A linear mixed effects model for seasonal forecasts of Arctic sea ice retreat

Sean Horvath, Julienne Stroeve & Balaji Rajagopalan

To cite this article: Sean Horvath, Julienne Stroeve & Balaji Rajagopalan (2021) A linear mixed effects model for seasonal forecasts of Arctic sea ice retreat, Polar Geography, 44:4, 297-314, DOI: 10.1080/1088937X.2021.1987999

To link to this article: https://doi.org/10.1080/1088937X.2021.1987999

© 2021 The Author(s). Published with license by Taylor & Francis Group, LLC

Published online: 15 Oct 2021.

Submit your article to this journal

Article views: 528

View related articles

View Crossmark data
A linear mixed effects model for seasonal forecasts of Arctic sea ice retreat

Sean Horvath a,b, Julienne Stroeve a,b,c and Balaji Rajagopalan b,d

aNational Snow and Ice Data Center, University of Colorado Boulder, Boulder, Colorado, USA; bCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA; cEarth Sciences Department, University College of London, London, UK; dDepartment of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, USA

ABSTRACT
With sea ice cover declining in recent years, access to open Arctic waters has become a growing interest to numerous stakeholders. Access requires time for planning and preparation, which creates the need for accurate seasonal forecasts of summer sea ice characteristics. One important attribute is the timing of sea ice retreat, of which current statistical and dynamic sea ice models struggle to make accurate seasonal forecasts. We develop a linear mixed effects model to provide forecast of sea ice retreat over five major regions of the Arctic – Beaufort, Chukchi, East Siberian, Laptev, and Kara Seas. In this, the fixed effect – i.e. the mean influence of the atmosphere on sea ice retreat – is modeled using predictors that directly influence the dynamics or thermodynamics of sea ice, and random effects are grouped regionally to capture the local-scale effects on sea ice. The model exhibits very good skill in forecast of sea ice retreat at lead times of up to half a year over these regions.

ARTICLE HISTORY
Received 16 July 2020
Accepted 28 September 2021

KEYWORDS
Arctic sea ice; seasonal forecasting; statistical modeling; linear mixed effects regression; sea ice retreat

Introduction
Since satellite observations began in the late 1970s, sea ice cover in the Arctic Ocean has seen a decrease in all seasons, with an annual decrease of 4% per decade (Cavalieri & Parkinson, 2012) and the most dramatic decline experienced in September (Onarheim et al., 2018; Stroeve & Notz, 2018). Decreasing summer ice cover has led to an extension of the Arctic Ocean open water season by about a week each decade (Stroeve et al., 2014; Stroeve & Notz, 2018). This extended opening of Arctic waters has piqued interest in commercial marine transport operations (Melia et al., 2016; Stephenson et al., 2013) which require long-term planning and preparation for possible environmental disasters such as oil spills that could have consequences worse than in other ocean regions (Emmerson & Lahn, 2012). The Northern Sea Route (NSR) in particular, which would shorten travel distances by up to 40% between Asia and Europe, has received much attention (Khon et al., 2017; Stephenson et al., 2014; Yumashev et al., 2017; Zhu et al., 2018). Skillful local forecasts of sea ice attributes such as day of retreat (DOR) on seasonal time scales are therefore of great use for interested stakeholders, including industries such as marine transport, resource extraction, and tourism.
The changing Arctic climate and high variability of sea ice, particularly along the NSR (Figure 1), has developed interest and challenges in modeling and predicting summer sea ice conditions. Traditional forecasts focused on single value parameters such as area aggregated sea ice extent, either regionally (Drobot, 2007; Drobot & Maslanik, 2002) or pan-Arctic (Drobot et al., 2006; Lindsay et al., 2008). Recent advances in technology have made local forecasts possible that are more relevant for end users. Methods for such forecasts differ greatly but generally fall into one of two categories, (1) dynamic or numerical modeling and (2) statistical modeling. Dynamic models numerically solve systems of equations that capture the physics of sea ice using sea-ice conditions, ocean temperatures, and/or atmospheric conditions to initialize the models for each season (Msadek et al., 2014). These models can be coupled ice-ocean models with prescribed atmospheric forcing such as the Pan-Arctic Ice-Ocean Modeling Assimilation System (PIOMAS) (Zhang et al., 2008) or coupled ice-ocean-atmosphere models such as CFSv2 (Wang et al., 2012) and CanSIPS (Sigmond et al., 2013). Statistical models find relationships between sea ice and atmospheric, oceanic, or time-lagged sea ice predictors. Recently, statistical methods have been used to provide spatial field predictions of sea ice conditions using a variety of techniques such as a linear Markov model (Yuan et al., 2016), a vector autoregressive model (Wang et al., 2015), a deep neural network (Chi & Kim, 2017), and a Bayesian logistic regression (Horvath et al., 2020).

While these methods have shown promise in recent years, skillful forecasts at lead times greater than 4 months remain elusive (Bushuk et al., 2017) and accurate forecasts of extreme low or high sea ice years remains a challenge (Hamilton & Stroeve, 2016). The term ‘lead time’ here refers to the number of months between when a forecast is made and the time of the forecasts value (i.e. forecasting September sea ice characteristics in August is a one-month lead time). Motivated by this need, in this research we present a novel approach to seasonal forecasts of sea ice DOR by employing a linear mixed effects regression in the Beaufort, Chukchi, East Siberian, Laptev, and Kara Seas (Figure 2). Forecasts are made for one- to seven-month lead times and performance is evaluated at each pixel and aggregated by region for each lead time using a rolling-validation technique.

Figure 1. Aggregated sea ice statistics for years 1979–2018 showing (a) mean day of retreat and (b) standard deviation of day of retreat.
Data and methods

Sea ice

Sea ice concentration data is obtained from the NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3 housed at the National Snow and Ice Data Center (NSIDC) (Meier et al., 2017). The data are derived from two sources: (1) the Near-Real-Time DMSP SSMIS Daily Polar Gridded Sea Ice Concentrations (NRTSI) from the Special Sensor Microwave Imager/Sounder (SSMIS) on board the Defense Meteorological Satellite Program (DMSP) satellites (Maslanik & Stroeve, 1999), and (2) the combined Nimbus Scanning Multichannel Microwave Radiometer (SMMR, 1979–1987), the DMSP Special Sensor Microwave/Imager (SSM/I, 1987–2007), and the Special Sensor Microwave Imager/Sounder (SSMIS, 2007 to present). Merged sea ice concentrations are used which are produced with the Climate Data Record algorithm using the NASA Team algorithm (Cavalieri et al., 1984) and the NASA Bootstrap algorithm (Comiso, 1986) covering the period from 1979 to 2018. The data is provided on a 25 × 25 km grid, but are aggregated to a 50 × 50 km grid for computational efficiency and are projected to the Equal-Area Scalable Earth Grid 2.0 (EASE-Grid 2.0) (Brodzik et al., 2012; Brodzik & Knowles, 2002). Aggregation decreases computation time but does not have a significant impact on results when compared to test runs on the native 25 × 25 km grid. Daily sea ice concentrations are used to produce a yearly DOR product, defined as the day of year (DOY) sea ice concentration drops below 15% and remains below 15% until autumn freeze-up (Bliss et al., 2019), where the beginning of the year is defined as March 1 (DOY 1). Following the methods of Stroeve et al. (2016), for each year at each grid cell a 5-point moving average is applied to the daily sea ice concentration time series to reduce
variability from short-term ice dynamics. Grid cells that never experience retreat are labeled \textit{not a number} (NaN) for that year.

Sea ice motion data is obtained from the Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 4 dataset (Tschudi et al., 2019). These motion vectors are determined by a weighted average of input sources, derived from AVHRR, AMSRE, SMMR, SSMI, and SSMI/S sensors; IABP buoys; and NCEP/NCAR Reanalysis forecasts. Daily values of eastward and northward sea ice motion are aggregated to monthly means for months January through July for years 1979 through 2018 and re-gridded to match the DOR data.

\textbf{Atmospheric variables}

Studies have shown that spring atmospheric conditions have a strong impact on summer sea ice melt (Kapsch et al., 2014, 2019). Building on the extensive literature studying the predictability and variability of sea ice (Huang et al., 2019; Ionita et al., 2019; Olonscheck et al., 2019; Rigor et al., 2002; Tivy et al., 2007; Wang et al., 2015, 2019; Yuan et al., 2016), local atmospheric predictors that can have a direct effect on the dynamics or thermodynamics of sea ice are used, namely downwelling longwave and shortwave radiation, and surface air temperature. All atmospheric values are derived from ERA5 (Hersbach et al., 2018). ERA5 was produced using 4D-Var data assimilation in CY41R2 of ECMWF’s Integrated Forecast System (IFS), with 137 hybrid sigma/pressure (model) levels in the vertical, with the top level at 0.01 hPa. ERA5 performs very well compared to observations for downwelling shortwave and longwave radiation of the sea ice pack, although there is a positive winter bias of surface air temperature (+3.4°C) (Graham et al., 2019). Monthly mean values for months January through July for years 1979 through 2018 are projected to the EASE-Grid 2.0 and are re-gridded to match the DOR data.

\textbf{Linear mixed effects model}

Linear mixed effects models are an extension of linear regression models that can accommodate data collected or summarized into groups. They describe the relationship between predictor and predictand with coefficients that can vary with respect to group levels. Mixed effects models contain two parts, fixed effects terms and random effects terms where the fixed effects terms resemble traditional linear regression and the random effects terms represent variability within the group. The linear mixed effect model is defined as:

\begin{equation}
 y = X\beta + Zb + \epsilon
\end{equation}

where

- y is the n-by-1 response vector, and n is the number of observations
- X is an n-by-p fixed-effects design matrix
- β is a p-by-1 fixed-effects vector
- Z is an n-by-q random-effects design matrix
- b is a q-by-1 random-effects vector, and has a prior distribution of:

\[
 b \sim N(0, \sigma^2 D(\theta))
\]
• $\boldsymbol{\epsilon}$ is the n-by-1 observation error vector, and has a prior distribution of:

$$\boldsymbol{\epsilon} \sim N(0, \sigma^2 I),$$

where D is a symmetric and positive semidefinite matrix, parameterized by a variance component vector θ, I is an n-by-n identity matrix, and σ^2 is the error variance.

Parameters are estimated by restricted maximum likelihood (Patterson & Thompson, 1971) which can produce unbiased estimates of variance and covariance parameters. Details of this modeling approach can be found in Bates et al. (2015). These models are widely used in social (Agasisti et al., 2017; Quené & van den Bergh, 2008; Raudenbush & Bryk, 1986; Yang & Land, 2008) and biological (Luan & Li, 2003; Tooze et al., 2010) sciences, however, our application to Arctic sea ice marks a new contribution. In this study, y is the DOR, X and Z are composed of the predictor variables described in Sections 2.1 and 2.2, and the group levels are individual pixels throughout the Arctic Ocean. In this implementation, the fixed effects represent the mean (i.e. regional) effects of the predictors, while the random effects represent small scale, more localized effects. A separate model is fit for each sea (Beaufort, Chukchi, East Siberian, Laptev, and Kara, see Figure 2) to capture regional effects, and at each lead time (5 seas \times 7 lead times $= 35$ models). Covariate selection for each model is determined using a step-down model building approach based on the step-down strategy suggested in Zuur et al. (2009) and Diggle et al. (2002) and implemented by the ‘lmerTest’ package (Kuznetsova et al., 2017) in the R programming language (R Core Team, 2019). Table 1 shows the final selection of covariates for each model and is discussed further in Section 3.

Skill measurement

To test the overall performance of this model, a rolling-validation scheme is applied in which years 1980 through 1999 are used for training the model to forecast year 2000, after which years 1980 through 2000 were used to forecast year 2001, and so on through prediction year 2018. The skill is quantified via root mean squared error (RMSE) for each lead time. The MSE measures the mean squared difference between the forecasts and observations, defined as:

$$\text{RMSE} = \frac{1}{N} \sum_{i=1}^{N} (f_i - o_i)^2$$

(2)

where f_i are the forecasted values, o_i are the observed outcomes, and N is the number of forecasts. The RMSE takes on values in $[0, \infty)$, with a smaller score representing better predictions. To compare this technique to a reference case, the skill score (SS) is calculated by comparing the RMSE to baseline statistical models following:

$$\text{SS} = 1 - \frac{\text{RMSE}}{\text{RMSE}^{\text{ref}}}$$

(3)

where RMSE^{ref} is the mean squared error using a baseline statistical model as the forecasted values. Here, $\text{SS}=0$ is when model forecasts are equal to the baseline model, $\text{SS}>0$ is when
model forecasts outperform the baseline model, and SS<0 is when model forecasts are worse than the baseline model. Three baseline models are used to evaluate skill score, a climatology model, a yearly persistence model, and a sea ice concentration anomaly persistence model. Climatology is calculated as the mean DOR at each grid over all the training years (e.g. when forecasting for 2015, years 1980–2014 are used to calculate the climatology). The yearly persistence model uses the previous year’s DOR as the current forecast (i.e. 2017 DOR values are used as the forecast for 2018). The sea ice concentration persistence model uses sea ice concentration scaled anomalies at a given lead time to project scaled anomalies of DOR (i.e. if the sea ice concentration anomaly is one standard deviation higher than its climatological mean, then the DOR is forecasted as one standard deviation later than its climatological mean).

Results and discussion

Covariate selection

The final selection of covariates for each model shows a range of configurations with no common covariate used in every model. However, in general, the models using January

<table>
<thead>
<tr>
<th>Month</th>
<th>Sea</th>
<th>Fixed effects</th>
<th>Random effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>Beaufort</td>
<td>conc, sat, lwdn, swdn, u, v</td>
<td>swdn, u</td>
</tr>
<tr>
<td></td>
<td>Chukchi</td>
<td>conc, sat, lwdn, v</td>
<td>lwdn, swdn, u</td>
</tr>
<tr>
<td></td>
<td>East Siberian</td>
<td>sat, lwdn, swdn, u, v</td>
<td>u</td>
</tr>
<tr>
<td></td>
<td>Kara</td>
<td>conc, sat, lwdn, swdn, u, v</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Laptev</td>
<td>conc, sat, lwdn, swdn, u, v</td>
<td>u</td>
</tr>
<tr>
<td>February</td>
<td>Beaufort</td>
<td>sat, lwdn, swdn, u, v</td>
<td>lwdn, u</td>
</tr>
<tr>
<td></td>
<td>Chukchi</td>
<td>conc, sat, lwdn, swdn, u</td>
<td>u</td>
</tr>
<tr>
<td></td>
<td>East Siberian</td>
<td>conc, sat, lwdn, swdn, u, v</td>
<td>u, v</td>
</tr>
<tr>
<td></td>
<td>Kara</td>
<td>conc, sat, lwdn, swdn, u, v</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>Laptev</td>
<td>conc, sat, lwdn, swdn, u, v</td>
<td>swdn</td>
</tr>
<tr>
<td>March</td>
<td>Beaufort</td>
<td>sat, lwdn, swdn, u</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Chukchi</td>
<td>conc, sat, lwdn, swdn, u, v</td>
<td>u, v</td>
</tr>
<tr>
<td></td>
<td>East Siberian</td>
<td>conc, sat, lwdn, swdn, u, v</td>
<td>lwdn, swdn, u, v</td>
</tr>
<tr>
<td></td>
<td>Kara</td>
<td>conc, sat, lwdn, swdn, u, v</td>
<td>lwdn, swdn, u, v</td>
</tr>
<tr>
<td></td>
<td>Laptev</td>
<td>conc, sat, lwdn, swdn, u, v</td>
<td>swdn</td>
</tr>
<tr>
<td>April</td>
<td>Beaufort</td>
<td>conc, sat, lwdn, swdn, u</td>
<td>swdn, u</td>
</tr>
<tr>
<td></td>
<td>Chukchi</td>
<td>conc, sat, lwdn, swdn, u, v</td>
<td>swdn, v</td>
</tr>
<tr>
<td></td>
<td>East Siberian</td>
<td>conc, sat, lwdn, swdn, u, v</td>
<td>swdn, u, v</td>
</tr>
<tr>
<td></td>
<td>Kara</td>
<td>conc, sat, lwdn, swdn, u, v</td>
<td>swdn</td>
</tr>
<tr>
<td></td>
<td>Laptev</td>
<td>conc, lwdn, swdn, u, v</td>
<td>u, v</td>
</tr>
<tr>
<td>May</td>
<td>Beaufort</td>
<td>conc, sat, lwdn, swdn, u, v</td>
<td>swdn</td>
</tr>
<tr>
<td></td>
<td>Chukchi</td>
<td>conc, sat, lwdn, swdn, u, v</td>
<td>lwdn, swdn, u, v</td>
</tr>
<tr>
<td></td>
<td>East Siberian</td>
<td>conc, sat, lwdn, swdn, u, v</td>
<td>lwdn, swdn, u, v</td>
</tr>
<tr>
<td></td>
<td>Kara</td>
<td>conc, sat, lwdn, swdn, u, v</td>
<td>u, v</td>
</tr>
<tr>
<td></td>
<td>Laptev</td>
<td>conc, lwdn, u</td>
<td>swdn, v</td>
</tr>
<tr>
<td>June</td>
<td>Beaufort</td>
<td>conc, sat, lwdn, swdn, u, v</td>
<td>lwdn, u, v</td>
</tr>
<tr>
<td></td>
<td>Chukchi</td>
<td>conc, sat, lwdn, u, v</td>
<td>swdn, u, v</td>
</tr>
<tr>
<td></td>
<td>East Siberian</td>
<td>conc, sat, u</td>
<td>u, v</td>
</tr>
<tr>
<td></td>
<td>Kara</td>
<td>conc, lwdn, swdn, u, v</td>
<td>swdn, u, v</td>
</tr>
<tr>
<td></td>
<td>Laptev</td>
<td>conc, sat, v</td>
<td>swdn, u, v</td>
</tr>
<tr>
<td>July</td>
<td>Beaufort</td>
<td>conc, sat, lwdn, v</td>
<td>lwdn</td>
</tr>
<tr>
<td></td>
<td>Chukchi</td>
<td>conc, swdn, u, v</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>East Siberian</td>
<td>conc, sat, lwdn, swdn, u, v</td>
<td>lwdn, u, v</td>
</tr>
<tr>
<td></td>
<td>Kara</td>
<td>conc, sat, u</td>
<td>swdn, u, v</td>
</tr>
<tr>
<td></td>
<td>Laptev</td>
<td>conc, lwdn, swdn, u, v</td>
<td>v</td>
</tr>
</tbody>
</table>

Variables are sea ice concentration (conc), surface air temperature (sat), downwelling longwave radiation (lwdn), downwelling shortwave radiation (swdn), eastward sea ice motion (u), northward sea ice motions (v), and intercept only (1).
through May predictors use most of the covariates as fixed effects while June and July models use a smaller subset. For all of the models, only radiation and sea ice motion vectors are ever used as random effects. In general, sea ice concentrations and surface air temperatures exhibit a spatial pattern similar to the DOR response variable while the radiation and sea ice motion variables do not (not shown). Hence, coefficients for radiation and sea ice motion covariates vary spatially for many model selections. Figure 3 shows the coefficients of the three covariates in the random effect over the Arctic seas at three lead times – the spatial and temporal variability is quite apparent. However, the coefficients vary rather smoothly in space which is not a priori included in the model. Interestingly, the combination of fixed and random effects seems to allow the model to capture the spatial coherence among the regression coefficients (Figure 3).

An unexpected outcome of this covariate selection method is that downwelling shortwave radiation is included in models fitted using winter predictors despite a lack of

Figure 3. Regression coefficients for shortwave downward flux and vector components of sea ice motion. Values are shown for 1-, 4-, and 7-month lead times.
incoming shortwave radiation during Arctic winters. However, in the southern portion of each of these seas, there is a small shortwave signal. Because the shortwave covariate is zero at most grid cells, inclusion of this regression coefficient does not degrade performance at these grid cells and is able to add skill to forecasts made in the southern regions.

Model skill

Model skill is determined by RMSE calculated separately at each grid cell for each model and lead time, shown in Figure 4(a). In general, higher skill (i.e. lower RMSE) is demonstrated near the sea ice edge and near coastal locations, with slightly worse skill in the marginal ice zone. Skill in the marginal ice zone however does increase as lead time decreases. Two regions with less skill are apparent, especially at longer lead times, namely near the

![Figure 4](image)

Figure 4. Skill scores plotted for each lead time (January through July). Skill scores shown are (a) RMSE, and (b) RMSE as a percentage of the range of observed values at each location.
coast in the eastern Beaufort Sea and in the mid-latitude Laptev Sea, two areas with high DOR variability (Figure 1(b)).

Because the variability differs at each location, we computed the RMSE as a percentage of the range of observed values at each grid cell (Figure 4(b)). Areas at high latitudes near the more permanent ice edge show RMSE scores that approach the range of observed values, while lower latitudes show a reduction in RMSE percentages. Higher RMSE percentage values at high latitudes are due to a smaller range of observed values. The areas with high RMSE scores in the eastern Beaufort Sea and in the mid-latitude Laptev Sea show lower RMSE percentages due to a wider range of observed values. The latitudinal variation in RMSE percentages seen in Figure 4(a), particularly in June and July, could also be a result of earlier retreat at southern locations. Forecasts of July DOR made using June predictors, for example, are actually a sub-monthly lead time and so can inflate the forecast skill.

Forecast skill scores through rolling validation

The rolling-validation skill scores (found individually at each grid cell) comparing our model to three baseline statistical models show high forecast skill across most of the domain at all lead times, especially at higher latitudes (Figure 5). As lead time decreases, skill improves compared to climatology. We recognize that the atmospheric circulation variables and the sea ice attributes exhibit a strong trend over the study period. To compare the performance of our model against this, we computed skills relative to a linear trend model, shown in Figure 5(b). The difference in skill between long lead times and short lead times is more apparent using the linear trend model. Using January through May predictors, the linear trend outperforms our model in most of the Chukchi Sea and the southern Beaufort Sea, as well as along the Siberian coastline.

We also compared the skill of our model against an anomaly persistence model in which the scaled sea ice concentration anomaly is assumed to be the scaled DOR anomaly. Skill tends to decrease slightly as lead time decreases compared to the sea ice concentration persistence model (Figure 5(c)). This is likely due to stronger predictive power from sea ice concentration as the summer progresses. Similarly, higher skill at long lead times compared to the sea ice concentration persistence model can be explained by lower variability in sea ice concentration during the winter and spring as well as spring atmospheric conditions affecting melt onset which impacts ice retreat later in the season (e.g. Stroeve et al., 2016).

By observing the regression coefficients for each region and at each lead time we can better understand what the sources of predictability are. Shortwave and longwave radiation are important predictors for most regions using January through April predictors. Shortwave radiation typically has a larger regression coefficient until April when the regression coefficient for longwave radiation becomes greater in the Kara, Laptev, and East Siberian seas. By the summer months (June and July), sea ice concentration is the most influential predictor.

The magnitude of regression coefficients using May predictors are more evenly distributed than any other month. Shortwave and longwave radiation remain important predictors for most regions along with sea ice concentration. The importance of other predictors varies by region. For instance, the regression coefficient for the v-component of sea ice motion is large in the Chukchi sea, while the regression coefficient for the u-component of sea ice motion is large in the Beaufort Sea. This shift of variable importance from atmospheric predictors to sea ice predictors from April to June suggest that May is a
Figure 5. Spatial maps of the rolling-validation skill scores at all lead times compared to (a) climatology, (b) yearly persistence, and (c) sea ice concentration persistence. Positive skill scores mean the forecast out-performs the baseline model.
transition period in the Arctic. This is reminiscent of perfect model experiments that found a large decrease in prediction skill when dynamical models are initialized prior to June 1st (Bonan et al., 2019; Bushuk et al., 2018, 2020; Day et al., 2014). This may also explain why the linear trend is better than the forecast model in some areas prior to June.

Areas in the southern Chukchi sea show less skill compared to all three baseline models than elsewhere in the Arctic. This area is exposed to incoming oceanic heat from the Pacific Ocean through the Bering Strait. Maximum heat inflow typically occurs in August and September but can happen as early as June or as late as October (Serreze et al., 2016). This shallowness of the Bering Strait results in a near-surface heat source that has been linked to seasonal retreat of the ice pack in the Chukchi Sea (Ahlnäs & Garrison, 1984; Fedorova & Yankina, 1964; Paquette & Bourke, 1974; Serreze et al., 2016; Spall, 2007; Woodgate et al., 2010, 2015). Serreze et al. (2016) found a strong correlation (−0.80) between heat influx through the Bering Strait (April through June) and sea ice retreat date in the Chukchi Sea. They also showed that the Bering Strait heat influx accounts for about two thirds of the variance in retreat day (detrended). Oceanic heat flux data is collected from a system of moorings in the Bering Strait as part of the NSF-Arctic Observing Network program (Woodgate et al., 2015).

Two other areas demonstrate noticeably lower skill, the southern Laptev Sea and the southern Kara Sea, both of which contain large quantities of river discharge during spring and summer. While most of the Laptev Sea has been found to be largely unaffected by river discharge, sea ice coverage in the eastern Laptev Sea is influenced by Lena river discharge (Bareiss et al., 1999). Additional studies have shown that ice cover in the Laptev Sea is largely driven by atmospheric forcing (Alexandrov et al., 2000) but that local melting near coastal outlets is tied to river water (Bareiss & Görgen, 2005; Bauch et al., 2013). Lena River runoff may contribute to sea ice retreat via increased solar radiation absorption by suspended particulate matter and colored dissolved organic matter within the river discharge (Granskog et al., 2007; Hill, 2008). In early spring, river water may flood the ice covered Lena River delta directly facilitating sea ice melt (Bareiss et al., 1999). This river water may pool near the Lena River outflow before being dispersed north or eastward by prevailing winds (Bauch et al., 2013).

Studies of the predictability of sea ice retreat specific to the Kara Sea are far less prevalent in the literature. However, the Kara Sea does have an inflow of warmer oceanic water from the Atlantic via the Barents Sea and the Kara Strait (Harms & Karcher, 1999; Pforrman et al., 1997) as well as substantial river discharge from the Ob and Yenisei rivers (Pavlov & Pforrman, 1995). These mechanisms may drive sea ice retreat similar to the Chukchi and Laptev Seas.

A yearly RMSE score per sea is calculated by aggregating all DOR forecasts made for a given year by region and comparing them to observed values (Figure 6(a)). RMSE scores remain fairly constant in the range of 15–25 days at lead times between 3- and 7-months, but there is a noticeable improvement in skill scores as lead time decreases to 2- and 1-month. Values in the Beaufort and Laptev Seas are noticeably larger at long lead times compared to the remaining regions, similar to the scores calculated in Figure 4.

Biases in forecasts can be determined by examining the average difference between forecasts and observations aggregated by lead time for each region (Figure 6(b)). The Chukchi, Kara, and to a lesser degree Laptev Seas show bias forecasting DOR later than observed most years. This is likely due to oceanic heat influxes and the influence of river runoff discussed previously that are not included as predictors in this study. The less severe bias in the
Laptev Sea suggests that oceanic heat influx has a stronger influence on sea ice retreat than river runoff.

Summary and conclusion

With the projected continual expansion of open ocean conditions in the Arctic comes the need for skillful seasonal forecasts. This study presents a linear mixed effects regression model for forecasts of the day of sea ice retreat. Individual models are developed for five Arctic regions (Beaufort, Chukchi, East Siberian, Laptev, and Kara Seas) at lead times of one- to seven-months. Sea ice concentration, surface air temperature, longwave and short-wave downwelling radiation, and vector components of sea ice motion are used as predictors and model selection via a step-down approach further reduces the chosen predictors.
The random effect is grouped by grid cell, allowing the model to capture local-scale variability while the fixed effect captures mean effects. Forecasts in all regions and at all lead times are shown to be skillful compared to three baseline statistical models; climatology, yearly persistence, and sea ice concentration anomaly persistence. Stakeholders interested in accurate forecasts of sea ice retreat could rely on this method for 3–7 month lead times with an accuracy of about 20 days, a 2 month lead time with an accuracy of about 15 days, and a 1 month lead time with an accuracy of about 10 days.

There is potential to improve this model’s performance. Consideration of more covariates could provide additional skill, especially at longer lead times. Factors known to contribute to sea ice conditions, such as oceanic heat fluxes and river runoff, could assuage forecast errors in the Chukchi, Laptev, and Kara Seas. Sea ice thickness, particularly after melt onset has occurred, has been identified as an important predictor of summer sea ice (Bushuk et al., 2020). Climate indices could provide useful information about the large scale state of the atmosphere and ocean. A spatial component could be used in lieu of random effects to capture the spatial variability efficiently (Cressie & Wikle, 2015). Also a Bayesian Hierarchical framework can be used to quantify the uncertainties robustly (Clark & Gelfand, 2006). This method could also be expanded upon to include the forecast of additional sea ice attributes of interest such as day of advance (and therefore length of the open water season). Furthermore, forecasts from various models (dynamical and statistical) including this one can be combined robustly (Krishnamurti et al., 1999) to provide multi-model probabilistic forecast that will further enhance the skill. Our novel modeling approach opens encouraging prospects for skillful seasonal forecasts of sea ice attributes that are crucial to enable safer, more sustainable, and socioeconomically beneficial access to the Arctic Ocean.

Acknowledgements

We acknowledge the contributions of the late Drew Slater. All data used is publicly available from ECMWF (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5) and NSIDC (https://nsidc.org/data).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by National Oceanic and Atmospheric Administration [grant number: NA15OAR4310171].

ORCID

Sean Horvath http://orcid.org/0000-0002-6462-0722
Julienne Stroeve http://orcid.org/0000-0001-7316-8320
Balaji Rajagopalan http://orcid.org/0000-0002-6883-7240
References

Granskog, M. A., Macdonald, R. W., Mundy, C.-J., & Barber, D. G. (2007). Distribution, characteristics and potential impacts of chromophoric dissolved organic matter (CDOM) in Hudson Strait and Hudson Bay, Canada. *Continental Shelf Research, 27*(15), 2032–2050. https://doi.org/10.1016/j.csr.2007.05.001

