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Abstract: There is much interest in anthropometric-derived head-related transfer functions (HRTFs) for simulating audio for
virtual-reality systems. Three-dimensional (3D) anthropometric measures can be measured directly from individuals, or indi-
rectly simulated from two-dimensional (2D) pinna images. The latter often requires additional pinna, head and/or torso mea-
sures. This study investigated accuracy with which 3D depth information can be obtained solely from 2D pinna images using
an unsupervised monocular-depth estimation neural-network model. Output was compared to depth information obtained
from corresponding magnetic resonance imaging (MRI) head scans (ground truth). Results show that 3D depth estimates
obtained from 2D pinna images corresponded closely with MRI head-scan depth values. VC 2021 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Head related transfer functions (HRTF) capture the temporal and spectral scattering of audio waves by the ears, head, and
torso of a listener as it travels from an external sound source to the ear canal. Since it is impractical to measure personal-
ised HRTFs for users of augmented reality/virtual reality (AR/VR) systems, generic HRTFs (measured using a manikin or
directly from individuals and averaged across a subpopulation) are often used. Generic HRTFs may provide sub-optimal
auditory localisation cues for the user, so alternative methods can be used to model/synthesise a close approximation to
personalised HRTFS. Such methods include using (a) frequency scaling (Middlebrooks and Green, 1992), (b) selection of
appropriate HRTFS from a database (Barumerli et al., 2018), and (c) a linear mapping from the principle component anal-
ysis (PCA) weights applied to users’ anthropometric parameters to PCA weights applied to the HRTF spectrum (Lee and
Kim, 2018; Meng et al., 2018). Some of these approaches may provide reasonable approximations for only a limited range
of spatial locations, require onerous anthropometric measures, or are too computationally demanding to be of routine and
widespread use.

There is currently great interest in using anthropometric-based estimates of HRTFs (Chun et al., 2017; Zhu
et al., 2017; Brinkmann et al., 2019; Islam and Tashev, 2020). HRTFs can be estimated based on deep neural networks
using direct measurements from the individual (pinna, head, torso, etc.) (Bilinski et al., 2014; He et al., 2015), which are
then combined with 2D images of the ear (Lee and Kim, 2018). A more parsimonious approach would be one in which
the requirement for direct anthropometric data from the individual is reduced such that a sole 2D image would suffice to
provide sufficient information for selection of the appropriate HRTF.

Depth maps can be obtained using monocular, binocular, or multiview vision. These methods describe the level
of independence in the control of the viewing device (or eye). Monocular refers to the situation where each viewing device
(or eye) is used separately, and binocular refers to the situation where both viewing devices are used together (Lauer et al.,
2011). For a variety of binocular and multi-view based methods, stereo vision technology is commonly used (Saxena et al.,
2008). Generally, stereo vision technology involves simultaneously taking photos of a subject from two angles. Epipolar
geometry is then used to find the corresponding pair of points on the photos of the subject, from which the disparity map
(which stores the corresponding pixel shift between two photos from different angles) is obtained (Zhang, 2018). Depth
values can then be obtained from the disparity map.
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Some earlier methods required semi-manual methods; user input was required to mark visual elements in the
foreground or background (Phan et al., 2011). Methods can also use a deep learning approach (requires training on pairs
of input and desired output images) such that the network learns to infer the output image from only the input image.
On the other hand, convolutional neural networks (CNN) are a common type of deep network that require only an input
and the ground truth image for training (Saxena et al., 2008). Generally, specialist equipment is required to acquire the
training data. This could be a depth camera or scanning laser which can capture ground truth simultaneously with an
aligned photograph. Examples of such databases are the KITTI dataset [compiled using a scanning laser distance sensor
mounted on a vehicle, alongside cameras creating images of outdoor environments such as roads, buildings, and trees
(Godard et al., 2017; Song and Kim, 2019)] and the “Make3D” dataset [consisting of 1000 outdoor scenes and 50 interior
views captured with a scanning laser and corresponding photograph (Mo et al., 2013)].

With regards to inferring HRTFs from 2D pinna images, in the first step a 2D input image can be obtained of
the user’s pinnae, (taken by a camera). In the second step the user has to input additional anthropometric data relating to
the pinnae through a graphical user interface (Zotkin et al., 2003). The input data is then combined with a low-frequency
“head-and-torso” model to derive the relevant HRTF.

The current project investigates the feasibility of bypassing the requirement for a user to input any additional
data by using an unsupervised monocular-depth estimation neural-network model to extract depth information from 2D
pinna images, to investigate whether a one-step approach may be sufficient. To assess sufficiency, the obtained depth infor-
mation is compared to the ground truth [i.e., depth information obtained from magnetic resonance imaging (MRI) head
scans associated with the pinna images].

2. Methods

2.1 Data

2D images of pinnae were obtained from the SADIE II database (SADIE, 2019) which provides a broad range of ears
under consistent light settings. This database was used as the 2D pinna images are also associated with the respective 3D
MRI head scans of the individuals; this allows us to perform a comparison of the depth information retrieved from the
2D images and the actual (ground truth) depth information provided by the MRI scans. The SADIE II database holds ear
images for twenty individuals, for both the left and right ear. The zip file per individual contains the 2D pinna images of
both ears (with black grid lines overlaid on the image), and the associated 3D head scans.

2.2 Image processing

In order to generate depth maps from the 2D images, unsupervised monocular depth estimation neural network models
were used (Godard et al., 2017). Godard et al. (2017) outlined the architecture of a fully convolutional model that does
not require any depth data, but is instead trained to synthesize depth as an intermediate, i.e., the neural network learns to
perform single image depth estimation in the absence of ground truth depth data. This is achieved within the model by
implementation of a novel training loss that enforces left-right depth consistency within the network. The training loss
module and the approach to use left images to produce disparities for both images (left and right) is described in Figs. 2
and 3 of Godard et al. (2017).

The models were trained for 50 epochs on images with a resolution of 512� 256 on a batch size of 8. The mod-
els generated the depth map needed to transform the 2D image of the pinna to a 3D representation, but it does so as a
colour map, where the colours change from blue to orange to bright yellow as the depth, from the plane of the view of
the image, decreases. This gives a visualisation of how well the algorithm has detected the change in depth across the
structures of the pinna, which allows for qualitative assessment of the results. The models provided by Godard et al.
(2017) were used on 20 pinna images provided by the SADIE II database in order to extract the depth estimates of the
pinna. Briefly, the images were pre-processed, after which a CNN model was applied to generate a colour depth map. The
2D pinna images were originally overlaid with black grid lines. First an image pre-processing program was written in
MATLAB based on the use of a median filter to process the image [threshold-based salt and pepper noise removal (Hereford
and Rhodes, 1988)], to reduce the effect of the pixels associated with the black lines. Figure 1 shows a pinna image before
and after algorithm application.

In this way the black grid lines overlying the pinna images of 36 individual ears (left and right pairs from the
SADIE II dataset) were removed. In order to further improve the quality of the generated depth maps from these images,
the brightness, contrast, and sharpness of the images were consistently adjusted. The optimum image parameters were:
brightness �10, contrast þ100, and sharpness 230 (Photoshop’s units of measurement).

2.3 model training and application

The depth estimation algorithm was applied to each processed image with each of the algorithm’s six different models,
which had been trained on different datasets. This was undertaken in order to compare the effectiveness of the different
models. Figures 2–4 shows three different pinna images and comparison of the processed pinna image and the resulting
depth map produced using the KITTI trained model. The CNN model was also run on all the images to generate all the
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colored depth images. The resultant depth image maps the colors ranging from yellow to orange through to purple to
black, in order of increasing depth distance. The points listed in the tables below are also shown marked in the corre-
sponding pinna images (corrected for resolution differences between the depth dataset and pinna image).

2.4 Depth maps extracted from the associated MRI scans

To compare the generated depth values from the pinna images to the ground truth, depth values also needed to be
obtained from the head scan data (in a compatible format). An OPENGL program was written in Cþþ that computes depth
in the fragment shader and maps it from 0 to 1 using the centre of the head model as the greatest depth (black). The ver-
tex shader was a standard projection, view, model transformation for the rendering, but a different variable is used so the
model is transformed into camera (eye) space and then the z co-ordinate is used to calculate the distance. Compared to
ray casting, this option is less computationally expensive. Once the head scan image was created, the raw values could be
written to csv file and the greyscale depth image produced. As there was no information about how far the pictured ears
were to the camera, we used the closest vertex of the ear as the zero-depth point.

2.5 Depth comparison between 2D image and MRI scan

For each 3D pinna depth image the numerical depth values per pixel could be compared to the numerical value of the
respective ground truth. For the latter, comparisons were made using an estimate centroid. Tables 1, 2, and 3 present the
depth data for the pinna image corresponding to the images in Figs. 2, 3, and 4 (with and without grid lines) after proc-
essing and the equivalent ground truth. The pixel points chosen for the tables were selected to show data from equivalent
positions per ear shape. The pixel points were chosen not randomly, but on similar areas of the ear to provide good com-
parisons. Generally, on inspection the image processing enhancements made an improvement to the accuracy of the esti-
mated depth image.

3. Results

A comparison of the pinna image depth estimated using the algorithm (as described above) and the ground truth (the
depth values estimated from the head scans), show that in general, there is a good correspondence between the depth val-
ues estimated from the 2D pinna images and the head scan depth values. Removal of the gridlines also made a substantial
difference as expected. For instance, analysing the results of image H6, the total absolute error between the depth values
obtained from the “with grid lines” image and the depth values obtained from the head scans: j11.49� 10.74j
þ j13.84� 10.88j þ j9.75� 11.24j þ j8.99� 10.70j þ j11.74� 10.74j þ j10.35� 11.09j ¼ 8.65 cm.

Fig. 2. A side by side comparison of one of the processed pinna images (H6) after applying the median filter algorithm and image enhance-
ment (left) and the resultant depth image (right).

Fig. 1. A side by side comparison of one of the original pinna images with grid lines (left) and a new image without grid lines (right) after
algorithm application.
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Fig. 3. Comparison layout as for Fig. 2 for pinna image H9.

Fig. 4. Comparison layout as for Fig. 2 for pinna image H20.

Table 1. Depth values for select pixel points for each step of the image processing of the H6 ear image from the SADIE II database. The bold val-
ues are the values that have the smallest absolute error to the ground truth value. Depth values are presented for images with gridlines, without
gridlines, and the processed image. Depth values were also derived from the head scans and are presented under the heading of “ground truth.”

Pixel point With grid (cm) Without grid (cm) Processed (cm) Ground truth (cm)

(267, 235) 11.49 10.61 11.57 10.74
(117, 47) 13.84 9.51 11.88 10.88
(67, 217) 9.75 12.69 11.51 11.24
(34, 183) 8.99 11.84 12.2 10.7
(301, 229) 11.74 11.52 11.83 10.74
(357, 242) 10.35 10.53 10.52 11.09

Table 2. As for Table 1, for pinna image H9.

Pixel point With grid (cm) Without grid (cm) Processed (cm) Ground truth (cm)

(77, 110) 26.4 10.7 11.24 11.37
(25, 45) 4.89 7.23 6.47 11.8
(384, 20) 7.5 11.23 11.12 11.33
(411, 230) 10.94 7.72 7.41 9.56
(18, 30) 5.09 7.76 7.01 11.84
(90, 75) 9.52 12.61 12.47 12.82

Table 3. As for Table 1, for pinna image H20.

Pixel point With grid (cm) Without grid (cm) Processed (cm) Ground truth (cm)

(254, 79) 7.71 8.72 11.16 10.74
(186, 68) 13.36 9.47 11.47 10.57
(140, 55) 12.03 11.76 11.53 10.74
(134, 113) 11.56 10.58 11.85 10.68
(213, 201) 14.15 10.25 10.35 10.68
(152, 54) 13.11 11.52 11.79 11.72
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Performing a similar calculation for the depth values obtained from the without grid lines image and the proc-
essed image gives 5.43 and 5.26 cm, respectively. For the latter estimations, this is a 37.2% and 39.1% reduction in absolute
error respectively. In addition, applying the image processing enhancements also had an impact on improving the quality
(a 3.1% error reduction) in this case.

Similarly, for H9, the absolute error between depth values obtained from the with grid lines image and head
scans is 33.47 cm, whereas the absolute error between the depth values obtained from the without grid lines image and
head scans is 15.2 cm which is a 54.6% reduction in error. The absolute error between depth values obtained from the
processed image and the head scans is 13 cm which is a 61.2% reduction in error compared to the grid line version and a
14.4% reduction in error compared to the processed image. In general, the absolute difference between the depth estimates
obtained from the 2D pinna images (after gridlines and processing) and the depth values obtained from the head scans
differed by very little: 0.88, 2.6, and 0.74 cm for H6, H9, and H20 respectively.

4. Discussion and conclusion

This study evaluated the extent to which depth data could be extracted from 2D pinna images (using an unsupervised
monocular-depth estimation neural-network model) and the degree of correspondence with the ground truth (depth values
obtained from the corresponding head scans).

The advantage of a method which can accurately predict depth from only 2D images of the pinna is that the
user does not need to provide additional anthropometric data. The formation and shape of the ear can actually very
noticeably be seen from the colour depth images, in particular regions of the outer pinna ridge and contour of the concha.
This demonstrates that the model performs relatively well in mapping and estimating the image depth values, including
finer pinna contours. However, there is also a lot of noise produced, as would be expected. This is most likely a result of
the large contrast between the hairline and/or hair colour, and the skin. Other approaches which could further improve
the mapping of voxel to pixel, in this particular application, are ones that utilize a fuzzy clustering approach [e.g., Zhang
et al. (2020)]. There are relatively few neural network model algorithms trained for close-up images (such as pinnae, as in
this study) to evaluate correspondence between extracted depth information and ground truth. However, there is one
example which also suggests good correspondence between estimated depth and ground truth: Nicodemou et al. (2018)
inferred depth maps from photographs of human hands trained with ground truth data captured with a corresponding
aligned Kinect sensor, and demonstrated close correspondence to the ground truth. An alternative approach may be to
look towards using models such as Godard et al. (2019) (which use a multiscale sampling method) or Johnston and
Carneiro (2020) (which uses discrete disparity prediction) to further reduce visual artefacts. The current approach used a
model architecture trained on the KITTI database. Further studies may adopt a more targeted approach, using a model
trained with a subsets of pinna images, or salient aspects of the input, such as to improve the subsequent analyses.

Other approaches for deriving HRTFS from images require extensive time for training and have not specifically
tested depth correspondence between input pinna image and inferred depth (albeit indirectly from derived HRTF or
ground-truth depth information). For instance, a neural network [CNN and/or deep neural network (DNN)] can be
trained on data from the CIPIC database to derive HRTFs (Hu et al., 2008; Lee and Kim, 2018). However, such networks
require a considerable database for training purposes and it remains unknown to what extent the derived HRTF would
have differed from the individual’s measured HRTF. Furthermore, recent studies suggest that some areas of the pinna may
have more of an effect on the HRTF, such as the concha or areas close to the triangular fossa (Stitt and Katz, 2021); sub-
sequent studies may look towards focussing on depth extraction from these areas.

In order to improve the quality of the colour images that a model produces, the input images should resemble
the input the model expects to receive. In the current study, the ambient lighting of the input images, as well as content
differed from the ones that the KITTI model was trained on (the KITTI model was trained using car traffic images).
Additionally, for the model to be effective, especially a neural network model, it needs a large training dataset for training.
One way to possibly overcome this issue is to have the images produced on a large scale. This could be achieved by an ear
image generating neural network model, similar to the image generating model DRAW (Gregor et al., 2015). This kind of
model would allow a large variety of ear images to be produced relatively quickly. Of course, it would be simpler to apply
the model to images without gridlines, but gridlines are often applied in order to match salient pinna structures across
pinnae and to the MRI head scans. In addition, the issue of extracting the pixels relevant to the ear in the colour depth
image could also be addressed by using a machine vision library like OpenCV (Boyko et al., 2018) to identify those pixels.
In conclusion, the CNN model described in Godard et al. (2017) can be used to derive 3D depth information from a 2D
photo of the pinna, which corresponds well with the ground truth depth data obtained directly from the head scans of the
same individuals. Such a method would allow for a speeded correlation and selection of the appropriate HRTF from a
pinna photo without the need for further additional anthropometric data to be provided.
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