattern.

Figures 7(a) to 7(g) illustrate the comparisons
between experimental results and stochastic simulation
realisations with respect to the estimated coating mass
distribution, which shows how this model is capable
of reproducing observed experimental results, with the
appropriate coefficients selected. Figure 7(h) illustrates
the comparison between coating mass distributions of
different amounts of coating agent. Figure 7(i) illustrates
the comparison between coating mass distributions of
different post-mixing times. Experiments No.2 to 5 give
the bell-shaped distributions which can be reproduced
by the simulations with model parameters KA = 0.50
(KA = 0.495 in experiment No.4) and KP = 0.42
(KP = 0.41 in experiment No.2). Experiment No.1 gives
the exponential-like distribution which can be reproduced
by the simulation with KA = 0.60 and KP = 0.20.
The observed coating mass distribution in the experiments
is anticipated to be described by the model parameters
KA and KP . From Figure 7(h), in experiments No.2 to
5, the higher amount of coating agent was fed into the
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Figure 7: (a) to (g) Comparisons between seed coating experimental results and simulation outputs for experiments No.1
to 7. Model conditions: (Kx,Ky,Kz) = (60, 10, 5), i.e. N = 3000, cf = 9000s−1, dt = 0.01s, P e

i,j,k = 1/6, t∗P = 0.5
and t∗F = 1; (i) Comparison between coating mass distributions of different amounts of coating agent; (h) Comparison
between coating mass distributions of different post-mixing times.

system so that the liquid was easily transferred between
the seeds, leading to a better coating distribution, described
by two close values of KA and KP . In experiment No.1,
using coating agent of 2.8 g leads to a poor liquid transfer
between the seeds as inadequate coating liquid on seed
surface makes it hard for other seeds to capture coating
from it, which is reflected by the large difference between
KA and KP . Estimating the model parameters KA and
KP with experiment operating conditions can characterise
the coating behaviour in the experiment. KA and KP

can be influenced by several factors in the coating system,
including seed surface texture, coating liquid density and
coating liquid viscosity. Investigating KA and KP by
varying these properties allows to understand their impacts
on the coating result.

In Figure 7(i), the results of experiments No.2, 6
and 7 are presented as distributions with different colours.
Experiments No.2, 6 and 7 applied the same amount of

coating agent but different post-mixing times. Experiments
No.2, 6 and 7 are designed to verify the steady state
that the seed coating system can achieve after a certain
period of time. As seen from the figure, as well as the
values of KA and KP , there is no big variation among
the samples, indicating that the seed coating distribution
does not significantly evolve with time any longer after
post-mixing time larger than 20 seconds. The actual
post-mixing time threshold, i.e. the minimum post-mixing
time required for system to reach steady state, can be even
smaller and its effect will be analysed more in details in the
future.

Experiments No.3, 4 and 5 applied very different
amount of coating agent but it is observed that these three
experiments present very similar coating result in terms of
the distribution pattern and the average coating mass m∗avr.
This phenomenon can be explained by two aspects. (1)
After discharging the coated seeds, the residual coating
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agent left in the coater in experiment No.5 was much more
than that observed in experiment No.1. This indicates
that there exists a maximum capability for seeds to keep
coating adsorbed on surface as it would be increasingly
hard for seed surface to receive excessive coating agent
when the surface has been gradually occupied. As
more coating agent fed into the system, the final coating
distribution would approach asymptotically to an upper
limit. The maximum capability of holding coating liquid
for seeds will be inserted in the model in a future
version to present stochastic simulation outputs with higher
precision. (2) Introducing nominal thickness parameters
t∗P and t∗F artificially is equivalent to assuming that the
real coating thickness is uniform in fully coated region
and this approximation may ignore the existence of the
potential multilayer coating on seed surface, leading to an
artificial upper bound of m∗avr which might be lower than
the real maximum capability. High-performance liquid
chromatography (HPLC) will be applied in the future to
precisely measure the coating amount on seed surface.

The promising agreement on the coating material
distribution between experimental results and stochastic
simulation outputs shows how this modelling approach is
applicable and the flexibility of the proposed modelling
approach. It is worth noting that the presented KA-KP

pairs in the results are not the only choice to give similar
distributions. In this work, the value of KA is chosen to
be around 0.5 which is convenient for us to compare the
influence of KA-KP differences on the results. According
to Equation (21), KA and KP influence the system
dynamics in the coating process. Taking samples at
different time points would facilitate estimating the actual
values of KA and KP . Rigorous parameter estimation
requires strategies for uncertain sampling in experiments
and optimisation with uncertainty in stochastic models, and
it will be the subject of a separate work.

4 Conclusion

A compartment stochastic model is developed in this
paper, aiming to simulate the particle collision-exchange
system. The implemented SSA allows to compute the
state evolution in the collision-exchange system with less
computational intensity.

The discrete Markov process associated with the
stochastic model is studied. The analytical results present
the average long-term state in the collision-exchange
system that is independent of model population, model
dimensionality and model initial condition. The

deterministic mean field analysis presents the average
evolution with respect to the material amount on each
single particle, computed based on all potential states of
a particle at the same time.

The application of the model to the investigation of
mass distribution in the seed coating process is promising
because the coating system can be identified and described
by the accessible model parameters. This work also shows
that this model can support identification of basic physics
of the collision-exchange process in the system.

Future work will aim to develop the model
considering dynamics, particle motion and simulation
efficiency, and to attempt global sensitivity analysis and
parameter estimation for the stochastic model. The former
will enable the model to predict the collision-exchange
system evolution with high accuracy, while the latter aims
to identify the impact of uncertainty on model outputs
and understand the model-based design of experiment for
stochastic models.
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Nomenclature
Alphabetical letters

cf Contact frequency (s−1)
E Exchange direction set
E(·) Analytical average or Expected value
Iall Compartment index set
K Total number of elements
Kx Number of compartments in x direction
Ky Number of compartments in y direction
Kz Number of compartments in z direction
KA Transfer coefficient for reference particle
KP Transfer coefficient for neighbour particle
mavr Average material quantity over particles
mi,j,k(t) Material quantity on the (i, j, k)-th particle at time t
m∗ Estimated coating mass on seed surface
m∗

avr Estimated average of coating mass over particles
N Number of particles
Ni,j,k Set of neighbours for the (i, j, k)-th particle
nF Number of pixels in fully coated region
nP Number of pixels in partially coated region
P e
i,j,k Collision propensity for the (i, j, k)-th particle
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R Number of valid non-diagonal neighbours
t∗F Nominal thickness parameter for fully coated region
t∗P Nominal thickness parameter for partially coated region
Ttotal Total simulation time (s)

Vectors and Matrices [dimension]

d(t) Distribution vector at time t [N ]
e Exchange direction [3]
elA Column vector
elP Column vector
H(t,0) Stochastic Markov chain from 0 to t [N ×N ]
M0 Initial material distribution [N ]
Pt Stochastic transition matrix at time t [N ×N ]
s(t) System state at time t [N ]

Greek letters

∆t Numerical computational time interval
σ(t) Standard deviation of material distribution at time t
σ̄ Numerical average of σ
σ∗ Coating mass standard deviation of sample seeds

Acronyms

CoV Coefficient of variation
DEM Discrete element method
DoE Design of experiments
RSM Response surface methodology
SSA Stochastic simulation algorithm
TTEP Travelling traders’ exchange process
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