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Abstract

I present an approach to static equilibrium modeling with non-

rational expectations, which is based on enriching players’typology.

A player is characterized by his “data access”, consisting of: (i) “news

access”, which corresponds to a conventional signal in the Harsanyi

model, and (ii) “archival access”, a novel component representing the

player’s piecemeal knowledge of steady-state correlations. Drawing on

prior literature on correlation neglect and coarse reasoning, I assume

the player extrapolates a well-specified probabilistic belief from his

“archival data”according to the maximum-entropy criterion. I show

with a series of examples how this formalism extends our ability to

represent and analyze strategic interactions without rational expecta-

tions.
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1 Introduction

Conventional game theory distinguishes between two kinds of knowledge that

players in a static game may have. The first kind concerns the realization

of exogenous variables (e.g., players’preferences). The second kind concerns

the joint statistical behavior of exogenous and endogenous variables (e.g.,

how players’bids in an auction vary with their preferences). To use a jour-

nalistic metaphor, knowledge of the first kind is akin to a newsflash about an

economic indicator, whereas the second kind is like the data that a reporter

collects when he digs the newspaper’s archives for evidence about what this

indicator signified in past episodes. Accordingly, I refer to the two kinds of

knowledge as news information and archival information.

The model of Bayesian games, as conventionally practiced by economists,

offers a rich description of players’news information, while leaving the de-

scription of players’ archival information to the solution concept. “One-

shot” solution concepts like rationalizability implicitly assume that players

lack archival information about endogenous variables. At the other extreme,

Nash equilibrium presumes that players have complete archival information

and therefore know the steady-state joint distribution of all variables; in other

words, they have “rational expectations.”

The literature on equilibrium behavior with non-rational expectations

(Osborne and Rubinstein (1998), Jehiel (2005), Jehiel and Koessler (2008),

Esponda (2008), Esponda and Pouzo (2016)) has proposed solution concepts

that retain the steady-state approach of Nash equilibrium, while replacing

complete archival information with a notion of limited feedback about the

steady-state distribution and a notion of how players extrapolate a belief

from their feedback. I provide a detailed literature review in Section 6.

At this stage, it suffi ces to say that virtually all prior proposals assume

that players’feedback limitations are fixed. And neither provides a model

of players’imperfect knowledge (of either kind) regarding their opponents’

archival information.
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Yet, it is easy to think of real-life situations that call for such a model.

A market agent’s “type”may be defined in terms of both kinds of knowl-

edge, which can be correlated - an agent with better access to reliable news

sources is also likely to have better access to archival information. We can

also talk meaningfully about one player’s news information regarding another

player’s archival information. To use a military-intelligence example, suppose

Army 1 hears (from a dubious source) that Army 2 has just gained access

to archival records of Army 1’s force deployment in various weather condi-

tions. Alternatively, one player may have partial archival information about

another player’s archival access - e.g., with some probability army 1 obtains

a computer file documenting Army 2’s archival access in various situations.

In this paper I present a new typology of non-rational expectations in

static strategic interactions, which combines news and archival information.

For expositional simplicity, I restrict attention to two-player interactions. A

state of the world is described by the realization of a collection of variables.

There is an objective distribution p over states, interpreted as a steady-state

distribution. Importantly, the description of a state also includes the realiza-

tion of endogenous variables (players’actions, final allocations), such that p

has both exogenous and endogenous components.1

A player is characterized by his “data access”, which has two components.

The player’s “news access”specifies the exogenous variables whose realiza-

tion he learns before taking his action. The realization of these variables

constitutes the player’s “news information”. This corresponds to the usual

notion of a Harsanyi signal, formulated in a slightly unusual manner. The

novelty lies in the second component, namely the player’s “archival access”,

which is defined as a collection of subsets of variables. This means that the

player gets to learn the marginal of p over each of these subsets of variables.

Thus, rather than learning the entire joint distribution p (as in the case of

Nash equilibrium), the player has piecemeal knowledge of p in the form of

1This idea is borrowed from Aumann (1987) but plays a very different role.
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certain marginals over subsets of variables. These marginals constitute the

player’s “archival information”. I assume that the player’s payoff function is

always measurable with respect to the variables in his archival data.

In this formulation of archival information, I have in mind situations

in which the player lacks an understanding of the rules of the game. He

interacts once, after getting statistical feedback about past interactions of

other agents. The distribution p records the frequencies of realizations of all

relevant variables in these past interactions. The player’s understanding of

long-run statistical regularities - and therefore his perception of the mapping

from actions to payoffs - is based purely on the learning feedback given by

his archival information. This is in the spirit of concepts like Berk-Nash or

Analogy-Based Expectations Equilibrium (see Section 6).

The following table visualizes the notion of random archival access in

strategic situations. Suppose player 1 can receive statistical data about the

joint steady-state distribution of three variables. There are three datasets,

each involving a different combination of variables. E.g., dataset I describes

the joint distribution of the state of Nature and player 2’s action (more

precisely, the actions of agents who assumed the role of player 2 in past in-

teractions). Dataset II describes the joint distribution of the state of Nature

and player 2’s archival access (more precisely, the access enjoyed by agents

who assumed the role of player 2 in past interactions). Player 1’s archival

access is random: he may get access to different combinations of the three

datasets. When he gets access to multiple datasets, his task is to extrapolate

a belief from his different pieces of data; he has no other basis for forming

his beliefs.

State of Nature Player 2’s archival access Player 2’s action

Dataset I X X
Dataset II X X
Dataset III X X
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One of the variables on which player 1 can get data is the archival access

of player 2, which is a random variable as well. This captures one of the

“military intelligence”examples mentioned above: it gives player 1 archival

data about how the archival access of agents who assume player 2’s role varies

with the state of Nature. Although this notion of “archival information about

another player’s archival access”connotes the kind of introspective high-order

beliefs we sometimes encounter in the theory of Bayesian games, players in

my framework do not use introspection to form beliefs: they rely entirely on

their partial statistical data.

The player in my framework forms his beliefs in two stages. First, he

extrapolates a subjective probabilistic belief from his archival information,

thus potentially distorting p. There are many extrapolation rules one could

employ. Yet, a recurring theme in the literature is that players apply some

notion of parsimony when thinking about steady-state correlations - i.e., they

do not believe in correlations for which they lack evidence. Such “correlation

neglect” has been studied theoretically (e.g., Levy and Razin (2015)) and

experimentally (e.g., Eyster and Weizsacker (2016), Enke and Zimmermann

(2017).2 To capture this motive, I assume that the player’s belief is the

distribution (over variables in his archive) that maximizes Shannon entropy,

subject to being consistent with the marginals he learns. This subsumes

several existing notions of non-rational expectations as special cases.

The second stage of the belief-formation procedure is conventional. The

player conditions his first-stage belief on his news information via Bayes’rule

- just as he would in the standard model - and thus forms a subjective map-

ping from actions to payoff-relevant outcomes. While superficially standard,

it produces non-standard effects (such as play of dominated actions) when

combined with the first stage. Equilibrium is also defined conventionally,

in the familiar manner of trembling-hand perfection: If an action fails to

2Correlation neglect has been mentioned as a culprit in professional ana-
lysts’ failure to predict political and economic events (see Hellwig (2008) and
https://fivethirtyeight.com/features/the-real-story-of-2016).
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maximize a player’s subjective expected utility given his news information,

it is played with vanishing probability. Trembles are interpreted as blind

experimentation, and they ensure that the procedure’s second stage does not

involve conditioning on zero-probability events.

My task in this paper is to demonstrate how this framework expands

our ability to represent and analyze economic situations populated by agents

with random data access.

2 AMotivating Example: “Navigation Apps”

in a Congestion Game

I present an example that gives a foretaste of the formalism, before describing

it in full generality. Consider a congestion situation in which multiple car

drivers simultaneously choose driving routes from a fixed starting point to

a fixed destination. Each driver’s objective is to minimize expected driving

time. Because of negative congestion externalities, the driving time in a given

route segment is weakly increasing in the number of drivers who take it.

The standard solution concept for describing drivers’behavior is Nash

equilibrium. However, this concept presumes that drivers know the equilib-

rium mapping from their choice of route to the expected total driving time.

Instead, let us assume that drivers vary in the quality of their driving-time

predictions. Some drivers are equipped with a “navigation app”that bases

its predictions on fine statistical data and therefore adjusts them to current

conditions (which may include weather, timing, construction works, etc.).

Other drivers lack a navigation app; their predictions are based on coarser

statistical data. Moreover, the composition of the two types in the popula-

tion of drivers can vary with external conditions. The data-access language

enables us to formalize this situation: whether a driver is equipped with the

app effectively defines his archival access.

The following congestion game is a simple instance of the well-known
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Braess Paradox (Braess (1968)), taken from Osborne (2004, pp. 34-35)).

The following directed graph provides a template for the game:

There are two drivers, denoted 1 and 2. They begin their drive simulta-

neously at the start node and must end it at the finish node. Each directed

link represents a route segment, and the number written near it indicates the

travel time in this segment, where t is the number of drivers who take it and

c ∈ (2, 2.5) is a constant. Each driver has three strategies: (A) go to A and

from there to finish; (B) go to B and from there directly to finish; (BA)

go to B, then to A and then to finish. The total travel time for driver i

is denoted zi. The realization of (z1, z2) is a function of the players’action

profile (a1, a2), as given by the following bi-matrix:

a1\a2 A B BA

A c+ 2, c+ 2 c+ 1, c+ 1 c+ 2, 3

B c+ 1, c+ 1 c+ 2, c+ 2 c+ 2, 3

BA 3, c+ 2 3, c+ 2 4, 4

(1)

Driver i’s payoff is −zi.
The action BA is strictly dominant. However, (BA,BA) is Pareto-

dominated by the pairs (A,B) and (B,A). Furthermore, if the segment
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B → A were blocked and the strategy BA thus became infeasible, (A,B)

and (B,A) would be the Nash equilibria in the reduced 2× 2 game. This is

the Braess Paradox.

I now enrich this interaction with random archival access. I use p to

denote an objective steady-state distribution over all relevant variables (to

be introduced as I go along). Let θ ∈ {0, 1} be a state of Nature. The two
states are equally likely. Players’archival access is a deterministic function

of θ. When θ = 1, each player i receives archival data that enables him

to learn the objective joint distribution (p(θ, ai, zi)). When θ = 0, each

player i receives archival data that only enables him to learn the objective

joint distribution (p(ai, zi)). Note that I use the same symbol p to describe

any marginal distribution that is induced by the fully defined steady-state

distribution. This abuse of notation will serve me throughout the paper.

I use the notations ri = {{θ, ai, zi}} and ri = {{ai, zi}} to describe these
realizations of player i’s archival access. The boldface notation enables me

to distinguish between a variable and its label: the notation x represents the

label of the variable x.

The interpretation is as follows. When θ = 1, players have a navigation

app that provides fine archival data and thus enables them to predict the

total driving time in each route as a function of θ. When θ = 0, players

lack access to the app and therefore have coarse archival data, which only

enables them to learn the average driving time in each route, aggregating

over θ. This captures one of the modeling framework’s features described

in the Introduction - namely, the possibility that players lack archival data

about a relevant variable. Since the variable in question determines players’

archival access, the example illustrates another feature: the possibility that

players have partial archival access to variables that define other players’

archival access. Section 4 will examine more elaborate instances (they will

also involve the aspect of maximum-entropy extrapolation, which is missing

from the current example).
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As to players’news access, assume it is constant: each driver is always

informed of the realized state of Nature and his own characteristics. The

list of relevant variables is thus θ, r1, r2, a1, a2, z1, z2, and p is interpreted as

a steady-state joint distribution over these variables.

Turning to players’ belief formation, the key assumption here is that

players only form beliefs over variables on which they have archival data.

Thus, when ri = {{θ, ai, zi}}, driver i’s first-stage, unconditional belief is
(p(θ, ai, zi)); and his second-stage, conditional belief over payoff-relevant out-

comes given his news information and his action is (p(zi | θ, ai)). When
ri = {{ai, zi}}, driver i’s first-stage belief is (p(ai, zi)) and his second-stage

belief is (p(zi | ai)). Since the driver lacks archival access to θ, he is unable
to condition on it.3

Player i’s strategy is given by the conditional distribution (p(ai | θ)).
The strategy profile constitutes an ε-equilibrium if, whenever p(ai | θ) > ε,

ai maximizes player i’s expected payoff with respect to his subjective belief

given θ. An equilibrium is the limit of a sequence of ε-equilibria with ε→ 0.

Claim 1 There exist equilibria that depart from the Nash-equilibrium bench-
mark.

In fact, there are exactly two such equilibria. Both are symmetric, and

in each of them, the drivers’strategy takes the following form: choose BA

when θ = 1, and play A and B with some probability α each when θ = 0.

Since this is not a fully mixed strategy, we need to allow for trembles.

Accordingly, suppose each driver follows this strategy with near certainty,

and mixes uniformly over all three actions with the vanishing remaining

probability. For brevity, I derive one of these two equilibria in detail and

merely state the other.

3Since the driver never has archival access to ri in this example, he is unable to condition
on it. However, it can be shown that this distinction is moot in this example.
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Consider the realization θ = 1. In this case, driver i’s subjective condi-

tional belief over zi is (p(zi | θ, ai)). Since this is the correct distribution over
zi given θ, the driver will choose the dominant action BA, which is consistent

with our guess. Now consider the realization θ = 0. In this case, driver i’s

subjective conditional belief over zi is (p(zi | ai)). Therefore, his subjective
conditional expectation of zi is

E(zi | ai) =
∑
θ

p(θ | ai)E(zi | θ, ai) =
∑
θ

p(θ | ai)

∑
aj

p(aj | θ) · zi(ai, aj)


where zi(a1, a2) is given by (1).

Let us calculate each term in this expression, focusing on i = 1 without

loss of generality. First,

E(z1 | θ = 1, a1 = A) = E(z1 | θ = 1, a1 = B) ≈ c+ 2

E(z1 | θ = 1, a1 = BA) ≈ 4

because by assumption, player 2 chooses BA with near certainty when θ = 1.

The ≈ sign is due to the trembles.
Second,

E(z1 | θ = 0, a1 = A) = E(z1 | θ = 0, a1 = B) ≈ α · (c+ 1) + (1− α) · (c+ 2)

E(z1 | θ = 0, a1 = BA) ≈ 2α · 3 + (1− 2α) · 4

because by assumption, player 2 approximately plays A and B with proba-

bility α each and BA with probability 1− 2α when θ = 0.

Finally, given the drivers’presumed strategy and the prior distribution
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over θ,

p(θ = 0 | a1 = A) = p(θ = 0 | a1 = B) ≈ 1

p(θ = 0 | a1 = BA) ≈
1
2
· (1− 2α)

1
2
· (1− 2α) + 1

2
· 1

Plugging these expressions into the formula for E(zi | ai), we obtain

E(z1 | a1 = A) = E(z1 | a1 = B) ≈ c+ 2− α

E(z1 | a1 = BA) ≈ 4− α(1− 2α)

1− α

It follows that for every c ∈ (2, 2.5), we can sustain an equilibrium in

which α = 1
2
- namely, drivers never take the action BA when θ = 0. This

claim holds because c < 2.5 implies

c+ 2− 1

2
< 4−

1
2
· (1− 2 · 1

2
)

1− 1
2

Note that when θ = 0, driver’s objective expected driving time is c+ 1.5 < 4

- i.e., the Braess paradox is alleviated.

The intuition for this equilibrium is that when driver 1 lacks a naviga-

tion app (and therefore has limited archival access), he measures the correct

correlation between the route he takes and total driving time, but he fails to

condition this correlation on the state of Nature (because he lacks archival

data about it). His calculation is tantamount to falsely interpreting the cor-

relation between a1 and z1 as a pure causal effect of the former on the latter.

In reality, this correlation is partly due to confounding by θ. When θ = 0, the

driver effectively ignores this confounder. As a result, he may end up believ-

ing that if he switches from BA to A or B, this will have a beneficial effect on

his driving time. Thus, the underlying reason for the false-causation effect is

that the player sometimes lacks archival data about a variable that confounds

the relation between his action and another payoff-relevant variable.
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Another noteworthy feature of this example is that the variation in play-

ers’actions is entirely due to the fluctuations in their data access. Because

these fluctuations are correlated, the actions end up being correlated as well,

yet one player type misconstrues this correlation. Of course, correlated ac-

tions could arise from other sources, e.g., correlated payoff shocks. What is

special about the present example is that there is no payoff uncertainty; the

source of correlated actions is the correlated randomness of players’knowl-

edge of correlations.4

In the second symmetric equilibrium of the above-described form, drivers

mix over all three actions when θ = 0, such that E(z1 | a1) is the same for

all a1. The solution to this indifference condition is

α = 1− c

2
+

1

2

√
c2 − 4

In addition, the Nash-equilibrium outcome can also be sustained in equi-

librium, with an appropriate choice of trembles. It can be shown that no

other equilibria exist. Thus, while there is a unique Nash equilibrium in the

original game, its archival-data extension gives rise to multiple equilibria.

3 The Modeling Framework

Preliminaries

I focus on two-agent interactions, purely for expositional simplicity. Let X

be a set of external states. For each player i = 1, 2, let Di be a set of pairs

di = (ni, ri) representing the player’s data access, where ni and ri stand for

his news access and archival access (to be defined explicitly below). Let Ai
be the set of player i’s feasible actions, and let Z be a set of outcomes. The

4In this example, θ has no direct payoff relevance, and it pins down players’archival
access. These extreme assumptions serve the example’s illustrative role. In a more realistic
specification, θ would affect driving time, and the fraction of drivers with an app would
vary more modestly with θ.
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sets X and Z can be product sets, such that x ∈ X or z ∈ Z represent

realizations of multiple variables. All sets are finite, for convenience.

I refer to Ω = X × D1 × D2 × A1 × A2 × Z as the set of states of the

world. Enumerate the variables that constitute states, such that ω ∈ Ω

can be written as ω = (ω1, ..., ωL). For every B ⊂ {1, ..., L}, denote ωB =

(ωl)l∈B and ΩB = ×l∈BΩl. A state of the world resolves all uncertainty,

covering exogenous variables (x, d1, d2) as well as endogenous ones (a1, a2, z).

In applications, some state components may be degenerate (and therefore

omittable). I refer to {1, ..., L} as the set of variable labels, and often use
the boldface notation y to indicate the label (or labels) of the variable (or

collection of variables) y.

Impose the following structure on the notion of data access:

• ni ⊆ {x,d1,d2}. That is, player i’s news access ni is a subset of the set
of labels of x, d1, d2. It defines the exogenous variables whose realization

the player learns before taking an action. Assume further that di ⊆ ni

- i.e., the player is always informed of his own data access.5 I refer to

ωni (the realization of the variables to which player i has news access)

as player i’s news information.

• ri ⊆ 2{1,...,L}. Player i’s archival access ri is defined by a collection of

subsets of variables. As we will see below, the meaning of B ∈ ri is

that player i learns the objective (steady-state) distribution over ΩB.

Denote U(ri) = ∪B∈riB.

Endow each player i with a von-Neumann-Morgenstern (vNM) utility

function ui : Ω→ R. Assume that ui is measurable with respect to (ωU(ri), ai)

5This assumption is behaviorally meaningful, but I do not regard it as a critical feature
of the formalism. I introduce it mainly to simplify notation later on.
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for any possible realization of ri. That is, the player always has archival access

to variables that are necessary for defining his payoffs.6

Let µ ∈ ∆(X ×D1×D2) be an objective distribution over the exogenous

variables. Player i’s strategy given his news access ni is σi,ni : Ωni → ∆(Ai).

I refer to σi = (σi,ni)ni as player i’s strategy. As in standard simultaneous-

move games, players’ strategies are independent conditional on their news

information. Let h = (h(z | x, d1, d2, a1, a2)) be the outcome distribution

conditional on all other variables.

Define p ∈ ∆(Ω) as the joint distribution over states of the world induced

by these components - i.e., p = µ ◦ σ1 ◦ σ2 ◦ h. This distribution combines
exogenous components (µ, h) and endogenous ones (σ1, σ2). I refer to p as a

steady-state distribution. Unless indicated otherwise, p has full support. Let

pB denote the marginal of p on ΩB. In a convenient abuse of notation, I will

omit the superscript B when it is obvious from the context. For example,

p(x, a1, a2) is the marginal probability of (x, a1, a2) according to p.

The archival-access variable ri represents player i’s piecemeal knowledge

of p. Each B ∈ ri means that player i learns pB. I refer to the collection

(pB)B∈ri as player i’s archival information. When {1, ..., L} ∈ ri, player i

has complete archival information, as he simply learns p. In contrast, when

ri consists of strict subsets of {1, ..., L}, player i’s archival information is
incomplete.

Belief formation

To make a decision, player i forms a probabilistic belief based on his infor-

mation. In the standard model of Bayesian games, information is synony-

mous with news information, and the player forms his belief in a single step:

Bayesian updating of p conditional on his information. In the present model,

the player has two kinds of information, and so he forms his conditional prob-

6It is possible for player i’s archival access to take two possible values ri, r′i such
that U(ri) 6= U(r′i), and yet ui will be measurable with respect to both (ωU(ri), ai) and
(ωU(r′i), ai). The reason is that some variables may be redundant for pinning down the
player’s payoffs. Note also that ωU(ri) may already include ai.
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abilistic assessment in two stages, where each stage makes use of a different

kind of information:

Stage one involves maximum-entropy extrapolation from archival informa-

tion: The player forms the unconditional belief pri ∈ ∆(ΩU(ri)) that solves

max
q∈∆(ΩU(ri))

− ∑
y∈ΩU(ri)

q(y) ln(q(y))

 (2)

s.t. qB ≡ pB for every B ∈ ri

That is, the player’s unconditional belief over the variables about which he

has archival data maximizes Shannon entropy, subject to being consistent

with his archival information (i.e., the marginals his archival access enables

him to learn). The solution to the constrained maximization problem is

always unique.

Stage two involves conditioning on the player’s news information and his
action, according to conventional Bayesian updating. The player’s condi-

tional belief over ΩU(ri) is thus (pRi(ωU(ri) | ωni , ai)).7

Thus, each component of the player’s information is associated with a par-

ticular operation that he performs on the objective distribution p. The first

(second) stage involves extrapolation (conditioning); the player’s archival

(news) information determines what he extrapolates from (conditions on).

The procedure’s second stage utilizes the canonical rule of Bayesian up-

dating. By comparison, there is no “canonical” extrapolation rule for the

first stage. Nevertheless, there is a common intuition that extrapolating a

belief from partial data should follow some parsimony criterion. Maximum

entropy (which originates from statistical physics and has a rich tradition in

data analysis since Jaynes (1957)) offers one way to systematize this idea,

7When player i lacks archival access to some variable in (ωni , ai), we can safely remove
it from the list of conditioned variables.
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by formalizing the idea that the player forms a belief that has as little struc-

ture as possible subject to being consistent with observed correlations. We

will see later that the criterion subsumes a number of precedents from the

literature as special cases.

Equilibrium

Having defined players’beliefs as a function of their information, we are ready

to introduce the notion of equilibrium, which is a standard trembling-hand

perfection concept. The need for trembles arises because otherwise, players’

second-stage, conditional belief may involve conditioning on null events. The

trembles are conventionally interpreted as blind experimentation.

Definition 1 Fix ε > 0, as well as µ and h (the exogenous components of

p). A profile of full-support strategies (σ1, σ2) is an ε-equilibrium if for every

i = 1, 2 and every ni, ωni , ai for which σi,ni(ai | ωni) > ε,

ai ∈ arg max
a′i∈Ai

∑
y∈ΩU(ri)

pri(y | ωni , a′i)ui(y, a′i)

A profile of strategies (σ∗1, σ
∗
2) (which need not satisfy full support) is an

equilibrium if it is the limit of a sequence of ε-equilibria with ε→ 0.

Establishing existence of equilibrium is straightforward. Because pri is a

continuous function of p, the proof is essentially the same as in the case of

standard trembling-hand perfect equilibrium.

More on the interpretation of p and archival access

I interpret p as a representation of a long historical record of similar inter-

actions by many agents who assumed the players’roles. Each agent moves

once against this historical background.

I offer two concrete images for the notion of partial archival access. First,

the player can receive statistical data about p from multiple sources, each

recording a different collection of variables. Each of player i’s data sources
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corresponds to a distinct subset B ∈ ri. E.g., in a common-value auction,

one data source may describe how bidders’signals vary with the object’s true

value, while another source describes how bidders’behavior varies with their

signal.

Second, we can visualize p as an infinitely long spreadsheet, where {1, ..., L}
is the set of column titles (or “data fields”) and rows correspond to indepen-

dent draws from p. When player i obtains the spreadsheet, some of its values

are missing according to some independent random process. In particular,

for each spreadsheet row, the set of variables whose values are not missing is

some B ∈ ri.
In a number of our examples, the label rj will belong to some B ∈ ri.

This means that player i has archival access to player j’s archival access. For

such a configuration to be sensible, the variable rj should be observable in

principle. Indeed, in most of the examples in this paper, I give ri a physical

interpretation that makes it possible for us to imagine it being an observable

variable. For instance, in Section 2, ri indicated whether player i has a

navigation app.

Closed Forms of pr
In many cases of interest, the maximum-entropy extension of a given col-

lection of marginal distributions is tractable. The simplest case is where ri
consists of a single subset {B}, B ⊂ {1, ..., L}. In this case, pri = pB. Though

apparently trivial, this case can have significant behavioral implications, as

we saw in Section 2.

For a slightly more complicated example, suppose that ri consists of two

subsets, ri = {B,C}. This means that player i learns pB and pC . The

maximum-entropy extension of these marginals is

pri(ωB, ωC) = p(ωB)p(ωC−B | ωC∩B)

This formula transparently maximizes statistical independence subject to
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the known correlations. Most of the examples in this paper make use of this

special case. In Section 4.3, I present a generalization for cases in which ri
consists of more than two subsets. Precedents in the literature for some of

these formulas will be discussed in Section 6.

Do players understand they are playing a game?

I presented the objective environment in approximately game-theoretic terms.

The description is unconventional because of the definition of the state of the

world, which served my definition of archival access. But while the game-

theoretic description may have been non-standard, it followed the familiar

causal structure: exogenous variables are realized first; then players act inde-

pendently, conditioning their behavior on their information; and finally, the

outcome is realized. However, this objective causal structure is not essential

for our description of players’belief formation and behavior. As the “spread-

sheet”metaphor suggests, the underlying assumption is that players lack an

understanding of the rules of the game and its causal structure. They need

not even understand they are playing a game. Their perception of the situa-

tion is derived entirely from the partial statistical datasets at their disposal.

From this point of view, the objective causal structure of p is superfluous,

and presented here only for convenience.

Relation to the standard Harsanyi type space

My occasional reference to di as player i’s “type”naturally brings to mind

the standard Harsanyi type space, and raises the question of whether it can

embed the “type space”of this paper. The answer is generally negative, be-

cause the maximum-entropy extension pri need not satisfy Bayes plausibility

- i.e., it is possible that∑
ωB

p(ωB)pri(ωC | ωB) 6= p(ωC)

for some p and ω and some subsets B,C ⊂ U(r). That is, the expected

subjective posterior probability of ωC (where the expectation is taken with

18



respect to the objective distribution) does not always coincide with the ob-

jective prior probability of ωC . It can be easily verified that some of the

examples in this paper have this feature. For this reason, players’beliefs in

this formalism cannot in general be reproduced by a conventional Harsanyi

type space, where beliefs do obey Bayes plausibility.

At a higher level, the two typologies are quite different in spirit. In the

standard Harsanyi framework, players have well-defined (common or subjec-

tive) prior beliefs over the state space (whether or not the definition of a

state includes endogenous variables). In contrast, the starting point of the

present formalism is that players sometimes have a piecemeal perception of

the (objective) distribution. If we try to represent this partial perception

by a Harsanyi type in some extended state space, then we simply shift the

problem to another level because we need to define players’prior beliefs over

that extended state space.

4 Examples

This section presents examples that demonstrate the formalism’s expressive

scope. In all examples, I hold players’news access constant - i.e., the set of

variables whose realization a given player learns before taking an action is

fixed. This enables me to omit n1 and n2 from the definition of a state of the

world, and focus on the formalism’s novel aspect: random archival access.

4.1 “Market Savvy”: Correlation between Archival Ac-

cess and other Player Characteristics

What determines market agents’relative performance? Do “savvier”agents

earn higher profits?8 The following example highlights the non-trivial role

8Piccione and Rubinstein (2003) and Eyster and Piccione (2013) explored this question
in the context of competitive asset market models. Applying this paper’s terminology
retroactively, traders in the Eyster-Piccione model are characterized by incomplete archive-
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of the correlation between two aspects of “market savvy”: market players’

ability to exploit market opportunities and their ability to assess the extent

to which their opponent chases (and therefore dissipates) the same opportu-

nities.

In the example, the two players are entrepreneurs who consider entering

a certain field of activity. The variable θ ∈ {0, 1} indicates whether there is a
viable market in this field. The variable si ∈ {0, 1} indicates whether player
i has the relevant technology. The variable ai ∈ {0, 1} indicates whether the
player enters the field. When the trader lacks the technology (si = 0), he is

forced to remain inactive (ai = 0); he only has a choice when si = 1.

Player i’s payoff is ui(θ, a1, a2) = θai(3 − 2ai − 2aj). The story behind

this specification is as follows. When θ = 0, entrepreneurs are unable to turn

a profit in this field. When θ = 1, the market is viable, but has no room

for two active players. If only one player enters, he earns a profit of 1. If

both players enter, each loses 1. The structure of ui implies that players’

beliefs regarding θ are irrelevant; what matters for player i’s decision is his

prediction of aj conditional on θ = 1. In particular, he strictly prefers to

play ai = 1 (given si = 1) if and only if pri(aj = 1 | θ = 1) < 1
2
.

Players’news access is always ni = {si,di} - i.e., each player always knows
his technology and data access. Player i’s archival access can take two values,

referred to by the shorthand notation 0 and 1 and given explicitly as follows:

ri = 0 signifies {{θ, sj}, {sj, aj}}, and ri = 1 signifies {{θ, aj}}. That is,
ri = 1 means that player i fully grasps how player j’s actions correlate with

θ. In contrast, ri = 0 means that the player lacks direct evidence regarding

this correlation: he only learns how player j’s technology varies with market

conditions, and how his actions vary with his technology.

The prior distribution over θ, r1, s1, r2, s2 is:

(i) p(θ = 1) = 1
2
.

(ii) p(ri = 1) = 1
2
, independently of θ and of rj.

information, given by a single set of variable labels, which differs across trader types.
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(iii) For every i = 1, 2 and every θ, p(si = θ | θ, ri) = qri independently of

rj, where q1 6= q0 and q1, q0 ≥ 1
2
.

The q parameters capture the correlation between market viability and

players’ technology. When si is highly correlated with θ, the player is a

“savvy” entrepreneur in the sense that he has good “market timing”. If

the player faced no competition, higher correlation between si and θ would

lead to larger expected profits. However, “savviness”has another dimension,

given by the players’archival access: A player with r = 1 has better archival

knowledge of his opponent’s behavior. The relation between q1 and q0 de-

termines the correlation between the two aspects of market savvy. When

q1 > q0 (q1 < q0), the correlation is positive (negative): a player with better

archival access has better (worse) market timing.

I analyze symmetric equilibria. Let αr = p(a = 1 | s = 1, r) represent the

equilibrium strategy of a player with archival access r ∈ {0, 1}.

Rational-expectations benchmark

Consider a benchmark model in which every realization of ri induces rational

expectations - i.e., pri(aj | θ) ≡ p(aj | θ). The only possible difference

between realizations of r is thus the value of qr. This reduces the model

to a conventional game with incomplete information. Any symmetric Nash

equilibrium generates zero profits for both players, independently of their

value of r, such that p(ai = 1 | θ = 1) = 1
2
for every i = 1, 2. In particular,

there is a symmetric Nash equilibrium in which players’behavior is

αr =
1

q0 + q1

(3)

for all r. I refer to it as the type-independent equilibrium. There are also

type-dependent equilibria; both α1 > α0 and α1 < α0 are consistent with

equilibrium.

Let us now switch back from this benchmark to our original specification.

The following result characterizes the set of symmetric equilibria.
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Proposition 1 (i) When q1 > q0, the unique symmetric equilibrium is the

type-independent equilibrium.

(ii) When q1 < q0, there is exactly one symmetric equilibrium in addition to

the type-independent equilibrium: players with r = 1 play α1 = 1 and earn a

positive profit; players with r = 0 play α0 = (2− q0 − q1)/(q0 + q1) and earn

zero profits.

Proof. Let us first construct players’beliefs as a function of their archival
access. When ri = 1, player i’s archival information fully documents the joint

distribution of θ and aj. Therefore, his conditional prediction is consistent

with rational expectations:

pri=1(aj = 1 | θ = 1) = p(aj = 1 | θ = 1)

When ri = 0, player i’s first-stage belief over θ, sj, aj can be written as

pri=0(θ, sj, aj) = p(θ)p(sj | θ)p(aj | sj)

This induces the following perceived conditional distribution:

pri=0(aj = 1 | θ = 1) =
∑
sj

p(sj | θ = 1)p(aj = 1 | sj)

By the assumption that player j is forced to play aj = 0 when sj = 0, this

can be simplified into

pri=0(aj = 1 | θ = 1) = p(sj = 1 | θ = 1)p(aj = 1 | sj = 1) (4)

The following elaboration of these formulas highlights the role of rj as a

confounder of the relation between sj and aj; pri=1 properly accounts for this
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role,

pri=1(aj = 1 | θ = 1) =
∑
rj

p(rj)p(sj = 1 | θ = 1, rj)p(aj = 1 | sj = 1, rj)

whereas pri=0 neglects it, such that pri=0(aj = 1 | θ = 1) can be written as∑
rj

p(rj)p(sj = 1 | θ = 1, rj)

∑
rj

p(rj | sj = 1)p(aj = 1 | sj = 1, rj)


Consider a symmetric equilibrium. Assume α0 = α1 = 0 - i.e., p(aj =

1 | sj = 1, rj) = 0 for every rj. By assumption, p(aj = 1 | sj = 0, rj) = 0

for every rj. It follows that pri(aj = 1 | θ = 1) = 0 for any realization of

ri. Therefore, it would be profitable for any player i to deviate to ai = 1

when si = 1, a contradiction. Therefore, α0 > 0 or α1 > 0. Using similar

reasoning, we can show that α0 < 1 or α1 < 1. As observed earlier, player

i chooses ai = 1 with positive probability only if pri(aj = 1 | θ = 1) ≤ 1
2
.

Therefore, α1 > α0 only if

pri=1(aj = 1 | θ = 1) ≤ pri=0(aj = 1 | θ = 1) (5)

Let us derive explicit expressions for the two sides of this inequality:

pri=1(aj = 1 | θ = 1) = p(aj = 1 | θ = 1) =
1

2
q1α1 +

1

2
q0α0

whereas

pri=0(aj = 1 | θ = 1) =

(
1

2
q1 +

1

2
q0

)(
1

2
α1 +

1

2
α0

)
The latter expression is obtained by plugging the terms

p(sj = 1 | θ = 1) =
1

2
q1 +

1

2
q0
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and

p(aj = 1 | sj = 1) =
p(sj = aj = 1)

p(sj = 1)

=
1
2
(1

2
q1α1 + 1

2
q0α0) + 1

2
(1

2
(1− q1)α1 + 1

2
(1− q0)α0)

1
2

=
1

2
α1 +

1

2
α0

Then, (5) becomes

1

2
q1α1 +

1

2
q0α0 ≤

(
1

2
q1 +

1

2
q0

)(
1

2
α1 +

1

2
α0

)
which is equivalent to

α1(q1 − q0) ≤ α0(q1 − q0) (6)

Suppose q1 > q0. Then, this inequality contradicts the inequality α1 > α0.

A similar contradiction is obtained for α1 < α0. It follows that when q1 > q0,

we must have α1 = α0 ∈ (0, 1) in equilibrium. That is, the only possible

symmetric equilibrium is the one given by (3), such that players earn zero

profits, regardless of their archival access.

Now suppose q1 < q0. Then, the above contradiction is not reached,

and it is possible to sustain equilibria with α1 6= α0. If α1 ∈ (0, 1), players

with r = 1 are indifferent between the actions. This indifference means

p(aj = 1 | θ = 1) = 1
2
, such that all players earn zero objective profits,

independently of their archival access. If α1 > α0, (5) must hold with strict

inequality, such that players with r = 0 strictly prefer a = 0, hence α0 = 0.

But this means that p(aj = 1 | θ = 1) < 1
2
, contradicting the indifference of

players with r = 1. Likewise, if α1 < α0, (5) must hold with strict inequality,

such that players with r = 0 strictly prefer a = 1, hence α0 = 1. But this

means that p(aj = 1 | θ = 1) > 1
2
, contradicting the indifference of traders
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with r = 1. It follows that when q1 < q0, we must have α1 ∈ {0, 1}. If α1 = 0,

we obtain a contradiction with (6). Therefore, the only remaining possibility

is α1 = 1 and α0 ∈ (0, 1), such that players with r = 0 are indifferent between

a = 0 and a = 1 - i.e., pri=0(aj = 1 | θ = 1) = 1
2
. This equation yields the

solution for α0. Plugging this value in pr=1(aj = 1 | θ = 1), we can verify

that players with r = 1 earn positive profits, consistent with the assumption

that α1 = 1.

Thus, if q1 > q0 - i.e., a player with superior archival access also has better

market timing - players’equilibrium behavior must be independent of their

archival access and they all must earn zero profits. The savvy player’s “double

advantage”ends up having no effect on his equilibrium market performance.

The reasoning behind this result is roughly as follows. Suppose that in

equilibrium, players with richer archival access have a higher propensity to

enter conditional on s = 1. Thus, rj is positively correlated with both sj
and aj. A player i with ri = 0 perceives the positive correlation between θ

and aj only through these variables’correlation with sj. This leads him to

underestimate the correlation between θ and aj, and by implication player

j’s propensity to enter conditional on θ = 1. But this should make him more

eager to enter than a player i with ri = 1, a contradiction. A similar con-

tradiction is reached if we assume that players’eagerness to enter decreases

with r.

When q1 < q0, we can sustain exactly one symmetric equilibrium with

non-zero profits: players with r = 1 always choose to be active when possible,

whereas players with r = 0 only do so with some probability. Both player

types earn positive objective profits, yet players with r = 0 overestimate the

competition and therefore wrongly predict zero profits.

When q1 = q0, sj is independent of rj, hence rj does not confound the

correlation between sj and aj. Players with r = 0 and r = 1 must form the

same beliefs. As a result, the model is reduced to the rational-expectations

benchmark and players earn zero profits in equilibrium.
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4.2 “Market Intelligence”and Collusive Outcomes

This sub-section illustrates the formalism’s ability to capture situations in

which one player has partial archival information regarding his opponent’s

archival access. The setting is a stylized model of market competition. Play-

ers are firms that adapt the quality of their products to the size of consumer

demand. Each firm may have some “market intelligence”regarding the com-

petitive strategy of its rival - namely, how the rival firm’s behavior varies

with underlying demand or with its level of market intelligence. This kind of

market intelligence can be described in terms of archival access. The ques-

tion is how the firms’random archival access affects their ability to sustain

non-competitive behavior.

Specifically, each firm’s action ai can take two values, L and H, repre-

senting basic and premium product quality. The cost of serving basic and

premium products is 0 and 1, respectively. When both firms choose the same

product quality, each gets a market share of 50%; if exactly one firm offers a

premium product, it gets 100% of the market. The size of consumer demand

is x ∈ {b, g}; the two values of x are equally likely. This description induces
the following payoff matrix:

a1\a2 L H

L x
2
, x

2
0, x− 1

H x− 1, 0 x−1
2
, x−1

2

I impose the following restrictions on the parameters b and g:

g > 2 ≥ b >
3

2

These restrictions imply that H is a strictly dominant action when x = g,

whereas both (L,L) and (H,H) are Nash equilibria when x = b. Further-

more, H is the risk-dominant action when x = b, because the following
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inequality is satisfied:

1

2
· (b− 1) +

1

2
· b− 1

2
>

1

2
· b

2
+

1

2
· 0

This type of payoffmatrix is familiar from the “global games”literature (Ru-

binstein (1989), Carlsson and van Demme (1993), Morris and Shin (1998)).

I refer to (H,H) and (L,L) as the “competitive”and “collusive”outcomes,

respectively. This payoffmatrix will also serve us in Sections 4.2.1 and 4.2.2.

Each firm’s archival access ri takes two possible values, given the short-

hand notation 0 and 1, where ri = 0 represents {{x}, {aj}} (poor archival
access) and ri = 1 represents {{x, rj, aj}} (rich archival access). To see why
rj can be viewed as an observable variable (such that statistical data about

its realizations can be available), note that players’archival access can be

determined by their experience or whether consult a market specialist.

When ri = 0, firm i learns the marginal distributions of consumer demand

and the opponent’s action, but has no data about their correlation. To use

the terms of Eyster and Rabin (2005), ri = 0 represents a “fully cursed”

player.9 When ri = 1, firm i learns how firm j’s product quality varies with

consumer demand as well as with j’s archival access. However, firm i never

learns how firm j conditions its behavior on firm i’s own archival access.

In other words, the firm learns behavioral patterns by different types of its

opponent, yet it lacks data about how its opponent behaves against different

opponent types.

Assume p(ri = 1) = β for each player i. I allow r1 and r2 to be correlated.

In particular, p(ri = 1 | rj = 1) = γ for both i = 1, 2, j 6= i. A low value

of γ captures situations in which high-quality market intelligence is like an

exclusive product: when one firm enjoys it, the other firm is likely to lack it.

9Ettinger and Jehiel (2010) interpreted the failure to perceive any correlation between a
player’s behavior and the underlying state of Nature in terms of the so-called Fundamental
Attribution Error.

27



Firms’news access is fixed: n1 = n2 = {x,d1,d2}.10

Proposition 2 (i) In any equilibrium, each player i plays ai = H whenever

x = g or ri = 0. (ii) An equilibrium in which each player i chooses ai = L

when x = b and ri = 1 exists, if and only if γ ≥ b− 1.

Proof. (i) Suppose x = g. Then, ai = H is a strictly dominant action for

player i. Since pri is not defined over ai (unlike the example in Section 2), it is

impossible for pri to rationalize an objectively dominated action. Therefore,

for any realization of ri, each player will choose H when x = g in equilibrium.

Now suppose x = b and ri = 0. By definition,

pri=0(x, aj) = p(x)p(aj)

Then, player i will choose L over H only if

p(aj = L) · (b− 1) + p(aj = H) · b− 1

2
≤ p(aj = L) · b

2
+ p(aj = H) · 0 (7)

which can be simplified into b ≤ 1 + p(aj = L). Since we saw that aj = H

whenever x = g, it follows that p(aj = L) ≤ 1
2
. Then, (7) implies b ≤ 3

2
, a

contradiction.

(ii) Suppose x = b and ri = 1. Then,

pri=1(aj = L | x = b, ri = 1, rj) = p(aj = L | x = b, rj)

=
∑
r′i

p(r′i | rj)p(aj = L | x = b, r′i, rj)

Let us calculate this expression. First, we have established that aj = H

whenever rj = 0. That is, pri=1(aj = L | x, ri = 1, rj = 0) = 0 for every x.

10It would be more natural to assume that high-quality market intelligence manifests
itself in rich archival access as well as rich news access - e.g., when ri = 0, firm i is only
informed of x and ri, whereas when ri = 1 it is also informed of rj . Since this would lead
to the same results, I chose to make the simpler assumption that ni is fixed.
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Therefore, when ri = 1 and rj = 0, player i’s best-reply is ai = H (for any

value of x). Since the same argument applies to both players, it follows that

aj = H when ri = 0 and rj = 1. Hence, pri=1(aj = L | x = b, ri = 1, rj =

0) = 0.

It follows that

pri=1(aj = L | x = b, ri = 1, rj = 1)

= p(ri = 1 | rj = 1)p(aj = L | x = b, ri = 1, rj = 1)

Therefore, we can sustain an equilibrium in which players choose L when

x = b and r1 = r2 = 1 only if

γ · (b− 1) + (1− γ) · b− 1

2
≤ γ · b

2
+ (1− γ) · 0

which can be simplified into γ ≥ b− 1.

Thus, the collusive outcome can be sustained in equilibrium when x = b

and r1 = r2 = 1, but only if γ ≥ b−1. In particular, the condition fails when

γ ≤ 1
2
, given our restriction that b > 3

2
. Put differently, when high-quality

market intelligence tends to be an exclusive product, firms cannot utilize it

to sustain the collusive outcome - even when both firms happen to have it.

The logic is as follows. When ri = 1, firm i understands how firm j

conditions its behavior on rj. However, since firm i lacks data about how

firm j conditions its behavior on ri, it implicitly averages over all values of

ri. When γ is low, ri = 0 is the probable realization given rj = 1. When

rj = 1, firm j understands that firm i chooses H when ri = 0, and therefore

firm j responds to ri = 0 by playing H. It follows that when γ is low, firm

i predicts that firm j is likely to play H even when rj = 1. This in turn

implies that firm i will prefer to play H as well.

The notion of imperfect archival access plays a key role in this result.

Consider a benchmark model in which firms always have rational expecta-

tions, such that only their news access is random; specifically, high-quality
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market intelligence by firm i consists of learning the realization of rj. In this

benchmark model, the collusive outcome can be sustained in equilibrium

when x = b and r1 = r2 = 1. The reason is that firm i is always informed of

its own type; under rational expectations, learning firm j’s type enables firm

i to make a precise prediction of j’s behavior.

Does richer archival access necessarily facilitate collusion?

Consider the following variant on our example, in which ri = 1 represents

{{x, aj}}. This is thinner than the archival access represented by ri = 1

in Proposition 2; it means that firm i learns how j’s behavior varies with

consumer demand, but without any understanding of how it varies with

players’archival access. Then,

pri=1(aj = L | x = b, ri = 1, rj) = p(aj = L | x = b)

=
∑
ri

∑
rj

p(ri, rj)p(aj = L | x = b, ri, rj)

Part (i) of Proposition 2 continues to hold - i.e., player j choosesH when rj =

0. Also, since prj=1 is not defined over ri, player j’s behavior is independent

of ri even when rj = 1. Therefore,

pri=1(aj = L | x = b, ri = 1, rj) ≤ p(rj = 1) = β

It follows that player i will choose L when x = b and ri = 1 only if

β · (b− 1) + (1− β) · b− 1

2
≤ β · b

2
+ (1− β) · 0

which can be simplified into β ≥ b − 1. This is the condition for sustaining

the collusive outcome in equilibrium when x = b and r1 = r2 = 1. When

β > γ, this condition is less stringent than in Proposition 2. Therefore,

richer archival access need not facilitate collusion.
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4.3 Larger Archival-Access Sets

In Section 3, I observed that in some cases, maximum-entropy extension has

simple closed forms. I now generalize these cases into a single principle.

Definition 2 The archival access r satisfies the running intersection prop-
erty (RIP) if its elements can be ordered B1, ..., Bm such that for every

k = 2, ...,m, Bk ∩ (∪j<kBj) ⊆ Bi for some i = 1, ..., k − 1.

RIP holds trivially form = 2. Them = 3 collection {{1, 2}, {2, 3}, {3, 4}}
satisfies RIP, whereas the m = 3 collection {{1, 2}, {2, 3}, {1, 3, 4}} violates
it. RIP ensures a simple closed form for the maximum-entropy extension of

the marginals (pB)B∈R.

Proposition 3 (Hajek et al. (1992)) When r satisfies RIP, the maximum-
entropy extension of (pB)B∈R is given by

pr(ωU(r)) =
∏

B1,...,Bm
p(ωBk−(∪j<kBj) | ωBk∩(∪j<kBj)) (8)

where the enumeration 1, ...,m validates RIP.

For instance, when r = {{1, 2}, {2, 3}, {3, 4}},

pr(ω1, ω2, ω3, ω4) = p(ω1, ω2)p(ω3 | ω2)p(ω4 | ω3) (9)

= p(ω1)p(ω2 | ω1)p(ω3 | ω2)p(ω4 | ω3)

Thus, RIP allows us to write pr as a factorization of pr(ωU(r)) into mar-

ginal and conditional distributions. The factorization makes it manifest that

the player’s belief maximizes statistical independence subject to the known

correlations. Moreover, the factorization has a causal interpretation. For in-

stance, (9) looks as if pr is consistent with the causal chain 1→ 2→ 3→ 4.
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This is a general property of (8). This formula can be rewritten as a

factorization of p according to a directed acyclic graph (DAG) whose set

of nodes is U(r), such that r is the set of maximal cliques in the graph’s

non-directed version. Indeed, RIP is a familiar concept in the literature on

graphical probabilistic models (see Cowell et al. (1999)). I refer the reader

to Spiegler (2017) for more details.

Armed with the more general formula (8), let us now revisit the payoff

matrix presented at the beginning of Section 4, and examine a different type

space. Each firm i’s news access is ni = (x,di). Thus, unlike the previous

specification in this section, here one firm is not informed of its opponent’s

data access. Since ni is fixed, we can omit it from the description of the state

of the world, which can be written as ω = (x, r1, r2, a1, a2), The distribution

over x is the same as before.

As before, ri gets two values, given the shorthand notation 0 and 1.

Assume that r1 and r2 are distributed uniformly and independently of x.

Moreover, they are positively correlated: p(ri = rj | rj) = δ ∈ (1
2
, 1) for every

rj = 0, 1. Firms’archival access is given explicitly as follows:

ri = 0 : {{x, aj}}
ri = 1 : {{x, aj}, {ri, rj}, {rj, aj}}

Thus, firm i has random archival access to firm j’s archival access. Specifi-

cally, ri = 0means that firm i only learns how its opponent’s action correlates

with x, whereas ri = 1 means that firm i also learns the pairwise correlations

of firm j’s archival access with its action and with firm i’s own archival ac-

cess. Thus, ri = 1 represents richer archival access and therefore indicates

higher-quality “market intelligence”. Both realizations of ri satisfy RIP, such

that
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pri=0(x, aj) = p(x)p(aj | x)

pri=1(x, aj, ri, rj) = p(x)p(aj | x)p(rj | aj)p(ri | rj)

In this example, there are equilibria in which firms’ behavior is inde-

pendent of their archival access - and therefore coincides with the rational-

expectations benchmark. The reason is that if aj is independent of rj, the

realizations ri = 1 and ri = 0 both induce pri(aj | x, ri, ai) ≡ p(aj | x), and

therefore there is no reason for firm i to vary its action with ri.

Let us now examine whether there are equilibria that allow firms’actions

to vary with their archival access.

Proposition 4 There is a symmetric pure-strategy equilibrium in which firms’
actions vary with their archival access, if and only if

δ ≥ 2b− 2

5− 2b
(10)

In this equilibrium, firms choose H whenever x = g; and when x = b, each

firm i chooses L if and only if ri = 1.

Proof. In any equilibrium, any firm i chooses ai = H whenever x = g,

independently of Ri. The reasoning is the same as in Proposition 2 and

therefore omitted here. Let us now derive firm i’s conditional belief over aj
conditional on x = b and each of the two realizations of ri:

pri=0(aj = L | x = b, ri = 0) = p(aj = L | x = b)

and
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pri=1(aj = L | x = b, ri = 1) =
pri=1(x = b, aj = L, ri = 1)∑

a′j
pri=1(x = b, a′j, ri = 1)

=
p(x = b)p(aj = L | x = b)

∑
rj
p(rj | aj = L)p(ri = 1 | rj)

p(x = b)
∑

a′j
p(a′j | x = b)

∑
rj
p(rj | a′j)p(ri = 1 | rj)

which can be rewritten as(
1 +

p(aj = H | x = b)[p(rj = 1 | aj = H) · δ + p(rj = 0 | aj = H) · (1− δ)]
p(aj = L | x = b)[p(rj = 1 | aj = L) · δ + p(rj = 0 | aj = L) · (1− δ)]

)−1

Suppose that when x = b, firms vary their (symmetric, pure-strategy)

equilibrium action with their archival access. Then, p(aj = L | x = b) = 1
2
.

Because H is the risk-dominant action when x = b, it follows that when

x = b and ri = 0, firm i’s best-reply is ai = H. Thus, if we wish to

construct a symmetric pure-strategy equilibrium in which aj varies with rj,

it must be the case that p(aj = L | x = b, rj) = rj. We can now calculate

pri=1(aj = L | x = b, ri = 1), by plugging the terms

p(aj = L | x = b) =
1

2
p(rj = 1 | aj = L) = 1

and

p(rj = 1 | aj = H) =
p(rj = 1, aj = H)

p(aj = H)

=
p(rj = 1)p(x = g)

p(x = g) + p(x = b)p(rj = 0)
=

1
2
· 1

2
1
2

+ 1
2
· 1

2

=
1

3

Thus,

pri=1(aj = L | x = b, ri = 1) =

(
1 +

1
2
· [1

3
· δ + 2

3
· (1− δ)]

1
2
· [1 · δ + 0 · (1− δ)]

)−1

=
3δ

2 + 2δ
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Therefore, the condition that ai = L is a best-reply when x = b and ri = 1

can be written as follows:

3δ

2 + 2δ
· b

2
≥ 3δ

2 + 2δ
· (b− 1) +

2− δ
2 + 2δ

· b− 1

2

which can be simplified into (10). It follows that this inequality is necessary

and suffi cient for the existence of a symmetric pure-strategy in which firms

sometimes vary their action with their archival access.

Once again, we see how random archival access can be an impediment

to a collusive outcome. Even when the richness of firms’ archival access

is positively correlated, successful coordination depends on this correlation

being strong enough.

A new effect arises here because ri = 1 consists of three interlocking sub-

sets, which enable firm i to learn the pairwise correlations of aj with x and

rj, without enabling it to learn the joint correlation of aj with x, rj. This

limitation distorts the way the firm updates its belief over aj. Specifically,

when firm i learns that x = b and ri = 1, it effectively regards these realiza-

tions as conditionally independent signals of aj. This is an erroneous belief,

because aj as determined by the joint realization of x and rj (the latter being

positively correlated with ri). This error attenuates firm i’s confidence that

player j will play L when x = b and ri = 1:

pri=1(aj = L | x = b, ri = 1) =
3δ

2 + 2δ
< δ = p(aj = L | x = b, ri = 1)

The belief distortion thus makes it harder for firms to sustain a collusive

outcome in equilibrium. By comparison, consider the alternative specifica-

tion in which ri = 1 represents the collection {{x, rj, aj}, {ri, rj}}, such that
pri=1(aj | x, ri = 1) coincides with rational expectations. Then, the equilib-

rium I constructed in Proposition 4 is sustainable whenever δ ≥ b− 1, which

is a less stringent condition than (10).
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4.4 Hierarchical Archival Access

The representation of a state of the world in terms of a collection of variables

is fundamental to the modeling framework. Furthermore, unlike the standard

Harsanyi model, replacing a collection of variables with a single variable is

not innocuous. For instance, let θ = (θ1, ..., θK) be a state of Nature. If we

collapse θ into a single variable, we cannot capture situations in which one

player lacks archival access to one of the components of θ. Perhaps the most

interesting case of this effect is where the archival-access variable ri itself

corresponds to a collection of variables. This sub-section develops this idea.

In some of the examples in this paper, players had archival access to

archival-access variables. The formalism’s capacity for such cross-references

is one of its prime virtues - in rough analogy to the Harsanyi formalism’s abil-

ity to describe one player’s news information regarding another player’s news

information. Inspired by this analogy (despite the very different interpreta-

tion), I am led to think of hierarchical constructions of such inter-dependence.

The starting point of a hierarchical definition of players’archival access

is a collection of basic variables. Let B ⊂ {1, ..., L} be the set of labels of
the basic variables. These would include variables that define the external

state, players’data access, players’actions and the outcome. For each player

i, there is a collection of variables r1
i , ..., r

m
i , m ≥ 2, where r1

i ⊂ 2B, and for

every k = 2, ...,m,

rki ⊂ 2B∪{r
h
i ,r

h
j }h=1,...,k−1

In addition, every element in rki , k ≥ 2, includes rk−1
i or rk−1

j . Define ri =

∪k=1,...,mr
k
i and regard it as a distinct variable.

The interpretation of this hierarchical construction is as follows: r1
i is the

player’s “first-order”archival access, describing his knowledge of correlations

among basic variables; r2
i is the player’s “second-order”archival access, de-

scribing his knowledge of how players’first-order archival access is correlated

with basic variables; and so forth.
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The following is a simple example of hierarchically defined archival access

in the context of the “global game”that serves as a running example in this

section. The distribution over x and the payoffmatrix are exactly the same,

and only firms’data access is modified. Firms have common archival access,

given by the list (r1, r2, ...) and distributed independently of x. Players’

news access is fixed: n1 = n2 = {x,n1,n2, r
1, r2, ...}. The basic variables are

x, a1, a2. For each k, rk takes two values, given the shorthand notation 0 and

1 and defined explicitly as follows:

k rk = 0 rk = 1

1 {{x}, {a1}, {a2}} {{x, a1, a2}}
2 ∅ {{x, a1, a2, r

1}}
3 ∅ {{x, a1, a2, r

1, r2}}
...

...
...

m ∅ {{x, a1, a2, r
1, ..., rm−1}}

...
...

...

The only values of r that are realized with positive probability are those

for which rk = 1 implies rk−1 = 1, for every k > 1. Therefore, it is convenient

to give r a shorthand notation, namely the largest value of k for which rk = 1.

Specifically, let p(r = k) = γ(1 − γ)k for every k = 0, 1, ... Note that r = k

means that firms perceive actions as a function of x, r1, ..., rk−1.

Proposition 5 Suppose that γ > 1
2
. Then, there is a unique equilibrium, in

which firms always play a = H.

Proof. The proof is by induction on k. As a first step, observe that by
the same argument as in Proposition 2, ai = H whenever x = g or r = 0.

Suppose that we have shown that ai = H when x = b and r < k, and consider

the case of firm 1, say, when x = b and r = k. The firm will find it optimal
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to play a1 = L only if

pr=k(a2 = L | x = b, r1 = · · · = rk = 1, rk+1 = rk+2 = · · · = 0, a1 = 1) >
1

2

The L.H.S of this inequality can be written as

p(a2 = L | x = b, r1 = · · · = rk−1 = 1)

≤ p(r ≥ k)

p(r ≥ k − 1)
= 1− γ < 1

2

and therefore, the player’s best-reply is a1 = H.

The intuition for this result is as follows. When firms have r = k, they

only perceive correlations between actions and archival access of order k− 1

and below. By the assumption that γ > 1
2
, firms are more likely to lack kth-

order archival access conditional on having (k−1)th-order archival access. By

the inductive step, they play a = H in that case. It follows that when firms

have r = k, they believe that the opponent is more likely to play a = H,

hence the best-reply is to play a = H, too.

Although I drew an analogy between hierarchical archival access in the

present formalism and the familiar hierarchical type spaces in the Harsanyi

framework, this analogy is merely suggestive. The hierarchies in the present

formalism do not represent introspective strategic reasoning or “stepping

into the opponent’s shoes”. Players’epistemology continues to be “flat”, in

the spirit of self-confirming equilibrium: they approach the problem from a

“naively statistical”angle and extrapolate a belief from partial archival data.

5 The False Causation Effect

In simultaneous-move games, each player’s action is objectively independent

of his opponent’s action conditional on his information. In the examples of

Sections 4, players’subjective beliefs obeyed this conditional-independence
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property. As a result, while their beliefs departed from rational expectations,

they preserved the rationality property that neither player thinks he can

influence his opponent. In contrast, in the example of Section 2, players’

subjective action-consequence mapping implicitly involved the wrong belief

that their own action affects their opponent’s. In this section I present a

simple example that makes this error explicit.

A Prisoner’s Dilemma example

The two players face the Prisoner’s Dilemma:

a1\a2 C D

C 3, 3 0, 4

D 4, 0 1, 1

There is no uncertainty regarding the game’s payoff structure; the only un-

certainty will be about players’ archival access. Each player i’s news ac-

cess is fixed: ni = {ni, ri}. Therefore, it can be omitted from the descrip-

tion of the state of the world, which can be written as ω = (r1, r2, a1, a2).

The distribution over players’ archival access is as follows. With proba-

bility 1 − α, r1 = r2 = {{r1, r2, a1, a2}}. With the remaining probability
α, r1 = r2 = {{a1, a2}}. The interpretation is as follows. The variables
a1, a2 are publicly observed, and therefore the players always know their

joint steady-state distribution. In contrast, archival data about the variables

r1, r2 is “classified”; it gets “declassified”with probability 1− α.
This game has an equilibrium in which each player i choosesD if and only

if ri = {{r1, r2, a1, a2}}. The reasoning is roughly the same as in Section 2.
When ri = {{r1, r2, a1, a2}}, player i has rational expectations and therefore
plays the dominant action. When ri = {{a1, a2}}, pri(aj | ri, ai) = p(aj | ai).
The putative equilibrium implies p(aj = C | ai = C) = p(aj = D | ai = D) =

1. Player i’s conditional belief effectively interprets this perfect correlation

between ai and aj causally, as if player j will always mimic player i’s choice.

Consequently, C is a subjective best-reply for player i.
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As in Section 2, the source of the player’s error in this example is that he

lacks archival access to a variable that acts as a confounder between his action

and another payoff-relevant variable. Given the underlying assumption that

players’understanding of the situation is entirely given by the partial statis-

tical data at their disposal, their subjective beliefs neglect this confounding

effect. As a result, the subjective conditional distribution of aj effectively

misinterprets the observed correlation between ai and aj as a causal effect of

the former on the latter.

One could argue that the source of the player’s error is not his first-stage

omission, but the fact that when incorporating the second-stage conditional

distribution into his choice of action, he imposes a spurious causal interpre-

tation on it. However, computing a conditional distribution and plugging it

into an expected-utility calculation is exactly what the player would do in

the standard model of Bayesian games. The difference is that when player i

forms a conditional belief in the standard model, he conditions on every vari-

able that affects ai. In contrast, the first stage of the present belief-formation

procedure may lead to a violation of this principle.11

6 Related Literature

The literature contains a number of equilibrium concepts for static games

that are based on the idea that players’equilibrium beliefs are based on par-

tial feedback regarding the equilibrium distribution. It is helpful to define

these proposals by the way they formalize partial feedback and the belief-

extrapolation rule they assume. The crucial novelty of this paper compared

with existing approaches is that it includes an explicit model of the random-

ness of players’feedback, as well as their uncertainty and limited feedback

regarding other players’feedback. This sub-section is designed to clarify the

11For an alternative, decision-theoretic approach to this type of “magical thinking”, see
Daley and Sadowski (2017).
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immediate context of this modeling innovation.

The closest approaches to the one in this paper are those in which players

extrapolate a belief from their feedback according to an explicit rule that ex-

hibits “parsimony”. Osborne and Rubinstein (1998) assume that a player’s

feedback takes the form of a collection of finite samples taken from the condi-

tional distributions (over outcomes) that are induced by each action. Players

ignore sampling error and believe that the sample associated with each action

is perfectly representative of its true conditional distribution over outcomes.

Salant and Cherry (2019) extend this basic idea to more general estimation

procedures. Osborne and Rubinstein (2003) study a variant of this concept,

in which each player’s feedback consists of a sample drawn from the uncon-

ditional distribution over the opponent’s actions. In Esponda (2008), the

feedback sample is infinite but selective. For example, in a bilateral trade

example, it is the distribution of outcomes conditional on trade. Players’

extrapolated belief reflects unawareness of the sample’s selectiveness.

Jehiel (2005) and Jehiel and Koessler (2008) present a formalism that is

closest in spirit to the present paper, in the sense that a player’s feedback

limitation is a personal characteristic rather than part of the definition of the

solution concept. Under this approach, each player best-replies to a coarse

representation of the true equilibrium distribution. Specifically, the player

partitions the set of possible contingencies into “analogy classes”, such that

the feedback that he receives is the average distribution over contingencies

within each analogy class. His belief does not allow for finer variation within

each analogy class.

To see how analogy-based expectations and its variants fit into the present

framework, consider the following example. Let (x1, x2) be the external state.

The realization r1 = {{x1,x2}, {x2, a2}} indicates that player 1 learns the

distribution of the external state as the joint distribution of player 2’s ac-

tion and a coarse description of the external state (given by the component

x2). The maximum-entropy extension of these marginals is pr1(x
1, x2, a2) =
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p(x1, x2)p(a2 | x2). This is what the notion of analogy-based expectations in

static games (Jehiel and Koessler (2008)) would prescribe when x2 is defined

as the analogy class of the external state.12 When we omit x2 from the model

such that r1 = {{x1}, {a2}}, we obtain pr1(x1, a2) = p(x1)p(a2) - i.e., a belief

that a2 is independent of the external state. This is an instance of “fully

cursed”beliefs (Eyster and Rabin (2005)).

The literature also contains a number of models (e.g., Piccione and Ru-

binstein (2003), Eyster and Piccione (2013), Eliaz et al. (2018)) in which

agents’beliefs can be described in terms of archival access that consists of a

single subset of variables that omits some relevant variables. In macroeco-

nomics, such beliefs appear in so-called “restricted perceptions equilibrium”

(see Woodford (2013)).

In Esponda and Pouzo (2016), players do not extrapolate a belief from

limited feedback. Instead, they arrive at the game with a misspecified prior

model, and fit this model to their feedback. Esponda and Pouzo formalize

feedback abstractly as a general consequence variable (in applications, it typ-

ically coincides with the player’s payoff, or with the realized terminal history

in an extensive game). Each player has a prior belief over a set of possible

distributions over consequences conditional on the game’s primitives and the

players’actions. This set represents the player’s model, and it is misspecified

if it rules out the true conditional distribution. In equilibrium, the player’s

belief is a conditional distribution in this set that is closest (according to a

modified Kullback-Leibler Divergence) to the true equilibrium distribution.

Eyster and Rabin (2005) adopt a different interpretation of distorted equi-

librium beliefs. In “fully cursed”equilibrium, player i wrongly believes that

the distribution over aj is a measurable function of player i’s signal. In “par-

tially cursed”equilibrium, a player’s belief is a convex combination between

the correct and fully cursed beliefs. Eyster and Rabin regard this belief dis-

12Mailath and Samuelson (2018) assume a similar belief-formation model in the context
of an information-aggregation problem.
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tortion as a behavioral bias and do not attempt to derive it from explicit

partial feedback or from an explicit subjective model. However, one can eas-

ily reinterpret fully cursed beliefs along these lines (see Jehiel and Koessler

(2008)). Spiegler (2017) provides a partial feedback-based justification for

partially cursed beliefs.

7 Conclusion

Previous equilibrium models with non-rational expectations treated belief

distortions as an aspect of the solution concept or as a permanent fixture

of players. The present formalism enriches the scope of this literature by

viewing players’ limited learning feedback as an aspect of their type. It

describes limited feedback in terms of access to “archival data”about relevant

variables. Because players’archival access may itself be a random variable,

this language enables us to capture new and realistic kinds of “information

about information”. It also enables us to explore the economic implications of

correlation between this novel aspect of players’types and more conventional

aspects.

A natural next step is to examine dynamic strategic interactions, where a

move by one player can determine another player’s archival access at a later

decision node. Eliaz et al. (2021) is a step in this direction: a cheap-talk

model in which the sender controls the receiver’s news information as well as

his access to archival data regarding the joint distribution of messages and

states of Nature. We explore the implications of this novel feature on the

sender’s ability to persuade the receiver.
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