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Abstract

Deep-learning algorithms are growing in popularity in the field of exoplanetary science due to their ability to model
highly nonlinear relations and solve interesting problems in a data-driven manner. Several works have attempted to
perform fast retrievals of atmospheric parameters with the use of machine-learning algorithms like deep neural
networks (DNNs). Yet, despite their high predictive power, DNNs are also infamous for being “black boxes.” It is
their apparent lack of explainability that makes the astrophysics community reluctant to adopt them. What are their
predictions based on? How confident should we be in them? When are they wrong, and how wrong can they be? In
this work, we present a number of general evaluation methodologies that can be applied to any trained model and
answer questions like these. In particular, we train three different popular DNN architectures to retrieve
atmospheric parameters from exoplanet spectra and show that all three achieve good predictive performance. We
then present an extensive analysis of the predictions of DNNs, which can inform us—among other things—of the
credibility limits for atmospheric parameters for a given instrument and model. Finally, we perform a perturbation-
based sensitivity analysis to identify to which features of the spectrum the outcome of the retrieval is most
sensitive. We conclude that, for different molecules, the wavelength ranges to which the DNNs predictions are
most sensitive do indeed coincide with their characteristic absorption regions. The methodologies presented in this

, and

work help to improve the evaluation of DNNs and to grant interpretability to their predictions.

Unified Astronomy Thesaurus concepts: Convolutional neural networks (1938); Neural networks (1933);
Exoplanet atmospheric composition (2021); Transit instruments (1708); Astronomical instrumentation (799)

1. Introduction

Exoplanetary science is one of the fastest-expanding fields in
astronomy. The increasing number of discovered exoplanets
has provided necessary motivation for subsidiary disciplines
to grow.

Exoplanet atmosphere characterization, in particular, is one of
the frontiers of the field. Transit spectroscopy, which consists of
observing transits at different wavelengths, has allowed astron-
omers to robustly detect chemical species such as water vapor,
carbon-bearing molecules, oxides, and alkali species in the
atmosphere (Fossati et al. 2010; Linsky et al. 2010; Berta et al.
2012; de Kok et al. 2013; Mandell et al. 2013; Ehrenreich et al.
2014; Barman et al. 2015; Macintosh et al. 2015; MacDonald &
Madhusudhan 2017; Arcangeli et al. 2018; Edwards et al. 2020).
These successes are built upon the foundation of generations of
ground-based and space-based instruments, such as the Very
Large Telescope, the Spitzer Space Telescope, and the Hubble
Space Telescope. The accumulation of such observations over the
years has enabled large-scale statistical studies of subpopulations
of exoplanets, e.g., on a wide range of Hot Jupiter atmospheres
(Iyer et al. 2016; Sing et al. 2016; Fisher & Heng 2018; Tsiaras
et al. 2018).

Looking forward, the next generation of space missions,
dedicated to exoplanet characterization, such as Ariel (Tinetti
et al. 2018), Twinkle (Edwards et al. 2019b), and JWST (Greene
et al. 2016), will be launching within the next decade, delivering
spectra with broader wavelength coverage and higher spectral
resolution. The prospect of better data quality has encouraged
further development in forward modeling of exoplanet spectra
and atmospheric retrieval techniques (e.g., Irwin et al. 2008;

Madhusudhan & Seager 2009; Line et al. 2013; Al-Refaie et al.
2021; Ormel & Min 2019; Zhang et al. 2019).

Artificial intelligence, and in particular deep learning (DL),
has risen in popularity in recent years. Deep-learning
algorithms have proven successful in efficiently deriving useful
models from large amounts of high-dimensional data. Such
models, which are capable of capturing highly nonlinear
relationships, have been used to solve hard problems in a wide
range of application domains, such as image classification (Al-
Saffar et al. 2017), natural language processing (Young et al.
2017), and time series analysis (Ismail Fawaz et al. 2019).
Typically, training such complex models without overfitting
requires a large amount of data.

The use of DL and general machine-learning (ML) algorithms
has become widespread in the field of exoplanet research.
McCauliff et al. (2015) applied Random Forests (RFs) to
identify candidate transit signals from Kepler light curves.
Subsequently, Shallue & Vanderburg (2018) and Pearson et al.
(2018) demonstrated the potential of DL in transit candidate
vetting and inspired follow-up applications on other instruments
(e.g., Chaushev et al. 2019; Dattilo et al. 2019; Yu et al. 2019;
Osborn et al. 2020). Schanche et al. (2019) developed a
combination of shallow ML and DL models to improve vetting
accuracy on WASP data. Additionally, Long Short-Term
Memory Network (Morvan et al. 2020) and RF (Krick et al.
2020) were implemented to model and correct the systematics of
Spitzer IRAC exoplanet transit modeling and detection.

On the planetary characterization front, despite the fact that
retrieval has always been the standard, universal approach when
it comes to inferring atmospheric properties, retrieval frame-
works are not without weaknesses. It is essentially a fitting
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algorithm that attempts to estimate a best-fit solution given a
forward model and a list of parameters with their bounds. The
limitation imposed by the observational data means that multiple
solutions, regardless of their feasibility, could exist, and it is left
for the user to judge the feasibility of the outcome. A neural
network, on the other hand, is able to learn the intricate,
nonlinear relationships between parameters and the observa-
tional data. The development of a neural network driven retrieval
is still at its early stages, but there have been attempts to infer
atmospheric properties from a network. Waldmann (2016)
pioneered the application of DL models to identify the existence
of molecular species in a transmission spectrum. Marquez-Neila
et al. (2018) used RFs to infer atmospheric properties, such as
temperature and water abundance, from exoplanet spectra. The
success of RFs inspired further applications. Fisher et al. (2020)
applied the same algorithm on high-resolution ground-based
observations. Nixon & Madhusudhan (2020) built upon the
work of Marquez-Neila et al. (2018) and produced an RF-
generated posterior distribution with excellent agreement to one
from a fully Bayesian retrieval. On the neural network front,
Zingales & Waldmann (2018) utilized a Generative Adversarial
Network (GAN), a DL network architecture that can generate the
closest synthetic spectrum and its associated atmospheric
properties for a given observed spectrum. Cobb et al. (2019)
developed a Bayesian Neural Network to model the posterior
distribution between atmospheric parameters. To speed up the
computationally expensive radiative transfer simulation process,
Himes et al. (2020) trained an ML surrogate forward model and
demonstrated its potential to significantly reduce retrieval time.

However, despite their predictive power, models generated
using some of the most powerful ML algorithms —DL being the
most prominent example—are often regarded as “black boxes.”
Deep neural networks trained on large, high-dimensional data sets
are models that typically contain thousands or even millions of
parameters learnt from data. This is what allows them to model
complex nonlinearities within the data and ultimately leads to their
accurate predictions. But the same complexity also makes it
difficult to understand what factors contribute the most to DNN
predictions. Developing methodologies to make such models more
interpretable is a growing area in the field of ML (Molnar 2019).
Better interpretability and a more robust understanding of the
DNN’s uncertainties may lead to a broader adoption of these
methods in the physical sciences. It allows us to understand if our
models make correct predictions for the right reasons, why our
models are wrong—when they are—and how to correct for their
biases. Beyond this, interpretability methods allow for identifying
the ever-present biases in the data set—especially relevant in the
case of astrophysics where a lot of effort is dedicated to analyzing
simulated data in preparation for deploying a new instrument.
Finally, understanding ML models in terms we can relate to the
underlying theory of the application domain (e.g., astrophysics)
can provide us with new theoretical insights.

In this paper, we will investigate the use of several DNN
architectures (MLPs,1 CNNs, and LSTMs) in the problem of
exoplanet atmospheric retrievals. We emphasize that our goal is
not to train a neural network to perform retrieval—the two
methodologies might have similar outcomes but they are different
in their approach. Our goal is to investigate how to probe into the
inner workings of DNN models trained to perform this prediction

Multilayer Perceptrons (MLPs) are fully (i.e., “densely”) connected feed-
forward neural networks. They are the oldest type of DNN developed and the
most commonly used in structured data.
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task. We will demonstrate how to analyze the performance of a
trained model and answer questions like: “What is the true
abundance range if the model predicts an abundance of H,O of
107>?” We will use this analysis to explore the performance of an
instrument/observational strategy (in our case, the Deep survey by
the ESA Ariel space telescope; Tinetti et al. 2018). Moreover, we
will present a general methodology that can be applied to any
trained neural network (or rather, any statistical predictive model)
to understand how its input affects its predictions. The proposed
method is a quantification of the sensitivity of the trained model to
the various features of the input. In the context of atmospheric
retrievals, we will visualize how different features of the spectrum
affect the quality of the retrieval. In other words, we ask: “Where
does a neural network look in the spectrum to determine the value
of each of the retrieved parameters?” As we will see, the answer
mostly agrees with our physical intuition, yet it occasionally brings
to light interesting new insights about the model, the data, or the
underlying physics. Our implementation is available on Github?
and Zenodo (Yip 2021).

2. Problem Statement, Data, and Models
2.1. Objectives
There are three main objectives in this investigation:

1. To train DNNSs to infer different atmospheric parameters
from a transmission spectrum. We demonstrate that
several DNN architectures (MLPs, CNNs, and LSTMs)
are capable of producing models that achieve good
predictive performance in this task. We use the best
model obtained at this stage as an example model for the
next two stages (which, we should note, are not tied to
any specific model or learning algorithm).

2. To present a detailed evaluation methodology to
investigate the quality of the predictions of any given
trained model. We move beyond the naive regression
visualizations and demonstrate how to decompose the
error of the model into its bias and variance components,
how to check for interactions among variables, and how
to assess the credibility of its predictions. In doing so, we
also infer the limits of credibility on each target on the
given data set under our model.

3. To introduce a perturbation-based sensitivity analysis
approach for visualizing regions of the input that are most
relevant for the predictions of any given trained model.
Doing so allows us to understand whether the regions of
the input to which the model is most sensitive align with
our physical intuition.

2.2. Data Generation

For the purposes of this study, we generated synthetic’
planetary atmospheres from planets contained in the Ariel
Target list (Edwards et al. 2019a). A total of 11,940
transmission spectra were produced. A transmission spectrum
records the A\ dependency change in transit depth (Aty). This
large-scale spectrum generation is made possible through the
function Alfnoor-forward in Alfnoor (Changeat et al. 2020a), a

2 hitps: //github.com/ucl-exoplanets /Spectra_Sensitivity_analysis

3 Although the predictive performance and sensitivity analysis results of the
specific models trained on this data set are problem-specific, it is important to
clarify that all methodologies presented in this work are applicable to any ML
model trained on a given data set.
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pipeline consisting of TauREx3 and ArielRad, the Ariel
Radiometric Model (Mugnai et al. 2020). Each generated
spectrum is binned to Ariel Tier-2 resolution with error bars
calculated based on Deep survey requirements and realistic
estimates of the instrument, observations taken, and planet
observed. The Ariel Tier-2 resolution is kept the same
throughout the investigation; any binning process is not
performed in wavelength space. This setup was used by
Changeat et al. (2020a) in their investigation, which provided a
benchmark for us to compare in Section 3.4. Here, we denote
the binned spectrum as the mean, ground-truth spectrum
X =[x, %o, ..., %5»], where x; represents the transit depth at the
ith wavelength bin in ascending order. The associated
uncertainty for each x; will be denoted as ;.

All generated spectra are subject to the same assumptions: the
atmosphere for each spectrum is assumed to have a constant
He/H, ratio of 0.17, a hypothesis corresponding to a primary
atmosphere with solar composition. Rayleigh scattering and
Collision Induced Absorption for Hy-H, and H,-He are included.
The T-P profile is assumed to be isothermal, and trace gases are
introduced to the atmosphere with isoabundance profiles (profiles
constant with altitude). Other planetary parameters necessary to
producing a transmission spectrum and estimating the observa-
tional uncertainties (spectrum and error bars), such as stellar radius
(R,), planet radius (R,,), planet mass (M,,), planet temperature (7},),
and other orbital parameters (semimajor axis, distance to the star,
eccentricity) are taken from the predictions in Edwards et al.
(2019a).

To generate an unbiased sample of spectra, we added a
number of trace gases. For each of the constituent trace gases
(H,O, CH,4, CO, CO,, and NH3), we uniformly sampled their
log abundance from —9 to —3*. The line lists of different
molecules are taken from ExoMol (Tennyson et al. 2016),
HITRAN (Gordon et al. 2016), and HITEMP (Rothman &
Gordon 2014). Additionally, we have also added gray clouds
with a cloud deck pressure log(P.joug) uniformly sampled from
2.7 to 6. Table 1 summarizes the sampling range, sampling
method, and their respective scales. For a detailed discussion of
the data-generation process, we refer the interested readers to
Section 2.2 of Changeat et al. (2020a).

2.3. Data Preprocessing

The term “parameter” is defined differently under the context
of ML and exoplanet atmospheric retrievals. To explicitly
distinguish the different contexts, we will refer to Atmospheric
Model Parameters as “AMPs” and Deep Neural Network
parameters (synaptic weights) as “weights” hereafter.

The synthetic spectra and their corresponding AMPs are
standardized (normalized so that each feature, i.e., wavelength
bin and each AMP has zero mean and unit variance) to facilitate
the training of the DNN models (see Figure 1 for empirical
comparison of sample spectra before and after standardization).
The standardized data set is then split uniformly at random into
three subsets: the original training set (70%), the validation set
(10%), and the test set (20%).

The original training set is not directly used in training.
Rather, it is used to generate an augmented training set. For each
data point (spectrum) X in the original training set, we generate

4 The range was chosen to explore Ariel Deep survey’s ability at capturing
low molecular abundances. Log abundance values > — 3 are omitted as they
can easily be detected via current retrieval methods.
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Figure 1. Empirical comparison of a sample of synthetic spectra before and
after standardization. The comparison shows that our transformation only
scales the spectral features, without distorting their relative shape.

Table 1
Sampling Range, Scale and Sampling Method Used for Different AMPs in the
Synthetic Data Set

AMPs Range Scale Sampling
H,O -9t -3 log Uniform
CH,4 —9to -3 log Uniform
(6(0] -9t -3 log Uniform
CO, -9t -3 log Uniform
NH; —9to -3 log Uniform
M, (log(M,)) —3.00 to 1.43 log Edwards et al. (2019a)
R, (R)) 0.07 to 2.39 linear Edwards et al. (2019a)
7, (K) 1393 to 3999 linear Edwards et al. (2019a)
Cloud (log(Pa)) 27106 log Uniform

50 data points X for the augmented training set. Each X is
produced by sampling a new %; from a Gaussian distribution
centered at £; and having a standard deviation defined by the
corresponding o;. The original ground-truth (i.e., noise-free)
spectra are thus discarded and the models are trained only on
these noisy, more realistic samples. The same applies for the
validation set, whereas the test set is kept noise-free.

2.4. Model Training

We trained a DNN to perform a multi-output regression task.
The task is to predict nine targets, log(Xy,0), log(Xcn, ), log(Xco),
log(XCOz)? log(XNHs)s Ry, 10g(Mp)’ TP’ and 10g(Pcloud)s from a
given spectrum. For ease of referencing, we denote the AMPs as
Yy=1[y1, y2....y0], where y; represents the jth AMP (as ordered
above). The model is trained in a supervised manner by
minimizing the Mean Squared Error (MSE) between the predicted
values y and the ground-truth y, averaged across all targets.
Details of how the neural networks were trained can be found in
Appendix A. The results and figures shown in this paper are
selected from our best-performing model, a one-dimensional
Convolutional Neural Network (1D-CNN).

3. Evaluation of Predictive Models
3.1. Prediction versus Truth Plot

In Figure 2, we compare for each of the individual AMPs to
be retrieved, the value predicted by the model (y-axis) against
the true value (x-axis). These predictions were generated for
noise-free spectra from the test set. Each blue point in every
subplot represents a prediction from a single (test) spectrum.



THE ASTRONOMICAL JOURNAL, 162:195 (29pp), 2021 November

Ho

True logiH;0) True log(CH) Trua lagico)

€O, NHy My

Predicted IoglCO;)

1 B 1
Truse logi, M

Cloud Tap Pressure

Predicted R, (%))

Figure 2. Prediction versus Truth Plot for each AMP in their respective units.
Each blue point represents a single spectrum from the test set. Prediction from
the model (y-axis) is plotted against the corresponding ground truth (x-axis).
The black diagonal line represents the distribution of perfect predictions.

The diagonal line represents the predictions of a perfect model
(one that always predicts the ground truth). This is a classic
visualization of regression results. It is useful for obtaining an
overall sense of the model’s performance: ideally “points
should not deviate much from the diagonal.” But significant
information is obscured by the fact that (i) the density of points
is not uniform and that (ii) “deviation” can assume different
mathematical meanings (e.g., “average deviation” or “standard
deviation around the mean”).

3.2. Bias and Variance Visualization

To get a deeper understanding of the model’s performance,
we need to go beyond Figure 2. The error (in our case, the
MSE) of a regression model can be decomposed into three
terms: bias, variance, and irreducible noise (Murphy 2012).
Here, we state explicitly our definition of bias and variance, to
avoid any confusion with the terminologies. Bias refers to the
mean absolute deviation of the model’s predictions from the
true value. Variance refers to the spread/width of the model’s
prediction. Irreducible Noise (third term) refers to variance
inherent to the data.’ We note here that the variance we
computed for each wavelength bin in the following figures will
inherently contain variance from both the model’s prediction
and the irreducible noise.

An approximate visualization of the bias and variance
components of the error for each AMP as shown in Figure 3 °
can be more illuminating. Each subplot is generated by equal
frequency binning of the true values (each bin contains 100
data points). For each bin, we calculate the mean absolute

> The noise component is due to the inherent uncertainty in predicting the

targets (AMPs) from the data (spectra), even with a “perfect” model. As such, it
is irreducible.

6 The interested reader can find the same type of plots generated by the other
DNN models examined in Figures 10 and 11.
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difference between pairs of predicted and true values |y, — y| (a
proxy of the model’s bias) and the standard deviation of these
differences (a proxy of its variance and variance from
irreducible noise). Ideally, one would like to keep both
components of the error low, i.e., to consistently predict values
close to the truth. Using Figure 3, we can inspect regions where
the model’s predictions suffer from high bias (deviation), high
variance (spread), or both.

In our application on the simulated Ariel-like data set, the
model’s predictions on the gases exhibit a similar trend: the
prediction starts off with small bias and variance at high
abundances, and both the bias and the variance gradually
become higher as the abundance drops, reaching a peak at
certain abundance. At lower abundances, below the credibility
limit (see Section 3.4) of the corresponding gas, the network
resorts to—on average—outputting an “average low” value. This
results in a characteristic trough (its minimum indicating the
“average low” value for each gas). This behavior is expected. A
molecule’s absorption feature is most prominent at high
abundances, and this helps to tightly constrain the model’s
predictions. However, as gas abundance decreases, so does the
magnitude of the corresponding feature, making it easier for
other absorption features to partially, or—in some cases—even
completely mask it. The task therefore becomes progressively
harder, which contributes to a higher variance and a
significantly biased mean deviation. If the level of abundance
becomes low enough, the model can no longer constrain the
prediction, due to presence of features from other molecules. At
this point, the best strategy for a loss-minimizing model is to
restrict its output and output a limited range of values centered
at an average value in the low-abundance region (see
discussion in Section 3.4).

The above trend is generally followed by most gases except
CO, which has most of its predictions clustered around log
(X) = —6 exhibiting large bias. The poor quality of the
predictions for CO is expected, given the spectral coverage
of the instrument and lack of broadband features from the
molecule itself. The lack of information on CO causes the
model to minimize the loss by always predicting a restricted
range of values with an average volume mixing ratio of log
(X) = —6 (see Figure 6).

On the other hand, for planetary parameters such as M,, R,
and T, the performance of the model varies. The model’s M,,
predictions are generally characterized by low bias. The ability
of the model to accurately predict M,, suggests that the Ariel
Tier-2 spectra alone contain sufficient information to constrain
M, confirming the findings in Changeat et al. (2020b). The
model’s performance on R, and T,, however, is not as
satisfactory. While the model is able to accurately predict
smaller planetary radii, its predictions on the very largest radii
in the sample are characterized by high bias. In particular, the
radius is consistently underestimated. For 7, the model
becomes progressively more biased in hotter temperatures
starting from 7, = 1500 K, again consistently underestimating
them (see Figure 2).

Regarding the model’s prediction of 1log(P¢ouq), it appears
that most of the predictions have been stratified into two levels,
a sign that the model is only able tell qualitatively whether the
atmosphere is cloudy or not.

The poor performance in R,, T,, and log(Poua) can be
explained by several factors. Most notably:
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Figure 3. Visualization of bias and variance for different AMPs. Each point represents the average absolute deviation of the model’s prediction from the ground truth
(a measure of the model’s bias), and the associated error bar represents the 1o spread of the predictions (a measure of the model’s variance). Note that the model’s
variance also includes contributions from the irreducible noise.

1.

The degeneracy involving these quantities. It is well-
known that the interaction between these quantities could
produce very similar spectral features (e.g., Brown 2001;
Fortney 2005; Lecavelier des Etangs et al. 2008; de Wit &
Seager 2013; Griffith 2014; Rocchetto et al. 2016; Fisher
& Heng 2018; Tinetti et al. 2018; Changeat et al. 2020b).
For example, the model tends to underestimate 7, and R,
and overestimate log(P.jouq) (i-e., predict a less cloudy
atmosphere). These AMPs are degenerated, i.e., multiple
combinations of AMPs exist for (almost) the same spectra.
As there is more than one possible solution, our model
(being a deterministic function outputting a single
prediction for each AMP) fails to always identify the
“‘true” (i.e., in the data generation sense) solution given
the limited information from the data. Ideally, in an
atmospheric retrieval setting, rather than predicting the
most probable values of the AMPs, we would rather
predict their posterior distribution or at least capture their
covariance. In Section 3.3, we perform an initial invest-
igation of interactions among AMPs.

2.

The standardizing step in Section 2.3 was performed by
extracting the overall mean and standard deviation of the
training set; the order-of-magnitude differences between
spectra may have significantly reduced the dynamic range
within a spectrum, dwarfing any molecular signatures.

. The nonuniform distribution of R,, T,, and M, in the

generated data. The nonuniformity means that the model
will focus on more accurately predicting values in the
densely populated areas of the target space to the
potential detriment of the quality of its predictions
elsewhere, if that means achieving a lower MSE.’

Our example above has investigated the average deviation
and spread of the prediction at each prediction level. This
quantification and visualization of bias and variance can be
further utilized to help us determine the optimal model

7 The

permitted combinations of R,,, T,

weight

nonuniform distribution could be alleviated with better knowledge on
and M,, an alternative way is to adjust the
of each sample based on its rarity (heavier loss on uncommon

examples).
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Figure 4. Visualization of bias and variance for HO, CHy, and CO at high and low NH; (top) and CO2 (bottom) (log-) abundance. H,O and CH, prediction improved
at low NH;3 abundance level. Please note that the model’s variance also includes contributions from the irreducible noise.

complexity for a given predictive task (see Appendix B for a
detailed discussion).

3.3. Interactions between AMPs

Next, we inspect whether the model aligns with our physical
intuition on the problem. More specifically, we ask “Does it
perform worse when we expect it to?” One way to investigate
this is to measure how its predictions on the jth AMP y, vary
conditioned on the true value of another AMP y,, k = j having a
“low” or a “high” value. For the purposes of this visualization,
we focused on gases and defined any log abundance in the
lowest quartile (i.e., the lowest 25% of the values) of the
population as “low” and any log abundance in the highest
quartile (i.e., the highest 25% of the values) as “high”.

Figure 4 shows how the (binned) predictions of H,O, CHy,
and CO change under high (>—4) and low (<-—7)
abundances of NH; and CO,. The binning procedure is similar
to the one described Section 3.2, but the bin size is reduced to
30 samples.

We can observe that a high or low abundance of NHj gives
rise to a distinctive contrast in the quality of predictions for
most molecules. In particular, the quality of the predictions of
CH, is highly affected by the abundance level of NHj. This
observation aligns with our expectations. As ammonia’s
absorption feature spans from 2—4 ym, it can partially or fully
cover any other absorption features within that range at high
abundances, reducing the model’s ability to accurately predict

the abundance of molecules such as CH,, and vice versa. The
same issue, however, should not arise for H,O, as the molecule
possesses several broadband features outside 2—4 um, i.e., a
well-trained network should be able to rely on information
available outside this range to predict water abundance, which
means there should not be a dramatic improvement when NHj3
is low. This somewhat unexpected improvement in perfor-
mance hints at the mechanism behind the model’s prediction;
this mechanism is further discussed in Section 4.2.

On the other hand, the model’s performance on CH,4 does
not change as much under different levels of CO,. This is also
an expected outcome, as CO,’s absorption feature lies in
5-6 pm, thus distinct features in CH, are less likely to be
masked by changes in CO,’s features (Sharp & Burrows 2007).

It is possible to construct similar plots for other AMPs
beyond NH; and CO,. The purpose of this work is to
demonstrate general evaluation tools that elucidate the inner
workings of ML models. To avoid overly emphasizing our
analysis on our particular (data set, model) combination, we
shall forgo an exhaustive discussion on all combinations of
AMPs interactions.”

Another well-known way to visualize the covariance
between different AMPs is to visualize the learned posterior
distribution. We sample the parameter space of the model by
varying the same input spectrum according to its uncertainty.

8 Interested readers can inspect the full results in Figures 12-20; the results
shown here are produced using our 1D-CNN model.
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Figure 5. Posterior distribution from a test set spectrum. The ground truth is indicated by the blue line. The model tends to perform well on abundant trace gases with

the exception of CO. It is also able to capture some correlation between AMPs.

Figure 5 shows an example posterior distribution produced
using a spectrum from the test set. The model managed to
predict within 20 of the ground truth values (indicated by the
blue line) when the log abundances of the gases are higher than
—6, which is expected from our analysis in previous sections.
We can see that the model is able to capture some of the
correlations such as M, versus R, as well as R, versus T,
which are among some of the worst-performing AMPs. On the
other hand, the model failed to capture other well-known
correlations such as H,O versus R, and H,O versus clouds.
This analysis is thus highlighting a shortcoming of this model.

Upon discovering ways in which a model’s behavior is poor
(either in terms of predictive performance, or in terms of
capturing aspects of the underlying physics) we can take further
measures to improve it. In our analysis above, we noticed that
certain known correlations among the targets (AMPs) were not
captured by the model. There are ways to explicitly introduce
domain knowledge like this into the architecture of the neural
network, e.g., by sharing parameters across targets as discussed
in Reyes & Ventura (2019). As this work is focused on
analyzing models and diagnosing problems, applying such
methods to this setting is reserved for future work.
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Figure 6. Average deviation for different molecules at different predicted
abundance. The error bars on each bar represent 95% confidence intervals
around the mean. The black curve represents the total number of predictions
made by the model (frequency) within each bin.

3.4. Credibility of Predictions

So far, we have looked at how the quality of a model’s
predictions varies across different ground truth values. During
the training phase, this is useful for identifying problems with
our models: targets whose predictions are problematic, areas of
particularly high bias or variance, and interactions among
AMPs suggestive of degeneracies, among others.

However, in real life, we rarely have access to the ground
truth, thus a more practical question would be: “What is the
expected deviation of a given prediction from the ground
truth?” In other words, we would like to know how credible a
given prediction by our model is.

Our analysis in Sections 3.2 and 3.3 has provided us with
some qualitative intuition regarding the credibility of the
model’s predictions. For example, the model’s prediction is
more reliable at higher molecular abundances and when there is
less interference from other molecules. To obtain a more
quantitative measure, we follow an approach similar to that in
Section 3.2 and compute the average deviation at different
prediction levels for each AMP (Figure 6). The error bars on
each bin represent 95% confidence intervals. Instead of binning
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with equal frequency like Section 3.2, we performed equal-
width binning, and thus each bin will have a different number
of data points. The black line shows the number of data points
per bin. Bins with fewer than 20 data points are omitted.

The distribution of average deviations aligns with our
discussion in Section 3.2. For high predicted abundances, the
model starts off with low average deviation, and as the predicted
abundance level goes down, the model struggles to predict well
and begins to have higher average deviation. However, counter
to our intuition, the average deviations do not increase
monotonically; instead, they begin to decrease after a certain
abundance level. This peak corresponds to the trough we saw in
the figures of Section 3.2. This provides us with clues regarding
the model’s loss-minimization strategy. The model is restricting
its output to a limited range of values at low abundance levels,
centered around some average value. This can be evidenced by
the distribution of counts (black line) being centered at some
value in the low-abundance region and few or zero counts at the
lowest abundance level (I0g(X,.s) = —9).

Another important insight that can be drawn from Figure 6 is
that the trustworthiness of the prediction varies across
abundance levels. We propose a method to qualitatively assess
the credibility limit of each gas—the limit at which predictions
remain meaningful to the model’s user. First, we compute the
probability P that the model’s prediction (3;) does not deviate
more than a positive real value € from the ground truth y;. We
then require that P be at least 1 — 6 to consider the prediction
credible. A detailed discussion on the method is included in
Appendix C. In Figure 7, we demonstrate an example where we
have chosen e¢=0.5, and defined a credibility threshold
6=0.3, so that any prediction level with probability
P>1—6is credible. We can then define the lowest predicted
abundance level that satisfies this as the credibility limit of
that gas.

This limit is specific to the chosen 6 and ¢, as well as the
trained model. Table 2 summarizes the estimated limit for each
molecule. Although this approach is useful, we should still be
mindful of its limitations. Note that, for several gases, the
probability that the prediction error will not deviate from the
acceptable region seems to increase at the lower end of the log
abundance. However, this increase does not necessarily imply a
higher predictive power at low abundances. In the aforemen-
tioned cases, this apparent increase in predictive power can be
most likely attributed to the small number of instances that fall
within these bins, as evidenced by Figure 6. It is thus a small-
sample effect.

Similar work by Changeat et al. (2020a) determined the
detection limit from a retrieval perspective. In their work, they
have generated 164 planets using the same setup as the one
presented in Section 2.2 and determined the lowest abundance
at which they can constrain the molecular abundance within 1
order of magnitude of error. Our limit here addresses the
trustworthiness of the neural network, which cannot be directly
compared with results from retrievals. Despite the differences,
both studies suggest that Tier-2 Ariel spectra are capable of
allowing for the consistent detection of some molecules in
abundances as low as log(X) = —5.8. While it is possible that,
given a different architecture, the credibility limit could be
improved, we would like to reiterate that our goal is not to
compete against retrieval frameworks, and thus we will leave
this for future work.
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Table 2
Credibility Limit for Each Molecule at 6 = 0.3, ¢ = 0.5

Molecules Credibility Limit (log;o) Detection Limit
H,0 —43 —6.5
CH, —5.8 =7
CcO N/A —55
CO, —3.8 -7
NH; -5.3 —6.5

Note. This limit is derived using the lowest credible (log-) abundance level,
following the credibility definition in Appendix C. The detection limit is
reproduced from Changeat et al. (2020a) as a comparison to retrieval methods.

Interested readers could refer to Figure 21 for the distribution
of average deviation of all AMPs. Credibility limits for
nongaseous AMPs are less straightforward, and are more
influenced by the training set. As the training set is not
uniformly distributed w.r.t. these AMPs, trained models will
have a tendency to focus on the regions containing a higher
density of examples, biasing the predictions. Thus, the derived
limit first and foremost would depend on biases of the training
set, and for this reason we chose to omit it here to avoid
overinterpretation.
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4. Sensitivity Analysis for Model Interpretation
4.1. Method

Given any trained predictive model M (e.g., a neural
network) that takes an input x and outputs the corresponding
prediction y, a perturbation-based sensitivity test can be
performed to assess the change in the prediction y when a
set of features (transit depth, in our case) x; (consecutive or not)
is perturbed.

This approach assesses quantitatively how y varies as a set
of x; (transit depths) vary. The intuition is that perturbations in
the regions of the input containing more information about the
target will yield larger deviations in the output of the model.

Below, we outline a general procedure for such a sensitivity
analysis:

1. Produce a reference prediction ¥. on an unperturbed input
X,

. Perturb the input x,,.

. Predict y, on the perturbed input x,,.

. Compare y, and j,.

. Repeat step 2—4 for different sets of features.

L A W

The form of perturbation depends on the context of the
problem. Zeiler & Fergus (2013) demonstrated the idea on
models performing image classification. They perturbed the
input image by setting a region to zero pixel value, and
produced a heat map of sensitivity by covering each region
systematically. In this investigation, we adapted this procedure
to our multi-target regression problem. Instead of setting x; to
zero like Zeiler & Fergus (2013), we applied the perturbation
by sampling each wavelength bin x; according to its respective
error bars (i.e., from a Gaussian centered at its unperturbed
value and with standard deviation ;). There are three main
reasons for this choice: 1. Physical plausibility. Setting a
window of the spectrum to zero would render it nonphysical,
as a transit depth of 0 would mean R,=0.2. Statistical
plausibility. Neural networks excel at interpolation but not
extrapolation. Perturbing the input spectrum within its error
bars would still result in valid input (i.e., a sample from the
actual data distribution) for the Neural Network. 3. Instrument
plausibility. The result of the test under these conditions
provides realistic measurement of the relative sensitivity of
each wavelength bin for the purposes of determining each of
the parameters to be retrieved, in the context of Ariel Deep
survey specifications (Tier-2 spectra). This also means any
derived result will be specific to the instrument and observing
strategy.

At each iteration, we select a random number of x; and apply
the perturbation by scattering these points according to
MNx;, o?). For computational efficiency, at each iteration the
number of x; is chosen from 27 (half of the total number of
wavelength bins) down to 2 (parts of a feature). The intention is
to account for the influence from both broad and narrow
features, as well as the interdependencies between different
wavelength bins. We repeat the above procedure 1000 times
with 300 spectra randomly chosen from the test set and
calculate the average mean squared difference per AMP (i.e.,
parameter to be retrieved) between _frp and y for each
wavelength bin. The result is a sensitivity map of the model’s
output for each AMP, w.r.t. each feature. A detailed
implementation of the test is discussed in Appendix D.
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The sensitivity map is a tool for us to visualize what factors
drive the model’s predictions. As such, it allows us to investigate
whether the model aligns with our physical intuition. This can also
shed light to potential biases of the model or the training data.
Finally, it can even aid us in identifying potentially undiscovered
relationships among features.

4.2. Sensitivity Map

We applied the general procedure outlined in Section 4.1 and
produced sensitivity maps for the different atmospheric parameters
of interest, using as the model M the 1D-CNN we trained in
Section 2.4. We shall explicitly ignore regions where the model’s
prediction is uncertain, and restrict the sensitivity analysis to cases
with log(Xg.) > —5.2 We will first investigate whether the

° There are different limits for some gases, but for simplicity we chose a

conservative value.
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model’s predictions align with our physical intuitions regarding
inferring AMPs from spectra. Figure 8 summarizes the results
of the sensitivity analysis for all the AMPs. The left subfigure
summarizes the molecular species, and the right subfigure
summarizes the planetary parameters and clouds.

4.2.1. Sensitivity Map for Active Molecules

Each spectrum on the left subfigure displays the corresp-
onding molecule’s characteristic absorption features in Ariel
Tier-2 spectra, and each bin in the spectrum is color-coded to
reflect the relative sensitivity of the model’s prediction of the
corresponding molecular abundance due to changes in the
value of said bin. We normalized each spectrum according to
its respective minimum and maximum.

We can see that many of the highlighted regions correspond
to the major absorption features of the molecules. This
alignment is evidence that the neural network is recognizing
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individual molecular features and basing its predictions of the
corresponding molecular abundance on the peaks and troughs
of these absorbing regions. Even in the case of CO, whose
abundance the model generally fails to accurately predict, it
nonetheless manages to highlight the absorption bands of the
molecule as the most important region for predicting it.

So far, we see that the predictions of the neural network are
based on factors that agree with our physical intuition.
However, we can also see that, for some molecules, not all
peaks are highlighted by the model, e.g., for HO only the
peaks at 2-3 pm are highlighted. The model is tasked to jointly
predict all quantities of interest. As a result, it is compromising
performance across individual molecular species to identify the
optimal features to predict them jointly.

Sensitivity maps like these are useful for improving the
transparency—and thus, our confidence in the predictions of
the model. On the other hand, they also give us an indication of
where most of the information is coming from for the model in
question. Here, we only present maps for log(X go5) > — 5. It is
possible that, in the face of different combinations of
abundances, the sensitivity map will change accordingly. As
the purpose of this study is to explain the methodology, the
discussion of sensitivity maps at different abundances will be
left for future work.

4.2.2. Sensitivity Map for My, R, Ty, and Clouds

For AMPs other than gaseous species, their corresponding
sensitivity maps are summarized on the right side of Figure 8.
We used the same randomly sampled spectrum to investigate
their sensitivity to each wavelength bin. Below, we provide our
observations and offer an interpretation of these maps.

M,, R,, T,, and clouds are interconnected via the computa-
kyTR2
nGM,
blue end of the spectrum are “calibration” points, as they are
the lowest points of the spectrum. These points help to provide
an estimate for R, but are often masked in the presence of
clouds. In the absence of M, from external sources, the model
examined here attempts to derive it from the spectrum, which
again is correlated with R, and clouds, as described in
Changeat et al. (2019), and can be visualized via the similarities
between their respective sensitivity maps.

Temperature, on the other hand, is highlighted in three
distinct regions: the photometric wave band, and the 3 ym
and 5 pm regions. The model appears to be relying on the most
probable highest features in the spectrum, combined with the
photometric points, to derive the scale height via the features’
size,'” and subsequently the temperature as well. However, the
aforementioned degeneracy between M,,, R,,, and clouds means
that temperature is not accurately determined, as can be seen
from Figure 3.

tion of scale height, H, = . The photometric points at the

4.3. Choice of Network

We should keep in mind that sensitivity maps like the one
shown in Figure 8 are model-specific, i.e., different models can
have different sensitivity maps. The sensitivity analysis
described here does not directly measure the information in
the features that is relevant for predicting the AMPs, but rather,
it captures the degree to which a given model uses said
information to predict the AMPs.

10 The size of the features is determined by a quasi-linear function of Hg..
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Figures 22 and 23 show the sensitivity maps for the networks
of the other two DNN architectures we trained as outlined in
Section 2.4. Interestingly, we find that all three models were
able to highlight most of the peaks and troulghs of the
molecules’ characteristic features. This is evidence'' that these
regions of the spectra are indeed important features for
determining their corresponding molecular abundances.

There are also notable differences in the sensitivity maps of
each model, in particular the maps obtained for nonmolecular
AMPs. For example, the MLP tends to focus on 4-5 ym to
derive quantities such as M,, R,, T,, and cloud top pressure,
while the LSTM and the 1D-CNN tend to also focus on 2—-3 ym
features. Despite any differences in sensitivity across different
models, non-trace-gas AMPs exhibit high sensitivity to the
same regions for a given model, highlighting the degeneracy
between these AMPs.

5. Conclusion

In the context of exoplanet atmospheric retrievals using
simulated data from Ariel, we investigated the use of three
different types of DNN architectures (MLP, CNN, and LSTM)
for inferring atmospheric model parameters from exoplanet
spectra. We presented a suite of methodologies for analyzing
the performance of any regression model, identifying its main
source of error by leveraging the concepts of bias and variance,
and quantifying the credibility of its predictions. Applying
these evaluation methodologies to the three DNN models we
trained, we found that they all behaved similarly for this data
set, and that they are capable of reliably determining molecular
abundances down to as low as 10°%,

We also introduced a perturbation-based sensitivity analysis
that allows us to assess the relative importance of each feature
(wavelength bin) in predicting each target (atmospheric
parameter), for a given trained predictive model. Our analysis
confirmed that the predictions of the DNN models we
constructed largely align with our physical intuition with
respect to each atmospheric parameter’s spectral signature, our
understanding of Ariel’s instrument specification, and Ariel
Deep survey observational strategy.

The evaluation and interpretability methods presented in this
paper are applicable to any predictive model learned from data,
and only require access to the model’s predictions and the
training data. These tools allow us to analyze the predictions of
a model, identify potential biases in the model itself or the data,
understand the factors driving the model’s predictions, and
investigate whether these agree with our current knowledge of
the underlying physics, whether the model’s predictions are
“right for the wrong reasons,” or whether it can provide us with
new theoretical insights. Ultimately, they can make predictive
models more transparent and thus easier to adopt by domain
experts.
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Appendix A
Implementation details

Table 3 summarizes the architecture details of the three types
of neural networks we explored. The hyperparameters were
selected after performing a grid search on the number hidden
units per layer, the number of layers, and the number of filters.
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In all cases, the models were trained for 100 epochs with an
initial learning rate of 0.01 and a learning rate decay of 10~ *
using the Adam optimizer. Any unspecified hyperparameters
were set to default Keras/Tensorflow values. All the networks
were developed using the open source Keras (Version 2.3.1)
Python module (Chollet et al. 2015), with Tensorflow (Version
2.4.1) as backend (Abadi et al. 2015).

Table 4 shows the average performance of each architecture
across five runs with identical hyperparameter setup but
different weight initialization, and under different training/
validation splits. We also compare their complexity as
measured by the number of weights to be learned. All three
architectures yielded models with comparable predictive
performances. However, we chose to present our main results
using the CNN due to its lower complexity and subsequently
faster training and inference time.

Table 3
The Three Different Neural Network Architectures Examined in This Study

Neural Network Architecture

MLP CNN LSTM

Layer Type Config. Output Layer Type Config. Output Layer Type Config. Output
Input (m,52) Input (m,52,1) Input (m,52,1)
FC-RELU h =320 (m,320) Conv-BN-RELU f=323x%x3s=1 (m,52,32) LSTM h =200 (m,52,200)
FC-RELU h =240 (m,240) Maxpooling 2x2 (m,26,32) LSTM h =200 (m,200)
FC-RELU h =160 (m,160) Conv-BN-RELU f=643 x3s5=1 (m,26,64) FC-LeakyRELU h=16 (m,16)
FC-RELU h =80 (m,80) Maxpooling 2x2 (m,13,64) Dropout p=03 (m,16)
Dropout p=0.J3 (m,80) Conv-BN-RELU f=963x3,s=1 (m,13,96) FC-Linear h=9 (m,9)
FC-Linear h=9 (m,9) Flatten (m,1248)

FC-leakyRELU h=128 (m,128)

Dropout p=03 (m,128)
FC-Linear h=9 (m,9)

Note. “BN,” “FC,” and “Conv” denote Batch Normalization, Fully Connected, and 1D Convolutional layer, respectively. With “h,” “f,”
hidden layer size, the filter size, the stride, and the dropout probability, respectively.

“s,” and “p,” we denote the

Table 4
Average Performance of the Three Different Architectures across Five Runs versus Model
Complexity (as Measured by Number of Parameters)

Best Performance versus Model Complexity

Architecture Performance # of weights
MLP 0.28 £+ 0.01 248,889
1D-CNN 0.28 +0.01 186,665
LSTM 0.29 +0.01 325,769

12
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Appendix B
Model Complexity

Quantifying the bias and variance of a model is also useful in
determining whether the model is underfitting or overfitting the
data. An underfitting model lacks the complexity (capacity) to
learn the underlying pattern in the training set. This results in
high error in the training set. It also results in poor performance
on he test set. In this scenario, the prediction error is dominated
by high bias. On the other hand, an overfitting model is
“excessively complex” for the task at hand. This complexity
can result in fitting not only the underlying pattern of interest
but also the noise in the training data, leading to a good fit on
the training set but poor generalization in the test set. In this
scenario, the prediction error is dominated by high variance.
The ideal model for the task is the one with just enough
complexity to neither underfit nor overfit.

If we identify that the model is underfitting on a given task,
then we should increase its complexity. In the case of DNNs,
this can be achieved by, e.g., increasing the number of layers or
the number of hidden units per layer. If we detect that a model
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is overfitting, one solution is to decrease the complexity of the
model. We can either draw models from a richer model family
(e.g., in the case of DNNSs, choose an architecture with more
hidden layers and/or hidden units per layer), or we can
introduce some form of regularization (e.g., L;-regularization,
L,-regularization, batch normalization, or dropout). Alterna-
tively, we can use an ensemble of several predictors (e.g.,
combine the predictions of multiple DNNGs). Finally, if such a
thing is possible, we can increase the amount of training data.

The example below demonstrates the effect of increasing the
amount of training data available to a model that underfits the
data (insufficient complexity, high bias) and a model that
overfits the data (excessive complexity, high variance). We first
train two models: a “simple” and a ‘“complex” one. The
“simple” model consists of two CNN layers with eight filters
each, and the “complex” model is composed of three CNN
layers with 128 filters each. Both are trained using 1000
training data points, repeating the data generation and training
20 times. The top part of Figure 9 shows the average deviation
of the predictions of the two models for the different AMPs (a
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Figure 9. The performance of a “simple” and a “complex” model, on each of the AMPs, under different amounts of data points. The predictions of the “simple”” model
exhibit a higher average deviation from the true value (higher bias), while those of the “complex” model exhibit a higher variance. Training the two models on a larger
training set allows the “complex” model to reduce its variance, but only marginally improves the predictions of the “simple model.”
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Figure 10. Visualization of bias and variance for different AMPs produced by the MLP model in their actual units. Each point represents the average deviation at that
level, and its error bar represents the 1o spread of the prediction. The performance is mostly similar to the one derived from the CNN model.

measure of the bias component of the prediction error), along
with their standard deviation across the 20 runs (a proxy for the
variance of the error). We then repeat the same experiment, but
this time we provide 5000 training data points to the two
models. The bottom part of Figure 9 corresponds to the results
when the two models are trained with an increased training
sample size.

We can see that the “simple” model has a lower predictive
performance than the “complex” one. Moreover, its perfor-
mance only slightly improves when provided with more data.

14

The results suggest that the error of the “simple” model is
mainly due to bias and it cannot be decreased when trained on
more data. The model has a limited capacity that is smaller than
the one required to model the data set in this situation, and thus
it underfits. On the other hand, the “complex” model exhibits a
lower bias (as measured by the average deviation) than the
“simple” one. However, its error is characterized by a notably
larger variance (as approximated by the standard deviation)
compared to the “simple” model. Finally, when provided with a
larger training sample, the variance of its predictions decreases.
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Figure 11. Visualization of bias and variance for different AMPs produced from the LSTM model. Each point represents the average deviation at that level, and its
error bar represents the 1o spread of the prediction. The performance is mostly similar to the one derived from the CNN model.
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Figure 15. Visualization of bias and variance for different AMPs at high and low CO, (log-)abundance. Each point represents the average deviation at that level, and
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Figure 16. Visualization of bias and variance for different AMPs at high and low NH; abundance. Each point represents the average deviation at that level, and its
error bar represents the 1o spread of the prediction. This plot is generated using the CNN model.

20



THE ASTRONOMICAL JOURNAL, 162:195 (29pp), 2021 November

Average Deviation
o o = - | - (]
5 % 8 » & & 8

o
9
v

o
o
t=3

12

10

08

06

04

Average Deviation

02

00

07

06

05

04

03

02

Average Deviation [Rp]

01

00

H:0
¥ highM,
¢ lowM,
>
.
%
[ ' . -
* i l
. el
*
|
-8 -7 -6 -5 -4 -3
True log(H20)
CO;
¥ highM,
¢ low M,
3
3 k!
P . s I }
4
[ ' T s T X
| oI
L ] L ]
3 3 % 5 4 3
True log(CO;)
RD
§ highM,
¢ low M,

-

ll T' i

|

0%

050

075

125

True R, [Ry]

150 200

Average Deviation

Average Deviation

Average Deviation

16

14

12

10

08

06

o4

02

00

16

14

12

10

08

06

04

02

0o

Yip et al.
CHs co
¥ highM, 301 ¥ highM,
¢ lowM, ¢ low M,
25 ‘
[ =
=2
B2 ‘ l ;
2 |
[ |
(=] ' L]
‘ @ 151
4 £
o
] k '
R ol Z 0
| | | L]
1 [} !
’ I | ‘. 05
v . v . . . 00 . , , . .
-8 -7 -6 -5 -4 -3 -8 -7 -6 -5 -4 -3
True log(CHg4) True log(CO)
NH 3 Mo
K highM, " ¥ highM,
low M, low M,
L] b ) L b
=
= 10
[ =
o
| B
8 8
I, 2
it 3
o 6
o
‘ p L o
| L Q
44
| _ 2
| !
| | 24
: L
- + - - 0
-8 -7 -6 -5 -4 -3 01 1 234
True log(NH3) True M, [M)]
To Cloud Top Pressure
¥ highM, £ highM,
b low M, 12 ¢ low M,
c 10
o
=
o
'S 08
@
o
‘. v Sosd b
e
| g A
'l l I e T : ’
i ‘ ’
*
Ui 02 |
1' U , .
T T 00 T T - T T
55

True Ty [K]

40 45
True 10g(Peouq)

30 35

60

Figure 17. Visualization of bias and variance for different AMPs at high and low M,,. Each point represents the average deviation at that level, and its error bar
represents the 1o spread of the prediction. This plot is generated using the CNN model.

21



THE ASTRONOMICAL JOURNAL, 162:195 (29pp), 2021 November Yip et al.

H0 CHgs co
30
¥ highR, 14 ¥ highR, ¥ highR;,
1754 ¢ lowR, ¢ lowR, %5 ¢ lowR,
12
150
5 s s
o =4 3 2 20
10
‘é’ 125 "!j' ‘é‘
s > o 2
U U Q |
Q 100 | o %8 (=T '
@ b @ @ *
o o o
©ors It © os a g
g i g | 11 g 10 b
< " <, _ | <
050 4 LIk sl |# | .
| o i 0%
025 | ‘ 02 | ! H'.
000 v v . v - - 00 + : . P - 00 - v - v
-8 -7 -6 -5 -4 -3 -8 -1 -6 -5 -4 -3 -8 -7 -6 -5 -4 -3
True log(H;0) True log(CHy) True log(CO)
CO; NH 3 M,
¥ highR, 16 ¥ highR, 401 ¥ highR,
12 ¢ lbwR; b lowR, 4 lowRp
14 35
=4
et €124 p £ 10
S S
b= b= €
© ] =]
‘s 08 'S 10 Z s
@ ] [ L =
o o ;! >
] I @ 08 8 204 ]
o 06 F o k =
© ol ¥ | s !
] : ’ s - T 06 P L ‘ & 15+
s E o & > | L ‘ ot
I 04 s < v 11 1 g
04 | < 10 4
o I ‘
02 [ i | ° o
i ®
| * ?
00 . . . . : . 00 . . . . - . 00 - LI UL
-8 -7 -6 -5 -4 -3 -8 -7 -6 -5 -4 -3 01 1 2 34
True log(CO;) True log(NH3) True M, [M)]
Ry Te Cloud Top Pressure
07 : - ;
k highr, [ k highR, . ¢ highR,
¢ lowR, ¢ lowR, ¢ lowRg
06
- 10
o c 0 c
= os =} [=]
s = E= !
= ] T 08
® » a0 =
2 04 | @ @
3 I a s |t
o @ 06
»
g 03 | g [ E g . I ! 1
| o |
® i g %0 k1 ]
@ (T i 2 i1t Z 04 " ’
> 024 ¢ [ ||+ mie1m < | [ <
a %%t t: P ® | I
‘ I | #ifMf i 200 o | I
01 RERL Y 02
| ‘et 1 : |
YO M N et — 0 ! ; , : . 00l . . , : . .
025 050 075 100 125 150 175 200 500 1000 1500 2000 200 10 35 40 45 50 55 60
True Ry [Ry] True T, [K] True log(Poug)

Figure 18. Visualization of bias and variance for different AMPs at high and low R,. Each point represents the average deviation at that level, and its error bar
represents the 1o spread of the prediction. This plot is generated using the CNN model.
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Figure 19. Visualization of bias and variance for different AMPs at high and low T),. Each point represents the average deviation at that level, and its error bar
represents the 1o spread of the prediction. This plot is generated using the CNN model.
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Figure 20. Visualization of bias and variance for different AMPs at high and low Cloud Top Pressure. Each point represents the average deviation at that level, and its
error bar represents the 1o spread of the prediction
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Figure 21. Distribution of average deviation from the ground truth at each prediction level for different AMPs. The deviation for each AMP is presented in actual unit.
The black curve represents the frequency of model predictions for that bin. Bins are sampled at equal width with sample size less than 20 ignored. Note that M,, is
defined as log(M,,/M,) for better visualization. The model generally performs better when R, and T}, is small. While for M,,, the model struggles with extreme cases,
i.e., very light or heavy planets, this could be due to lack of examples in those regions.

25



THE ASTRONOMICAL JOURNAL, 162:195 (29pp), 2021 November

Least Sensitive

Yip et al.

Most Sénsitive

s 2 SO T e

NH3

CO;

0 R P i

i LR

Cloud

PR

: N

. /,./

T T T T T

1 2 3 4 5
Wavelength (um)

o
~4

T T T T

1 2 3 4 5
Wavelength (um)

o
~
o

Figure 22. Sensitivity map for the MLP model. For each AMP, we visualize the sensitivity of the model to each wavelength w.r.t. predicting it. Yellow denotes the
wavelength to which the model is most sensitive, and black the one to which it is the least. The MLP model is more sensitive to the photometric points in most cases,
which could be linked to obtaining a baseline for the model. For nongaseous AMPs, in contrast to the CNN and LSTM (see below) models, the MLP focuses more on
other parts of the spectrum than the region 2-3 pm. This hints that the MLP captures different aspects of the underlying physics than the other two models. This is not
surprising, as both CNN and LSTM architectures encode more local structure constraints than MLPs.
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27



THE ASTRONOMICAL JOURNAL, 162:195 (29pp), 2021 November

Appendix C
Credibility Limit Calculations

Consider random variables ¥ and ¥ that represent the ground
truth value of an AMP for a particular instance and a model’s
prediction on an AMP (i.e., logXy,o abundance) respectively,
we can define the credibility limit L(8, €) for this AMP as the
lowest possible predicted value y for which:

PY=F+elf =9)>1-6, (C1)
where P(Y = § + €|V = ) is the probability of finding a
model’s prediction y within e of the ground truth y. It can be
computed for the entire set or per each abundance bin as:
_#Yelf—ef+edn¥ =9

#Y =)

where #( -) denotes the number of data points that satisfy the
conditions enclosed in the parentheses.

P

(C2)

Appendix D
Sensitivity Map Calculation: Implementation

This section provides a detailed description on how to
compute the sensitivity map for a particular target. The notation
follows that of the general procedure outlined in Section 4.1.

Given any trained predictive model M (e.g., a neural
network) that takes an input spectrum x and outputs the
corresponding prediction y, a perturbation-based sensitivity test
can be performed to assess the change in the prediction § when
a set of features (transit depth, in our case) x; (consecutive
or not) is perturbed. Algorithm 1 and 2 demonstrates our
procedure to compute the sensitivity map for a single spectrum
on a single prediction.

Our implementation assumes no prior knowledge on the size
and distribution of spectral features. Perturbation is applied to a
randomly selected bin or group of bins at each iteration.
Parameter k controls the number of bins selected each time.
Here, we iterate through different values of & to capture spectral
features at different scales. To quantify the deviation of the
perturbed prediction from the unperturbed, we chose the Mean
Squared Difference (MSE), due to its sensitivity to large
differences, which helps to highlight sensitive regions.

The general procedure for generating sensitivity maps
described in Section 4.1 is not tied to any specific distance
measure, way of selecting the wavelength bins to be perturbed,
or perturbation method. The only requirement is that perturbed
wavelength bin(s) be attributed a score based on the magnitude
of the distance of the two predictions.

Algorithm 1. Sensitivity map calculation

Data: unperturbed spectrum x,., associated uncertainty vector o and number of
repetitions N

Result: sensitivity score, score, of size (x| x |§,|) for each input feature
(wavelength bin) x; and output variable AMP.

1 begin

// get prediction from an unperturbed spectrum;

J,«+ModelPrediction (x,);

// empty array to store results;

delta <—Zeros (x|, |5,]);

I |x,l;

forn — 0 To N — 1do
L—zZeros ()|x|, [5I:
// Extract position index from an array;

O 00 1 N W kW

28

Yip et al.
(Continued)
10 index <—GetIndex (x,);
11 // shuffle index at random;
12 shuffled_index <—Shuffle (index);
13 k«—[;
14 while £ > 2 do;
15 k— Ceil (k/2);
16 // randomly draw k positions without repetition;
17 pos— DrawWithoutRepetition (shuffled_index, k);
18 Xp«— Perturb (x,, o, pos);
19 X, ModelPrediction (x,);
20 // assign %, to L at position pos;
21 Lpos, :] — %;
22 end;
23 // user-defined distance metric;
24 diff <~ SquaredDifference (§,,L);
25 delta < delta + diff;
26 n«—n-++1;
27 end;
28  score < delta/N;
29 end

Algorithm 2. Perturbation method used in this investigation

1 Function Perturb (x,, o, pos);

Data: unperturbed spectrum x,, associated uncertainty vector o and set of
positions in which to apply perturbation pos

Result: perturbed spectrum x,

2 begin

3 xp— Copy(x);

4 sample <+— DrawFromGaussian (x,[pos], o[pos]) ;

5 // replace values at position pos with perturbed values;

6 Xp[pos]«— sample;

7 end
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