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Single-cell methods are beginning to reveal the intrinsic heterogeneity in cell
populations, arising from the interplay of deterministic and stochastic processes.
However, it remains challenging to quantify single-cell behaviour from time-lapse
microscopy data, owing to the difficulty of extracting reliable cell trajectories and
lineage information over long time-scales and across several generations. Therefore,
we developed a hybrid deep learning and Bayesian cell tracking approach to
reconstruct lineage trees from live-cell microscopy data. We implemented a residual
U-Net model coupled with a classification CNN to allow accurate instance
segmentation of the cell nuclei. To track the cells over time and through cell
divisions, we developed a Bayesian cell tracking methodology that uses input
features from the images to enable the retrieval of multi-generational lineage
information from a corpus of thousands of hours of live-cell imaging data. Using our
approach, we extracted 20,000 + fully annotated single-cell trajectories from over
3,500 h of video footage, organised into multi-generational lineage trees spanning up to
eight generations and fourth cousin distances. Benchmarking tests, including lineage
tree reconstruction assessments, demonstrate that our approach yields high-fidelity
results with our data, with minimal requirement for manual curation. To demonstrate
the robustness of our minimally supervised cell tracking methodology, we retrieve cell
cycle durations and their extended inter- and intra-generational family relationships in
5,000 + fully annotated cell lineages. We observe vanishing cycle duration correlations
across ancestral relatives, yet reveal correlated cyclings between cells sharing the
same generation in extended lineages. These findings expand the depth and breadth of
investigated cell lineage relationships in approximately two orders of magnitude more
data than in previous studies of cell cycle heritability, which were reliant on semi-manual
lineage data analysis.
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1 INTRODUCTION

Individual cells grown in identical conditions within populations
of either clonal or closely related origin often exhibit highly
heterogeneous proliferative behaviour (Skylaki et al., 2016).
Deciphering why and how cell heterogeneity is established,
maintained and propagated over generations remains a key
challenge (Figure 1A). This is increasingly important in
studying dynamic developmental processes involving the
emergence of diverse cell types committed to different cell
fates (Bendall et al., 2014), as well as in pathological scenarios,
including cancer (Dagogo-jack and Shaw, 2017).

The contribution of stochasticity and determinism to the
origins of cell cycle duration heterogeneity in cultured
populations has been examined previously (Sandler et al.,
2015; Chakrabarti et al., 2018; Kuchen et al., 2020). However,
these analyses have been performed by manually annotating
movies, which is laborious and limits the depth and statistical
power to study more distant relationships amid noisy data.
Despite major efforts in the area of automated cell detection
and tracking (Bao et al., 2006; Jaqaman et al., 2008; Downey et al.,
2011; Amat et al., 2014; Magnusson et al., 2015; Schiegg et al.,
2015; Faure et al., 2016; Hilsenbeck et al., 2016; Skylaki et al.,
2016; Stegmaier et al., 2016; Akram et al., 2017; Tinevez et al.,

2017; Ulman et al., 2017; Allan et al., 2018; Hernandez et al., 2018;
McQuin et al., 2018; Schmidt et al., 2018; Wen et al., 2018; Wolff
et al., 2018; Berg et al., 2019; Han et al., 2019; Moen et al., 2019;
Tsai et al., 2019; Fazeli et al., 2020; Lugagne et al., 2020; Stringer
et al., 2020; Bannon et al., 2021; Fazeli et al., 2021; Mandal and
Uhlmann, 2021; Sugawara et al., 2021; Tinevez, 2021), high-
fidelity extraction of multi-generational lineages remains a major
bottleneck and rate-limiting step in microscopy image analysis.
The requirement for additional human oversight to manually
curate, or correct, the tracker outputs represents a laborious,
time-consuming and often error-prone task. This results in trade-
offs being made between the minimum experimental replicates
sufficient for reliable low-throughput analysis and maximum
volumes of imaging data that researchers are capable to semi-
manually process. Further, no single tracking algorithm is likely
to be universally performant across all experimental datasets,
necessitating an ecosystem of algorithms for scientists to
choose from.

To increase the throughput of single-cell studies focusing on
cell relationships within their lineages, we developed a hybrid
deep learning and cell tracking approach to automatically
reconstruct lineage trees from a corpus of live-cell data with
single-cell resolution (Figure 1B). Our workflow consists of a cell
detection step, where individual cells are segmented from live-cell

FIGURE 1 |Overview of the experimental (data acquisition) and computational (data analysis) design to track single cells and generate lineage trees. (A)We analyse
heritability of cell cycle duration across multiple cell generations using automatically reconstructed multi-generational lineage trees. (B) Sequential fields of view obtained
by live-cell imaging experiments, showing both brightfield (BF) and fluorescence (FP). Scale bar � 20 μ m. (C) Fully automated, deep learning-based movie analysis
consists of a cell detection step using information from bright-field (col. 1) and fluorescence (col. 2) time-lapse microscopy channels. Cells are localised using the
segmentation network (col. 3) and labelled according to their mitotic state by a trained classifier (col. 4). Our software then performs multi-object tracking to reconstruct
individual cell trajectories (col. 5) and assembles the parent-children relationships (col. 6) into lineage tree representations. Scale bar � 5 μ m.
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images with a wide range of cell densities and fluorescence
intensities. The segmented nuclei are subsequently classified
according to their cell cycle stage based on their chromatin
morphology, followed by a Bayesian tracking algorithm for
unsupervised single-cell tracking of cell populations imaged
using time-lapse microscopy (Figure 1C).

Benchmarking results confirm that our open-source Python
pipeline connects single-cell observations into biologically
relevant trajectories and correctly identifies cell divisions and
relationships within cell families with high fidelity. Enabled by
our fully automated approach, we extracted 20,074 single cells
organised into 5,325 multi-generational cell lineages with
annotated ancestor-descendant relationships in graphical
lineage tree representations. This repository of fully annotated
cell tracks corresponds to two orders of magnitude more single-
cell data than in previous studies of cell cycle heritability (Sandler
et al., 2015; Chakrabarti et al., 2018; Kuchen et al., 2020). To
demonstrate the utility of our pipeline, we analyse cell cycle
durations of our heterogeneous cell population on single-cell level
and determine their cross-generational correlations in extended
cell lineages.

2 METHODS AND MATERIALS

2.1 Image Acquisition
2.1.1 Automated Widefield Microscopy
A custom-built automated epifluorescence microscope was built
inside a standard CO2 incubator (Heraeus BL20) which
maintained the environment at 37°C and 5% CO2. The
microscope utilised an 20× air objective (Olympus Plan
Fluorite, 0.5 NA, 2.1 mm WD), high performance encoded
motorized XY and focus motor stages (Prior H117E2IX,
FB203E and ProScan III controller) and a 9.1 MP CCD
camera (Point Grey GS3-U3-91S6M). Brightfield illumination
was provided by a fibre-coupled green LED (Thorlabs, 530 nm).
GFP and mCherry/RFP fluorescence excitation was provided by a
LED light engine (Bluebox Optics niji). Cameras and light sources
were synchronised using TTL pulses from an external D/A
converter (Data Translation DT9834). Sample humidity was
maintained using a custom-built chamber humidifier. The
microscope was controlled by MicroManager (Edelstein et al.,
2014) and the custom-written software OctopusLite, available at:
https://github.com/quantumjot/OctopusLite.

2.1.2 Cell Culture Conditions
We usedMadin-Darby Canine Kidney (MDCK) epithelial cells as
a model system. Wild-type MDCK cells were grown, plated and
imaged as described previously (Norman et al., 2012; Bove et al.,
2017). To enable visualisation and tracking of the cells, we used a
previously establish MDCK line stably expressing H2B-GFP
(Bove et al., 2017). Cells were seeded at initial density of ≈3 ×
104 cells/cm2 in 24-well glass-bottom plates (ibidi). The imaging
was started 2–3 h after seeding. Imaging medium used during the
assay was phenol red free DMEM (Thermo Fisher Scientific,
31053), supplemented with fetal calf serum (Thermo Fisher
Scientific, 10270106) and antibiotics.

2.1.3 Time-Lapse Movie Acquisition
We acquired a dataset of 44 long duration (∼ 80 h) time-lapse
movies of MDCK wild-type cells in culture across nine biological
replicates. A typical experiment captured multiple locations for
over 80 h with a constant frame acquisition frequency of 4 min
for each position. Multi-location imaging was performed inside
the incubator-scope for durations of ≈1,200 images (80 h). In
total, the dataset comprised 52,896 individual 1,600 × 1,200 × 2
(530 × 400 μm) channel images (brightfield and the nuclear
marker H2B-GFP), containing ∼250,000 unique cells. This
dataset of >3,500 h spans densities from isolated cells to highly
confluent monolayers.

2.2 Software Implementation
2.2.1 Image Processing
All image processing was performed in Python, using scikit-
image, scikit-learn, Tensorflow 2.4, on a rack server running
Ubuntu 18.04LTS with 256 Gb RAM and NVIDIA GTX1080Ti
GPUs. The btrack package was implemented in Python 3.7 and
C/C++ using CVXOPT, GLPK, Numpy and Scipy libraries. We
tested the software on OS X, Ubuntu and Windows 10 and found
the btrack algorithm to be performant even on basic commodity
hardware such as laptops. We have provided extensive
documentation online, visualisation tools, and user-friendly
tutorials with tracking examples, example data and installation
instructions.

2.2.2 Data Visualisation Tools
In addition, we developed a track visualization layer and
interactive lineage tree plugin for the open-source multi-
dimensional image viewer, napari-arboretum (Sofroniew et al.,
2021) available at: https://github.com/quantumjot/Arboretum.
To visualize single cell tracking data using the napari-
integrated Tracks layer, follow the fundamentals tutorial
available at: https://napari.org/tutorials/applications/cell_
tracking.

2.3 Cell Tracking Pipeline
In this subsection, we provide a detailed description of our step-
wise pipeline to process the raw microscopy image data to extract
reconstructed lineage tree information in a fully automated
manner. However, it should be noted that the steps in our
workflow function independently, allowing users to integrate
different software tools into our modular pipeline based on
their preference. This is including, but not limited to, the
popular segmentation algorithms such as CellPose (Stringer
et al., 2020) or StarDist (Schmidt et al., 2018).

2.3.1 Cell Instance Segmentation
To localise cells in the raw fluorescence images, we constructed a
U-Net (Ronneberger et al., 2015) to first segment cell nuclei in the
time-lapse microscopy images (Figure 2) using a semantic
segmentation approach. We used residual blocks (He et al.,
2015) in each of the five convolutional up and down layers
(3 × 3 kernels), and uses max-pooling and nearest neighbor
upscaling to down and upsample respectively. The final layer of
the network is a 1 × 1 convolution with two kernels in the case of a
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binary segmentation, with a per-pixel softmax activation. The
final segmentation map is decided by argmax function on the
stack of class-corresponding maps, outputting the class with
highest probability at each position in the FoV. We trained
the network with 150 hand-segmented training images with
ranging levels of cell confluency, from which regions of 768 ×
768 pixels were randomly cropped using on-the-fly
augmentations such as cropping, rotation, flipping, noise
addition, uneven illumination simulation, scale and affine
deformations. At train time, we used a weighted per-pixel
cross entropy loss function (Ronneberger et al., 2015) to force
the network to prioritise regions separating proximal nuclei. To
achieve accurate learning of the border pixels, we constructed
pixel-wise weight maps using a difference of Gaussian (DoG)
filter on a Euclidean distance map to upweight the importance of
pixels at either foreground-background interface or pixels
separating two or more proximal cells. We trained the
network using the Adam optimizer (Kingma and Ba, 2015)
with batch normalisation, a batch size of 16 for 500 epochs
after an extensive search for the most optimal
hyperparameters. In the following step, each segmentation
mask has all of its non-zero values labelled as individual cell
instances while zero values are considered the background. This
turns the semantic map into instance segmentation mask, in
which each cell can be counted and localized by the centre of mass
of each segmented region (Figure 2).

2.3.2 Cell State Classification
In the following, optional step, the segmentation masks have each
single cell region cropped as image patches of 64 × 64 pixels.
Those are extracted from the corresponding cell positions in both
transmission and fluorescence channel images. Our proprietary
cell state classifier (Figure 2) is used to label the phase of the

current state each cell is in [s ∈ (Interphase, Prometaphase,
Metaphase, Anaphase, Apoptosis)].

The instantaneous cell state is labelled by a convolutional
neural network based classifier. Its feature extractor consists of
five connvolutional layers with 3 × 3 kernels, each of which
doubles the 3D input image in depth. Max-pooling operations
downsample the activations after each convolution layer. A fully
connected layer outputs a flattened array of 256 features-long
representation, after which dropout is applied to perform implicit
data augmentation. The final linear classifier outputs the softmax
probability for each of the five classes, with the highest score
considered to be the predicted label.

We performed the cell state classifier training with ∼15,000
manually annotated examples of the extent of the cell nucleus,
capturing the diversity of cell nuclear morphology during the cell
cycle or at cell cessation. We used categorical cross entropy to
calculate loss. The detailed protocol together with user-friendly
tutorial to train-your-own-model for cell cycle classification is
available at: https://github.com/lowe-lab-ucl/cnn-annotator.

2.3.3 Tracklet Linking Using a Bayesian Belief Matrix
The first step of the tracking algorithm is to assemble tracklets by
linking cell detections over time that do not contain cell division
events (Figure 3A).

Let T k−1 be the set of tracklets in frame k − 1 andOk be the set
of cells observed in the current frame k, where track tj ∈ T k−1 and
object oi ∈ Ok. The algorithm attempts to calculate the posterior
probability of assigning tk−1j → oki and also of being lost. To do so,
we create a Bayesian belief matrix (Narayana and Haverkamp,
2007) of all possible associations, Bn×(m+1), where n is the number
of active tracklets (|T k−1|), and m is the number of cell
observations (|Ok|). We initialize B with a uniform prior
probability of association bji � P(tj → oi) � 1/(m + 1), where

FIGURE 2 | Single-cell annotation workflow. Cell instances are segmented from fluorescence images of their H2B-GFP labelled nuclei. The U-Net consists of
residual blocks and residual skip connections. A final 1 × 1 convolution layer, followed by softmax activation generates the output. Detected cells are localised using the
centre of mass and used to crop nucleus-centred image patches from both transmission and fluorescence images. These serve as inputs to a CNN-based cell state
classifier to label instantaneous phase of each segmented object. Labels indicate whether the cell is in interphase, mitosis or apoptosis. Scale bars � 20 µm.
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m + 1 denotes the fact that the association can be to another
object, or lost.

Next, we perform Bayesian updates on B using evidence
from motion models and the cell state classifier. Each tracklet
initialises its own Kalman filter (Kalman, 1960) that is used to
provide estimates of the future state of the cell. The state
labels from the cell classifier are then used to associate
observations to tracklets, based on visual features observed
by the cell classifier which distinguishes typical nuclear
morphology changes and chromatin condensation levels.
For a given object oi and a given tracklet tj, we first update
the belief matrix given the evidence E:

bjid
P(E|tj → oi) × bji

P(E) (1)

We use estimates from the Kalman filters, and a transition
matrix of cell state transitions using the CNN features, to
determine P(E|tj → oi). For the motion estimates, we use a
constant velocity model in this case, although other models
are possible. The output of the Kalman filter is an estimate of
the future position and error in position, modelled as a
multivariate normal distribution with a diagonal
covariance matrix. As such, we can define a

computationally simple approximation of the probability
that the estimated new position of tj lies within a units
(e.g. pixels) of the new observation oi:

f(x, μ, σ, a) � 1
2

erf
x − μ + a

σ
�
2

√( ) − erf
x − μ − a

σ
�
2

√( )[ ]
P(Emotion|tj → oi) ≈ ∏

d∈{x, y, z}
f(xd, μd, σd, a)

(2)

where μd and σd represent the estimate of the position and standard
deviation of the motion model prediction in each spatial dimension.
The advantage of this approach is that, not only do we include the
difference between the new object position and the motion model
prediction, but also include the motion model uncertainty into the
Bayesian update. Further, we can use appearance information to
inform the update. Let S be the set of states that each object is labelled
with by the cell state classifier.We use a transitionmatrix of cell state
transitions to determine the probability of linking two observations
based on their respective states:

P(Eappearance|tj → oi) � P(Sj � sj, Si � si), s ∈ S (3)

where si and sj are the states (as labelled by the cell state classifier)
for the new observation and the last observation of the tracklet
respectively. Importantly, this transition matrix enables the

FIGURE 3 | Bayesian tracking approach overview. (A) Bayesian belief matrix with uniform prior is constructed for tracklet association. Using the localised and labelled
cell observations, btrack uses Kalman filters to predict the future state of the cell (x̂) from previous observations. Each object appearing in the new frame has uniform prior
probability of track association or loss. The belief matrix is an N x (M+1) matrix where N equals number of active tracks and M is the number of detected objects per field of
view. Bayesian updates are performedusing the predicted track positions and state information to calculate the probability that tracks are considered lost, or to be linked
to an object. Objects which are not assigned, initialise new tracks. T1 represents a simple association,where the predictionmatches the observation O1. In T2 the cell divides,
meaning that there is no simple association. New tracks T3 and T4 are initialised. (B)Global track optimisation. An n-dimensional local search creates all possible hypotheses,
eachwith an associated likelihood, for each track based on user defined parameters. Several hypotheses are generated for Track T2, as in (A): possible linkage to T3 or T4, T2
undergoesmitosis generating T3and T4, T2 is a false positive track or that T2undergoes apoptosis. The log-likelihood of each hypothesis (ρ) is calculated using the image and
motion features. These hypotheses are evaluated in a global optimisation step to generate the final tracking results.
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tracker to penalise transitions such as Metaphase → Anaphase,
preventing track linking for these cases, and allowing later steps of
the algorithm to more accurately identify cell divisions.
Combining these motion and appearance features, we arrive
upon our estimate of P(E|tj → oi):

P(E|tj → oi) � P(Emotion|tj → oi) · P(Eappearance|tj → oi) (4)

and:

P(E) � P(E|tj → oi) · bji + P(E|t→ o) · (1 − bji) (5)

where, P(E|¬t→ o) represents the probability of not assigning an object
to a tracklet (i.e. the false positive detection rate), and is a hyper-
parameter of the model. We then update beliefs for all other objects
(≠ i), and the lost column, with track tj, normalizing such that∑m+1

i�1 bji � 1. As such, we treat the lost column of the belief matrix
as with the real objects, and do not need to perform explicit updates.

FIGURE 4 | Single-cell Segmentation Performance. (A) Comparison of Residual U-Net (pink), TrackMate (beige) and TrackPy (cyan) algorithms in detecting and
localising cells in three representative fields of viewwith low, medium and high cell density. Overlaid are the cropped regions of ground truth segmentation masks with cell
centroid markers depicted for zoomed-in region of the original fluorescence channel image (leftmost column). Cell localisation scores for multi-object tracking precision
(MOTP) and accuracy (MOTA) are listed above. Red arrows indicate the presence of false-negative (upward right) and false-positive (downward facing arrow) cell
detection errors. (B) Detailed overview of segmentation performance on portion of high cell density field of view. (Left) Per-object bounding boxes indicate visual
matches between ground truth (GT, green) and Residual U-Net segmentation mask (RUN,magenta) for intersection-over-union score calculation (overlapping areas IoU,
grey). Two typical segmentation error types are highlighted (red boxes), where an object is mis-detected (left) and two separate objects are detected as one instance
(right). (Centre) Pixel weight map designed to prioritise regions between proximal nuclei. Pixel upweighting is indirectly proportional to amount of free space between
cell nuclear instances, as demonstrated in the merged image overlap (Right).
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The tracking algorithm can be used with two different
methods to update the belief matrix, B:

• EXACT—where the updates use the full sets of objects, Ok,
which is the method of choice for all the downstream
analysis in this paper, or

• APPROXIMATE—where the updates use a subset of the
objects within a user defined distance from the current
track. This is computationally more efficient for very large
numbers of objects and tracks, at the expense of evaluating
all possible linkages and penalising, for example, a mixture
of fast moving objects in a field of slow moving ones.

Finally, given the belief matrix, we associate observations by
choosing the hypothesis with the maximum posterior probability
for each tracklet. Objects without an association initialise a new
set of tracklets. Tracklets without an object association are flagged
as lost and are maintained as active until reaching a threshold
number of missing observations. Tracklets associated with an
object are linked, and the motion and state models are updated
with the new evidence. This combination of motion and cell state
information in the belief matrix approach improves, for example,
the subsequent detection of cell divisions, by ensuring that
daughter cells are not incorrectly linked to parent cells.

2.3.4 Global Track Optimization
After linking observations into tracklets, they are next assembled into
tracks and lineage trees using multiple hypothesis testing (Al-Kofahi
et al., 2006; Bise et al., 2011) to identify a globally optimal solution.
We built an efficient hypothesis engine, which proposes possible
origin and termination fates for each track based on their appearance
and motion features (Figure 3B, Supplementary Materials). The
following hypotheses are generated: 1) false positive track, 2)
initializing at the beginning of the movie or near the edge of the
FoV, 3) termination at the end of the movie or near the edge of the
FoV, 4) a merge between two tracklets, 5) a division event, or 6) an
apoptotic event. In addition, we added “lazy” initialization and
termination hypotheses, allowing cells to initialize or terminate
anywhere in the movie. These lazy hypotheses are strongly
penalized, but their inclusion significantly improves the output by
relaxing the constraints on the optimization problem. The log
likelihood of each hypothesis (ρ) is calculated based on the
observable features and heuristics. We construct a sparse binary
matrix A(h×2n) ∈ {0, 1} that assigns the h hypotheses to n tracks. The
matrix has 2n columns to account for the fact that each hypothesis
may describe the initialization and termination of the same or
multiple different tracklets. For example, in the case of track
joining between tracklets ti and tj, a 1 is placed in columns i and
n + j. In the case of a mitotic branch, a 1 is placed in column i for the
parent tracklet ti, and columns n + j and n + k for the two child
tracklets tj and tk. As such, thematrixA can be used to account for all
tracklets in the set. We then solve for the optimal set of hypotheses
(x*) that maximises the likelihood function:

x* � argmax
x

ρux, s.t. Aux � 1 (6)

where the optimization space of x is also a binary variable (x ∈ {0,
1}). As a result, the optimal set of hypotheses (x*) accounts for all

tracklets in the set. Once the optimal solution has been identified,
tracklet merging into the final tracks can be performed. A graph-
based search is then used to assemble the tracks into lineage trees,
and propagate lineage information such as generational depth,
parent and root IDs, from which the tree root (founder cell
identity) and leaf cells (those with no known progeny) can be
identified.

3 RESULTS

To assess the heterogeneity and the heritability of cell-cycle
duration in a population of cells, we sought to automatically
reconstruct family trees from individual cells in long-term time-
lapse movies. Our time-lapse microscopy dataset (see Section 2.1)
spans densities from single cells to highly confluent monolayers,
providing a unique dataset to thoroughly test the computational
framework.

To provide an initial baseline for our pipeline’s performance
on our non-trivial imaging dataset, the assessment of our movie
analysis workflow was contrasted to 1) a Python-based, general-
purpose particle tracking package, TrackPy (Allan et al., 2018),
and 2) a cell tracking-specific ImageJ/FiJi plugin, TrackMate
(Tinevez et al., 2017). Both of these tracking engines represent
recently-developed popular cell and/or particle tracking
frameworks which function as backbones to the current
state-of-the-art cell tracking software, such as Usiigaci (Tsai
et al., 2019) and MaMuT (Wolff et al., 2018) or Mastodon
(Tinevez, 2021), respectively. Detailed description of the
tracking softwares calibration can be found in the
Supplementary Materials section.

3.1 Bayesian Cell Tracking Approach
To automate data analysis, we developed a fast, open source and
easy-to-use cell tracking library to enable calculation of
intermitotic durations and the capture of multi-generational
lineage relationships. Our pipeline consists of three steps: 1)
cell segmentation, 2) cell state labelling, where progression of
cells towards division is classified, and 3) cell tracking with lineage
tree reconstruction.

3.1.1 Cell Detection Performance
To assess the quality of the cell detection step, we selected three
representative fields of view capturing fluorescently labelled
nuclei of cells at low, medium and high confluency. We
manually annotated the nuclear areas by circling around the
cell nuclei to create an instance segmentation mask where pixels
of value 0 � background, 1 � foreground, i.e. individual cells. We
then computed the nuclear centroid of each cell instance and
measured the fidelity of cell detection and localisation by
calculating multi-object tracking precision (MOTP,
Supplementary Equation S1). Out of 869 cells in total, 847
cells had their centroid localized within acceptable error of ≈1
nuclear radius length (<20 pixels ≈ 7 µm) compared to the
ground truth annotations. We report that our pipeline reached
sub-pixel precision and outperforms both particle detection
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approaches with > 5-fold enhancement of the TrackPy- and >2.5-
fold higher localisation precision than TrackMate-embedded cell
detection method (Figure 4A).

Our cell localisation approach performs a pixel-wise image
classification, which offers the opportunity to segment the
whole area belonging to the cell nucleus from which centroid
coordinates are calculated. To calculate the accuracy of the
nuclear area segmentation, we computed the per-object
metrics from the residual U-Net and compared them to
the manually labelled ground truth (Figure 4B). We report
that out of 616 ground truth nuclei in a nearly confluent FoV
(Figure 4A), 574 nuclei had at least 50% Intersection over
Union (IoU, Supplementary Equation S2), yielding a Jaccard
Index (J, Supplementary Equation S3) of 0.933, meaning
that 93% of all objects in the FoV were correctly detected.
Across the total of 869 cells detected in all assessed FoVs, we
achieved an IoU equal to 0.802 and a J of 0.975, while
retaining a pixel identity (PI, Supplementary Equation
S4) at 0.874 (Supplementary Materials).

To assess the cell state classification performance, we
calculated a harmonic mean between the precision and recall
(F1-score, Supplementary Equation S5) for each class to be
distinguished by our model classifier (Figure 5A). To do this, we
plotted a confusion matrix of >2,600 single cell image patches and
compared the classifier predictions with human annotations
(Figure 5B). Our optional cell state labelling step yields an
overall accuracy of >97% with all state labels classified with
>96% F1-scores (Figure 5A).

3.1.2 Trajectory Following Accuracy
Next, we calculated the multi-object tracking accuracy (MOTA,
Supplementary Equation S6) which scores the tracker’s ability to
retain cell’s identity and trajectory over longer periods of time.
The MOTA score intrinsically penalises the tracking pipeline for
static (falsely positive and falsely negative detections) as well as
dynamic (identity switches) errors, which often strongly rely on
the detection algorithm performance.

We used short movie sequences of up to 20 successive frames
from a FoV at three different cell density levels. Observing 2,161
individual cell objects over time, our tracking pipeline performed
with 97.66% accuracy of between-frames associations. Identical
dataset assessed by TrackMate resulted in a comparable score of
97.54%, while tracking by TrackPy yielded 73.77% accuracy.
These results confirm that tracklet linking and object
associations between subsequent frames are performed with
comparably high fidelity across both tracking tools designed
specifically for cell tracking.

However, because the MOTA score is not designed to detect
track splitting events, we sought alternative metrics to assess the
fidelity of cell division history recording. Although multiple
approaches exist to cross-compare tracking performances
(Ulman et al., 2017), few of those look specifically at the
assessment of branching events of parent tracks and correct
assignment of generational depth to the resulting children
tracks. Below, we describe the adopted as well as newly
defined metrics for measuring the fidelity of track splitting
events. Although we continued with using TrackMate for

FIGURE 5 | Single-cell classification performance. (A) Representative predictions from the trained network for the given images patches. Depicted is an image
patch (fluorescence channel only) centred at the cell nucleus representative of the class label with a per-class F1-score calculated on 2,613 single-cell images in the
testing dataset. (B) Confusion matrix for cell state labelling of the testing patch dataset (>500 images per class) of cell image crops. Per-class image patch counts and
their normalised counts are depicted. Comparison of human annotations vs. the classifier-generated annotations are shown.
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additional comparisons on our validation dataset
(Supplementary Materials), it should be noted that further
analysis by TrackPy was excluded as this tracking algorithm
currently lacks the capacity to follow cases of track branching,
typical for dividing cells.

3.1.3 Lineage Tree Reconstruction Fidelity
Reconstructing lineages represents a complex challenge and a
common source of tracking errors in multigenerational cell
observations. From our track validation dataset, we
automatically reconstructed 154 lineage trees which
contained at least one mitotic event. These trees were
initiated in three instances: 1) through their initial presence
in the FoV at the beginning of a movie, 2) as a consequence of
migration into the FoV, or 3) upon breakage of an existing
branch from its tree.

We manually reconstructed the ground truth lineage trees
of 24 randomly selected founder cells, the subsequent progeny
of which spanned the entire movie duration and accounted for
1,032 cells including tree founders (Supplementary
Materials). This sample accounted for more than 1/3 of
initially seeded cells and served as validation dataset for
comparison of the ground truth observations to their
respective automatically reconstructed lineages. We
subjected these trees to multiple lineage fidelity metrics for
benchmarking to robustly assess the cell tracking performance
with and without manual curation.

For ease of lineage tree visualisation, we provide a convenient
visualisation for track survival over time (Supplementary Movie
S1), revealing trajectories that can be tracked all the way to the

movie start via their ancestors, as an easy way to visually
demonstrate the tracking fidelity and identify errors.

3.1.4 Cell Division Correctness
To measure the correctness of parent-child relationships, we
calculated the mitotic branching correctness score (MBC,
Supplementary Equation S7; Figure 6A and Supplementary
Materials) for the detection of mitosis. Here, cell divisions are
correctly identified when computer-identified mitoses can be
mapped to human-annotated ground truth lineage trees (Bise
et al., 2011). Additionally, we introduced a penalty for excessive
branching assignment where cells were only scored as “hits”when
they were assigned the correct generational depth relative to their
founder cell. Similarly, we defined a leaf retrieval score (LRS,
Supplementary Equation S8; Figure 6A and Supplementary
Materials), which computes the number of all terminal cells in
the respective lineage tree appearing in the last frame of the
movie. To account for the fidelity of generational depth, in the
penalty-applied MBC and LRS calculations, the progeny were
considered as correct only when the generational depth relative to
the tree root matched the ground truth (Supplementary
Materials).

Keeping record of cell division history over the entire
duration of the live-cell imaging is necessary to elucidate
whether cells with shorter cell cycles have the capacity to
dominate the population and competitively outgrow the
slowly dividing cells over time. Our software correctly
records the cell division history as reflected by both MBC
and LRS scores, >86% with and >87% without penalty for MBC
and >78% with and >84% without penalisation for LRS

FIGURE 6 | Summary of Benchmarking Metrics to Evaluate the Tracking Performance. (A) Summary of cell division-specific metrics for tracker benchmarking on
identical number of ground truth events. (B) Visual overview of automated tree reconstruction with additional manual tree re-assembly. Highlighted are the regions of
ground truth trees (black thick background) which were correctly recapitulated by btrack (overlaid golden lineage). Upon branch breakage, two types of assembly actions
were applied: subtree attachment (cyan), where the branch underwent further splitting, or branch attachment (pink), where the track did not further branch. (C)
Summary of additional benchmarking metrics to score the performance of btrack approach with respect to single-cell trajectory following and lineage tree reconstruction
in naïve btrack outputs and expert annotator re-assembled trees.
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(Figure 6A). We report that both the MBC and LRS scores
were considerably higher for our btrack algorithm with
between ∼ 2-fold and 5.5-fold better performance than our
benchmarking standard using both penalised and penalty-free
variants (Figure 6A), respectively.

These results highlight the utility of the extra labelling
information for cell tracking, as well as our tracker’s
sophistication upon building complex predictions based on
position and state of each cell. This is in contrast to
approaches which employ hard distance thresholding to
account for splitting events, or which minimise link distances
by connecting cells with their closest neighbour in the subsequent
frames. Such algorithms are by default unable to discriminate
between false cell divisions, where two independent cells migrate
into close proximity below set threshold, and true mitotic events
which are accompanied by characteristic morphological changes
in nucleic acid organisation in the parent dividing cells as well as
progeny cells. Accounting for the “metaphase” and “anaphase”
labels in our approach leads to minimising of the occurrence of
parent-to-child track fusions (Supplementary Materials). Our
scoring system therefore manifests the importance of our
optional cell state classification step, which generates
additional information for correct division hypotheses creation
utilised by the global optimisation engine on the tracking data.

3.1.5 Manual Tree Re-Assembly
To compute further metrics for assessing btrack performance in
multi-generational lineage reconstruction, we performed manual
tree re-assemblies of our automated btrack output data, where
necessary (Figure 6B, Supplementary Materials). This allowed
us to perform detailed error analysis by aligning re-assembled
trees to the ground truth observations and evaluate the overall
extent of the need for human lineage curations, discussed next.

Branch breakages occur due to incorrect cell segmentation
(e.g. due to low fluorescence signal), or through tracking errors.
However, these breakage errors were very rare (one breakage per
∼6,000 correctly linked frame observations, Figure 6C). When
the lost cell is re-detected, it becomes the founder of a newly
initialised track. This track now becomes the root of a new tree,
which can continue to further grow and divide as a “subtree” of
the true tree or exist without further splitting as “branch”
(Figure 6B).

3.1.6 Tracking Effectiveness
Finally, we computed metrics reflecting how well the human-
annotated cell trajectories are followed by the reconstructed
lineage trees (recall; Supplementary Equation S9) and vice
versa (precision; Supplementary Equation S10) (Bise et al.,
2011).

Without any manual curation, our btrack algorithm
faithfully follows >90% of the human-annotated cell
trajectories (recall) with over >99% of observations in
agreement with the ground truth trees (precision)
(Figure 6C). Taking further advantage of our large dataset,
we randomly sampled an additional 302 unseen, automatically
reconstructed trees from multiple movies. For each tree, we
visually scored them as sufficient if they had >90% recall of the

ground truth tree as determined by an expert annotator, which
added up to 201 out of 370 reconstructed trees overall.

To quantify the remainder of the trees containing one or more
errors, we returned to our fully annotated validation dataset to
manually re-assemble the broken trees. We needed to perform
only eight “subtree” re-assembly actions to the original trees
(Supplementary Materials), which added 11,505 frame
observations, and a single subtree swap (where part of the tree
was falsely associated with another tree). Although the accuracy
scores were further enhanced to >99% recall by additional human
annotation via tree re-assembly (Figure 6B), we report that our
workflow achieves competitive performance on long-term live-
cell imaging data even in fully unsupervised manner (Figure 6C).
This is essential to investigate the existence of inheritable cell
cycle characteristics and their regulation using large datasets.

3.2 Single Cell Cycling Duration Analysis
Having validated the lineage tree reconstructions, we pooled the
tracking data from the entire dataset of 44 time-lapse movies.
First, we removed those cells which were partially resolved i.e.
founding parents (root cells) or progeny (leaf cells) in the
reconstructed lineages. This yielded 22,519 cells, organised into
lineage trees spanning up to eight generations. Next, we
calculated the per-cell inter-mitotic time as the time between
the first appearance of separated chromosomes during mitosis
(labelled as anaphase by the CNN; due to the temporal sampling
this may be before cytokinesis occurs) to the frame preceding the
next anaphase (Figure 7A).

Detailed inspection of the nuclear areas and CNN labels lead
us to exclude certain cells from our distribution. We found that
the tracks with inter-mitotic time below 7 h had high incidence of
start with a non-anaphase label, did not end with pro-(meta)
phase label, or a combination of both. This observation suggested
that these short tracks represent fragments of cell trajectories
where branch breakages occurred, rather than being
representative of ultra-fast cycling cells. Visual observation of
the nuclear growth (increase of cell nucleus segmentation mask
area over time) indicated that tracks with cycling time over 42 h
often captured track instances where a parent cell (undergoing
mitosis) was falsely linked to one of the arising children cells,
most likely due to imperfection in the segmentation step.

3.2.1 Heterogeneity in Cell Cycling Durations
To avoid possible incorporation of prematurely terminated
tracks, concatenated parent-to-child tracks or other tracking
errors, we filtered our pooled dataset to only consider cells
with cycling lengths between and including 7 and 42 h for
further analysis (Figure 7B). Our final dataset consisted of
20,074 cells with known lineage over up to eight generations,
representing at least two orders of magnitude greater numbers
than in previous studies (Puliafito et al., 2012). Importantly, the
whole process to filter the relevant cells, calculate their division
times and pool the single-cell information across 44 movies took
less than a minute to produce, illustrating the utility of our
tracking pipeline for large data analyses.

The pooled dataset shows a positively skewed normal
distribution of cell cycle durations (Figure 7B). This
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distribution confirms the presence of division time heterogeneity
at very large population numbers, while standing in good
agreement with previously published work (Puliafito et al.,
2012; Bove et al., 2017). We also confirmed that cell cycle
length was not correlated with the time at which a cell was
born for the first 60 h of time-lapse imaging (Supplementary
Materials).

We used the population distribution to categorise individual
cells as fast, medium and slow dividers based on whether their
cycling duration was below (<15.5 h), within or above (>20.3 h)
half a standard deviation away from the sample mean

(Figure 7B). This definition yields a subpopulation of fast
dividing cells (n � 6,719 cells; 33.5% of the population),
medium dividers (n � 8,500 cells; 42.3%) and slow dividers
(n � 4,855 cells; 24.2%).

We extended this categorisation to describe individual cell
families and contrasted three lineages extracted from our
representative movie, with the trees observed from the movie
start frame. Mapping the number of progeny originating from
these three founder cells (Figure 7C, Supplementary Movie S2),
we confirmed our large-scale observation of broad cycling
heterogeneity spectrum. Based on the average cell cycle length

FIGURE 7 |Cell cycling heterogeneity and colony expansion capacity within single cell clones. (A)Cell cycle duration, defined here as the time elapsed between two
subsequent anaphases, from themitosis of reference cell’s parent (first image patch) to division into two children cells (last image patch). Scale bar � 5 µm. (B)Calculated
cell cycle duration distribution over the pooled MDCK live-cell imaging dataset from 5,325 unique lineage trees. Error bars (colored vertical bars) show one and two
standard deviations around the mean (blue circle) of tracked cells for generational depths spanning 1 to 6 (generations #0 and #7 were excluded as those
corresponded to the tree root of leaf cells). Cell categorisation into fast (green), medium (blue) and slow (orange) dividers is depicted as below, within or above 1/2
standard deviation away from themean (dashed black vertical lines), respectively. Percentages of single cells belonging to each category are stated. (C) Sequence of four
colourised binary masks with segmented individual cells (grey) on background (black), highlighting cell proliferation from the start (top left) to the end (bottom right) of a
representative movie. Time in hh:mm is indicated in the bottom left corner. Founder cells and progeny corresponding to slow (orange), medium (blue) and fast (green)
dividers are highlighted. Scale bar � 50 µm. (D) 2D representations of typical lineage trees captured from data, showing slow (orange), medium (blue) and fast (green)
dividing cells. Computer-generated tracks (colour) are overlaid on human-reconstructed ground truth trajectories (black). Individual recall and precision scores are shown
for each lineage tree, with vertical branch lengths corresponding to intermitotic time (cell cycle duration) elapsed between the first post-division frame (anaphase) to the
last frame prior to the next cell division (metaphase). Trees illustrate an error-free tracking (orange tree) and two types of tracking errors, i.e. falsely identified mitosis (blue
tree) and missed mitotic event (green tree).
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of all fully-resolved cells within the tree, we classified the cell
families as slow, medium and fast cyclers. Visual inspection of
their lineage tree representations reveals that variability in
intermitotic durations amongst single cells directly influences
the cell capacity to divide and raises the potential for fast cycling
cells to eventually dominate the population by overgrowing the
slower-cycling clones (Figures 7C,D), as suggested previously
(Mura et al., 2019).

Indeed, taking trees corresponding to three different root cells,
we find that at the end of the movie, the slow dividing family
results in five leaf cells, the medium dividing family in 15 cells and
the fast dividing family in 31 leaf cells, over the same period of
80 h. These correspond to mean intermitotic durations of 20.6 ±
6.5 h (n � 3 cells), 16.9 ± 4.5 h (n � 14 cells), and 14.0 ± 1.9 h (n �
29 cells) for each tree, respectively (Figure 7D). Our findings
suggest a high degree of intrinsic cell cycling heterogeneity
present in the wild-type MDCK cell population. This cycle-
time heterogeneity appears to be maintained within cell lineages.

3.2.2 Cell Cycle Duration Correlations in Deep
Lineages
To study whether the observed cell cycle duration could represent an
inheritable characteristic, we extracted 20 different types of cell pair
relatedness from up to 8-generation deep lineages (Figure 8A). It was
previously observed (Sandler et al., 2015) that cell cycle durations
within lineages show poor correlation when observing the directly
ancestral, inter-generational cell pairs (mother-daughter and
grandmother-granddaughter), but remain highly correlated when
examining intra-generational relationships (sister and cousin cells)
(Sandler et al., 2015; Chakrabarti et al., 2018; Kuchen et al., 2020).
However, due to lack of deep datasets, the analysis has traditionally

focused on immediate cell relatives, including mother, grandmother,
sister and first cousin relationships (Sandler et al., 2015; Chakrabarti
et al., 2018) and less frequently onmore remote familymembers, such
as great-grandmothers or second cousins (Kuchen et al., 2020).

Enabled by our automated approach, we calculated the correlation
between cell cycle duration in lineages captured for >8 generational
depths, extending previous studies (Sandler et al., 2015; Chakrabarti
et al., 2018; Kuchen et al., 2020) using the enhanced depth, breadth
and number (5,032 trees) of automatically reconstructed lineages in
our tree pool. If the cell cycle duration is not controlled in a heritable
fashion, we would expect poor cycling correlations across inter-
generational (generationally unequal) as well as intra-generational
(generationally equal) family relationships (Figure 8A).

Our analysis revealed moderate correlations in immediate
inter-generational relationships (Pearson and Spearman rank
coefficients of 0.43 and 0.51, respectively between 11,696
reference and mother cell pairs), which rapidly decreased over
2–3 rounds of division (Figure 8B). Such diminishing ancestral
correlations would be strongly indicative of cell cycle duration
inheritance being a stochastic event, as previously speculated
(Sandler et al., 2015). Alternatively, this behaviour could also
indicate that the accumulation of noise across inter-generational
lineage relationships represents a very rapid process.

Our analysis confirmed a previously observed trend of highly
synchronised cell cycling durations in sister cell pairs (Pearson
and Spearman rank coefficients of 0.65 and 0.71, respectively
between 14,380 sister cells examined). In addition, our analysis
revealed that intra-generational correlations remained above 0.5
in 1st and 2nd cousins. Over five generations, intragenerational
correlations became progressively less marked but remained
consistently larger than inter-generational correlations.

FIGURE 8 | Large-scale multigenerational analysis of single-cell cycling durations. (A) Illustrative lineage tree showing 20 types of family relationships of a reference
cell (bold) to its lineage relatives determined using our automated approach. The tree captures extended kinships on ancestral (inter-generational; generationally unequal)
to fourth cousin span (intra-generational; generationally equal). Strength of the branch colour shading illustrates the generational distance to nearest common ancestor
between family member and reference cell. (B)Cycling length correlations in cell lineages. intra-generational (red) correlations appear to be consistently higher than
the inter-generational (cyan) correlations in directly ancestral branches. Pearson (dotted) and Spearman (dashed) rank correlation coefficients with 95% confidence
interval (CI) are shown for selected relationship pairs as in the lineage tree schematic, categorised according to the generational distance to first common ancestor.

Frontiers in Computer Science | www.frontiersin.org October 2021 | Volume 3 | Article 73455912

Ulicna et al. Bayesian Single-Cell Tracking

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Our results derived from high-replicate lineage data are in good
agreement with previously published studies, using manually
annotated data (Sandler et al., 2015; Chakrabarti et al., 2018;
Kuchen et al., 2020). Overall, the data provide additional evidence
that cycling length is correlated across longer-range relationships (4
and 5 generations to nearest common ancestor) than previously
examined. These long-term correlations may suggest heritability in
cell cycle durations, as proposed by others (Mura et al., 2019).
However, it is possible that, as culture conditions evolve with time
(nutrients become depleted and cells more confluent), the highly
correlated behaviour between same generation family members
represents a consequence of environmental synchronisation.
Further experiments are needed to discriminate between these
hypotheses.

4 DISCUSSION

We developed an easy-to-use, open-source Python package to enable
rapid and accurate reconstruction of multi-generational lineage trees
from large datasets without time-consuming manual curation. We
show that the addition of cell state information into a probabilistic
single cell tracking framework improves multi-generational lineage
tree reconstruction over other approaches. Our software enables users
to characterise population-level relationships with single-cell
resolution from time-lapse microscopy data in an unsupervised
manner. As a demonstration of our fully automated approach, we
extend the cell cycling analysis to family relationships which could not
be previously examined in (semi-) manual annotation-dependent
studies (Sandler et al., 2015; Chakrabarti et al., 2018; Kuchen et al.,
2020) due to lack of experimental data. We envisage our tracking
software could further be applied to analysis of (cancer) stem cell
identification in tissues, detection of differentiation and/or
reprogramming success in populations, studying of cell cycle
control mechanisms in cell lineages and dynamic high-throughput
screens of various pharmaceutical compounds with live-cell imaging.
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