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Dense prediction oflabel noise for learning building extraction from

aerial drone imagery

Label noise is a commonly encountered problem in learning building extraction
tasks; its presence can reduce performance and increase learning complexity.
This is especially true for cases where high resolution aerial drone imagery is
used, as the labelsay not perfectly correspond/align with the actual objects in

the imageryln general machine learning and computer vision context, labels

refer to the associated class of datad in remotsensingbasedouilding

extraction refer to pixelevel classedDense label noise in building extraction

tasks has rarely been formalized and assessed. We formulate a taxonomy of label
noise models for building extraction tasks, which incorporates bothpizel

and dense models. While learning dense prediction ualdel hoise, the

differences between the ground truth clean label and observed noisy label can be
encoded by error matrices indicating locations and type of noisypixel

labels. In this work, we explicitly learn to approximate error matrices for

improving building extraction performance; essentially, learning dense prediction
of label noise as a subtask of a larger building extraction task. We propose two
new model frameworks for learning building extraction under denseveréd

label noise, and congaently two new network architectures, which approximate
the error matrices as intermediate predictions. The first model learns the general
error matrix as an intermediate step and the second model learns the false positive
and false negative error matricendependently, as intermediate steps.
Approximating intermediate error matrices can generate label noise saliency
maps, for identifying labels having higher chances of beingabisled. We have

used ultrahigh-resolution aerial images, noisy observdakla from

OpensStreetMap, and clean labels obtained after careful annotation by the authors.
When compared to the baseline model trained and tested using clean labels, our
intermediate false positivialse negative error matrix model provides
IntersectiorOver-Union gain of 2.74% and Fdcore gain of 1.75% on the
independent test set. Furthermore, our proposed models provide much higher
recall than currently used deep learning models for building extraction, while
providing comparable precision. We show timé¢rmediate false positivialse

negative error matrix approximation can improve performance under label noise.
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remote sensing

Introduction

Building extraction involvesearning mappings between remotely sensed aerial or
satellite images and building labels from freely available vector data. The most
commonly used source of labels, OpenStreetMap, though accurate to a large degree,
contain various types of label noise (Mrand Hinton, 2012; Ahmed et al., 2020; Zhang
et al., 2020). Pixelevel predictions of building/nehuilding labels are performed,

which is a binary dense prediction task. Label noise occurs when the observed label
does not agree with the true label (Fr¢and Verleysen, 2013; Frénay and Kaban,
2014) (Fig. 1). Presence of label noise in training data can reduce performance, while
noise in testing data can lead to underestimation of model performance (Ahmed et al.,
2020). However, most of the existing seslon deep learniAgased building extraction

do not acknowledge the presence of label noise. In general, complexity of the learning
task is also increased under label noise (Garcia et al., 2015; Pelletier et al., 2017).
Research on robust method of binlglextraction considering label noise requires
formalization of the sources, processes and effects of noise on large scale freely
available labels. Currently, the types of dense label noise processes have not been
formalized in a comprehensively and ingltely in research. When building polygons

are rasterized, the buildings are represented as superpixels in the prepared dense binary
labels. Individual building polygon i.e. superpixel based errors are commonly

considered as sources of noisy labels.
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Coming from traditional remote sensing terminology, the most common are
registration errors, where building polygons are present but not aligned, annotated or
registered properly, and omission errors where buildings are left unlabeled (Mnih and
Hinton, 2012,Ahmed et al., 2020; Zhang et al., 2020). However, alternative
nomenclature has been proposed as well. ®iaséd nomenclature can be used to
express label noise processes in multiple scales, and therefore provides a more
generalized viewpoint. Even supixgl-based label noise processes are modeled using a
composite of pixebased processes (Mnih and Hinton, 2012; Zhang et al., 2020). This
approach assumes that each pixel undergoing label noise is independent of and identical
to label noise processes iet (even neighboring) pixels. This scenario is analogous to
the use of label noise robust phteised building extraction methods such as logistic
regression (Maas et al., 2016), random forests (Maas et al., 2019), compared to the use
of deep learningpased label noise robust building extraction methods such as fully
convolutional networks and-Nets (Zhang et al., 2020). The primary difference
between nordeep learning and deep learningsed building extraction is that the
former usually uses featuresiin only the pixel being classified, whereas the latter
leverages context to predict dense labels for the entire image afFeatare
representation is an important part of deep learning based remote sensing image
processing (Jing et al., 2021; He et 2021).Modeling of superpixel based label noise
process has been conducted for the general computer vision task of semantic
segmentation (Lu et al., 2016), but has largely been left unexplored for remote sensing
applications. If building extraction can bedeled using a dense prediction approach,
we argue that pixdbased label noise robustness approaches can also be extended to

densepredictionbasedabel noise robustness approaches.
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Figure 1. Some examples of large image tiles from our datasehdge (b) True clean
dense labels (c) Observed dense labels from OpenStreetMap with real world noise

There are various aspects of viewing the label noise generation process.
Labeling tools used by human annotators also play a role in determining thedikeel
processes for dense prediction tasks (Frank et al., 2017). Simulated noise is common in
label noise robust image classification scenarios (Ghosh et al., 2017; Rolnick et al.,
2017; Patrini et al., 2017) and can be extended to geedectionbasedouilding
extraction as well, however, we have access to data withwrld dense label noise. It
is also important to acknowledge the limitations of simulated noise when compared to
realworld noise (Jiang et al., 2020). Label noise processes can\pbmadategorized
by their randomness (Frénay, B., & Verleysen, 2013). For example, if certain building

superpixels are being omitted in the observed labels, the question arises, are these



111 buildings being selected totally at random, or are certain tygasildfngs, perhaps

112 newly constructed buildings, being omitted. Randomness characterizes label noise
113 processes. ldentifying this randomness is crucial for modeling label noise robust

114 learning systems. Randomness is unique to each dataset and is estimated pr

115 modeling solutions.

116

117 We have quantified the effects of label noise on evaluation regimes for this

118 dataset and found that deep neural networks for semantic segmentation are intrinsically
119 robust to real world random label noise, specially aided & dagmentation and

120 regularization aretroduced/Ahmed et al., 2020). However, robustness to label noise
121 is achieved as a byroduct of overfittingreduction schemes, and therefore the

122 modelling of label noise is implicit. In this work, we explicitly mbdense label noise

123 as a subtask of building extraction, and show improved performance on independent test
124  set.

125

126 The primary objective of this study is to analyze label noise robustness of deep
127 semantic segmentation networks using our proposed evaluegione. Stat®f-the-art

128 methods for deep learniflzased building extraction from remotely sensed imagery

129 usually perform model evaluation using noisy labels as ground truth, we test the effects
130 of performing model evaluation against noisy labels and ¢tdmais.Our contributions

131 are as followsWe outline approaches for modeling dense label ramsiéormalize a

132 multi-view and multiscale taxonomy of label nois&/e propose two new model

133 frameworks for building extractioinom aerial drone imagemynderdense label noise,

134 and consequently two new network architectu@s. network architectures

135 approximate the dense label noise characterizing error matrices as an intermediate step
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to improve performancépproximating intermediate error matrices can gateelabel
noise saliency/heat mapA/le have made owlataset andhethodimplementations
publicly available

(https://drive.google.com/uc?id=1UUGeewOaNzv 8KMGXOgEzR8 OQKP)JPsr8

(https://github.com/nahiaahmed/dens&beklnoise.

Dense label noise models

Preliminaries and definitions

Formulations on label noise in nolense approaches are well defined and studied
(Frénay, B., & Verleysen, 2013; Frénay and Kaban, 2014). Label noise processes are
defined based on the nature of the randomness of the process in question. The three

types of noisy labels are

(1) Noisy completely at random (NCAR) labels, where labeldlgmged completely
independent of features and class label,

(2) Noisy at random (NAR) labels, where labels are flipped independent of features
but dependent on class label,

(3) Noisy not at random (NNAR) labels, where labels are flipped depending on

features and class label.

These label noise models are equally highly apt at expressing label noise
processes for classification on tabular data and image data. In image classjfezath
image is assigned a single label; though the feature is more complex, the target is still a
single label and therefore the ndanse label noise models are sufficient in describing

the noise processes. However, for dense prediction, tasks #temaind process
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https://github.com/nahian-ahmed/dense-label-noise
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models for label noise need extensidre have formulated label noise models for our
image segmentation task by extending the label noise models presertéddy, B.,

& Verleysen,(2013 and design according to pixefse and dense depdencies. Dense
label noise models can represent complexlim@ar and fullyconnected statistical
dependencies between the image tensors and label tdrigo&sshows the conceptual
differences between the label generation process for the genesdladéion, image

classification, and dense prediction.

L/ L4
%*m*@ > fial) > (T > fial) >
@ Label Label
Features
tul Features Denst
(image) (image) label
General classification Image classification Dense prediction

Figure 2. Differenceamong general classification, image classification and dense
prediction

Given an observed noisy dense label Tip and its corresponding true
clean dense labéiv T , Where height and width of image tilegis and¢
respectively. Indexing by “@nd indexing by Q- represents the pixel ih
row and'@h column of a label tileil ;is considered to be noisy4#; L. We
extend the binary variable random in Frénay and Verleysen (2013) indicating presence
of label noise, to dense prediction settings. We definertioe matrix N Tip
as the matrix indicatinggsitions of pixels with label noise. Thug; p whend
Liandpy mifdy Ly For binary labels, if the current observed pixel Idbgl
and its labeling error presengg; is known, the true labé} ; can directly le computed

by flipping the observed label when the pixel label in question is deemed to be noisy.
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Each elemenjr; is a binary random variable indicatinglif; is to be noisedr not

The relationshp amongl, L and [ in matrix form can be defined as

Eq. (1) and shows the different cases that may arise from combinatibnsasfd-L ;.

(1)

All operations in Eq. (1) are elementse matrix operations. Table 1 confirms

When the true label and observed label are the same (row no. 1 and 2 in Tiablel 1),

noise is absent; when the true label and observed label are not equal (row no. 3 and 4 in

Table 1), label noise is present. Given knowledge on the observed noisy label and error

matrix, the clean label can directly be computed using Eq. (1).

Table 1. The four possible cases arising from combinatior pfand-LL

No Case Labelnoise | Ly | Ly | rg | Fe | Fr | 4L F
1 True negative observed pixel labg No 0 0 0 0 0 0
2 True positive observed pixel labe No 1 1 0 0 0 1
3 False positive observed pixel lab¢ Yes 0 1 1 0 1 0
4 False negative observed pixel lah Yes 1 0 0 1 1 1

The error matrix is the absolute difference between the true and observed labels

(2)
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and the error matrix denotirfglse negativebserved bgr ™
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se logical
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Fig. 3 shows an example of how label noise arises from disagreements between

the true label and observed label, displaying that a few positive pixel labels were missed

and a few true negative pixel labels were labeled as positives.

Fidelity of observed noisy labels

| Building
B ralse negative
True positive

T
Error matrix

Il Non-building
[] False positive
[ ] True negative

[ ] correctly labeled [l Noisy pixel label

10



208 Figure 3. Examplef how observed noisy dense labels differ from their corresponding
209 true dense labels. A 16 x 16 pixel image is used for demonstration. The error@satrix
210 shown in the bottom right subfigure, indicating positions of noisy pixel labels.

211

212 The label noise press involves theorruptionof clean labels (Fig. 4). In

213 general learning schemes for building extraction, it is assumed that the observed labels
214 are clean and are directly used for learning/evaluation (Fig. 4(a)). However,

215 acknowledgement of label noiassumes the intermediary distribution of clean labels

216 over the images to be the clean labels and models the label noise process as the

217 distribution of observed noisy labels over the true clean labels (Fig, wiith means

218 that when label noise is presetine ground truth clean labels are unobserved

219
220
X > P(Y|X) > Y
(@)
X ¥ P(YIX) Y > P(Y]Y) > Y
221 (b)

222 Figure 4. Observed label generation processes (a) Modeled withoufneeisabels (b)

223 Modeled through noistree labels

224

225 Having defined the important concepts {ed and i for modeling dense labeoise

226 processes, we move on to define the statistical dependencies for learning dense prediction

227 (Fig. 5). There are two main models

11
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0 Pixelwise modelsperform pixel classification using features from only the

corresponding input pixels (Fig. 5). Therefarkanging tile sizes does not have
significant effects if the same pixels are provided for training and testing
because only pixelise mappings arearned; features from neighboring pixels
are not considered. Without context, the rooftop of a building and a road may
appear identical to the model. However, learning pimee mapping is common
in nondeep learning approaches to building extractione@ithe input tensor

1 and its dependent output tenspr, the pixel wise models learn,
0 4 rel s @)
Dense modelgenerates labels for pixels using features from all pixels of the

input tensor (Fig. 5). The model estimates eachys| and then uses the

product chain rule to leaih 4| si|

04 9 0 9l rsi ()

As Fig. 5 shars, we represent fully connected dense mappings using a red full

red arrow with continuous line and pixel wise mappings using a bluaiiali with

dotted line.

12
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Pixel-wise model Dense model

Statistical dependency

Shortened symbology

Figure 5. Shorteed symbology of statistical dependencies considered in pixel wise

models and dense models. In the piwede model, eaclﬁ i IS only dependent oﬂu .
In the dense model, eaglhy;, is dependent on the the entire madfixindicating fuly

connectedness.

Taxonomy of dense label noise models

The three types of label noise in Frénay and Verleysen (2013) are categorized according
to randomness. We refer to this approach as taxonomy characterized by randomness.
However, in the context of dse prediction, structure (spatial information) in dense

labels also plays a role in label noise processes. We define the taxonomy of dense label
noise models. Given the two types of mapping models @ansd and dense) and the

three types of stochasticitdefined label noise processes (NCAR, NAR and NNAR),

there are six possible models (Fig. 6).

13
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Figure 6. Statistical dependencies of different types of pixel based and denswisdel

models. The dependency betw@&anddare not shown fobrevity.

(1) Pixelwise NCAR modeNCAR models are class independent, therefore the
only noise parameters for a pixglse NCAR model would be th@obability of error
n 0Ly L: . Itisimportant to note that is constant for all pixeJsand
therefore NCAR models cannot model namiform label noise. Allf ; would have the
same valuebecause the probability of a pixel being yasconstant and not dependent
on any variablesThe error matrixis completely independent (pixelise NCAR
model in Fig. 6). For binary classification (which is our case for the-pnsd models)

havingr]  pZ¢ would render the labels useless and inadequate to learn from (Angluin

14
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and Laird, 1988). Furthermore, since NCAR models are class indepersyentetric

noise cannot be modeled as well. NCAR models assume that labels of all classes have
eqgual chances of being observed as noisy labels. In real world settings, this is rarely the
case. For example building extraction tasks, the positive clasgisch more prone to

label noise. Furthermore, the positive class is also the minority class in most imbalanced

building extraction datasets.

(2) Pixelwise NAR modeNAR models are able to model asymmetric and-non
uniform label noise processes. Eggh is dependent on eaéh;,, which in turn affects
eachll; (pixel-wise NCAR model irFig. 6). The probability of a specific label being
observed as another label is modelled using the transition matrix (Lawrence and
Scholkopf, 2001; Pérez et,a2007). We define thigansition matrixfor noisy dense

binary labels as

-
= xi
-
= xi

O I
0Ly mly nm 0ds mhy o ©)
0Ly psty m 0Ly pshyp o

The conditional probabilities in Eqg. (6) can be estimated from the observed and
corresponding clean labels. It is important to note that, the transition matrix is the same
for all L (and hence for all ;). For uniform noise in dense binary lahehe

transition matrix becomes

15
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s P i (7)

(3) Pixelwise NNAR modeln the case of NNAR models, the error matgiis
dependent on the features as well (pixede NNAR model in Fig. 6). The observed
pixel label ; is dependent o, andly; if Fr  p, Ly is flipped to getl ,
otherwisel L. The probability of error is a furioh of the pixelwise feature

and pixelwise true label,

n =pfly 0 Fr pskEr oy @ (8)

(4) Dense NCAR modédh the dense NCAR model, evely; is affected by the
entire error matrixg, and not jusir ; (which isthe case for the pixatise NCAR

model). Spatial information about label noise in terms of context (as opposed to pixel

based information) can be modeled. Evgry need not be constant; however, they are

still completely independent (of each othed & any other random variable) and thus

completely random (dense NCAR model in Fig. 4).

(5) Dense NAR modeThe dense NAR model allows modeling asymmetric
dense label noise, which is not possible using the dense NCAR model. Unlike the pixel

wise NAR moe!l, the transition matrix for eachy, can be distinct and independent of

each other. The transition matrix 1, in a dense NAR model can be defined as

16
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The error matrixis directly dependent on the true dense ldblense NAR

model in Fig. 6), but independent of the dense feathres

(6) Dense NNAR modedin the dense NNAR model all pixels from the image
affect the probabilities of label noisedrrtain observed pixels (dense NNAR model in
Fig. 6). Every[y is affected by the entire image tenggrand event ;, is affected by
the entire error matrix:. The error matrix can be estimated based on the observed dense
labell and dense feare tensoe-. We essentially model the conditional distribution of
the error matrixr, given the feature tenserand the observed dense laBdEq. (10)).

This estimated error matrix can then be used for generating the true labels using Eq. (1).

0 WlLF,J_- 0 fﬁ@ll-ﬁ'l—' (20)

Materials and methods

Data

The dataset consists of 258 large 512x512 -hligh-resolution aerial image tiles over

the Kutupalong mega camp collected by the United Nations International Organization
for Migration on September 17, 2018. Kutupalong is the largest of the camps,
comprised of several subamps, situated in the sowstern border region of

Bangladesh which acted as the corridor for the Rohingya refugees migrating from

17
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Myanmar. For our case, ¢ U p.dhe observed noisy labels are collected from
OpenStreetMap. The tewclean labels are obtained by relabeling performed by the
authors. The dataset is randomly split in half for denoting training and testing data.
Images have three channels/baéddfed, Green and Blu@ with a spatial resolution

of 10 cm. These images hawery high data quality i.e. without cloud or shadow cover
being collected by low flying unmanned aerial vehicles (UAVs) and capture fine
grained details of the physical environments where the buildings are located. The
general error matrices are computesihg Eq. (2), whereas the FP and FN error
matrices are computed without taking the absolute value, rather using the signed/un
signedness of the difference matrix. Our dataset is relatively smaller than most
commonly used datasets for building extractisuch as Massachusetts, Potsdam and
Vaihingen datasets), this is because we have hadabegall of our training and test
data by hand for obtaining the naoifsee true clean labels, which is very time
consuming. Moreover, datasets for semantic segri@maense prediction with the
corresponding observed labels (with realrld label noise) and counterpart clean labels
are virtually norexistent. Our dataset is unique in that aspect, since, having access to
the observed noisy labels and clean labetsusial for obtaining ground truth error
matrices (Eq. (1)). It is important to note that the error matrices are only required for
pretraining the dense label noise prediction models, during testing/evaluation the

models directly output building maps carted by error matrices.

Model frameworks

The true clean dense label is solely dependent on the feature tensor in all six noise
models (caption of Fig. 6). The features (from satellite/aerial images), used for
approximating true labels, can be compared to the observed noisy label to obtain the

error matrix; the features have an important role in determining the observed label.

18
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Therefore, the dense NNAR model is most suitable for expressing commonly observed
registration errors. Currently, deep learning is the sihthe-art system for automated
building extraction (Vakalopoulou et al., 2015; Huang et al., 2016; Chen et al., 2017;
Yuan, 2017; Yang et al., 2018; Ji et al., 2018; Xu et al., 2018; Shrestha and Vanneschi,
2018; Boonpook et al., 2021; Sun et al., 2021). Fig 7(a) and 7(b) show thdlgenera
used learning systems for deep learrAdaged building extraction i.e. with clean labels
(Fig. 7(a)) and with noisy labels (Fig. 7(b)). We propose two new models for automated
building extraction, and consequently, two novel network architecturese wher

matrices are approximated as an intermediate step (Fig 7(c) and Fig. 7(d)). As discussed
later, we draw from the dense NNAR modeimndellingour learning frameworkd he
formulated dense noise models ultimately determine the architecture efutta n

networks. The base network in Fig. 7(a) represents the statistical dependency between
the feature and label tensors in the dense NNAR model (Fig. 6). Similarly, the error
matrix network in Fig. 7(a) represents the statistical dependency betweeattire f

and error matrix tensors in the dense NNAR model (FigM@) elaborate on the model

frameworks, network architectures, learning and evaluation approaches.

A A ~
Training X—P{ Network —» Y —»/ Tnir }-—Y Training X —> Network }—» Y—P{ Tn‘: —Y
A A
Testing X—J‘ Network —> Y Testing X —> Network }—» Y
() (b)
A
—» Base Y —> BCE —Y
...... K
| Fi £+ BCE +
e = Pretraining X —> ':;’gr“k' —Er— s E
netorc| > Y >| toss [ Y L n
Pretraining X = A = L, e error —» - BCE E-
rror . C network st
network ’E ® loss E
A
> Base Y —
R twork |
Base ,
—>Y | - A A BCE
Frararan x— network )/> | BCE [ Y Transfer X__>‘ FP error E+ __,m;yd“ﬁ b [—Y
learning A cleaned | 055 | learnin g network
“ 9 Error 5 !
network E fa
Ly FNerror —» =
A A
Reoorkt|— Y > Base >y
2 s 1 | [7] newor K |
Testing X = A Y aneii - ” A
rror _— Cleaning
network E Testing X%AT Ea ’—'E"‘ *’Ym’mm
A
Lyl FN —>E- -

network

(c) (d)
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Figure 7. Training and testing approaches (a) With clean labetstrol, CL model (b)
With noisy labels NL model (c) With intermediate error matrix approximattdrEM
model (d) With intermediate FP and FN error matrices approximatiéiPFN-EM

model; BCE- binary cross entropy; FFfalse positive, FN false negative

Intermediate erromatrix (FEM) model

The first proposed intermediate error matrbE) model approximates error matrices
as an intermediate step of approximating building/noitding predictions. The noisy
observed labels are learned by the base network in Fig. ficxamated as the mean

of the distribution in Eq. (11). The noisy observed labels are learned by the error
network in Fig. 7(c) approximated as the mean of the distribution in Eq. (12). Finally,
the outputs from the error matrix (EM) model and the obsdalal model are used
together by the cleaning network in Fig. 7(c) to learn noise free label approximation in
Eq. (13). Viewing the model framework from an d@neend fashion in terms of testing

indicates (Testing in Fig. 7(c)) in Eq. (14).

Ca
=
|_

CA
=

o4

(11)

0 et 0 Frst (12)
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C

Intermediate FP and FN error matrix-BPFN-EM) model

The second proposed intermediate FP and FN error matfRRN-EM) model
approximates the FP and FN error matrices separately as an intermediate step of
approximating building/nobuilding predictions. The noisy observed labels are learned
by the base nefork in Fig. 7(d) approximated as the mean of the distribution in Eq.
(11). The FP (false positive) error matrix is learned by the FP error network in Fig. 7(d)
approximated as the mean of the distribution in Eqg. (15). The FN (false negative) error
matrixis learned by the FNM error network in Fig. 7(d) approximated as the mean of
the distribution in Eg. (16). Finally, the outputs from the FP and FN error matrix
models, and the observed label model are used together by the cleaning network in Fig.
7(d) to karn noise free label approximation in Eq. (17). We refer to the FP error matrix
model as the FHEM model and the FN error matrix model as the B model.

Viewing the model framework from an etatend fashion in terms of testing indicates

(Testing in Fig 7(d)) in EqQ. (18).

(15)
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Networkarchitectures

Each intermediate network has four downsampling blocks and four upsampling blocks.
We use vanilla tNets with approximately 0.5 million parameters for intermediate
learning steps. The-Met/autoencoder architecture is common for buildingaexion

tasks (Wang et al., 2020; Guo et al., 2020). The use ofrgsgpconcatenation of

models has been employed for building extraction (Shao et al., 2020). Each
downsampling block has two convolutional layers punctuated by a single dropout layer,
whichis then downsampled to half the output row and column size using max pooling.
Each upsampling block also has two convolutional layers punctuated by a single
dropout layer, which is then upsampled to double the output row and column size using
interpolation. We use the binary cross entropy loss function as it is commonly used for
most binary building extraction tasks (Ahmed et al., 2020). ForEiM model (Fig.

8(a)) the outputs of the base network and error network are concatenated and fed to the
cleanirg network. For the-FPFNEM network the outputs of the base network, FP

error matrix network and FN error matrix network are all fed into the cleaning network.

Please note that intermediate predictions of observed labels and error matrices (general,
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FP am FN) are in the form of soft pixel level labels i.e. they are not converted to hard
labels based on threshold values. TV model andHFPFNEM models have
approximately 1.5 million and 2 million parameters respectively. S1 details the network
archite¢ure for NL, CL, EM, FPEM and FNEM models, Fig. S2 and Fig. S3 in
supplementary material contains the detailed network architectures eEheuhd }

FPFN-EM model respectively.
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Figure 8. Proposedetwork architectures for building extraction under label noise (a) |

EM model (b) {FPFN-EM model

Learning

The FEM model and4FPFN-EM model are trained in two steps.
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1 Step 1- Pre-training: For learning the parameters of the base and error
networks. Indvidual auteencoders with skip connections are trained. For-the |
EM model, the base network is trained using the images features antt as
targets, the error network is trained using the imdgas features ang as
targets. For the FPFNEM model, the base network is also trained using the
imagest as features andt as targets, the FP error network is trained using the
imagesE as features ang as targets, and the FN error network is trained

using the images as features ang as targts.

1 Step 2 Transfer learningAfter the base networks and error networks (general
for I-EM; FP and FN for-FPFNEM) are trained, their outputs are concatenated
and fed into the cleaning networks. In order to train the cleaning network, the
layers inthe base and error networks are frozen i.e. they are set-aiamable.

In this second step of training, the entire network is trained in atoesrtd

fashion against clean labels.

The baseline CL model and NL model both have approximately 0.5 nplicameters.

The FEM model and4FPFNEM models have approximately 1.5 million and 1.5

million parameters respectively. This larger number of parameters are due to the error
matrix networks and the cleaning networks used in-ték! Imodel and the-FPFN-EM
models. The general error matrix saodel in the {EM model, and each of the false
positive error matrix model and the false negative error matrix models all have
approximately 0.5 million parameters. The time complexity of t&Imodel and-l
FPFNEM model are also increased proportional to the increase of number of

parameters with respect to the CL and NL models. The total time needed for training the
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submodels of the-EM model is triple that of the CL or NL models, and the total time

needed for triaing the FFNFN-EM models is quadruple that of the CL or NL models.

Method comparison

In order to assess the qualitative and quantitative advantages/disadvantages of our two
proposed models, we also compare against generally used model frameworks for
autamated building extraction. We compare four different deemingbasedouilding

segmentation models,

(1) Noisy label NL) model(Ahmed et al., 2020)Dense building extraction with
noisy labels.

(2) Clean label CL) model(Ahmed et al., 2020Dense building exaction with
clean labels (control).

(3) I-EM model The first proposed model describedobve

(4) I-FPEN-EM model: The second proposed model descrédizave

Other than the CL and NL models in Ahmed et al., (2020), no other study
presents dataset/methods fonske prediction of label noise using clean and noisy labels
with real world noiseThe threshold value determines the boundary value and
consequently the binary class label of each pixel. We vary the threshold for each model
with low (0.25), medium (0.5) ahhigh (0.75) values to convert the soft labels (between

0 and 1 inclusive) to hard labels (0 or 1).

Performance evaluation metrics

We calculate the total number of true positives (TP), true negatives (TN), false positive

(FP) and false negative (FN) pretibns on the approximately 33 million pixels of
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testing data. Concurring to most building extraction scenarios, our dataset is also quite
imbalanced, being negative heavy. Therefore, we calculate the precision (Eq. (19),

recall (Eq. (20)), Fiscore (Eq.Z1) and IntersectienverUnion (oU) (Eg. (22)).
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Results and discussion

Quantitativeevaluation of performance

The CL model provides the control/baseline against which we compare our two
proposed models since it represents the ideal scenario when the investigator has access
to both images and clean labels. G&HRAFN-EM model at 0.5 mediurtreshold (row

no. 11 in Tabl&) has the highesoU score (0.78514), which provides a gain of 2.74%

over the traditional CL model trained on clean labels (0.75768) and a gain of 25.65%
over the observed noisy labels wittU score of 0.52857. Similarly, oWHPFN-EM

model at 0.5 threshold has the highebtscore (0.87964), which provides a gain of
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494  1.75% over the traditional model trained on clean labels with estéiEe of 0.86214,

495 and gain of 18.8% over the observed noisy labels with astéte of 0.69159.

496 Compared to the idealistic CL model, otFPFN-EM model has a better Fscore and

497 loU score for high threshold value (0.75) as well, and has comparable/nearly identical
498 performance for low threshold value (0.25). At a threshold value of 0.75RREN

499 EM model (row no. 12 in Tabl®) has an F&coreof 0.86009 which is 3.45% higher

500 than the Fiscore of the CL model (0.8255) at a threshold value of 0.75.-FR&N

501 EM model at a threshold value of 0.75, achievekbaihscore of 0.75453, providing a

502 gain of 5.16% over the CL model with BylJ score 0f0.70285, at a threshold value of
503 0.75. Our {FPFN-EM model provides better performance over traditional methods, for
504 the general threshold of 0.5 and the high threshold of 0.75.

505

506 The FEM has slightly poorer/comparable performance to the CL model. This
507 indicates the importance of differentiating FP and FN error matrices as features, instead
508 of approximating an intermediate general error matrix, since that is the primary

509 conceptual difference between thREM model and4PFNEM model. A lower

510 threshold meanhigher recall and lower precision. A higher threshold means higher
511 precision and lower recall. The threshold value determines the precision recatiffrade
512 However, both the-EM and FFPFN-EM models have much higher recall and slightly
513 lower precisiorfor corresponding threshold values when compared to the CL model. In
514  our case of highly imbalanced data, higher recall is preferred over higher precision.
515

516 Table2. Performance of the four compared models for building extraction under label

517 noise and th&delity of observed labels

No. Model Threshold | Precision Recall F1-score loU
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518

519

520

521

522

523

524

525

526

527

1 0.25 0.79584 | 0.82862 0.8119 0.68336
2 NL 0.50 0.91337 | 0.56184 | 0.69572 | 0.53342
3 0.75 0.98292 0.0948 0.17291 | 0.09464
4 0.25 0.79586 | 0.91111 | 0.84959 | 0.73851
5 CL 0.50 0.88502 | 0.84041 | 0.86214 | 0.75768
6 0.75 0.93973 | 0.73603 0.8255 0.70285
7 0.25 0.74541 | 0.93536 | 0.82965 | 0.70889
8 I-EM 0.50 0.84473 | 0.85928 | 0.85194 | 0.74207
9 0.75 0.89968 | 0.76947 0.8295 0.70867
10 0.25 0.76109 | 0.94634 | 0.84366 0.7296
11 |-FPFN-EM 0.50 0.86551 | 0.89424 | 0.87964 | 0.78514
12 0.75 0.92819 | 0.80131 | 0.86009 | 0.75453
13 OBSERVED - 0.82165 | 0.59708 | 0.69159 | 0.52857

Separated error matrices in the form of FP error matrix and FN error matrix is
crucial to surpassing the baseline CL model performance, assdimhodel has
significantly poorer quantitative performance compared to-#f@AN-EM model.
Comparing the-EM model and the-FPFN-EM model performances at the three
threshold values, theHPFN-EM model provides an F4core increase of 1.4%

(0.84366 compared to 0.82965) dod score increase of 2.071% (0.7296 compared to
0.70889) at a threshold value of 0.25;9€bre increase of 2.77% (0.87964 compared to
0.85194) andioU score increase of 4.307% (0.78514 compared to 0.74207) at a

threshold value of 0.5 and fstore increase of 3.059% (0.86009 compared to 0.8295)
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andloU score increase of 4.586% (0.75453 comgaoe0.70867) at a threshold value

of 0.75.

The traditional model trained against noisy labels (NL model), quite obviously
has the poorest performance of the four tested models (row3im Table2). At high
threshold values (0.75) the NL model (row 8an Table2) predictions become
practically useless, yielding an{store of 0.17291 anldU score of 0.09464, whereas
the CL, FEM and FFPFNEM model have much better performance at a high threshold
value of 0.75. The fidelity of noisy labels is abealuated against the true clean labels
(row no. 13 in Tabl®). Though the NL model has the poorest performance among four
tested models, predictions from the NL model have higher fidelity than the observed
labels with real world noise. This is commonlyserved for building extraction under

realworld noisy conditions (Ahmed et al., 2020).

Qualitative evaluation

From a qualitative viewpoint, the predictions from the four models seem quite similar
prior to intensive inspection and phetaerpretation. Weshow some examples of
predictions on image tiles from the test set (Fig. 9). The CL model predictions (Fig.
9(d)) have the best qualitative properties, followed by 4REFN-EM model

predictions (Fig. 9(g)) which sometimes suffers from salt and peppss (adi

predictions in Fig. 9 were made at a threshold value of 0.5 and can be remedied using
lower threshold values). Particularly, thEPFN-EM model predictions andEM

model predictions (Fig. 9(f)) for buildings with rare colored roofs (orange phinte
corrugated metal roofs) contain salt and peppering. Rare colored building rooftops can
be challenging to learn due to the comparatively small number of examples in the

training set. The NL model predictions completely miss out on entire buildings with
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554

555

556

557

558

559

560

561

orangecolored rooftops (Fig. 9(e)). The last row in Fig. 9 shows the issues-of one
storied building rooftops being obstructed partly or completely by vegetation. Building
rooftops obstructed by trees and vegetation are not easily detected, as the vegetation
over the rooftop is easily confused as #ilding regions by the models (last row in

Fig. (9)). However, for buildings with vegetation on the rooftops, theFN-EM

model provides less peppering and errors compared to even the CL model (last row in

Fig. (9))
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