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Abstract

In the first part of this thesis, we study the problem of when POZG =~ Q®ZG
implies P =~ () for projective ZG modules P, () where Z(G is the integral group
ring of a finite group G. Our main result is a general condition on G under
which cancellation holds. This builds upon the results of R. G. Swan and our
condition includes all G for which cancellation was previously known to hold.

In the second part of this thesis, we explore applications of these results to
Wall’s D2 problem which asks whether every cohomologically 2-dimensional
finite complex X is homotopy equivalent to a finite 2-complex. The case
where G = m(X) has 4-periodic cohomology has been the source of many
proposed counterexamples to Wall’s D2 problem and is of special interest due
to its implications on the possible cell structures of finite Poincaré 3-complexes.
Our main result is a solution to Wall’s D2 problem for several infinite families
of groups with 4-periodic cohomology, building upon the results of F. E. A.

Johnson.



Impact statement

Projective modules over integral group rings are central objects in the homo-
logical algebra of cellular chain complexes arising from CW-complexes. In light
of this, they are both a useful tool in the classification of CW-complexes and
are the target of many topological obstructions such as the finiteness obstruc-
tions of C. T. C. Wall and R. G. Swan. The results in Part II of this thesis on
Wall’s D2 problem, and in particular Theorem C, make essential uses of my

results on projective modules and serve as the main intended application.

With suitable modifications and extensions, the results on projective mod-
ules also have applications to the homotopy classification of CW-complexes
with highly connected universal covers and, in turn, to the homotopy classifi-
cation of manifolds. I have written a number of articles which contain these
applications (see [3], [24], [35], [37]). However, I will not include these results

in this thesis.

I am not currently aware of any direct applications of this work outside of
academia. This thesis contributes towards the general goal of understanding
CW-complexes and manifolds, which are natural models for spaces and shapes

which arise in the real world.
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Introduction

I Projective modules over integral group rings

A ring R is said to have projective cancellation if POR =~ Q@ R implies P = @)
for all (finitely generated) projective R-modules P and Q. In the first part of
this thesis, we will be interested in the problem of determining which finite
groups GG have the property that the integral group ring ZG has projective
cancellation.

Fix a finite group G once and for all, and recall that the real group ring

RG is semisimple and so admits a Wedderburn decomposition
RG =~ M, (Dy) x --- x M, (D,)

where nq,--- ,n, are integers > 1 and each D; is one of the real division
algebras R, C or H. Let myg(G) be the number of copies of H = M;(H)
which are factors in this decomposition. We say that ZG satisfies the Eichler
condition if my(G) = 0. By the Jacobinski cancellation theorem [43], this is a
sufficient condition for ZG to have projective cancellation.

It is well-known that ZG fails the Eichler condition precisely when G has a
quotient which is a binary polyhedral group, i.e. a non-cyclic finite subgroup

of H*. They are the generalised quaternion groups ()4, for n = 2 or one of



f, 5, I , the binary tetrahedral, octahedral and icosahedral groups. It was
shown by R. G. Swan [46] that, if G is a binary polyhedral group, then ZG

has projective cancellation if and only if GG is one of the seven groups

Q87 Q127 Q167 Q207 Tv 67 IN (*)

It follows from work of A. Frohlich [16] that, if ZG has projective cancel-
lation and G has a quotient H, then ZH has projective cancellation also. In
particular, ZG has non-cancellation whenever G has a quotient which is Q4
for n = 6. Note that this does not yet characterise which groups have projec-
tive cancellation; it remains to determine projective cancellation for ZG when
G has a quotient in (*) but none of the form Qy, for n = 6.

Our main result is as follows.

Theorem A. Let G be a finite group and suppose G has a quotient H such
that my(G) = mu(H) and H is of the form

C1, Qs, @12, Q16, Q20, i 5, I or ThxI™ forn,m = 0.

Then ZG has projective cancellation.

Let C(ZG) denote the projective class group. We say that a class [P] €
C(Z@G) has cancellation if Pi®ZG =~ P,@®ZG implies P; =~ P, for all projective
ZG modules P;, P, such that [P,| = [P] € C(ZG). In particular, ZG has
projective cancellation if and only if [P] has cancellation for all [P] € C(ZG).
However, there are groups G with projective ZG modules P, () for which
[P] has cancellation and [@] has non-cancellation [46]. We will also consider
D(ZG) = Ker(C(ZG) — C(I')) where ZG < T' < QG is a maximal order.

Recall that a group G has k-periodic cohomology for some k > 1 if its Tate

9



cohomology groups satisfy H'(G;Z) = H**(G;Z) for all i € Z. Our second

result is the following.

Theorem B. Let G have periodic cohomology and let P be a projective ZG

module. Then
(i) If mp(G) < 2, then [P] has cancellation
(ii) If mu(G) = 3, then:
(a) If Syl,(G) is cyclic, then [P] has non-cancellation
(b) If [P] € D(ZG), then [P] has non-cancellation

(iii) If my(G) = 4, then [P] has non-cancellation.

In contrast to (ii) (b), Q24 is an example of a group with periodic coho-
mology and my(Q24) = 3 but for which there exists [P] € C(ZQ24) \ D(ZQ24)

which has cancellation.

II  Applications to Wall’s D2 problem

~

A connected CW-complex X is a Dn complex if H;(X) = 0 for i > n and
H™1(X; M) = 0 for all finitely generated ZG-modules M. In his 1965 paper
on finiteness conditions, C. T. C. Wall showed that a finite Dn complex is
homotopy equivalent to a finite n-complex for n > 2 [47, Theorem E] and this
was later proven for n = 1 by Stallings-Swan. The case n = 2 remains open

and is known as Wall’s D2 problem [50, Problem D3]:

Wall’s D2 problem. Is every finite D2 complex homotopy equivalent to a

finite 2-complex?

10



We is parametrised by finitely presented groups G by saying that G has
the D2 property if every finite D2 complex X with 7;(X) =~ G is homotopy
equivalent to a finite 2-complex.

The aim of the second part of this thesis will be to study Wall’s D2 prob-
lem in the case of groups with 4-periodic cohomology. Recall that a group
presentation is balanced if it has the same number of generators and relations.

Our main result is the following.
Theorem C. Suppose G has 4-periodic cohomology. Then:
(i) If G has the D2 property, then G has a balanced presentation

(ii) If G has a balanced presentation and my(G) < 2, then G has the D2
property.

The question of whether or not groups with 4-periodic cohomology have the
D2 property is of particular interest since, as noted by Johnson [21], this would
have implications on the open problem of whether every Poincaré 3-complex

has a cell structure with a single 3-cell.
In Theorem 4.14, we show that the groups G with 4-periodic cohomology
and my(G) < 2 are as follows. Here we use the notation of Milnor [32], and

each family contains G x C,, for any G listed and any n = 1 coprime to |G].
(i) C,, for n = 1, the cyclic groups of order n.
(ii) Dypyo for n = 1, the dihedral groups of order 4n + 2.
(iii) Qs, Quz, Qus, Q0. T, 0, 1.
(iv) D(2",3), D(2",5) for n = 3.
(v) Pjgn forn = 2.

(vi) Py, for n > 3 odd.

11



(vii) Q(16;m,n) for m > n > 1 odd coprime.

By considering which of these groups have balanced presentations, we will
show the following. This was previously shown by M. N. Dyer [13] for the
groups in (i) and by Johnson [22] for the groups in (ii) and for many of the

groups in (iii).

Theorem 6.14. Suppose G is in (1)-(v) or has the form Q(16;n,1) x Cy for

some n,k =1 odd coprime. Then G has the D2 property.

Finally, we consider the case my(G) > 3. Let (4, denote the quaternion
group of order 4n, which has 4-periodic cohomology and mg(Q4,) = |n/2]. By
combining recent results of W. H. Mannan and T. Popiel [29] with Theorem

5.1, we show:
Theorem 6.21. Qg has the D2 property and my(Qas) = 3.

This group was proposed as a counterexample in [1] (see also [30, p23]).
We also point out that the example of Mannan-Popiel gives a counterexample
to a conjecture of J. M. Cohen [50, p381]. The possibility remains that some
group with 4-periodic cohomology does not have a balanced presentation and

so would be a counterexample to the D2 problem.

Structure of thesis

We will now give a brief overview of the structure of this thesis as well as a

detailed account of where the original content can be found.

Part I.! In Chapter 1, we introduce the basic theory of locally free modules

LA weaker version of these results can be found in “A cancellation theorem for modules
over integral group rings” which has been published by Mathematical Proceedings of the
Cambridge Philosophical Society [36].
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over an order in a semisimple (Q-algebra. This includes the case of projec-
tive ZG modules for G finite. Much of this can be found in [45,46] though
we include proofs of Propositions 1.11 and 1.14 as we could not locate them
explicitly in the literature.

Chapters 2/3 constitute the technical heart of Part I of this thesis. The
main cancellation theorem for locally free modules over orders is Theorem 2.6
and, in combination with Theorem 3.11, this is used to prove Theorem A. The
results here are almost entirely original with the two main exceptions being
Theorems 2.7 and 3.11 which are due to Swan [46].

Chapter 4 contains a detailed analysis of the quotients and one-dimensional
quaternionic representations of groups with periodic cohomology, as well as a
proof of Theorem B. This is entirely original with the exception of well-known
facts such as Proposition 4.1 and the classification of groups with 4-periodic

cohomology.

Part I1.2 The aim of Chapter 5 is to prove Theorems 5.1 and 5.11, which
reduce the classification of finite D2 complexes X where m1(X) had 4-periodic
cohomology to a cancellation problem projective ZG modules. These results
are mild generalisations of the main result of [22], and the proofs follow a
similar structure.

Finally, in Chapter 6, we combine the results from Chapter 5 with Theo-
rem B to prove Theorem C. We also explore applications to the cell structure

of Poincaré 3-complexes through observations previously made by Johnson [21]

and Wall [49].

Throughout this thesis we will assume, without further mention, that all

modules are finitely generated left modules.

2These results are contained in “On CW-complezes over groups with periodic cohoology”
which has been published by Transactions of the American Mathematical Society [38].
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Part 1

Projective modules over integral

group rings
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Chapter 1

Preliminaries on projective

modules

In this chapter, we will give a brief summary of the theory of locally free
modules over orders in finite-dimensional semisimple Q-algebras. As we shall
see, this gives a useful framework in which to generalise projective modules
over the integral group rings ZG of a finite group G. Much of this can be
found in work of R. G. Swan, such as [43,45].

1.1 Orders in semisimple algebras

Recall that, for a ring A, a non-zero A-module is simple if it contains no
submodules other than 0 and itself and is semisimple if it is a direct sum of
its simple submodules. We say that the ring A itself is semisimple if it is
semisimple as a module over itself.

Let K be a field and recall that a K-algebra is a ring A equipped with

an inclusion of rings ¢ : K — A whose image is contained in the centre of A.
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This can be viewed as a K-vector space in a natural way using multiplication
by K =~ i(K). The following was first proven by J. H. M. Wedderburn. See

also [22, Section 2| for a modern account.

Proposition 1.1 ([53]). If A is a finite-dimensional semisimple K -algebra,

then there is an isomorphism of rings

A= M, (D) x---x M, (D,)

whereny, - -+ ,n, are integers = 1 and the D; are division algebras over K. This
decomposition is unique up to permutations of the M,,(D;) and isomorphisms

of the D;, and is known as the Wedderburn decomposition of A.

If R <€ K is an integral domain, then a subring A € A is an R-order if it
is an R-algebra which is finitely generated as an R-module and K - A = A.

One of the central objects in this thesis will be that of a Z-order A in a
finite-dimensional semisimple Q-algebra A. Two important examples are:

(1) If G is a finite group, then the rational group ring A = QG is a finite-

dimensional semisimple Q-algebra and the integral group ring A = ZG

is a Z-order in QG

(2) If K/Q is a finite field extension, then A = K is a finite-dimensional
simple Q-algebra and the ring of integers A = Ok is an Z-order in A.

If A is a Z-order in a finite-dimensional semisimple Q-algebra A, then
A®R =~ A®R is a semisimple R-algebra and so has a real Wedderburn
decomposition

A®R =~ M, (D) x --- x M, (D,)

where nq,--- ,n, are integers > 1 and each D; is one of the real division

algebras R, C or H, which is unique up to permutation of the pairs (D;, n;).
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Let my(A) denote the number of copies of H = M;(H) which are factors
in the decomposition of A ® R. We say that A satisfies the Fichler condition
if mg(A) = 0. In the special case where A = ZG for a finite group G, we
will write my(G) = mu(ZG) and we say that the group G satisfies the Eichler
condition if ZG satisfied the Eichler condition. Note that my(G) coincides

with the number of one-dimensional quaternionic representations of G.

1.2 Milnor patching and the Mayer-Vietoris
sequence

Suppose R and S are rings and f : R — S is a ring homomorphism. We can
use this to turn S into an (S, R)-bimodule, with right-multiplication by r € R
given by z - r = zf(r) for any x € S. If M is an R-module, we can define the

extension of scalars of M by f as the tensor product
f(M) =S®r M

since S as a right R-module and M as a left R-module. We consider this as
a left S-module where left-multiplication by s € S is given by s (x ® m) =

(sz) ®m for any x € S and m € M. This comes with maps of abelian groups

sending m — 1 ® m, and defines a covariant functor from R-modules to S-
modules [8, p227].
We now recall the following basic properties of the extension of scalars

map, which follow from the standard properties of tensor products.

17



Proposition 1.2 ([26, p145]). Let f : R — S and g : S — T be ring homo-
morphisms and let M and N be R-modules. Then

(i) fe(MON) = fu(M)® f4(N)
(i) fu(R) =S
(ii)) (g0 f)u(M) = (g4 o f)(M).
If P(R) denotes the set of (finitely generated) projective R-modules, then
the first two properties show that f, induces a map fu : P(R) — P(S) which
restricts to each stable class. If f : R — S and M is an R module, then let

fs: M — fu(M) be the map m — 1 ®m.
Recall that, if R, Ry, R, and R are rings, then a pullback diagram

R —— Ry
R, —— R
is a Milnor square if either j; or j, are surjective. If Py € P(Ry), P» € P(Ry)

are such that there is a R-module isomorphism h : (j1)x(P) — (j2)x(P),

then define an R-module:

M (P, Py, h) = {(z,y) € Pr x Py h((j1)«(2)) = (J2)«(v)} < P x Py,

where multiplication by r € Ris r-(x,y) = ((i1)«(r)z, (i2)«(r)y). It was shown
by Milnor that M (P, Py, h) is projective [33, Theorem 2.1].

Let Autgr(P) denote the set of R-module automorphisms of an R-module
P, and we will write this as Aut(P) when R is understood from the context.

The main result on Milnor squares is as follows.

18



Theorem 1.3 ([33, Section 2|). Suppose R is a Milnor square and P; € P(R;)
fori =1,2 are such that P = (j1)4(Py) = (j2)4(P,) as R-modules. Then there

1S5 a one-to-one correspondence
Aut(P)\ Aut(P)/ Aut(Py) <> {P e P(R) : (i1)4(P) = Py, (iy) 4(P) = Py}

given by sending a coset [h] to M(Py, Py, h) for any representative h.
Let R be a ring. Recall the following definitions from algebraic K-theory:

(i) Let Ko(R) denote the Grothendieck group of the monoid of isomor-
phism classes of projective R-modules P(R), i.e. the abelian group
generated by [P] for P € P(R), with relations [P, ® P,| = [P1| ® [ P2]
for all P, P, € P(R)

(ii) Let Ki(R) = GL(R)® where GL(R) = J,, GL,(R) with respect to
the inclusions GL,(R) < GL,1(R).

It is straightforward to see that Ky and K are functors from the category
of rings to abelian groups. Let R = R(R, Ry, Ry, R) be the pullback diagram
defined above for rings R;, R, and R. The following is referred to as the

Mayer-Vietoris sequence for a Milnor square R.

Theorem 1.4 ([33, Theorem 3.3]). If R is a Milnor square, then there is an

exact sequence

K1(R) — K1(Ry) x K1(Ry) — K1(R) 5 Ko(R) — Ko(Ry) x Ko(Rs) — Ko(R)

where, if v € K1(R) is represented by h € GL,,(R), then d(z) = [M (R}, Ry, h)]|—

[R"], and all other maps are functorial.

The following can be found in [9] and gives a convenient way to split a ring

R as a pullback. Since all maps are surjective, this is a Milnor square.
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Lemma 1.5 (]9, Example 42.3]). Let I and J be two-sided ideals in a ring R.

Then there is a pullback diagram:

R/(InJ) —— R/J

| !

R/T —— R/(I+J)

For example, we obtain the following when R = ZG be the integral group
ring of a finite group by considering the trivially intersecting ideals I =
Ker(fy : ZG — ZH) = Ker(e : ZN — Z) - ZG and J = Yy - ZG where

YN = deNg is the group norm.

Corollary 1.6. Let G be a finite group which has quotient H = G/N where

N is a normal subgroup of GG. Then there is a Milnor square

726G — A

! |

ZH —— (Z/nZ)[H]
where A = ZG /XN and n = |N|.

This will be crucial in our later applications since, by combining this with
Theorem 1.3, we get a way to compare projective ZG modules to projective

7Z.H modules where H is a quotient of G.

1.3 Locally free modules

From now on, we will let A be a Z-order in a finite-dimensional semisimple
Q-algebra A.
Recall that an A-module M is projective if there exists an A-module M’

20



such that M @ M’ =~ A" is free for some i > 0. For a prime p, let Z, denote
the p-adic integers and let A, = A ®z Z,. We say a A module M is locally
projective it M, = M &y, Z, is a projective A, module for all primes p. The

following is well-known.

Proposition 1.7 ([45, Lemma 2.1]). Let M be a A module. Then M is pro-
jective if and only if M s locally projective.

Similarly, we say that M is locally free (of rank n) if there exists n > 1
for which M, is a free A, module of rank n for all p prime. In the special
case where A = QG and A = ZG for G a finite group, we have the following

refinement of Proposition 1.7.

Proposition 1.8 ([45, p156]). Let G be a finite group. If M is a ZG module,
then M 1is projective if and only if M is locally free.

In light of this, we will now restrict our attention to locally free A modules.
Define the locally free class group C(A) to be the equivalence classes of locally
free A modules up to the relation P ~ Q if P@A* =~ Q ® A/ for some 7,§ = 0.
By abuse of notation, we write [P] to denote both the class [P] € C'(A) and,
where convenient, the set of isomorphism classes of locally free modules P,
where [Py] = [P].

We also define the class set Cls A as the set of isomorphism classes of
rank one locally free A-modules, which is finite by the Jordan-Zassenhaus

theorem [8, Section 24]. This comes with the stable class map

[]a: ClsA — C(A)

which sends P — [P]. This map is always surjective due to the following.

This was proven by A. Frohlich in [16] using idelic methods, generalising the
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case A = ZG first obtained by Swan [40, Theorem A]. However, it is worth
noting that the first part follows already from the cancellation theorems of

Bass and Serre [45, Section 2].
Proposition 1.9 ([16, pl115]). If M is a locally free A module, then:
(i) There exists My € Cls A such that M =~ My@® A for some i > 0

(ii) There exists a left-ideal I < A for which My = 1.

We say that A has locally free cancellation if P@A = Q@ A implies P = Q)
for all locally free A-modules P and . By Proposition 1.9, we have that A has
locally free cancellation if and only if [ -], is bijective, i.e. # Cls A = #C(A).

More generally, we say that a class [P] € C(A) has cancellation if P @
A >~ P,® A implies P, = P, for all P, P, € [P]. We say that A has stably
free cancellation when [A] has cancellation, i.e. when every stably free A
module is free. It will often be convenient to write Clsl”I(A) = [-]71([P])
and SF(A) = Clsi™(A) so that, by Proposition 1.9, a class [P] € C(A) has
cancellation if and only if # ClsI(A) = 1.

Recall that [P] € C(A) can be represented as a graded tree with vertices
the isomorphism classes of non-zero modules Py € [P], edges between each
Py e [P] and Py@® A € [P] and with grading from the rank of each locally free
A module. By Proposition 1.9, this takes the following simple form where the
set of minimal vertices corresponds to Clsi”l(A) (see Fig. 5.1).

The following is a consequence of a general cancellation theorem of H. Ja-

cobinski which depends on deep results of M. Eichler on strong approximation.

Theorem 1.10 ([20, Theorem 4.1]). If A satisfies the Eichler condition, then
A has locally free cancellation. In particular, Cls[P](A) = {P} for all P €
Cls(A).
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Figure 1.1: Tree structure for [P] € C(A)

We conclude this section by collecting the basic properties of locally free

modules which we will use in this thesis.
Proposition 1.11. If M is a locally free A module, then:
(i) M®Q is a free A module.

(il) M ® (Z/nZ) is a free A® (Z/nZ) module for alln > 1.

The first part is a consequence of the Noether-Deuring theorem and its
proof can be found in [15, p. 407]. The second part is well-known [39, Remark
4.9] though we were not able to locate a proof in the literature except in the
case A = ZG [40, Theorem 7.1]. For convenience, we include a proof below

which generalises the proof of [40, Theorem 7.1].

Proof of (ii). First note that A/n =~ A ®z (Z/nZ). In particular, if M is a A
module, then M /n =~ M ®y (Z/nZ) can be viewed as a A/n module.

By Proposition 1.9, it suffices to consider the case where M is locally free
of rank one. By Proposition 1.7, we have that M ®z, Z, = A, for all p prime.
Since Z — Z, induces an isomorphism Z/pZ — 7Z,/pZ,, we have that

M/p = M Qg (Zy/pZy) = (M Qg Zy) Xz, (Z/DZy)
= Ap Xz, (Zp/pr) >~ A®z (Zp/pr) = A/p.
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Let a, € M be such that [a,] € M /p maps to 1 € A/p under this isomorphism.
As in the proof of Hensel’s lemma, we can check that the map 1 — [a,] also
defines an isomorphism A/(p*) — M/(p*) for all k > 1

Ifn = plfl .- pkr is a factorisation into distinct primes, then the Chinese
remainder theorem implies that there exists «; € Z such that a; = 1 mod p;
and a; = 0 mod p; for ¢ # j. By the argument above, there exists a; € M such
that the map 1 — [a;] gives an isomorphism A/p¥ — M /pFi. If a = Y| a;,
then it is easy to see that the map 1 +— a defines an isomorphism A/n — M /n

as required. O

Corollary 1.12. Suppose f : A — A is a surjective ring homomorphism for a

finite ring A. If M is a locally free A module, then M ® A is a free A module.

Proof. Note that A = A/I for a two-sided ideal I = A and, since A is a Z-order
in A, we have that Z < A. Since A is finite, I < A must have finite index and
so I nZ = (n) € Z for some n > 1. In particular, this implies that nA < [
and so there is a composition A — A/n — A/I. Hence, if M is a locally free
A module, then M @ A =~ (M/n) ® A. Since M/n is a free A/n module by
Lemma 1.11, we have that M ® A is a free A module. O

In particular, this shows that locally free A modules cannot be detected
on A or on any finite ring quotients of A. For example, if A = ZG, then
M e CIS(ZG) has M ® Q = QG and M ® F, = F,G. Hence locally free ZG
modules cannot be studied using the usual techniques of representation theory.

For later purposes, we will also need to define the defect group D(A) =
Ker(iyx : C(A) — C(I')) where @ : A — I' and ' € A is a maximal order.
Note that i, is surjective by [46, Theorem A10]. By [46, Theorem A24], this is
independent of the choice of I and, if f : Ay — A5 is a map of Z-orders, then
f induces a map f, : D(A1) — D(As).
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We will now specialise the theory presented in Section 1.2 to the special
case of locally free A modules. Let K *(A) denote the subgroup of Ky(A)

generated by [P] for P a locally free A-module.

Lemma 1.13 ([45, p157]). There is an isomorphism of abelian groups
KV (A) S Z@C(A)

sending [ P] — (rank(P), [P]) where rank(P) denotes the rank of P as a locally

free module.

Let A, Ay and Ay be Z-orders in finite-dimensional semisimple Q-algebras
A, Ay, A, respectively, let A be a finite ring and suppose there is a Milnor

square:

A2 A,

R = lil lya

A1 L) /_X
s Since A is a finite ring, we have that A ® Q = 0. Since Q is a flat module,

tensoring the above diagram with Q gives another pullback diagram which

implies that the map
(i1,i2) ®Q:A®Q - (A ®Q) x (A, ®Q)

is an isomorphism, i.e. A =~ A; x As.

In this context, Theorem 1.4 can be generalised as follows.

Proposition 1.14. If R is as above, then there is an eract sequence
Ki(A) = Ki(Ar) x Ki(As) > Ki(A) S C(A) = C(Ay) x C(Ag) — 0
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where, if v € Ki(A) is represented by h € GL, (M), then o(z) = [M (A7, A%, h)],

and all other maps are functorial.

This is essentially proven in [39, 6.2], though the result is stated in a
different form. For convenience, we will include a proof below which pieces

together the argument in [39, 6.2].

Proof. Consider the Mayer-Vietoris sequence for R given by Theorem 1.4, and
the connecting homomorphism 0 : K;(A) — Ky(A). Using the full hypoth-
esis on R, including that A is a finite ring and so A ® Q = 0, we get that
M(A?, A3, h) is a locally free A module of rank n for all h € GL,(A). Hence,
with respect to the inclusion C(A) = KM'(A) < Ky(A) induced by Lemma
1.13, we have that Im(0) < C(A).

This implies that we have a sequence
Ki(A) = Ki(Ay) x K1(As) = K1 (A) 5 C(A) = C(Ay) x C(Ay)

which is exact at each of the K; terms. By the identification in Lemma
1.13, the map (i1,12)« : C(A) — C(Ay) x C(Ag) is the restriction of the map
(11,19)« : Ko(A) = Ko(Ay) x Ko(Az), and so the sequence is also exact at
C(A). To see that (i1,12)s : C(A) — C(Ay) x C(Ay) is surjective note that, by

the discussion above, (i1,i2) ® Q is an isomorphism and so
(il,iz)# : C(A) — C(Al X Az) = C(Al) X C(AQ)

is surjective, by Theorem 1.15. ]

We will now give general conditions under which we can relate cancellation

over two orders A; and Ay when there is a map f : Ay — A,. The following
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was shown by Swan and generalises an earlier result of Frohlich [16, VIII].

Theorem 1.15 ([46, Theorem A10]). Let f : Ay — As be a map of Z-orders
i a semisimple Q-algebra A such that the induced map fy - AMi®7Q — Ay®;Q

15 surjective. Then the diagram

Cls(A) —#— Cls(As)

l[-]Al l[-]m

C(A) — 5 O(Ay)

15 a weak pullback with all maps surjective.

In particular, if P, € ClsA; and P, = f4(P;) € Cls Ay, then this implies
that the map
fa s ClsPI(A)) — Cls21(A,)

is surjective. Hence, if [P;] has cancellation, then [P;] has cancellation.

Let G be a finite group with quotient H. By Corollary 1.6, the situation of
Theorem 1.15 arises when Ay = ZG , Ay = ZH and f : ZG — ZH is induced
by the quotient map and is itself surjective. In particular, we have:
Corollary 1.16. Let G be a finite group which has a quotient H. Then:

(i) If ZG has locally free cancellation, then ZH has locally free cancella-

tion.

(ii) If ZG has stably free cancellation, then ZH has stably free cancella-

tion.

1.4 Central Picard groups

We will now consider the question of when a locally free A module can be

represented by a two-sided ideal I < A and so has the additional structure of
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a bimodule. This was first considered by Frohlich [14] and Frohlich-Reiner-
Ullom [15], and we recount the basic theory here for use in Chapter 2.
Recall that, for a ring R, an (R, R)-bimodule M is invertible if there exists

an (R, R)-bimodule N and bimodules isomorphisms

fM®zrN —->R, g:N®rM — R

such that the following diagrams commute:

f®id g®id

M@RN®RM—>R®RM N@RM®RN—>R®RN
po bor
MrR —— M N®rR —— N

The central Picard group Picent(R) is the group of (R, R)-bimodule isomor-
phism classes of (R, R)-bimodules M for which xm = mx for all m € M and
all central elements x € Z(R).

If M is an (Ry, Ry)-bimodule and f; : S; — R; are ring homomorphisms for
i = 1,2, then we write p, My, to denote the (51, S2)-bimodule with left action
s-m:= fi(s)m for s € S;, m € M and with right action m - s := mfy(s) for
s€ Sy, me M. It f; is the identity, we write this as M}, and similarly, if fs is
the identity, we write y M.

It will be useful to know when two modules in Picent(R) are actually
isomorphic as left R-modules. To determine this, let Autz(R) denote the
group of automorphisms of R as an abelian group, i.e. as a Z-module. Define

the set of central automorphisms to be

Autcent(R) = {f € Autz(R) : f(c) =¢, ce C}
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where C' = Z(R). Let In(R) = {f € Autcent(R) : f(z) = AzA~', X\ € R*} de-
note the subset of inner automorphisms and let Outcent(R) = Autcent(R)/In(R).

If f e Autcent(R), then Ry € Picent(R). Since Ry =~ R as bimodules for
all f € In(R), this defines a map w : Outcent(R) — Picent(R).

Proposition 1.17 ([9, Theorem 55.12]). Let X, Y € Picent(R). Then X =~
Y as left R-modules if and only if X =~ Y; as (R, R)-bimodules for some
f € Autcent(R).

We now consider the special case where R = A is a Z-order in a finite-
dimensional semisimple Q-algebra. Let I(A) denote the multiplicative group
of two-sided ideals I < A which are invertible in the sense that there exists
a fractional two-sided ideal J < Q- A for which I - J = A. If I € I(A), then
it follows that I is invertible as a (A, A)-bimodule and, since [ is an ideal, we
have that xm = ma for all m € I and x € Z(A). This implies that I represents

a class [I] € Picent(A). Moreover, we have:

Proposition 1.18 ([9, Corollary 55.18]). There is an isomorphism of abelian
groups:

Picent(A) = I(A)/{Aa:ae (Q-C)*}
where C' = Z(A) is the centre of A.

We will now specialise even further to the case of locally free A modules.
Define the locally free Picard group LFP(A) < Picent(A) to be the subgroup
consisting of (A, A)-bimodules M such that M € Cls(A) is locally free as a left

A-module.

Proposition 1.19 ([9, Proposition 55.29]). LFP(A) is the set of two-sided
ideals I < A for which I € Cls(A). That is, if I € A is a two-sided ideal such
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that I € Cls(A), then there exists J < A two-sided with J € Cls(A) such that
IT®yJ =A=J®\I as (A, A)-bimodules.

In particular this shows that, if I < A be a two-sided ideal such that
I € Cls(A), then I induces a bijection I ®, — : Cls(A) — Cls(A).

In this context, we can consider an even stronger notion of local freeness
than for left modules. We say that a (A, A)-bimodule M is locally free as
a bimodule if there exists ¢ > 1 such that, for all p prime, M, = A; are
isomorphic as (A,, A,)-bimodules. We will now need the following two closely

related results.

Proposition 1.20 ([9, Proposition 55.16]). Let R be a commutative Noethe-
rian local ring and let A be a commutative finitely generated R-algebra. Then

Picent(A) = 1.

In particular, if A is an Z-order in a finite-dimensional semisimple Q-algebra
A and C = Z(A), then C, is a commutative finitely generated Z,-algebra and
Cp) is a commutative finitely generated Z,-algebra. Since Z, and Z,) are
both Noetherian, this implies that Picent(C),) = 1 and Picent(C,)) = 1.

The following was shown by Frohlich (see also [9, Theorem 55.25]). Note
that, since 7 o 7 factors Picent(C,), the fact that 7/ o 7 = 0 follows from

Picent(C,) = 1.

Theorem 1.21 ([14, Theorem 6]). For all but finitely many primes p, we have

Picent(A,) = 1 and there is an exact sequence

1 — Picent(C) ©> Picent(A) > | | Picent(A,) — 1
p

where C' = Z(A) is the centre of A and 7(M) = M ®c A for M € Picent(C).
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This leads to the following three equivalent characterisations of locally free
bimodules. This is presumably well-known, though we were not able to locate

a proof in the literature.

Corollary 1.22. Let I < A be a two-sided ideal such that I € Cls(A). Then

the following are equivalent:
(i) I is generated by central elements

(ii) I is locally free as a bimodule, i.e. for all p prime, I, = A, are

isomorphic as (Ap, Ap)-bimodules.

(iii) For all p prime, 1) = Ay are isomorphic as (Mg, Agy))-bimodules.

Proof. By Proposition 1.19, I represents a class [I] € Picent(A). The equiva-
lence of (i) and (ii) now follows from Proposition 1.18 and Theorem 1.21.
Now, (iii) implies (ii) since A, = Z, ®z A = Z,, ®z,,) A(p). In order to show
that (i) implies (iii), suppose that I is generated by central elements and, for
p prime, let 7" : Picent(A) — Picent(A(,)) be the induced map. Then there is

a commutative diagram:

Picent(C') ——— Picent(A)

| I

Picent(C(p) ) — Picent (A(p) )

where all maps are the induced maps. By Proposition 1.20, we have that
Picent(C(,)) = 1 and so 7" o 7 = 0. Since I is generated by central elements,
[/] € Im(7) and so [[)] = 7"(I) = 0 € Picent(A(,)) which implies that
Iy = Ay as (A, Ap))-bimodules. O
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Chapter 2

Cancellation for modules over

orders in semisimple (Q-algebras

In this chapter, we will establish Theorem 2.6 which is a new cancellation the-
orem for orders in semisimple Q-algebras. This constitutes the main technical

heart of this part of the thesis.

2.1 Cancellation over fibre squares

Let A be a Z-order in a finite-dimensional semisimple (Q-algebra A and let
A =~ A; x A be an isomorphism of Q-algebras. For i = 1,2, let A; be the
projections onto A;, which is a Z-orders in A;. If Ay = A/I; and Ay = A/I,,
then I n I, = {0} and so, by Lemma 1.5, there is a pullback diagram

AL)AQ

R = l [k

A1L>/7\
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where A = A/(I;+15). Since (i1,i2)®Q induces the isomorphism A — A; x A,
we must have that A®Q = 0 which implies that A is a finite ring. We will write
R = R(A, Ay, Ay) to denote the diagram induced by the splitting A =~ A; x A,.

Consider the maps
Clsg : Cls(A) — Cls(Ay) x Cls(Ag), Cr:C(A) = C(A) x C(Ay)

which are both induced by the extension of scalars maps ((i1)x, (i2)4).

Lemma 2.1. Let P € Cls(A) and let P, = (ig)4(P) € Cls(Ag) for k = 1,2.

Then Clsg restricts to a surjection
Clsg : ClsFI(A) — ClstPT(Ay) x ClstP2(A)
and [ - |a restricts to a surjection
[-]a 2 Clsg! (P, P2) — CRH([P], [Pa))-
Proof. Since (i,7) : A — A; x Ay is a map of Z-orders in A such that (i1, 2) ®Q
is an isomorphism, Theorem 1.15 implies that the diagram
CISR

Cls(A) —= Cls(A1) x Cls(Ag)

lm l[-]Al <[

C(A) — T (A1) x O(Ay)

is a weak pullback in that Cls(A) maps onto the pullback of the lower right
corner. Hence the fibres of [ -], map onto the fibres of [ -], x [-]a, and the

fibres of Clsz map onto the fibres of C', as required. O

In order to determine when [-] is bijective, i.e. when A has locally free
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cancellation, it is therefore useful to give the explicit forms for the fibres of
Clsg and Cx respectively.

Since j; and j5 are both surjective in our construction above, R is a Milnor
square. We also have that locally free A-modules are free since A is finite and
hence semilocal [39, Remark 4.9], and so A = (j;)x(P1) = (jo)x(P%) as A-

modules. Hence we have the following by Theorems 1.3 and 1.4 respectively.

Proposition 2.2. For k = 1,2, let P, € Cls(Ag). Then there is an isomor-
phism of left A modules oy : (jr)4(Ps) — A and, for any such @y, there is a

one-to-one CO’F’I”68pOTLd6nC€
Aut(Pl)\AX/ Aut(Pg) > CIS;ZI(Pl, Pg)

where the maps Aut(Py,) — A* are defined via the map pp(1® —) : P, — A.

Proposition 2.3. For k = 1,2, let Py € Cls(Ay). Then there is a one-to-one

correspondence

K (A)

Ki(A1) x Ki(A) < Cr'([PA] [Pa]).

For ¢ = 1,2, Morita equivalence gives us maps

These maps fit into a commutative diagram

) —— K(End(P)) —— K (A;)

Aut(P,
lh# Km lK 1(h)
A X

> Kl(I\)

where h = j; or j, respectively (see, for example, [46, Corollary A17]). We

34



can therefore define a map

Ki(A)
K1<A1) X Kl(AQ)

\IJPLPZ . Aut(Pl)\/_XX/Aut(Pg) —»

which can be shown to coincide with the map induced by [ - | under the equiv-
alences given in Propositions 2.2 and 2.3. Hence, by the previous discussion,
we have that A has locally free cancellation if and only if Up, p, is a bijection
for all Py, P, such that P, = (i1)x(P) and Ps = (i2)x(P) for some P € Cls(A).
|W%| associated to R. It follows
from Lemma 2.1 that [ -], is surjective and so | Aut(P)\A™/ Aut(P)| > Kx.

Now consider the constant Kr =

Lemma 2.4. Let Py € Cls(Ay) and P, € Cls(As) and suppose that
| Aut(P)\ A%/ Aut(R,)| = Kx.

Then | Clsz! (P1, Py) n CIsP(A)| = 1 for all [P] € CRH([PL], [Pa)).

Proof. By Propositions 2.2 and 2.3, we have that
| Aut(P)\A*/ Aut(Py)| = | Clsg! (P, R2)|, - Kr = [CRH ([P, [P])]

and so | Clsz' (P1, Py)| = |Cx*([P1], [P])| by our hypothesis. By Lemma 2.1,

this implies that we have a bijection
[]a Cls%l(PbPz) - Cﬁl([Pl]a [P2])-

The result follows since []Xl([]g]) = Cls3z' (P, P,) N ClsL?! (A). O

We will now prove the following, which is the main result of this section.
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Theorem 2.5. Let R be as above, let P € Cls(A) and let P, = (i) 4 (P) €
Cls(Ag) for k = 1,2. Suppose that \Aut(ﬁl)\/_XX/Aut(]Bg)] = Kpg for all
P e Cls[Pl](Al) and P, e Cls!?! (A2). Then Clsg induces a bijection

ClstFI(A) = ClstPT(A) x Clst2(Ay).

Subject to the hypothesis, this implies that [P] € C(A) has cancellation if
and only if [P;] € C(A1) has cancellation and [P»] € C(Ay) has cancellation.

Proof. Recall that, by Lemma 2.1, there is a surjection
Clsg |euirn): CIsPIA) — ClsPI(Ay) x ClsIP(A,)

which has fibres (Clsr |cirin) "1 (Pr, P2) = Clsg'(Pr, By) n ClsfI(A). By
Lemma 2.4, we have that | Cls5' (Py, P) nClsT(A)| = 1 for all Py e ClstPI(A)
and P, € Cls!™(A,) and this implies that Clsg |cistP(ay 18 @ bijection. O

2.2 Main cancellation theorem for orders in
semisimple Q-algebras

As before, let A be a Z-order in a finite-dimensional semisimple Q-algebra A,
and let R = R(A, Ay, As) denote the fibre square corresponding to a splitting
A~ Ay x Ay of Q-algebras.

The main aim of this section will be to prove the following which is our

main cancellation theorem for orders in semisimple Q-algebras.

Theorem 2.6. Let P € Cls(A) and let Py = (i1)#(P) € Cls(A1). Suppose the
following conditions are satisfied by R:
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(i) Ay satisfies the Fichler condition
(ii)) The map Ay — K1(Ay) is surjective
(ili) Every P, € Cls(Ay) is represented by a two-sided ideal I = A,
which 1s generated by central elements.
Then the map (ir)4 : ClstN(A) — ClsPI(A,) is a bijection.

Subject to the hypothesis, this implies that [P] € C'(A) has cancellation
if and only if [P;] € C'(A;) has cancellation. Note that, by Corollary 1.22, a
two-sided ideal I € A; is locally free as a (A1, A;)-bimodule if and only if it is
generated by central elements. In particular, hypothesis (iii) is satisfied if I is
generated by central elements.

The proof will be given in Section 2.2.4 and will depend on Lemmas 2.9,
2.10 and 2.11 which roughly correspond to the three conditions in Theorem 2.6.

The first lemma is due to Swan.

2.2.1 The Eichler condition

The following can be shown by combining [46, Corollary A17, Theorem A18].

Theorem 2.7. Let A be a Z-order in a semisimple Q-algebra, let f: A — A
be a ring epimorphism for A finite and let P € Cls(A). Then f(Aut(P)) < A~

is a normal subgroup and the map Aut(P) — Ki(A) induces an isomorphism
A</ Aut(P) = K (A)/Ki(N).

Remark 2.8. By Theorem 2.5, it can be shown that this implies Theorem 1.10.

We can apply this to the case where R = R(A, Ay, As) for a splitting of
Q-algebras A =~ A; x As. In the case where either A; or Ay satisfies the Eichler

condition, we will adopt the convention that A, satisfies the Eichler condition.

37



Lemma 2.9. Let R be as above. If Ay satisfies the Eichler condition then, for
all Py, € Cls(Ag) for k = 1,2, there is a bijection Clsy' (Pr, Py) = Clsy' (Pr, Ag).

Proof. By Theorem 2.7, there are isomorphisms A*/ Aut(P,) = K (A)/K;(Ay) =
A*/A*. This implies that there is a bijection

Aut(P)\ A%/ Aut(Py) = Aut(P)\ A* /AS

which is equivalent to Clsy'(Py, P,) = Clsz'(Pr, Ay) by Proposition 2.2. [

2.2.2 Unit representation for K;

Lemma 2.10. Let R be as above and suppose:
(i) Ay satisfies the Eichler condition
(ii)) The map Ay — Ki(Ay) is surjective.
Then [AJ\ A /NS | = Kg.

Proof. Since my(Ay) = 0, Theorem 2.7 implies that the map A* — K;(A)
induces an isomorphism A* /Ay =~ K;(A)/Ki(A;). The relevant maps fit into

a commutative diagram

Af ——— A¥/AS

l K 1l(;\)

Kl(Al) — Kl(AQ)

and so Im(A; — A*/AY) = Im(K;(A) — K;(A)/Ki(Ay)) since the map
AY — Ki(Ay) is surjective. Hence we have |[A]\ A*/AS| = Kx. O
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2.2.3 Two-sided ideals over orders in semisimple (Q-algebras

The main result of this section is as follows. This gives a method of construct-
ing locally free two-sided ideals over A from locally free two-sided ideals over

the projections Ay subject to certain conditions.

Lemma 2.11. Let R be as above and, for k = 1,2, suppose I, = Ay is a two-
sided ideal such that Iy € Cls(Ax) and which is generated by central elements.
Then there ezists a two-sided ideal I = A with I € Cls(A) such that

(i) For k = 1,2, there is a (Ag, A)-bimodule isomorphism

(k)4 (1) = (Ik)s,

(ii) There is a bijection

I ®p — : Clsg! (P, Py) — Clsg (I @4, Pr, I, @y, P2).

Remark 2.12. This actually holds under the weaker hypothesis that (1)) =

(Ak)(p) are isomorphic as ((Ax) ), (Ar)(p))-bimodules for all primes p | [A].

We will begin by proving the following embedding result, which can be

viewed as a generalisation of [40, Theorem A] to bimodules.

Proposition 2.13. Let I < A be a two-sided ideal generated by central ele-
ments such that I € CIs(A). Then, for all n # 0, there exists a two-sided ideal
J < A such that I = J as (A, A)-bimodules and J N Z is coprime to (n).

Note that, by Corollary 1.22, this holds whenever I is locally free as a

bimodule. In order to prove this, we will need the following two lemmas.

Lemma 2.14. Let n # 0 be an integer and let I = A be a two-sided ideal
such that I € CIs(A) and, for all p | n prime, there is a (Ay), Agy)-bimodule
isomorphism Iy = Agy. Then there is a (A/n, A/n)-bimodule isomorphism

f:ANn—1I/n, 1 [a] for someae Z(A)nI.
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Proof. For each p | n prime, consider the bimodule isomorphism f : Ay,) —
Iy, 1= [ap] for some a, € I(,). There exists m # 0 such that ma, € I < I
and f': Ay — 1), 1 — [ma,] is still a bimodule isomorphism, and so we can
assume that a, € I < I,). Since f is a bimodule isomorphism, we have that
ap € Z(Ayy) and so a, € Z(A) N 1.

Now, f induces a bimodule isomorphism A, /p = I(,)/p. Since Zy,)/p =
Z/p, there are bimodule isomorphisms A/p = A, /p and I/p = Iy, /p and
so there exists a bimodule isomorphism f, : A/p — I/p, 1 — [a,]. It is
straightforward to check that the map f;i : A/pt — I/p', 1 — [a,] is also a
bimodule isomorphism for all 7 > 1.

In general, suppose n = pi*---p* for distinct primes p;, and integers
n; = 1 and k > 1. By the Chinese remainder theorem, Z/n =~ Z/pi* x --- x
Z/p*. By tensoring with A or I, we see that there are bimodule isomorphisms
An = Apf* x - x A/p* and I/n = I/p* x --- x I/pi*. Hence, by the
bimodule isomorphism constructed above, there is a bimodule isomorphism

f:A/n—I/n, 1 [a] for some a € Z-{ap,, - ,a,,)< Z(A)nI. O

Lemma 2.15. Let n # 0 be an integer, let I < A be a two-sided ideal such
that I € Cls(A), and let f: A/n — I/n, 1 — [a] be a (A/n,A/n)-bimodule
isomorphism for some a € Z(A) n 1. Then Aa = A as a (A, A)-bimodule and

there exists m # 0 such that mI < Aa and (n,m) = 1.

Proof. Since a € Z(A), Aa is a bimodule and there is a map of bimodules
¢ : A — Aa, x — za. To see that ¢ is a bimodule isomorphism, note that it
is clearly surjective and is injective since f is a bijection.

Since f is an isomorphism, we have I = Aa+ nl as ideals in A and so there
is an equality of finitely generated abelian groups I/Aa = n-1/Aa. Hence, as an

abelian group, I/Aa is finite of order m where (n,m) = 1. Since m-I/Aa = 0,
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we have that mI < Aa. O

Proof of Proposition 2.13. Let I < A be a two-sided ideal such that I € Cls(A)
and which is generated by central elements. By Corollary 1.22; this implies
that A, = I, are isomorphic as bimodules for all p. By Lemma 2.14, there
is a (A/n,A/n)-bimodule isomorphism f : A/n — I/n, 1 — [a] for some
a € Z(A) n 1. By Lemma 2.15, this implies that there is a (A, A)-bimodule
isomorphism 9 : Aa — A which sends za — = and there exists m # 0 with
(n,m) = 1 and mI < Aa. Let J = ¢(ml) < ¢(Aa) = A, which is a two-
sided ideal since 1) is a map of bimodules. Finally, note that the map I — J,
x — (mz) is a (A, A)-bimodule isomorphism, and m = ¢(ma) € Y(ml) = J

implies that J N Z = (mg) where mg | m and so (n,mg) = 1. O

We will also need the following lemma. In the statement of Lemma 2.11,

this shows that part (ii) follows from part (i).

Lemma 2.16. Let R be as above and suppose I < A, I, = Ay are two-sided
ideals such that I € Cls(A), Iy € Cls(Ag) and (ix)x(I) = (Ix);, are isomorphic
as (Ag, A)-bimodules for k = 1,2. Then there is a bijection

I®y — : Clsg' (P, Py) — Clsp! (1) ®Qn, Py, I, ®p, Po).

Proof. By Proposition 1.19, there exists a two-sided ideal J < A such that
JeCls(A) and I ®p J = A = J®, I as (A, A)-bimodules. In particular, I is
invertible as a bimodule and determines a bijection I ®, — : Cls(A) — Cls(A)
with inverse J @, —.

Now suppose P € Clsy'(Py, Py), i.e. that (i) 4(P) = P, are isomorphic as
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left A, modules for k£ = 1,2. Then

(ik) (I ®p P) = Ay ®p (I ®p P) = (I1)i, Qa P
~ (It ®n, Ak) ®r P = I, ®p, P

and so (I ®y —)(Clsgx' (P, P,)) < Clsz' (I} ®a, P, I, ®p, P,). Similarly, we
can show that (J ®x —)(Clsz' (I} @, Pi, Is @4, P»)) < Clsg' (P, P,). Hence
I ®, — restricts to the required bijection. O

Finally, we will now use Proposition 2.13 to complete the proof of Lemma 2.11.

Proof of Lemma 2.11. By Lemma 2.16, it suffices to prove part (i) only. Let
k = 1 or 2. By Proposition 2.13 we can assume, by replacing [, with a
bimodule isomorphic two-sided ideal, that I, N Z is coprime to |[A|. Let n €
I;, " Z be such that n # 0 and let m € Z be such that nm = 1 mod |A|, which

exists since (|A|,n) = 1. Consider the left A module homomorphisms
Vet A > A®a Ik, 1>m®n, @i A®a Lk — A, 2Qy— zji(y)

where z € A and y € I, € A,. Note that ¢ (¢(1)) = mjr(n) = mn =1¢€ A
and Yp(pr(z ®y)) = (2jp(yym) ®n = 2m @ yn = xmn ® y = x ® y. This
shows that 1, and ¢ are mutual inverses and so are both bijections.

Now let M = {(x1,22) € [1 x I : p1(1®x1) = p2(1®xa)} S Ay x Ag, which
is a left A-module under the action A - (1, z5) = (i1(N)x1,i2(N)z2) for A € A.
This coincides with the standard pullback construction for projective module
over a Milnor square R [33]. However, for the ¢, chosen above, we further
have M = {(x1,22) € Iy x I : j1(x1) = jo(z2)} and so M is a (A, A)-bimodule
with action X« (21, 22) - = (i1 (A) - 21 - i1(p), 12 () - o - ia(p)) for A, p € A.
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Note that M < A; x Ay € Q- (A1 x Ay) = Q- A and so there exists
k e Z with k # 0 for which kM < A. Hence I = kM is a two-sided ideal
in A which is bimodule isomorphic to M. Now note that M € Cls(A) as a
left A-module by [39, Lemma 4.4], and so I € Cls(A). Finally note that, by
the proof of [33, Theorem 2.3|, the map f : (ix)x(M) — (Ix);, which sends
Ak ® (1, x9) > Mg - for Ay € Ay is a left Ay, module isomorphism. This is

also a right A-module isomorphism since

f(OA® (21,29)) - A) = fF( M ® (1 - i1 (A), 22 - 12(N)))
=\ g i (A) = (A ® (71, 72)) - i (N)

and so (ig)4(]) = (ix)x(M) = (I));, are bimodule isomorphic, as required. [

2.2.4 Proof of Theorem 2.6

By Theorem 2.5 and Lemma 2.9, it suffices to show that # Clsﬁl(f’l, Py) =Kg
for all P. By Lemma 2.9 (ii), there is a bijection Clsﬁl(ﬁl, Py)) ~ Cls%l(ﬁl, As)
and, by Lemma 2.10, we have that # Cls3' (A1, Ay) = Kx. Hence it suffices to
show that, for all ]51, there is a bijection Clsﬁl(ﬁl, Ag) = Cls;zl(/\l, As).

By assumption, there exists a two-sided ideal I; < Ay such that [; =~ f’l as
left Ay modules and such that (1), = (A;), are isomorphic as bimodules for all
primes p | |A|. By Lemma 2.11, there exists a two-sided ideal I < A such that
I'eCls(A) and (i) (I) = (I1);, as (A1, A)-bimodules and (i2)x(I) = (A2);, as
(A2, A)-bimodules. By Lemma 2.16, this induces a bijection

I@A — ClS;zl(Al, AQ) g ClS;zl(]l, Ag),

and so there a bijections Clsg'(Pr, Ay) = Clsz'(Aq, As), as required.

43



Chapter 3

Cancellation for modules over

integral group rings

The aim of this chapter will be to specialise Theorem 2.6 to the case of integral
group rings ZG. We will then prove Theorem A by combining this with an

additional cancellation theorem of R. G. Swan which is given in Theorem 3.11.

3.1 Binary polyhedral groups and the Eichler
condition

Recall from Proposition 1.8 that, for a finite group G, a ZG module is projec-
tive if and only if it is locally free. In particular, ZG has projective cancellation
if and only if ZG has locally free cancellation. In order to determine when ZG
has projective cancellation it suffices, by Theorem 1.10, to consider the case
where G fails the Eichler condition, i.e. if no copy of H = M;(H) appears in
the Wedderburn decomposition of the real group ring RG.

We will now determine the finite groups GG which fail the Eichler condition.
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Firstly note that a binary polyhedral group is a non-cyclic finite subgroup of
H>* where H is the real quaternions. Since there is a double cover of Lie groups
f:H*=~ 5% — SO(3), the binary polyhedral groups are the preimages of the
non-cyclic finite subgroups of SO(3) which are the dihedral groups Ds,, of order
2n for n > 2 and the symmetry groups of platonic solids.

The double cover of D, is the quaternion group of order 4n for n > 2:

Q4n = <x7y ‘ 332 = yz,y:I:yfl = $71>'

The symmetry groups of platonic solids are the tetrahedral, octahedral and
icosahedral groups T, O, I. These have double covers the binary tetrahedral,

binary octahedral and binary icosahedral groups, which have presentations:

T ={a,b,c|a® = = = abc)
O ={a,b,c|a®=b" = = abe)
T ={abc|a®="b"=c = abe).

The following is well-known [46] though a proof does not appear explicitly
in the literature except in the backward direction [9, p305].

Proposition 3.1. G satisfies the Fichler condition if and only if G has no
quotient which is a binary polyhedral group.

Proof. If G fails the Eichler condition, the Wedderburn decomposition gives
a map G — H*. Since G is an R-basis for G, the image must contain an
R-basis for H. Since H is non-commutative, the image must be non-abelian
and so a binary polyhedral group. Conversely, a quotient of GG into a binary

polyhedral group gives a representation G — H* which does not split over R
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or C since the image is non-abelian. Hence the representation is irreducible

and so represents a term in the Wedderburn decomposition. O

Remark 3.2. It is possible to compute my(G) in terms of the quotients of G
which are binary polyhedral groups. We will consider this in Section 4.2.

3.2 Proof of Theorem A for quaternionic quo-
tients

In order to determine when ZG has projective cancellation it suffices, by The-
orem 1.10, to consider the case where G fails the Eichler condition. By Propo-
sition 3.1, this implies that G has a quotient H which is a binary polyhedral

group and so, by Corollary 1.6, there is a Milnor square:

72G — A

R- ||

ZH —— (Z/nZ)|H]
where A = ZG/Xy and n = |G|/|H]|.
We now aim to prove the following by specialising Theorem 2.6 to R¢ u.

Theorem 3.3. Let G be a finite group and suppose G has a quotient H such
that my(G) = mu(H) and H is of the form

QSy QIQ; Qlﬁa Q20'

Then Z.G has projective cancellation.

Let G is a finite group with a quotient H such that mg(G) = myg(H) and
H = Qg, Q12, Q16 or Qs, and suppose conditions (i)-(iii) of Theorem 2.6 hold
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for Rg,u. If P € Cls(ZG) and Py = (i1)4(Pg) € CIs(ZH), then Theorem 2.6

implies that there is a bijection
(i) : ClsiPel(z@) — sl (zm).

It was shown by Swan in [46, Theorem I] that ZH has projective cancellation
for H = Qs, Qu2, Qi6, Q0. This implies that # Cls"/(ZH) = 1 and so
# Cls!Pe)(Z@) = 1 holds for all P € Cls(ZG). In particular, this would imply
that ZG has projective cancellation.

Hence, in order to complete the proof of Theorem 3.3, it suffices to verify
that conditions (i)-(iii) of Theorem 2.6 hold for R¢ g. Since R is flat, Rg g @R
is a pullback diagram and so RG =~ RH x (A®R). Since my(G) = my(H), this
implies that A satisfies the Eichler condition and so (i) applies automatically.

Conditions (ii) and (iii) will be verified in the following two sections.

3.2.1 Unit representation for quaternion groups

We say that that K;(ZG) is represented by units when the map ZG* —
K, (ZG) is surjective. The problem of when K(ZG) is represented by units
for G a finite group was studied in detail by B. Magurn, R. Oliver and L.
Vaserstein [27]. In particular, they showed:

Lemma 3.4 ([27, Theorems 7.15 - 7.18)).

(i) K1(ZQuy,) is represented by units if n = 2% or if n is prime with
#C(Z[Ca]) odd.

(i) K1(ZQ116) is not represented by units.

If p =3 or 5, then it is well known that #C(Z[(,]) = 1. Hence K1(ZH) is
represented by units when H = Qg, Q12, Q16 or (29, which implies that Rq g
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satisfies conditions (ii).

3.2.2 Projective modules over quaternion groups

We say that a locally free module P € Cls(A) is represented by a two-sided
tdeal I < A if P =~ I are isomorphic as left A-modules. The aim of this section

will be to prove the following, which implies that R g satisfies condition (iii).

Proposition 3.5. For 2 < n < 5, every P € Cls(ZQ4,) is represented by a
two-sided ideal I < 7.4, which is generated by central elements. In particular,

P is locally free as a (ZQun, ZQ4y)-bimodule.

We begin by discussing two families of two-sided ideals which will suffice
to represent all projective modules P € Cls(ZQ)y4,) in the case 2 < n < 5. Note

that, by [46, Theorem III], we have that # Cls(ZQ4,) = 2 for 2 < n < 5.

Swan modules

Let G be a finite group, let N = > gec 9 denote the group norm and let r € Z
with (r,|G|) = 1. Then the two-sided ideal (N,r) € ZG is projective as a
left ZG module and is known as a Swan module. If r = s mod |G|, then
(N,r) = (N,s) by [41, Lemma 6.1] and so we often write r € (Z/|G|)*. Note
that N,r € Z(ZG) and so (N, ) is generated by central elements.

By [46, Theorem VI|, we have that [(N,3)] # 0 € C(ZQqn) for n = 3 where
(N, 3) is a Swan module. Since # Cls(ZQan) = 2 for n = 3,4, this implies that:

Cls(ZQs) = {ZQs, (N,3)},  Cls(ZQus) = {ZQ1s, (N, 3)}

which implies Proposition 3.5 for the groups Qg and Q+¢.
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Two-sided ideals of Beyl and Waller

In order to prove Proposition 3.5 for the groups (12 and sy, we will now
consider a family of projective two-sided ideals in Z(@)4, which were first intro-
duced by R. Beyl and N. Waller in [1].

For n > 2, define P, = (a + by,1 + ) S ZQ4y, for a,b € Z such that
(a®> + b%,2n) = 1 if n is odd and (a® — b*2n) = 1 if n is even. It follows
from [1, Proposition 2.1] that P,; is a two-sided ideal and is projective as a
left ZQ4, module. For a € ZQy,, let (o) € ZQ4, denote the two-sided ideal

generated by a. If n is odd, then there is a Milnor square

ZQun/(a" +1) =2 Z[Con, 5] 2,y —— Coms j

e ] |

Zlj) ——— @/l  —Li—— —Lj

where ZQy,/(x+1) = Z[j] and ZQu, /(2" ' — 2" 2+ - —1) = Z[(an, j] < Hg.
If n = pis an odd prime then, by Propositions 2.2 and 2.3, we have that

Clsg! (Z[Coy, 71 Z1]) —— CRM([Z[G, 1), [Z1))

| !

F,[j]" . KEL)
2T % 20 17 (L) % o (Z[Gap )

where ¢ is induced by the map F,[j]* — Ki(F,[j]). It follows from [1,
Proposition 2.2] that P, € Clsg' (Z[Can, 7], Z[j]) with corresponding element
; Fp 5]~
Lo+ b5] € gppaic o
This allows us to deduce the following, which is an extension of [2, Theorem

3.11] in the case where n = p is an odd prime.

Lemma 3.6. Let p be an odd prime with #C(Z[(,]) odd and let P, = (a +
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by,1 + x) € ZQyp for (a* +b?,4p) = 1. Then:
(1) Puyp is free if and only if p|a orp|b
(ii) P,y is stably free if and only if a* + b* is a square mod p.
Proof. By [27, Lemma 7.5], we have that Z[(,, j]* = (Z[{,]*, j). Furthermore,

the map Z[(,]* — F,[j]* sends ¢, to 1 and so has image F since units of any

length are achievable. This implies that:

5]
ZIj1* x Z[Gp, 317

=71 /F,; - )

and so P,y is free if and only if [a + bj] = 1 € F,[j]*/F) - {j).

Since Z[j] is a Euclidean Domain, we have K,(Z[j]) = Z[j]* = {£1, +j}
and, since F,[j] is a finite and hence semilocal ring, we have K;(F,[j]) =
F,[j]*. It follows from [27, Lemmas 7.5/7.6] that, if #C(Z[(,]) odd, then
Im(K1(Z[Cp, 7])) = (F,Ker(N))) where N : F,[j]* — F), 2 4+ yj — 2* + ¢°
is the norm on F,[j]. In particular, there is an isomorphism:

K (Fy[]) 51"

N R0 < K @) =~ @1 Fr Rawyy e/ N E) =Ep /()

Hence the map ¢ coincides by the map
N[5/, - Gy — By /(Fy)?

which is induced by N : F,[j]* — F), z + yj — 2° + 3. In particular, P,
is stably free if and only if [a* + b*] = 1 € F}(F))?. The result follows by

evaluating these conditions. O

If p = 3 or 5 then, as noted in Section 3.2.1, we have that #C(Z[(,]) = 1.
In the case p = 3, we have (12 +22,12) = 1 and 31 1,2 and, in the case p = 5,
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we have (12 4+ 42,20) = 1 and 51 1,4. Since # Cls(ZQy,) = 2 for p = 3,5, we
have:

ClS(ZQu) = {Zle,PLQ}, CIS(ZQm) = {ZQ20,P1,4}-

We will now show that the F,; are generated by central elements. Our
strategy will be to introduce a new family a two-sided ideals which are gen-
erated by central elements and show that the F,;, can be expressed in this
form.

so1, _s1 o

If s € Z is odd, then let z, = (=1)7 (272 — 2~ "% +---+ 27 ) and let
N=1-—g+g%— .. — g2 If t € Z, then let a&t:zs—i-t‘]f\vfyeZQAm.

Lemma 3.7. Let n > 2 and let r,s,t € Z where (s,2n) = (r,2n) = 1. Then
(51, 7) S ZQuy is projective as a left ZQ4, module and osy € Z(ZQuy).
Proof. Tt is easy to see that z, Ne Z(7ZQ4y,) and that Nz = Nz~'. Hence we
have yo, 1 = a5y and o = 2,0 + t(Nx)y = 2,X + t(ﬁxil)y = a4, which
implies that as; € Z(ZQ4y,). Since 1 € (a4, r) and (r,4n) = 1, we have that
(ast,7) is a projective ZQ4, module by [40, Proposition 7.1]. H
Lemma 3.8. Let n > 2 and let a,b € Z be such that (a*> — (—1)"b% 2n) = 1.

(i) If r = (a® — (=1)"b*)/ ged(a, b), then there exists ag, by € Z such that

a = ag mod r, b= by mod r, (ag,2n) =1 and 2n | by
(i) Pup = (st,7) S ZQupn where s = ag and t = by/2n.
In particular, P, ts generated by central elements.

Proof. Since (r,2n) = 1, there exists =,y € Z such that rx 4+ 2ny = 1. Then
ap = a + rx(l —a) and by = 2nyb have the required properties.

Now recall that P,, = (a+by,1+x). If d = ged(a, b), then 5(a—by) € ZQun
and so 7 = %(a — by) - (a + by) € P,p. In particular, since a = ap mod 7 and

b = by mod r, this implies that P,, = (a + by, 1 +z,7) = (ao + boy, 1 + x,r).
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Let s = ap and ¢t = by/2n. If e : ZQ4, — ZQ4, is the function which

evaluates at © = —1, then

~

e(asy) = e(zs) +te(N)y = s+ t(2n)y = ag + boy

s which implies that ag + by = a5 mod 1+ 2 and so P, = (ase, 1 + 2, 7).
Since s = ag has (s,2n) = 1, we can let £ > 1 be such that /s = 1

mod 2n. Similarly to the proof of [2, Lemma 1.3], we now define tz, =

(—z)°7 Zf:é(—xs)i so that 2,2, = 1 mod N. This implies that ZsOugy =
Zzs + Nzty = 1 mod N since N € Z(ZQ4,). Since (z + 1)N = 0, this
implies that (1 + x)zsas; = 1 + 2. Hence 1 + z € (as,) and so P,y = (asy, 7).

By Lemma 3.7, this implies that P, is generated by central elements. O

By Lemma 3.8, this implies that P, 5 © Z@12 and P, 4 S Z()9 are gener-
ated by central elements. This completes the proof of Proposition 3.5.

We have now shown that, if G is a finite group with a quotient H such
that myg(G) = muy(H) and H = Qg, Q12, Q16 or Q20, then conditions (i)-(iii)
of Theorem 2.6 hold for R¢ g. This completes the proof of Theorem 3.3.

Remark 3.9. This argument can also be used to prove Theorem A in the case

H=T. However, we will leave this case until the following section.

3.3 Proof of Theorem A for exceptional quo-
tients

The main result of this section is as follows. This generalises [46, Corollary

13.5, Theorem 13.7] which corresponds to the case G = H.
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Theorem 3.10. Let G be a finite group and suppose G has a quotient H such
that my(G) = mu(H) and H is of the form

i 5,I~ or f”xfmforn,m>().

Then ZG has projective cancellation.

Let A be a Z-order in a semisimple separable Q-algebra A which is finite-
dimensional over QQ. Then we can write A =~ A; x---x A, x B, where the A; are
totally definite quaternion algebras with centres K; and B satisfies the Eichler
condition, i.e. my(B) = 0. Let T'y be the projection of A onto A; x --- x A,.
Let R = R(A, Ay x -+ x A, B) denote the corresponding fibre square.

Suppose that 'y < A; x --- x A, is maximal, and so of the form I'y =
Ay x - x A, where A; € A, is a maximal order for ¢ = 1,---,r. Then
A = A; x --- x A, where A; is the image of A; under the map ¢ : 'y — A.

It is well-known that there is a finite extension K/K; for which A; ® K =~
M,(K) where n = [K : K;]. If p: A; ® K — M, (K) is an isomorphism, then

we define the reduced norm as the map
V; . Az — KZ

given by sending A — det(p(A® 1)). It can be shown that v is independent
of the choice of K and ¢. For an order I'; € A;, this restricts to a map

Theorem 3.11 ([46, Theorem 13.1]). Let R be as above and suppose that the
projection I'y € Ay x --- X A, 1s a mazximal order. Fori=1,--- ,r and every

mazximal Ok,-order I'; < A;, suppose that:
(i) () = (Og,)"
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(ii) There is at most one prime p such that (A;)py = 0 and p is ramified
in A;. If p exists, then (I';)g = Ker(v; : I') — Og.) has a subgroup
of order p+ 1.
Then A has locally free cancellation if and only if 'y has locally free cancella-

tion.

For a finite group G, we can write QG =~ A; x --- x A, x B where the A;
are totally definite quaternion algebras and B satisfies the Eichler condition.
As above, let T'z¢ is the projection of ZG onto Ay x -+ x A, and let r = r(G)
denote the value of r in the decomposition of QG above.

The following was proven in [46, Proposition 4.11] and [46, p84].

Lemma 3.12. If G =T, O or I, then r(G) = 1 and 'z is a mazimal order

i Ayq. Furthermore:

By [46, Lemmas 13.8, 13.9], we have that Fz[fmxfm] ~ Fgf X Fgf forn,m >

0. The following is an straightforward exercise.

Lemma 3.13. Let f : G — H have my(G) = my(H). Then QG = QH x B
where B satisfies the Fichler condition and the projection map QG — QH

mduces an isomorphism I'zqg = I'zy .

Proof of Theorem 3.10. By Lemma 3.13 and the discussion above, I'z4 is of
the form I',, 5 or [V x 7% for some n,m > 0. In particular, I'z¢ is a maximal
order whose components are maximal orders in A %, A, 5 or A,;.

If I' = T'ys, 'y or T'y, then [46, p84] implies that I' has projective can-

cellation and #C(I') = 1, and so 'z has projective cancellation also. Hence,
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to show that ZG has projective cancellation, it suffices to show that the con-

ditions (i), (ii) of Theorem 3.11 hold for maximal orders in A, %, A, 5 or A 5.

Firstly note that, if ' = I' ), I')5 or I' )y and A = A %, A, 5 or A,; respec-
tively, then #C(T") = 1 implies that every maximal order in A is conjugate to
I'. In particular, it suffices to check (i), (ii) for I" only.

To show (i) holds, note that ((Ox)*)* < v(I'*) < ((Ok)*)* where K is
the centre of A. By Lemma 3.12, we have that K = Q, Q(v/2) = Q(¢s + (g Y)
or Q(v5) = Q(Cio + (;)- In each case, we have C(Ok) = 1 and so (O;)* =
(OF)? by, for example, [46, Corollary B24]. Hence v(I'*) = ((Ox)*)™".

To show (ii) holds, there is nothing to check in the case I' = I' ;5 or I' ;3 since
A is finitely unramified by Lemma 3.12. If I' = I, then A is ramified only
at p =2 and (I'y5); = T contains an element of order p + 1 = 3. Hence this

condition is satified regardless of whether or not (A;)¢,) = 0 for R = ZG. O

Remark 3.14. Generalising the remark of Swan in the proof of [46, Corollary

13.5], we note that this argument would also work in the case H = Q1.

By combining Theorem 3.10 with Theorem 1.10 and Theorem 3.3, we have

now completed the proof of Theorem A from the Introduction.
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Chapter 4

Groups with periodic

cohomology

In this chapter, we will study groups with periodic cohomology and establish
the properties of these groups which are needed to prove Theorem B as a
consequence of Theorem A. We will also classify the groups G with 4-periodic

cohomology for which my(G) < 2.

4.1 Basic definitions and properties

We say that a group G has k-periodic cohomology for some k > 1 if its Tate
cohomology groups satisfy I:Ii(G; 7) = ]:I”k(G; Z) for all i € Z and that G has
periodic cohomology if it has k-periodic cohomology for some k. We will begin
by recalling a few basic facts about groups with periodic cohomology, much of
which can be found in [5, Chapter XI].

Firstly, if G’ has k-periodic cohomology, then G is a finite group and k£ is

even [22; Chapter 7]. Well known examples include cyclic groups C,, of order
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n = 1 and the quaternion groups 4, of order 4n for n > 2. By the calculations

in [5, p251-254], we have

-

Z/AnZ, n =0 mod 4

~ Z/nZ, n even ~

H'(Cy;Z) = H'(Qun; Z) = 5 el n =2 mod 4
1, n odd

0, n odd

\

where Q3° = Z/A7 when n is odd and Z/2Z* when n is even. Hence C,, has

2-periodic cohomology and @)y, has 4-periodic cohomology. More generally, it

can be shown that all binary polyhedral groups have 4-periodic cohomology.
The following gives equivalent criteria for when a group G has periodic

cohomology.

Proposition 4.1 ([5, Theorem 11.6]). If G is a finite, then the following are

equivalent:
(i) G has periodic cohomology
(ii) G has no subgroup of the form C, x C,, for p prime

(iii) The Sylow subgroups of G are cyclic or generalised quaternionic Qaon.

Let SLy(F,) be the special linear group of degree 2 over F,,, let TLy(F,) be
the non-split extension of Cy by SLy(F,) [52, Proposition 1.2 (iii)] and recall
that T = SLy(Fs), O =~ TLy(F3) and I = SLy(Fs). Let O(G) be the unique
maximal normal subgroup of odd order. If G' has periodic cohomology, then
the type of G is determined by G/O(QG) as follows [52, Corollary 2.6]. For later

convenience, we will split II and V into two classes.
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D Type | I || m |11V Va Vb VI
1G/O(G) | Con | Qs | Qunin =14 0 SLy(F,), p > 7 | TLo(F,), p = 5

=~
~?

Furthermore, the groups within each type can be classified explicitly. We
refer the reader to [11, Section 1], [22, Chapter 7] and [52, Sections 1,2] for
details. For the purposes of this chapter, it will be useful to recall this classi-

fication for the groups of types I and II.

Type I Recall that G has type I if and only if its Sylow subgroups are cyclic,

and G has a presentation
G=uv|u™=v"=1Lvuw ' =u")

for some r € Z/m where r™ = 1 mod m and (n,m) = 1 [52, Lemma 3.1].
We will write Cp, %,y Cy, to denote this presentation, where C,, = (u) and

Cy, ={v). By [22, p165], we can assume that m is odd.

Type II Recall that, if G has type II, then O(G) < G has cyclic Sylow

subgroups and so there exists n > 3 and ¢, s odd coprime such that
G = (Cy %y C5) X(ap) Qan.
Furthermore, if C; = (u), Cy = (v) and Qan is as above, then Qan acts via
b

. a .
Gz iU UV U, Oy U UL,V U

for some a,b € Z/t with a®> = b?> = 1 mod t [52, Theorem 3.6]. If s = 1, then

we will abbreviate this to C; x4 4) Qon.
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4.2 (Quaternionic representations

For the rest of this section, we will assume all groups are finite and will write
f G — H to denote a surjective group homomorphism. We will also assume
basic facts about quaternion groups; for example, ()o» has proper quotients
C5 and the dihedral groups Dom for 1 < m < n. We begin with the following

observation.

Proposition 4.2. Let f : G - H where G and H have periodic cohomology.
If |H| > 2, then G and H have the same type.

Proof. Note that f(O(G)) < H has odd order and so is contained in O(H).
In particular, f induces a quotient f : G/O(G) - H/O(H). Hence it suffices

to show that there are no (proper) quotients among groups in the family
F = {Ogn, QQm, SLQ(IFP), TLQ(]FP) = 2,m = 3,p =3 prime}

unless both are cyclic. Firstly, the quotients of QQon are Dom for 1 < m < n
and Cy which are not in .%. It is easy to verify that the quotients of SLy(FF3)
are C3, Ay and the quotients of TLy(F3) are Cy, S3, Sy, none of which are in
Z.

For p = 5, it is well known [12] that SLy(FF,) has one (proper) normal sub-
group Cy with quotient PSLy(F,) and similarly TLy(F,) has normal subgroups
Cy, SLy(F,) with quotients PGLy(F,), C2. These groups are not in .% (see,

for example, [52, Proposition 1.3]). ]

If G is a finite group, we say that two quotients f; : G — Hy, fo: G — Hy
are equivalent, written f; = f, if Ker(f;) = Ker(f5) are equal as sets. Note

that, if f; = f5, then H; =~ H, are isomorphic as groups.
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For a prime p, let G}, be the isomorphism class of the Sylow p-subgroup of
G. It is useful to note that, if 1 - N — G — H — 1 is an extension, then

there is an extension of abstract groups 1 - N, — G, — H, — 1.

Lemma 4.3. Let f : G - H where G and H have periodic cohomology and
4 | |H|. If f': G — H' and |H| = |H'|, then f = ', i.e. H =~ H' and
Ker(f) = Ker(f).

Proof. Let H = G/N, H' = G/N’ and define G = G/(N nN'). Since there are
successive quotients G — G — H, we have G, - G, — H,, for all primes p.
If G, is cyclic, then this implies G,, is cyclic. If not, then p = 2 and Gy = Qa»
which has proper quotients Dom for 2 < m < n — 1 and C5. Since H has
periodic cohomology, Hs is cyclic or generalised quaternionic and so Hy = (QQon
since 4 | |Hy|. Hence Gy = Qan since Gy —» H, factors through Gs, and so G
has periodic cohomology.

Now note that K = N/(NnN') and K’ = N'/(N nN’) are disjoint normal
subgroups of G and so K - K’ = K x K' < G by the recognition criteria for
direct products. Hence K x K’ < G and, since G has periodic cohomology,
Proposition 4.1 (ii) implies that |K| and |K’| are coprime. Since |N| = |N'|,
this implies that |K| = |[K'| = land so |[N| = [INAN'| = |[N'|and N = N'. O

Let B(G) denote the set of equivalence classes of quotients f : G — H
where H is a binary polyhedral group. Since 4 | |H|, Lemma 4.3 gives:

Corollary 4.4. Let G have periodic cohomology and let fi, fo € B(G). Then
fi = fa if and only if Im(f;) = Im(f3).

In particular, this shows that B(G) is in one-to-one correspondence with
the isomorphism classes of binary polyhedral groups H which are quotients of

G. We will often write H € B(G) when there exists f : G — H with f € B(G).
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In order to determine B(G), it suffices to determine the set of maximal
binary polyhedral quotients By« (G), i.e. the subset containing those f € B(G)
such that f does not factor through any other g € B(G). The rest of this section

will be devoted to proving the following:

Theorem 4.5. If G has periodic cohomology, then the type and the number

of mazimal binary polyhedral quotients # B,..(G) are related as follows.

Type I [Mla | IIb | III | IV | Va | Vb | VI
#Bux(G) 101123 1 1| 1] 1]0]0

Type I Recall from Section 4.1 that, if G has type I, then G = C,, x(y C,
where

Con %) Cn = (uyv [u™ =" = Loww™ =)

for some m odd with (n,m) = 1 and some r € Z/m with " = 1 mod m.
If G has a binary polyhedral quotient H, then Proposition 4.2 implies that
H = Qy, for a > 1 odd and 4 | n since m is odd.

Lemma 4.6. Let G = Cy,, Xy Cy,. Then G has a quotient Qu, if and only if

a|m and r=—1 mod a.

Proof. Recall that Q4 = C, x(—1) Cy. If a | m and and r = —1 mod a, then
(u®, v*) < G is normal since r* = 1 mod a implies vy~ = u' =" v* € (u, v*).
This implies that G/(u®, v*) = C, %) Cy = Qu, since r = —1 mod a.
Conversely, if £ : G —» Qu, then Qua = {F(u)) sy (o)) and [ ()] | m,
|(f(u))] | 4n. Since )4, contains a maximal normal cyclic subgroup Cy,, and
m is odd, we must have (f(u)) < C,. So a | m, which implies that (a,4n) =1
and (f(u)y < Cy for some Cy < Q.. Hence {f(u)) = C, and {f(v)) = C,4
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since they generate Q4. As C, < (4, is unique and Cy < @4, is unique up to

conjugation, we can write Qu, = {f(u)) x(—1) (f(v)), i.e. r=—-1mod a. O

Now suppose G has two maximal binary polyhedral quotients f, : G —
Quas fo : G — Qg for some a,b > 1 odd, and we can assume a is maximal.
Then Lemma 4.6 implies that a,b | m and r = —1 mod a and r = —1 mod
b. If d = lem(a,b), then d | m and r = —1 mod d and so there is a quotient
fa: G = Quq by Lemma 4.6. By Corollary 4.4 (or the proof of Lemma 4.6),
fa and f, factor through f; which implies that a = b = d as f, and f;, are
maximal. By Corollary 4.4 again, this implies that f, and f, are equivalent.

In particular, this shows that # By (G) < 1.

Type IT Recall from Section 4.1 that, if G has type II, then
G~ (Ct X (r) CS) X (a,b) QQn

where n > 3, t, s are odd coprime and a,b € Z/t with > = b* =1 mod t.
If G has a binary polyhedral quotient H, then the proof of Proposition 4.2
implies that H/O(H) = Qan» and so H = Qan,, for some m odd.

Lemma 4.7. Let G = (Cy x(yy Cs) X(ap) Qan. Then G has a quotient Qony, if

and only if m | t, r =1 mod m and Qanp = Cry X (4p) Qon.

Proof. If m | t and r = 1 mod m, then (™, v) < G is normal since vvu~! =

u'"v € (u™, v). This implies that G/{u™, v) = Cy % (45 Q2» which has quotient
Cin X (ap) Q2n since m | t. If Qonp = Cpp X (a,b) Q2n, then G has quotient QQany,.

Conversely, suppose f : G — Qany,. Let h: G — G/{u,v) = Qon and note
that, if ¢ : Qanpm — Qan, then Ker(g o f) = Ker(h) = (u,v) by Corollary 4.4

and so Ker(f) < (u,v). By composing ¢g with an element of Aut(Q2-), we can
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assume go f = h and so Qan,, = Ker(g) x(f(x), f(y)). Since f(v) € Ker(g) has
a trivial action by {f(z), f(y)) = Q2n, this implies f(v) = 1, i.e. v € Ker(f).
This implies Ker(f) = (u®,v) for some ¢ | t and we need ¢ = m since Ker(f) <
G has index 2"m. Hence m | t and, by normality, vvu™! = u'~"v € (u™, v)

and so 7 = 1 mod m. Finally, we have Qan, = G/(u™,v) = Cp X(gp) Qon. O

Lemma 4.8. If m > 1, then Qany, = Cpy X (qp) Qon if and only if

1,-1),(~1,1),(=1,-1), ifn=3
| BD LD

(1,-1), ifn > 4.

Proof. It follows easily from the standard presentation that Qgn,, = Cy, ¥ (1,—1)
Qon. If 1 Qonyy = Qon, then Ker(f) = C,, is unique by Corollary 4.4. Hence
Qorm = Cp X(ap) Qo if and only if there exists 6 € Aut(Qan) such that
©lap) = Pa,-1) © 0 where @ jy : Qan — Aut(Cy,) = (Z/m)* has ¢ ) (x) = 1,
@) (y) = j. This implies that Im(pp) < Im(ea,-1)) = (1,-1) = {£1}
and so a,b € {£1}. If (a,b) = (1,1), then Qan, = Cp X Qo which is a
contradiction unless m = 1, in which case (1,1) = (1,—1). In particular,
(a,b) € {(1,—-1),(—1,1),(=1,—1)}.

If n = 3, then 6, : v — y,y — x satisfies pq,_1) 00, = pu_1) and
0, : x — y,y — xy satisfies 1) 002 = ¢(_1,_1). Hence all (a,b) are possible.
If n > 4, then

Aut(Qan) = {0;; - x> 2’y > aly i e (Z/2"7)*, j e Z/2" 7}

and @,-1y00;; = @@, for all 4, j and so only (a,b) = (1, —1) is possible. [

Now suppose G has type IIb, i.e. G/O(G) = Qaon for some n > 4. By
combining Lemmas 4.7 and 4.8, we get that G has a quotient Qon,, if and only if
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m | t,r =1 mod m and (a,b) = (1, —1) mod m. If G has two distinct maximal
binary polyhedral quotients f; : G — Qanyy,, for i = 1,2, then my,mq [ t, r =1
mod my,my and (a,b) = (1,—1) mod my,my. If m = lem(mq, msy), then
this implies that m | ¢, r = 1 mod m and (a,b) = (1,—1) mod m and so
f+ G — Q. By Corollary 4.4, m > mq,ms and f; and f; must factor
through f which is a contradiction. Hence # Byax(G) = 1.

A similar argument works in the case where G has type Ila, i.e. G/O(G) =
(s. If G has four distinct maximal binary polyhedral quotients f; : G = Qgp,
for i« = 1,2,3,4, then Lemmas 4.7 and 4.8 imply there exists ¢, 5 for which
(a,b) = (1,-1), (=1,1) and (—1,—1) mod m;,m;. By a similar argument to
the above, this implies that f;, f; factors through f : G — Qg, where m =
lem(m;, m;) which is a contradiction since m; # m; and f;, f; are maximal.
Hence 1 < # Buax(G) < 3.

If G has quotients Qg,,, and Qg then this implies that (a,b) mod m; and

(a,b) mod m; are distinct which is a contradiction unless (m;, m;) = 1.

Types III, IV, Va If G has type III, IV or Va, then G/O(G) =T, O or I.
If f: G — H is another binary polyhedral quotient H, then Proposition 4.2
implies that H =~ G/O(G). By Corollary 4.4, f is equivalent to the quotient
G « G/O(G). Hence # Buax(G), #B(G) = 1.

Types Vb, VI Suppose G has type Vb or VI. Since no binary polyhedral
groups have type Vb or VI, Proposition 4.2 implies that G has no binary
polyhedral quotients. Hence # Buax(G),#B(G) = 0. This completes the
proof of Theorem 4.5.

Recall that myg(G) denotes the number of copies of H in the Wedderburn

decomposition of RG for a finite group G, i.e. the number of one-dimensional
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quaternionic representations.

Proposition 4.9. Let f : G — H be a quotient. Then my(G) = mu(H) if
and only if every g € B(G) factors through f, i.e. if f*: B(H) — B(G) is a

bijection.

Proof. Firstly note that mg(G) = myg(H) holds in general by lifting quater-
nionic representations. By looking at the real Wedderburn decomposition,
every one-dimensional quaternionic representation of G corresponds to a map
¢ : G — H* such that the image contains an R-basis for H. In particular, Im ¢
is a non-abelian finite subgroup of H* and so is a binary polyhedral group.
Hence quaternionic representations of G precisely correspond to lifts of rep-
resentations from binary polyhedral groups. Since every quotient from G to a
binary polyhedral group factors through H, every quaternionic representation

over G lifts from one over H. The result now follows. ]

For example, this recovers the well-known fact that G satisfies the Eichler
condition if and only if G has no quotient which is a binary polyhedral group
[9, Theorem 51.3]. It also follows that, if G has a unique maximal binary
polyhedral quotient H, then my(G) = my(H).

We now show how to use this to deduce the following from Theorem 4.5.

Theorem 4.10. If G has periodic cohomology, then type and my(G) are re-

lated as follows.

Type I IIa ITb [T | IV | Va | Vb | VI
mu(G) >lodd|>2even| 1 | 2 | 2| 0 | O

A\
o

Type Vb, VI If G has type Vb or VI, then Theorem 4.5 implies that G has
no binary polyhedral quotients and so my(G) = 0 by Proposition 4.9.
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Type IIb, III, IV, Va If G has type IIb, III, IV or Va, then Theorem 4.5
implies that # Bnax(G) = 1, i.e. G has a unique maximal binary polyhedral
quotient H. By Proposition 4.9, we must have that myg(G) = mg(H). By
Proposition 4.2, H has the same type as G. Recall that mg(Qu4,) = |n/2] [22,
Section 12]. If G has type Ila, then H = Qan,, for n = 4, m > 1 odd and
mu(Qanm) = 273m = 2 is even. If G has type III, IV or Va, then H = T, O

or I respectively which have mg(T) = 1, mg(0) = 2 and mg(I) = 2.

Type IIa If G has type Ila, then Theorem 4.5 implies that # Byax(G) =
1,2,3. If b = #Bnax(G), let f; ©+ G — Qsm, denote the maximal binary
polyhedral quotients for 1 < ¢ < b. By the proof of Theorem 4.5, the m; are
coprime and so the maximal quotient factoring through any two of the f; is
the unique quotient f : G — Qs. Since my(Qgm,) = m; and my(Qs) = 1, it

can be shown using real representation theory that

-

mi, ifb=1
b
mH(G> = Z(mH<Q8mz> - 1) + mH(QB) = 9 (m1 + mg) — 1, ifb=2
=1
(m1+m2+m3)—2, ifb=3

\

which is odd since the m; are odd. This completes the proof of Theorem 4.10.

4.3 Proof of Theorem B

The aim of this section will be to prove the following theorem from the Intro-

duction:

Theorem B. Let G have periodic cohomology and let P be a projective ZG

module. Then
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(1) If mu(G) < 2, then [P] has cancellation
(i) If mu(G) = 3, then:

(a) If Syly(G) is cyclic, then [P] has non-cancellation
(b) If [P] € D(ZG), then [P] has non-cancellation

(iii) If mu(G) = 4, then [P] has non-cancellation.
Our proof will build upon the following, which was proved by Swan in [46].

Lemma 4.12 ([46, Theorem I]). If G has a quotient Q4, for n =7, then [P]

has non-cancellation for all projective ZG modules P.

In contrast to (ii), we have the following which follows from [46, Theorem

ITI]. See also the discussion at the end of Section 3.2.2.

Proposition 4.13. The quaternion group Qa4 of order 24 has my(Qay) =
3 and a non-cyclic sylow 2-subgroup Syly(Qa4) = Qs. Furthermore, [ZG]
has non-cancellation but there exists a projective Z(Q)aq module P with [P] ¢

D(ZQ24) for which [P] has cancellation.

We begin by using the results of Swan [46, Theorems I-III] to show that
Theorem B holds in the cases where G is a binary polyhedral group. Recall
from Section 4.2 that mu(Qu,) = |n/2], mu(T) = 1 and mg(0) = mu(I) = 2.
The groups with my(G) < 2 have cancellation in every class by [46, Theorem
I] and, by the remark following [46, Theorem I}, the groups with my(G) > 4
have non-cancellation in every class. The only groups with my(G) = 3 are
G = (24 and @og. In the latter case, Syly(Qas) = Cy and indeed Z(@Q)og has

non-cancellation in every class (by the same remark used previously). In the

former cases, the fact that [P] has non-cancellation whenever [P] € D(ZQ24)
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follows from close inspection of [46, Theorem III] (see also the discussion at
the end of Section 3.2.2).

We will now prove Theorem B by verifying it in three separate cases ac-
cording to the number of maximal binary polyhedral quotients #Bp..(G) (see
Section 4.2).

Case: #Bmax(G) = 0 By Proposition 4.9, this is equivalent to my(G) = 0.
By Theorem 1.10, we know that ZG has projective cancellation, i.e. [P] has
cancellation for all projective ZG modules P. This completes the proof of

Theorem B in this case.

Case: #Bmax(G) = 1 By Proposition 4.9 again this implies that, if H is
the unique maximal binary polyhedral quotient, then my(G) = my(H). If
my(G) < 2, then my(H) < 2 and so H is of the form Qs, Q12, Q1s, Q20,T.0
or [ by the discussion above. In particular, by Theorem A, ZG has projective
cancellation. This completes the proof of (i) in this case.

Let f : G — H denote the quotient map, let P be a projective ZG module
and let P’ = fu(P) be the projective ZH module obtained by the extension
of scalars. If [ P’] has non-cancellation, then [ P] has non-cancellation by The-
orem 1.15. Hence, in order to verify Theorem B, it suffices to show that [P']
fails cancellation in the cases (ii) and (iii).

Suppose that my(G) = mu(H) = 3. If Syl,(G) is cyclic, then Syl,(H)
is a quotient of Syl,(G) and so is cyclic. Since Theorem B holds for binary
polyhedral groups, this implies that [P’] has non-cancellation. If instead we
have [P] € D(ZG) then, since fy induces a map fx : D(ZG) — D(ZH),
we have P’ = fu(P) € D(ZH). Similarly, this implies that [P’] has non-
cancellation which completes the proof of (ii). If my(G) = mu(H) = 4, then
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[P’] has non-cancellation by Lemma 4.12 and this completes the proof of (iii)

in this case.

Case: #Bpmax(G) > 1 By Theorem 4.5, we know that G necessarily has
type Ila and #B,,.<(G) = 2 or 3. By the calculations made in the proof of
Theorem 4.10, we have that Bup.(G) = {Qsm,, -+, Qsm,} Where the m; are

odd coprime and

(mq +mg) — 1, if b=2
mu(G) =

(m1+m2+m3)—2, ifb=3

depending on the two cases that arise. We will assume that m; < --- < my,.
Note that my(G) = 3 only when b = 2, m; = 1 and my = 3. In this
case, G has a quotient Qo4 and so Syl,(G) is non-cyclic. Furthermore, if P is
a projective ZG module with [P] € D(ZG), then [P] has non-cancellation by
Theorem 1.15 since its image lies in D(ZQ24) under the extension of scalars
map. In all other cases, we have my(G) > 5 and G must have a quotient Qg,,
for some m > 5. By Lemma 4.12, we have that Z(Q)s,, has non-cancellation
in every class. In particular, by Theorem 1.15 again, ZG must have non-
cancellation in every class. This completes the proof of Theorem B in this

case, and ultimately completes the proof of Theorem B.

4.4 Groups with 4-periodic cohomology

The aim of this section will be to classify the groups G with 4-periodic coho-
mology for which mg(G) < 2. This will be of particular use in Chapter 6.

We will begin by recalling the classification of groups with 4-periodic co-
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homology. This can be found in [22], though we will adopt the notation of
Milnor [32]. The complete list is as follows where, in addition, we will also

assume each family contains G' x C,, for any G listed with (n, |G|) = 1.
(i) C, for n = 1, the cyclic group of order n (Type I).
(1) Dypyo for n = 1, the dihedral group of order 4n + 2 (Type I).
(iii) Qun for n =2 and T,0, T (Type II).
(iv)" D(2",m) = Cp, »(—1) Con for n = 3 and m > 3 odd (Type I).

(V) Pign = Qg %, Csn for n = 2, where ¢ : C3n — Aut Qs sends the
generator z € Csn to ¢(2) : © — y,y — xy (Type III).

(vi) P, = Cy - O for n > 3 odd, the not-necessary-split extension which
has cyclic Sylow 3-subgroup and has action 00 / T =Cy < Aut Cn
(Type IV).

(vil)" Q(2"a;b,c) = (Cy x Cpy x C,) ¥y Qaon for n = 3 and a,b,c > 1 odd

coprime with b > ¢. If C, = (p), C, = {¢) and C. = {r), then

the action is given by p(z) : p— p,q— ¢ L, r =171 ©o(y) :p—

Lg— gt r—r (TypelI).

In the above list, we have also indicated which type each family of groups
has. There are, in particular, no groups of type V or VI which have 4-periodic
cohomology.

Note that, in the notation of Section 4.2, we have Q(2"a; b, ¢) = Cope X (1.5)
QQon where t and s are such that (¢,s) = (1,—1) mod a, (¢,s) = (—1,—1) mod
b and (t,s) = (—1,1) mod c. It is easy to see that Q)(2"a;b, c) has a quotient
0(2"a).

Theorem 4.14. The groups G with 4-periodic cohomology for which my(G) <

2 are as follows where each family contains G x C,, for any G listed with

(n,|GI) = 1.
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(i) C, forn =1

(ii) Danso forn =1
(if]) Qs, Q12, Qu, @20, T, 0, T
(iv) D(2",3), D(2",5) forn >3
(v) Pggn forn =2
(vi) Pjy, forn =3 odd

(vii) Q(16;m,n) for m >mn =1 odd coprime.

Proof. First note that we can ignore the groups of the form G x C,, for G listed
and (n,|G|) = 1 since my(G x C,,) = my(G) in these cases.

It can be shown that the groups in (i)', (ii)’ satisfy the Eichler condition
[22, Section 12]. For the groups G in (iii)’, we use that mg(Qs.) = |n/2],
mu(T) = 1, mg(O) = 2 and my(I) = 2 as mentioned previously.

In case (iv)’, suppose G has a binary polyhedral quotient H. FExplicit
computation shows that Z(H) = C5 and so the quotient map f : G — H must
have f(Z(G)) € Z(H) = Cs. If x € C,, and y € Cyn are generators, it is easy to
see that Z(D(2",m)) = {(y?) = Cyn-1 which has index two subgroup N = {(y*).
Hence f factors through G/{y*) = Cy, x(_1)Cs = Qu. By Proposition 4.9, we
have that my(G) = mu(Qum) = (m — 1)/2 since m is odd and so my(G) < 2
if and only if m = 3 or 5 and any n > 3.

The groups in (v)" all have quotient T and so have Type III by Propo-
sition 4.2 and so, by Theorem 4.10, we have my(P;4.) = 1. Similarly, the
groups in (vi)’ have quotient O and so have Type IV by Proposition 4.2 and
so, by Theorem 4.10, we have my(Pjg,,) = 2.

For the groups in (vii)’, suppose G = Q(2"a;b,c) has my(G) < 2 for
a,b,c = 1 odd coprime with b > ¢. If n = 3, then G has Type Ila and it is
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easy to see that G = Q(8a;b,¢) =~ Q(8¢; a,b) = Q(8b; ¢, a) and so has quotients
Qsq, Qsp and Qg.. This implies that my(G) = mu(Qs.) = a which implies
a = 1 since a is odd, and similarly b = ¢ = 1. This is a contradiction since
b > c. If n > 4, then G has a quotient Qan, and so mg(G) = my(Qan,) = 2" 3a
and so n = 4 and a = 1. In particular, if mg(G) < 2, then we can take G to
be Q(16; m,n) for some m > n > 1 odd coprime.

By the remark before the statement of the theorem, we have that G =
Crn X (t,5) @16 Where t and s are such that (¢,s) = (—1,—1) mod m and
(t,s) = (—1,1) mod n, and so t = —1. Since G has Type IIb, Theorem 4.5
implies that G has a unique maximal binary polyhedral quotient and, since G
has a quotient ()¢, this must be of the form Q)14 for some k£ > 1. By Lemmas
4.7 and 4.8, G has a quotient Q¢ if and only if k | mn and (¢,s) = (1, —1)
mod k. Since t = —1, this implies 1 = —1 mod k and so &k = 1 since k is
odd. In particlar, ()16 is the maximal binary polyhedral quotient and so, by
Proposition 4.9, we have my(G) = mu(Q16) = 2. O

Remark 4.15. For the groups in the list, the groups in (i)', (i)’ have my(G) = 0,
and the groups Qg x C,, Q12 x C, and T x C, from (iii)" and the groups in
(v)" all have my(G) = 1. All other groups in the list have my(G) = 2.
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Applications to Wall’s D2
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Chapter 5

Preliminaries on algebraic

complexes

Let D2(G) denote the set of polarised homotopy classes of pairs (X, px) where
X is a finite D2 complex and px : m(X) = G is an isomorphism, i.e. where
pairs (X, px), (Y, py) are equivalent if there exists a homotopy equivalence
h: X — Y such that pyom (h)opy' = idg. Thisis a graded graph with grading
given by the Euler characteristic x(X) and edges between between each (X, p)
and (X v S?, p™) where p* is induced by the collapse map X v S? — X.

Let Alg(G,2) denote the set of chain homotopy classes of algebraic 2-

complexes over ZG, which are chain complexes (Fj, d,) of the form
[Ny iy o)

where the F; are free and Hy(Fy) = Z where Z has trivial G-action. This is a
graded graph with grading x(F) = rank(F,) — rank(Fy) + rank(Fp) and edges
between each E = (F}, d,) and E @ ZG = (F, ® ZG 2% 1, 2 ).

In this chapter, we will establish the necessary preliminaries which we
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will need to prove Theorem C. In Section 5.1, we will show that D2(G) and
Alg(G,2) are isomorphic as graded trees and in Section 5.3 we will show how
Alg(G,2) can be understood in terms of projective ZG modules in the case

where G has 4-periodic cohomology.

5.1 Polarised homotopy types and algebraic 2-
complexes

The aim of this section will be to prove the following. Our proof will be a mild

generalisation of the arguments of Johnson in [23].

Theorem 5.1. Let G be a finite group. Then there exists an isomorphism of

graded trees

C, : D2(G) — Alg(G,2)

which is the same as the cellular chain map X — C, ()?) when X is a finite

2-complezx.

We begin by noting that every finite D2 complex is a finite D3 complex
and so is homotopy equivalent to a finite 3-complex by [47, Theorem E]. We
therefore lose no generality in assuming throughout that every finite D2 com-
plex is a finite 3-complex. Let (X, p) € D2(G) and consider the cellular chain

complex

Cu(X) = (C5(X) =2 Oo(X) =25 C1(X) —2= Go(X))

where the C;(X) are free Z[m (X )] modules under the monodromy action. We
can use p to identify this with a chain complex of ZG modules which we denote

Cy(X, p). We will now show the following which is also our definition for Cl:

1)



Proposition 5.2. Let (X,p) € D2(G). Then Ci(X,p) is chain homotopy

equivalent to an algebraic 2-complex E over ZG. In particular, we define

~

Cu(X,p) =E.

To prove this, we will need the following two lemmas. Note that, since

Im(03) < ker(@,), there is a well-defined map 05 : Co(X)/Im(d5) — Cy1(X).

Lemma 5.3 ([23, Proposition 6.6]). Let (X, p) € D2(G). Then there is a
chain homotopy equivalence ¢ : Cy (X, p) — CL(X, p) where

C1(X, p) = (Co(X)/Im(05) —2s O4(R) —2 (X)),

Lemma 5.4 ([23, Proposition 6.5]). Let (X, p) € D2(G) and let Ci(X, p) =
(Co(X), 0)o<nes. Then Co(X)/Im(ds) is a stably free ZG module.

Proof of Proposition 5.2. By Lemma 5.4, there exists ¢, 7 > 0 for which there
is an isomorphism f : Co(X)/Im(03) ®ZG ~ ZGI. We can now define a chain

homotopy equivalence

(X p) Co(R)/Tm(05) — 2 C1(X) —2 Co(R)

W = | 7o, 0) a0 Lia
E

. 2,0)o -1 i ; 1, ad
267 0 (X ezat Y oy (X)

where FE is an algebraic 2-complex over Z(G. Hence, by combining with

Lemma 5.3, we obtain a chain homotopy equivalence fiop : Cy(X, p) —> E. 0O

We now turn to the proof of Theorem 5.1. By Proposition 5.2, C, is a
well-defined map and it is clear that C,(X v §") ~ C,(X) @ ZG and so C,
gives a map of graded graphs. Note that Alg(G,2) is a tree [22, Section 52].

In particular, C, is an isomorphism of graded trees if and only if it is bijective.
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There are many proofs in the literature that C, is surjective (see [48, Theorem
4] or [28, Theorem 2.1]) and so it remains to show that C, is injective.

We will now need the following two lemmas. The first is proven in the case
where X and Y are finite 2-complexes in [23, Proposition 2.2]. The proof for

finite D2 complexes is similar and so will be omitted for brevity.

Lemma 5.5. Let (X, px), (Y, py) € D2(G) be such that XV = YN [f v
Cu(X, px) — CL(Y, py) is a chain map, then v is chain homotopy equivalent

to a chain map @ such that |C¢(5(): id for < 1.

Let PHT(G,2) < D2(G) be the subgraph corresponding to the polarised
homotopy types of finite 2-complexes.

Lemma 5.6 ([23, Lemma 2.3]). Let (X, px), (Y,py) € PHT(G,2) be such
that X = YO If o : Cu(X,px) — Ci(Y, py) is a chain map such that
% |C’i()?): id for i <1, then there exists a map f: X — Y such that f, = s,
flxw=id and px = py o mi(f).

We will now use these lemmas to prove Theorem 5.1. The outline of the

argument is taken from [23, Section 6].

Proof of Theorem 5.1. Let (X, px), (Y, py) € D2(G) and note that, by the ar-
gument of [23, Proposition 2.1], we can assume that X() = Y1) by replacing
each space with a polarised homotopy equivalent space. Suppose there is a
chain homotopy 7 : Cy(X) — C.(Y). By Lemma 5.3, this lifts to a chain
homotopy v : Cu(X, px) — Ci(Y, py) and, by Lemma 5.5, this is chain ho-
motopy equivalent to a chain homotopy ¢ : Cu (X, px) — Ci(Y, py) such that
¢ lo,xy=1d fori < 1.

Let iy : X® < X denote the inclusion and note that this induces a

ZG chain map (ix)s : Cu(X®) — C,(X) where the 2-skeleton X comes
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equipped with the polarisation py@ = px o m(ix), and similarly for Y@,
Since (¢ 0ix)s = 0, the composition @, o (ix)s : Cx(X®) — C.(Y) can be
viewed as a chain map

©x 0 (ix)s : Co(XP) = Coca (V) = C.(YP).

x

Since (p oix)s = id for » < 1, Lemma 5.6 implies that there exists a map
f:X® - Y® guch that f, = 0.0 (ix)s, [ |xw=id and pxe = pye omi(f).
By composing with 4y, we can assume f : X®) — Y which instead has that

pxe@ = py omi(f).
We now claim that f has an extension F': X — Y such that F, = ¢, :

H»(X) — H»(Y), which is an isomorphism since ¢, is a homology equivalence.
Since X and Y are finite D2 complexes, we have that H;(X) = H;(Y) = 0 for
1 # 2. This implies that F' is a homology equivalence and so is a homotopy
equivalence by Whitehead’s theorem. Since Foiy = f and pye = py om(f),
this implies that px = py om(F') and so F' is the required polarised homotopy
equivalence from (X, px) to (Y, py).

To find the extension F, first let
X=X 0, €2 Ugy Ua, €

for 3-cells €3 =~ D? and attaching maps a; € m2(X®), where such a decompo-
sition exists since X is assumed to be a finite 3-complex.
Using cellular chains, we have that ds(e?) = «; where we are using the

identification Im(d3) < ker(dy) = m(X @), and so a; € Im(d3) for all i =
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1,...,n. Note that there is a commutative diagram

(X ) EECILIEN a(X)

E |=

ker((?g) % ker(ﬁg)/lm(ﬁg)

where ¢ is the quotient map. This shows that Im(ds) = ker((ix).). Consider
the composition f, = s 0 (ix)s : m(X?) — m(Y). Since ¢, is a homology
equivalence, this implies that ker((ix)s) = ker(fs). By combining with the
above two results, we get that «; € ker(f,) and so the maps foq; € my(Y') are
nullhomotopic for all i = 1,...,n.

By standard homotopy theory, this implies that there exists an extension
F : X — Y. In particular, since f oq; : S? — Y is null-homotopic, there is
amap f; : €& — Y for which foi = foaq; fori: S? = del — €? and so
we can get a well-defined map F : X — Y by defining F | = [i for each i =
1,...,n. Finally note that, by the above diagram, (ix), : m(X?®) — m5(X)
is surjective. Since Fj o (ix)s = @« 0 (ix)s for = < 2, this implies that F, =

~ ~

s (X)) — ma(Y) or, equivalently, that Fy, = @, : Hy(X) — Hy(Y). O

5.2 Projective chain complexes over integral
group rings

The aim of this section will be to recall basic preliminaries on projective chain
complexes and the Swan finiteness obstruction. For ZG modules A and B, we

define Projy (A, B) to be the set of chain homotopy classes of exact sequences
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of ZG modules

E=(0->B5P %P 5 >P %P5 A-0)

where the P; are projective. By a chain homotopy, we formally mean a chain
map which restricts to a chain homotopy equivalence on the middle terms
(P, 0x). For brevity, we will often omit the maps ¢ and ¢ in our description of
E.

Define the Euler class to be e(E) = Y1/ (—1)[P;] € C(ZG), which only
depends on the chain homotopy type of E. For a class y € C(ZG), we define
Projy.(A, B; x) to be the subset of Proj;.(A, B) consisting of those exten-
sions with x(F) = x. Let QX(A) denote the set of ZG modules B for which
Projj.(A, B; x) is non-empty. If n > 2 then, for any By € 2X(A), we have
OX(A) = {B: B®ZG' =~ By®ZG,i,j = 0}, i.e. QX(A)is a stable module [41].
We also define

Projpa(A, QX(A);x) = | | Projza(A, Bix)
BeQX(A)

which is a graded graph with grading x(F) = Y7 (~1)i rank(P,) and with

edges between each F to the stabilised complex
E®7G= (P20 "% p , ... 5 P 5P

We can also define QX , (B) to be the set of ZG modules A for which Projy. (A, B; x)

is non-empty and we can similarly define a graded graph Proj}.(QX, (B), B; x).
Recall that, for a ZG module A, its dual is defined as A* = Homgy(A, Z)

which is a left ZG module under the action defined by (g-¢)(z) = (g~ -z) for
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pe A* and g € G. For x € C(ZG), we will write QX(A)* = {B*: Be QX(A)}.
Recall also that a ZG module A is a ZG lattice if its underlying abelian group
is free, i.e. of the form Z™ for some n > 0. If A is a ZG lattice, then A* is
a ZG lattice and there is an isomorphism (A*)* = A [22, Section 28]. If P
is projective, then so is P* and we also have (P*)* =~ P since projective ZG

modules are ZG lattices.

If B = (P, 0ds) € Proj.(A, B), then define

*
an—l

B* = (Py S P} = P, 25 PL).

Lemma 5.7 ([22, Proposition 28.4]). Let A and B be ZG lattices. Then we
have E* € Projy.(B*, A*) and (E*)* ~ E are chain homotopy equivalent.

By addition of elementary complexes, we can show that every projective
extension E with e(F) = 0 is chain homotopy equivalent to an extension with
the P; free provided n > 2. In particular, Proj}.(A, B;0) can be taken to be
the set of chain homotopy types of exact sequences E with the P; free. We
also let Q,(A) = QY (A).

It was shown by Swan [41, Theorem 4.1] that a group G has n-periodic

cohomology if and only if there exists an exact sequence of the form
0—>Z—>Pn,1—>Pn,2—>"‘—>P1—>P0—>Z—>O

where the P; are projective, i.e. if Proj;,(Z,Z) is non-empty. By taking the
map Py — P, _; which factors through 7Z, this can be turned into in n-periodic
projective resolution. We say that G has free period n if such a resolution
exists with the P; free or, equivalently, if Proj;.(Z,7Z;0) is non-empty.
Define the Swan map S : (Z/|G|)* — C(ZG) sends r — [(N,r)], where
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(N,r) is the module defined in ??, and define the Swan subgroup to be T =
Im(S). If G has n-periodic cohomology and E € Proj;(Z,Z), then we define

the Swan finiteness obstruction to be the class
on(G) = [e(E)] € C(ZG)/Tg.

It was shown by Swan that 0,(G) is independent of the choice of E [41,

Lemma 7.3]. Furthermore, we have:

Theorem 5.8 ([41]). Let G have n-periodic cohomology. Then the following

are equivalent:

(i) G has free period n.
(ii) on(G) =0€e C(ZQG)/T¢.

(iii) There is a finite CW-complex X such that X ~ S"! and G acts freely
on X.

It took over 20 years until the first example of a group with ,,(G) # 0 was
found by R. J. Milgram [31]. It was later shown by J. F. Davis [10] that the
group Q(16;3,1) with 4-periodic cohomology has free period 8, which is the

example of minimal order. Conversely, we also have:

Proposition 5.9 ([46, Lemma 7.4]). Let G have n-periodic cohomology and
let Pg be a projective ZG module for which o,(G) = [Pg] € C(ZG)/Ts. Then
there exists E € Projyo(Z,Z) for which e(E) = [Ps] € C(ZG).

The formulation (iii) has the following consequence for finite Poincaré 3-

complexes X since, if ;(X) is finite, then X ~ S3,

Corollary 5.10. A finite group G is the fundamental group of a finite Poincaré
3-complex if and only if G has free period 4.
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5.3 Classification of algebraic 2-complexes

This section will largely be dedicated to the proof of the following. From now

on, we will assume that G is a finite group.

Theorem 5.11. Let G have 4-periodic cohomology. Then there is an isomor-
phism of graded trees

for any projective ZG module Pg for which o4(G) = [Pg] € C(ZG)/Tg.

A similar statement appears in [22, Theorem 57.4] though, due to a gap in
the proof of Theorem 56.9, the argument given only applies in the case of min-
imal algebraic 2-complexes. Furthermore, the argument that {E € Alg(G,2) :
X(E) =r} and {P € [Pg] : rank(P) = r} are in one-to-one correspondence for
all » > 1 assumes that the former set is non-empty for each r, and this was
only subsequently shown when G has free period 4 [22, p234].

Let u2(G) be the minimum value of x(E) over all E € Alg(G,2). Since G
is finite, we have us(G) = 1 [42, Corollary 1.3].

Proposition 5.12. If G has 4-periodic cohomology, then pus(G) = 1.

In order to prove this, we first need the following three lemmas. Recall that
the augmentation ideal is the module I = ker(e : ZG — 7Z) where € : ZG — Z

sends g — 1 for all g € G.

Lemma 5.13. Let G be a finite group and let o : Z — ZG" be injective. If
coker(a) is a ZG lattice, then coker(a) =~ I* ® ZG™ .

Proof. The case n = 1 follows from the fact that o = rX for » # 0 since

ZG /% = I*, and the case n = 2 follows from [22, Proposition 29.2]. O
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Lemma 5.14. Let P be a projective ZG-module, let r = rank(P) and let I be

the augmentation ideal. Then there exists a ZG lattice J for which
I®P=J®ZG".

Proof. Since G is a finite, [40, Theorem A] implies that P is of the form
P = Py®ZG ! for some rank one projective ZG module P, and so it suffices
to prove the case r = 1. Let ¢ : P — Z be the surjection obtained by taking

the composition

P-PRQ=QG—-Q

whose image is a non-trivial finitely-generated subgroup of QQ, and so isomor-
phic to Z. If J = ker(y) then, by applying Schanuel’s lemma to the exact

sequences
0—->1—->72G—-7Z—0, 0—-J—->P—->7Z—0,

we get that I® P =~ J® ZG. O

Lemma 5.15 ([51, p514]). Let J be a ZG lattice. Then Extk (J,ZG) = 0 for
all k> 1.

Proof of Proposition 5.12. Since G has 4-periodic cohomology, the discussion

in Section 5.2 implies that there exists an exact sequence of ZG-modules
OHZiF3—>P2—>F1—>F0—>Z—>O

where P, is projective and, by addition of elementary complexes, we can as-

sume the F; are free. By Lemma 5.13, coker(a) =~ [* @ ZG" where r =
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rank(F3) — 1. This gives an exact sequence:
0_)I*®ZGT—>P2—)F1_)FO—>Z—>O

Now let P, be a projective for which Fy = P, @ P, is free. By forming the

direct sum with length two exact sequence, we get
0>I*®P > F,—>F —>F—>7Z—0

for P = ZG"™ @ P, projective. By dualising the result in Lemma 5.14, we can
write [*@® P = J @ ZG® where s = rank(P).
Let ¢ denote the injection ¢ : J ® ZG® = [* ® P — F3, and consider the

exact sequences:
0> J > BJi(ZG*) > Fy — Fy > Z — 0, 0— ZG* — Fy — Fy/i(ZG*) — 0.

The first exact sequence implies that F,/i(ZG®) is a ZG lattice. By Lemma
5.15, this implies that Exty(Fy/i(ZG*), ZG*) = 0 and so Fy = F,/i(ZG*) ®

Z.G* by the second exact sequence. Hence we get an exact sequence
0—’J—’F2—>F1<-DZGS—>FO—>Z—>O
which defines an algebraic 2-complex E. Since J =~ I* =~ ZG!¢I~! as abelian

groups, we have that x(F) = 1 which completes the proof. O

Recall that a graded tree is a fork if it has a single vertex at each non-
minimal level (i.e. grade). The following was shown by W. H. Browning.
These results were never published, though an alternate proof can be found

in [18, Corollary 2.6].
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Theorem 5.16 ([4, Theorem 5.4]). Let G be a finite group. Then Alg(G,2)

s a fork.

On the other hand, if G is a finite group, then [40, Theorem A] implies
that every projective ZG module P is of the form P = Py@®ZG" for some rank
one projective ZG module P,. This implies that [P] is also a fork.

Hence, in order to prove Theorem 5.11, it suffices to prove that there is
a bijection W between Alg(G,2) and [Pg] at the minimal levels, i.e. that
there is a one-to-one correspondence between {E € Alg(G,2) : x(E) = 1} and
{P € [Pg] : rank(P) = 1} (see Fig. 5.1). We now need the following two

results.

Figure 5.1: Tree structures for Alg(G, 2) and [Pg]

Proposition 5.17. There is an isomorphism of graded trees

Proposition 5.18. Let y = [P]| € C(ZG). Then there is an map of graded
trees

b : Proj%G(Q?,(Z)aZ%X) — [P]

given by (0 > Z — Py — J — 0) — Py, which is a bijection at the minimal

level.
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The first is immediate from the discussion in Section 5.2, and the second

is a consequence of the following mild extension of [22, Corollary 56.5].

Lemma 5.19. For i = 1,2, let P; be projective ZG modules of rank one and
let & = (0 - J — P, —> 7Z — 0) be exact sequences of ZG-modules. Then

there is a chain homotopy equivalence £ ~ & if and only if P, = Ps.
The following will be useful in comparing Propositions 5.17 and 5.18.

Lemma 5.20. Let G have 4-periodic cohomology and let Py be a projective
ZG module for which 04(G) = [Ps] € C(ZG)/Tg. If x = [P € C(ZG), then

u(Z) = Q)"

Proof. By Proposition 5.9, there exists F € Proj;.(Z,Z) with e(E) = [Pg].

By addition of elementary complexes, we can assume that
E=P%FE %R % ER)

where the F; are free, so that P € [Pg].
Let J = ker(dy) = Im(03). Then J € Q3(Z) and there are exact sequences

E=(0->25P -0, &¢=0->05p % 70),

where £* is exact by Lemma 5.7 since Z and J are ZG lattices. Hence J* €
Q¥ (Z). Since (J*)* =~ J, this implies that J € Qf(Z)*. Hence Q3(Z) = QY (Z)*

since two stable modules are equal if they intersect non-trivially. O]

Recall that, if J is a ZG module, then an automorphism ¢ : J — J induces
amap ¢, : H'(G;J) - H"(G; J). It J € Q,(Z), then H"(G;J) = Z/|G| [22,
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p132]. By fixing this identification, the construction ¢ — @, induces a map
v Autga(J) — (Z/|G))*.

Let S : (Z/|G|)* — C(ZG) denote the Swan map, as in Section 5.2. Then:
Lemma 5.21 ([22, Theorems 54.6, 56.10]). Let x € C(ZG) and J € QX(Z).
Then Im(v”) < ker(S) and there is a bijection

Projio(Z, J; x) = ker(S)/Im(v”).

In particular, Proj;.(Z, J; x) only depends on J and not on n or y.

Proof of Theorem 5.11. First note, since the map P — P* is an involution on
the class of projective ZG modules, it must induce an isomorphism of graded
trees [Pg] = [Pg]. Hence, by Propositions 5.17 and 5.18, it suffices to prove
that the graded trees

PI‘OJ%G<Z, Q3<Z)? 0)7 PI‘Oj%G<Z, Q>1<<Z)7 X)

contain the same number of extensions at the minimal level, where y = [PZ].
To see this, let J € Q3(Z) be minimal and note that Autzg(J) = Autyg(J*)

and so there is a bijection Im(v”) = Im(v”™). In particular, we have bijections
Projl.(Z, J;0) = ker(S)/Im(v”) ~ ker(S)/Im(v”") = Proji,(Z, J*; x).

By Lemma 5.20, the map J — J* induces a bijection Q3(Z) =~ Qf(Z). We can
now extend the bijection Projs.(Z, J;0) = Proj;.(Z, J*; x) over all J € Q3(Z)

at the minimal level, and this completes the proof. O
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Chapter 6

Wall’s D2 problem for groups

with 4-periodic cohomology

The aim of this chapter will be to use the results in the previous chapters to
study the D2 property for groups with 4-periodic cohomology.

As we shall see, these groups are of particular importance for the D2 prob-
lem. In Section 6.2, we will see how the D2 property for groups with 4-periodic
cohomology would resolve part of an open problem on the cell structure of fi-
nite Poincaré 3-complexes. In addition, these groups were conjectured by J.

M. Cohen [6] to be the only candidates for counterexamples to the D2 problem.

6.1 Proof of Theorem C

Recall that, if P = {(s1,+-+,8, | 71, -+ ,7m) is a presentation of a group G,
then the deficiency of P is defined to be def(P) = n — m. We say that P
is a balanced presentation if def(P) = 0, i.e. if P has the same number of

generators and relations.
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The aim of this section will be to prove the following theorem from the

Introduction:
Theorem C. Suppose G has 4-periodic cohomology. Then:
(i) If G has the D2 property, then G has a balanced presentation

(ii) If G has a balanced presentation and my(G) < 2, then G has the D2
property.

First note the following which follows immediately from Theorem B by
noting that, if G has n-periodic cohomology and o,,(G) = [Pg] € C(ZG)/Tg,
then [Pg] € D(ZG).

Proposition 6.2. Let G have n-periodic cohomology and let Pg be a projective
ZG module for which 0, (G) = [Pg] € C(ZG)/Ts. Then [Pg] has cancellation
if and only if my(G) < 2.

We can now use this to establish the following:

Theorem 6.3. Let G have 4-periodic cohomology. Then D2(G) has cancella-
tion if and only if my(G) < 2.

Proof. Let Pg be such that 04(G) = [Pg] € C(ZG)/T. By combining Theo-

rems 5.1 and 5.11, we get that there is an isomorphism of graded trees
UoC,:D2G) - [Pg]

and so D2(G) has cancellation if and only if [ P5] has cancellation. By Propo-

sition 6.2, [Pg] has cancellation if and only if my(G) < 2. O

Proof of Theorem C. Recall that, as discussed in Section 5.1, G has the D2
property if and only if the induced map ol : PHT(G,2) — [Pg] is bijective.
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Suppose G has the D2 property. Then W o C, is bijective and, since
[Ps] contains a projective ZG module of rank one, there must exist (X, p) €
PHT(G,2) such that x(X) = 1. If P is a presentation such that X ~ Xp,
then def(P) =1 — x(X) = 0 and so P is a balanced presentation as required.

Now suppose that mg(G) < 2 and G has a balanced presentation P. By
Theorem 6.3, [ P5| has cancellation and so [Pg| = {Ph@ZG" : r = 0} for some
projective Py of rank one. Let P, = W(C,(Xp)), which has rank(P;) = 1 since
X(Xp) = 1. Since Py € [P], this implies that P; =~ Fy. In particular, for all
r =0, we have W(Cy(Xp v rS?)) =~ Py@®ZG" and so UoC, is surjective. Since

Vo, is injective, it must be bijective and so G has the D2 property. O]

6.2 CW-structures for Poincaré 3-complexes

Recall that an oriented finite Poincaré n-complex is a finite CW-complex with

a fundamental class [X] € H,(X;Z) such that
—n [X]: "X 2[m (X)]) = Cu(X; Z[m (X)])

is a simple chain homotopy equivalence. By Poincaré duality, every closed
topological n-manifold has the structure of a finite Poincaré n-complex, but
there exists finite Poincaré n-complexes which are not homotopy equivalent to
any closed topological n-manifold [17].

By Morse theory, every closed n-manifold has a cell structure with a single
n-cell. In [49], Wall investigated the question of whether or not this is also

true for finite Poincaré n-complexes. He firstly noted the following:

Theorem 6.4 ([49, Theorem 2.4]). Let n = 3. If X is a finite Poincaré n-
complez, then there exists a D(n—1) complex K and a map f: S"' — K for
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which there is a homotopy equivalence

X ~Ku;D"

If K is homotopy equivalent to a finite (n — 1)-complex, then the splitting
X ~ Ku; D" gives a cell structure on X with a single n-cell. Recall that every
Dn complex is homotopy equivalent to a finite n-complex provided n > 3 [47,
Theorem E|. In particular, K is homotopy equivalent to a finite (n — 1)-
complex if n > 4. If n = 3, then K is homotopy equivalent to a finite 2-
complex provided m(K) has the D2 property. Since m(K) = m(X), we can

state this as:
Theorem 6.5 ([49)]).

(i) If n = 4, then every finite Poincaré n-complex has a cell structure

with a single n-cell

(ii) If n = 3 and G has the D2 property, then every finite Poincaré 3-

compler X with m(X) = G has a cell structure with a single 3-cell.

Since it is not known whether or not every group has the D2 property, this
does not imply that every finite Poincaré 3-complex has a cell structure with

a single 3-cell. In particular, this remains a significant open problem:

Problem 6.6. Does every finite Poincaré 3-complex have a cell structure with

a single 3-cell?

In contrast to all dimensions > 4, not every finitely presented group arises
as the fundamental group of a finite Poincaré 3-complex. In particular, the

following is well known:

Proposition 6.7. If X is a Poincaré 3-complez, then m(X) is either infinite

or has 4-periodic cohomology.
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Remark 6.8. In fact, the finite groups which arise as the fundamental groups

of finite Poincaré 3-complexes are precisely the groups with free period 4.

By combining this with Theorem 6.5, this gives the following:

Proposition 6.9. Suppose every group with free period 4 has the D2 property.
Then every finite Poincaré 3-complex with finite fundamental group has a cell

structure with a single 3-cell.

It is therefore of particular interest to study the D2 property for groups
with 4-periodic cohomology. This was first pointed out by Johnson [21] (see
also [22, Chapter 11]).

We conclude this section by noting the following consequence of Theorem C

for the cell structures of finite Poincaré 3-complexes.
Theorem 6.10. Suppose G has free period 4 and consider the following:
(i) G has the D2 property

(ii) Ewvery finite Poincaré 3-complex over G has a cell structure with a

single 3-cell

(iii) Some finite Poincaré 3-complex over G has a cell structure with a

single 3-cell

(iv) G has a balanced presentation.
Then (i) = (i) = (iii) = (iv). If mu(G) <2, then (i) < (i) < (iii) < (iv).

Proof. We will begin by showing that (i) = (ii) = (iii) = (iv). Note that
(i) = (ii) is proven in Theorem 6.5 and (ii) = (iii) by Remark 6.8, and so it
remains to show that (iii) = (iv). First note that, by Remark 6.8, there exists
a finite Poincaré 3-complex X with 71 (X) = G. It follows from the definition
that there is an isomorphism of abelian groups H> *(X) =~ H,(X). By the
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universal coefficients theorem, we have that rankz(H;(X)) = rankz(H'(X))

and so:

Y(X) = Z(—l)irankZ(Hi(X)) = 0.

If X has a cell structure with a single 3-cell then, with respect to this cell
structure, we have X ~ X® u; D? for some map f : S? — X?. Note that
K = X®@ is a finite 2-complex with y(K) = x(X) + 1 = 1. In particular, if P
is a presentation such that K ~ Xp, then P is a balanced presentation.

Finally, if my(G) < 2, then Theorem C shows that (iv) = (i). Hence, in

this case, we have (i) < (ii) < (iii) < (iv) as required. O

6.3 Balanced presentations for groups with pe-
riodic cohomology

If G has periodic cohomology, then Hy(G;Z) = 0 (see, for example, [44]).
In particular, by Theorem C, the groups GG with 4-periodic cohomology are
either counterexamples to the D2 problem or give a new supply of groups with
efficient presentations.

This gives some response to comments made by L. G. Kovécs [25, p212] and
J. Harlander [19, p167] on the scarcity of efficient finite groups. In contrast,

we conjecture:

Conjecture 6.11. If G has periodic cohomology, then G has a balanced pre-

sentation.

By [54, Chapter 6], the groups in (i)', (iii)’, (iv)’, (v)" are all finite 3-manifold
groups which are well-known to have balanced presentations. This follows, for

example, from Theorem 6.10 since 3-manifolds have cell structures with a single
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3-cell. The groups in (i)’ also have balanced presentations (see [22, p236]).
Proposition 6.12. If G is in (i)’-(v)’, then G has a balanced presentation.

We have not been able to find balanced presentations for any of the groups
in (vi), but have succeeded for the following groups in (vii). These groups

overlap in the case where k = n = 1 with the groups in [34, Theorem 3.1].

Proposition 6.13. Ifn > 3 and a,b,k > 1 odd coprime, then:

Q(2"%a;b,1) x Cp = (x,y | ykxbyk - xb’ Tyr = y2"72a—1>'

By combining Propositions 6.12 and 6.13 with Theorem C, we obtain:

Theorem 6.14. Suppose G is in (1)-(v) or has the form Q(16;n,1) x Cy for
some n,k =1 odd coprime. Then G has the D2 property.

This was previously shown by M. N. Dyer [13] for the groups in (i) and by
Johnson [22] for the groups in (ii) and for many of the groups in (iii). Note
that not all of these groups have free period 4; an example is Q(16;3, 1) [10].

The simplest groups that we have not been able to find balanced presen-
tations for are Pjg 5 and Q(16;3,5). The following is therefore of immediate

practical interest:
Question 6.15. Do Pj; 5 or Q(16;3,5) have balanced presentations?

These correspond to the groups G31,, G323, in GAP’s Small Groups Library.
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6.4 Potential counterexamples to the D2 prob-
lem

Recall that a ZG module M has the Swan property (or is a ‘Swan module’)
if dza(M) = maxyq dz,c(M ® Z,) where dg(-) is the number of R-module
generators.

In 1977, J. M. Cohen proposed the group ()32 as a counterexample to the
D2 problem [6, Section 4]. More generally, he conjectured the following.

Conjecture 6.16 ([50, Problem D3]). Let X be a finite D2 complex. Then
X is homotopy equivalent to a finite 2-complex if and only if mo(X) has the
Swan property or w1 (X) is infinite.

The following was proved by Cohen as a consequence of [7, Theorem 3],
where [ is the augmentation ideal. This gives another reason why the D2

property for groups with 4-periodic cohomology is of particular interest.

Proposition 6.17 ([6, p415]). Let X be a finite D2 complex such that mo(X)

does not have the Swan property and G = m(X) is finite. Then:
(i) G has free period 4.

(i) x(X) = 1.

(iii) mo(X) is non-cyclic, i.e. mo(X) % I*.

We will now show the following as an application of Theorem 6.3. Recall
that ZG modules A and B are Aut(G)-isomorphic if there exists a bijection
¢ : A — B such that, for some 0 € Aut(G), ¢p(g-x) = 0(z) - p(z) for all z € A.

Corollary 6.18. Suppose the “if” part of Conjecture 6.16 holds. If G does
not have the D2 property, then G has free period 4 and my(G) = 3.
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Proof. By Proposition 6.17, G has free period 4 and there exists a finite D2
complex X with m(X) = G, x(X) = 1 and my(X) % I*. Recall that, in
Proposition 5.12, we constructed a finite D2 complex Xg with m(X¢g) = G
and x(Xg) = 1 whenever G has 4-periodic cohomology. Since G has free
period 4, we can take J = I* in the proof of Proposition 5.12 which gives
that m(Xg) = I*. In particular, X v rS? ~ Xg v rS? for some r > 1. If
X ~ Xg, then m(X) and m(X¢g) would be Aut(G)-isomorphic which is a
contradiction since m(X) is non-cyclic and my(Xg) =~ I* =~ ZG/X. Hence

D2(G) has non-cancellation and so myg(G) = 3 by Theorem 6.3. O

We say that two presentations P and Q for a group G are ezotic it Xp % Xo
and def(P) = def(Q) or, equivalently, if Xp v rS? ~ Xg v rS? for some r > 0.
The following was shown recently by Mannan and Popiel [29]. This is the only

known example of an exotic presentation for a finite non-abelian group.

Theorem 6.19 ([29, Theorem Al). The quaternion group Qs has presenta-

tions

“2%y)

Pr={(uyla" =y’ oy =y), Po={(x|a" =y’ y ey’ = 2%
such that wo(Xp,) % m(Xp,) are not Aut(Qag)-isomorphic. Hence Xp, # Xp,.
We now proceed to point out the following two consequences.

Theorem 6.20. The “only if” part of Conjecture 6.16 is false.

Proof. By the remark after [29, Theorem A], we have that dzg., (m2(Xp,)) =1
and dzq,, (m2(Xp,)) # 1. However, my(Xp,) ® ZG" = mo(Xp,) @ ZG" for some
r = 0 and so m(Xp,) ® Z, = m(Xp,) ® Z, for p | |G| prime since Z,G is
semisimple by Maschke’s theorem. This implies that dz,g(m2(Xp,) ® Z,) = 1
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for all p | |G| and so mo(Xp,) does not have the Swan property. This contradicts

the “only if” direction of Conjecture 6.16 since Xp, is a finite 2-complex. [
Theorem 6.21. (Qss has the D2 property and my(Qas) = 3.

In [1], this is proposed as a counterexample by F. R. Beyl and N. Waller

and so this answers their question in the negative (see also [30, p23]).

Proof. Note that Qog is a finite 3-manifold group and so has o4(Qss) = 0.
Hence, as in the proof of Theorem C, it suffices to show that the injective
map of graded trees ¥ o C, : PHT(Q2s,2) — [ZQ9s] is in fact bijective. By
the discussion in Section 5.3, PHT(Qas, 2) and [ZQss] are both forks. By [46,
Theorem III], there are two rank one stably free Z(Q)os modules and so [ZQas]
has two vertices at the minimal level. By Theorem 6.19, PHT((Q2s,2) has at
least two vertices at the minimal level. Hence the injective map ¥ o C', must

be bijective, and so (Jsg has the D2 property. O

It should be possible to replicate this proof for other groups with 4-periodic
cohomology and my(G) = 3. We expect that the quaternion groups contain

the main difficulties associated with the case my(G) > 3, and so we ask:
Question 6.22. Does 4, have the D2 property for allmn = 27

The case (Y32 is of particular significance since it was the first proposed

counterexample to the D2 problem [6, p415].
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