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Abstract

In the first part of this thesis, we study the problem of when P ‘ZG – Q‘ZG

implies P – Q for projective ZG modules P , Q where ZG is the integral group

ring of a finite group G. Our main result is a general condition on G under

which cancellation holds. This builds upon the results of R. G. Swan and our

condition includes all G for which cancellation was previously known to hold.

In the second part of this thesis, we explore applications of these results to

Wall’s D2 problem which asks whether every cohomologically 2-dimensional

finite complex X is homotopy equivalent to a finite 2-complex. The case

where G “ π1pXq has 4-periodic cohomology has been the source of many

proposed counterexamples to Wall’s D2 problem and is of special interest due

to its implications on the possible cell structures of finite Poincaré 3-complexes.

Our main result is a solution to Wall’s D2 problem for several infinite families

of groups with 4-periodic cohomology, building upon the results of F. E. A.

Johnson.
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Impact statement

Projective modules over integral group rings are central objects in the homo-

logical algebra of cellular chain complexes arising from CW-complexes. In light

of this, they are both a useful tool in the classification of CW-complexes and

are the target of many topological obstructions such as the finiteness obstruc-

tions of C. T. C. Wall and R. G. Swan. The results in Part II of this thesis on

Wall’s D2 problem, and in particular Theorem C, make essential uses of my

results on projective modules and serve as the main intended application.

With suitable modifications and extensions, the results on projective mod-

ules also have applications to the homotopy classification of CW-complexes

with highly connected universal covers and, in turn, to the homotopy classifi-

cation of manifolds. I have written a number of articles which contain these

applications (see [3], [24], [35], [37]). However, I will not include these results

in this thesis.

I am not currently aware of any direct applications of this work outside of

academia. This thesis contributes towards the general goal of understanding

CW-complexes and manifolds, which are natural models for spaces and shapes

which arise in the real world.
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Introduction

I Projective modules over integral group rings

A ring R is said to have projective cancellation if P ‘R – Q‘R implies P – Q

for all (finitely generated) projective R-modules P and Q. In the first part of

this thesis, we will be interested in the problem of determining which finite

groups G have the property that the integral group ring ZG has projective

cancellation.

Fix a finite group G once and for all, and recall that the real group ring

RG is semisimple and so admits a Wedderburn decomposition

RG – Mn1pD1q ˆ ¨ ¨ ¨ ˆ MnrpDrq

where n1, ¨ ¨ ¨ , nr are integers ě 1 and each Di is one of the real division

algebras R, C or H. Let mHpGq be the number of copies of H “ M1pHq

which are factors in this decomposition. We say that ZG satisfies the Eichler

condition if mHpGq “ 0. By the Jacobinski cancellation theorem [43], this is a

sufficient condition for ZG to have projective cancellation.

It is well-known that ZG fails the Eichler condition precisely when G has a

quotient which is a binary polyhedral group, i.e. a non-cyclic finite subgroup

of Hˆ. They are the generalised quaternion groups Q4n for n ě 2 or one of
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rT , rO, rI, the binary tetrahedral, octahedral and icosahedral groups. It was

shown by R. G. Swan [46] that, if G is a binary polyhedral group, then ZG

has projective cancellation if and only if G is one of the seven groups

Q8, Q12, Q16, Q20, rT , rO, rI. (*)

It follows from work of A. Fröhlich [16] that, if ZG has projective cancel-

lation and G has a quotient H, then ZH has projective cancellation also. In

particular, ZG has non-cancellation whenever G has a quotient which is Q4n

for n ě 6. Note that this does not yet characterise which groups have projec-

tive cancellation; it remains to determine projective cancellation for ZG when

G has a quotient in p˚q but none of the form Q4n for n ě 6.

Our main result is as follows.

Theorem A. Let G be a finite group and suppose G has a quotient H such

that mHpGq “ mHpHq and H is of the form

C1, Q8, Q12, Q16, Q20, rT , rO, rI or rT n ˆ rIm for n,m ě 0.

Then ZG has projective cancellation.

Let CpZGq denote the projective class group. We say that a class rP s P

CpZGq has cancellation if P1‘ZG – P2‘ZG implies P1 – P2 for all projective

ZG modules P1, P2 such that rP1s “ rP s P CpZGq. In particular, ZG has

projective cancellation if and only if rP s has cancellation for all rP s P CpZGq.

However, there are groups G with projective ZG modules P , Q for which

rP s has cancellation and rQs has non-cancellation [46]. We will also consider

DpZGq “ KerpCpZGq Ñ CpΓqq where ZG Ď Γ Ď QG is a maximal order.

Recall that a group G has k-periodic cohomology for some k ě 1 if its Tate
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cohomology groups satisfy Ĥ ipG;Zq “ Ĥ i`kpG;Zq for all i P Z. Our second

result is the following.

Theorem B. Let G have periodic cohomology and let P be a projective ZG
module. Then

(i) If mHpGq ď 2, then rP s has cancellation

(ii) If mHpGq “ 3, then:

(a) If Syl2pGq is cyclic, then rP s has non-cancellation

(b) If rP s P DpZGq, then rP s has non-cancellation

(iii) If mHpGq ě 4, then rP s has non-cancellation.

In contrast to (ii) (b), Q24 is an example of a group with periodic coho-

mology and mHpQ24q “ 3 but for which there exists rP s P CpZQ24q zDpZQ24q

which has cancellation.

II Applications to Wall’s D2 problem

A connected CW-complex X is a Dn complex if Hip rXq “ 0 for i ą n and

Hn`1pX;Mq “ 0 for all finitely generated ZG-modules M . In his 1965 paper

on finiteness conditions, C. T. C. Wall showed that a finite Dn complex is

homotopy equivalent to a finite n-complex for n ą 2 [47, Theorem E] and this

was later proven for n “ 1 by Stallings-Swan. The case n “ 2 remains open

and is known as Wall’s D2 problem [50, Problem D3]:

Wall’s D2 problem. Is every finite D2 complex homotopy equivalent to a

finite 2-complex?
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We is parametrised by finitely presented groups G by saying that G has

the D2 property if every finite D2 complex X with π1pXq – G is homotopy

equivalent to a finite 2-complex.

The aim of the second part of this thesis will be to study Wall’s D2 prob-

lem in the case of groups with 4-periodic cohomology. Recall that a group

presentation is balanced if it has the same number of generators and relations.

Our main result is the following.

Theorem C. Suppose G has 4-periodic cohomology. Then:

(i) If G has the D2 property, then G has a balanced presentation

(ii) If G has a balanced presentation and mHpGq ď 2, then G has the D2

property.

The question of whether or not groups with 4-periodic cohomology have the

D2 property is of particular interest since, as noted by Johnson [21], this would

have implications on the open problem of whether every Poincaré 3-complex

has a cell structure with a single 3-cell.

In Theorem 4.14, we show that the groups G with 4-periodic cohomology

and mHpGq ď 2 are as follows. Here we use the notation of Milnor [32], and

each family contains G ˆ Cn for any G listed and any n ě 1 coprime to |G|.

(i) Cn for n ě 1, the cyclic groups of order n.

(ii) D4n`2 for n ě 1, the dihedral groups of order 4n ` 2.

(iii) Q8, Q12, Q16, Q20, rT , rO, rI.
(iv) Dp2n, 3q, Dp2n, 5q for n ě 3.

(v) P 1
8¨3n for n ě 2.

(vi) P 2
48n for n ě 3 odd.
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(vii) Qp16;m,nq for m ą n ě 1 odd coprime.

By considering which of these groups have balanced presentations, we will

show the following. This was previously shown by M. N. Dyer [13] for the

groups in (i) and by Johnson [22] for the groups in (ii) and for many of the

groups in (iii).

Theorem 6.14. Suppose G is in (i)-(v) or has the form Qp16;n, 1q ˆ Ck for

some n, k ě 1 odd coprime. Then G has the D2 property.

Finally, we consider the case mHpGq ě 3. Let Q4n denote the quaternion

group of order 4n, which has 4-periodic cohomology and mHpQ4nq “ tn{2u. By

combining recent results of W. H. Mannan and T. Popiel [29] with Theorem

5.1, we show:

Theorem 6.21. Q28 has the D2 property and mHpQ28q “ 3.

This group was proposed as a counterexample in [1] (see also [30, p23]).

We also point out that the example of Mannan-Popiel gives a counterexample

to a conjecture of J. M. Cohen [50, p381]. The possibility remains that some

group with 4-periodic cohomology does not have a balanced presentation and

so would be a counterexample to the D2 problem.

Structure of thesis

We will now give a brief overview of the structure of this thesis as well as a

detailed account of where the original content can be found.

Part I.1 In Chapter 1, we introduce the basic theory of locally free modules

1A weaker version of these results can be found in “A cancellation theorem for modules
over integral group rings” which has been published by Mathematical Proceedings of the
Cambridge Philosophical Society [36].
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over an order in a semisimple Q-algebra. This includes the case of projec-

tive ZG modules for G finite. Much of this can be found in [45, 46] though

we include proofs of Propositions 1.11 and 1.14 as we could not locate them

explicitly in the literature.

Chapters 2/3 constitute the technical heart of Part I of this thesis. The

main cancellation theorem for locally free modules over orders is Theorem 2.6

and, in combination with Theorem 3.11, this is used to prove Theorem A. The

results here are almost entirely original with the two main exceptions being

Theorems 2.7 and 3.11 which are due to Swan [46].

Chapter 4 contains a detailed analysis of the quotients and one-dimensional

quaternionic representations of groups with periodic cohomology, as well as a

proof of Theorem B. This is entirely original with the exception of well-known

facts such as Proposition 4.1 and the classification of groups with 4-periodic

cohomology.

Part II.2 The aim of Chapter 5 is to prove Theorems 5.1 and 5.11, which

reduce the classification of finite D2 complexes X where π1pXq had 4-periodic

cohomology to a cancellation problem projective ZG modules. These results

are mild generalisations of the main result of [22], and the proofs follow a

similar structure.

Finally, in Chapter 6, we combine the results from Chapter 5 with Theo-

rem B to prove Theorem C. We also explore applications to the cell structure

of Poincaré 3-complexes through observations previously made by Johnson [21]

and Wall [49].

Throughout this thesis we will assume, without further mention, that all

modules are finitely generated left modules.

2These results are contained in “On CW-complexes over groups with periodic cohoology”
which has been published by Transactions of the American Mathematical Society [38].
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Part I

Projective modules over integral

group rings
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Chapter 1

Preliminaries on projective

modules

In this chapter, we will give a brief summary of the theory of locally free

modules over orders in finite-dimensional semisimple Q-algebras. As we shall

see, this gives a useful framework in which to generalise projective modules

over the integral group rings ZG of a finite group G. Much of this can be

found in work of R. G. Swan, such as [43, 45].

1.1 Orders in semisimple algebras

Recall that, for a ring A, a non-zero A-module is simple if it contains no

submodules other than 0 and itself and is semisimple if it is a direct sum of

its simple submodules. We say that the ring A itself is semisimple if it is

semisimple as a module over itself.

Let K be a field and recall that a K-algebra is a ring A equipped with

an inclusion of rings i : K ãÑ A whose image is contained in the centre of A.
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This can be viewed as a K-vector space in a natural way using multiplication

by K – ipKq. The following was first proven by J. H. M. Wedderburn. See

also [22, Section 2] for a modern account.

Proposition 1.1 ([53]). If A is a finite-dimensional semisimple K-algebra,

then there is an isomorphism of rings

A – Mn1pD1q ˆ ¨ ¨ ¨ ˆ MnrpDrq

where n1, ¨ ¨ ¨ , nr are integers ě 1 and the Di are division algebras over K. This

decomposition is unique up to permutations of the Mni
pDiq and isomorphisms

of the Di, and is known as the Wedderburn decomposition of A.

If R Ď K is an integral domain, then a subring Λ Ď A is an R-order if it

is an R-algebra which is finitely generated as an R-module and K ¨ Λ “ A.

One of the central objects in this thesis will be that of a Z-order Λ in a

finite-dimensional semisimple Q-algebra A. Two important examples are:

(1) If G is a finite group, then the rational group ring A “ QG is a finite-

dimensional semisimple Q-algebra and the integral group ring Λ “ ZG
is a Z-order in QG

(2) If K{Q is a finite field extension, then A “ K is a finite-dimensional

simple Q-algebra and the ring of integers Λ “ OK is an Z-order in A.

If Λ is a Z-order in a finite-dimensional semisimple Q-algebra A, then

Λ b R – A b R is a semisimple R-algebra and so has a real Wedderburn

decomposition

Λ b R – Mn1pD1q ˆ ¨ ¨ ¨ ˆ MnrpDrq

where n1, ¨ ¨ ¨ , nr are integers ě 1 and each Di is one of the real division

algebras R, C or H, which is unique up to permutation of the pairs pDi, niq.
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Let mHpΛq denote the number of copies of H “ M1pHq which are factors

in the decomposition of A b R. We say that Λ satisfies the Eichler condition

if mHpΛq “ 0. In the special case where Λ “ ZG for a finite group G, we

will write mHpGq “ mHpZGq and we say that the group G satisfies the Eichler

condition if ZG satisfied the Eichler condition. Note that mHpGq coincides

with the number of one-dimensional quaternionic representations of G.

1.2 Milnor patching and the Mayer-Vietoris

sequence

Suppose R and S are rings and f : R Ñ S is a ring homomorphism. We can

use this to turn S into an pS,Rq-bimodule, with right-multiplication by r P R

given by x ¨ r “ xfprq for any x P S. If M is an R-module, we can define the

extension of scalars of M by f as the tensor product

f#pMq “ S bR M

since S as a right R-module and M as a left R-module. We consider this as

a left S-module where left-multiplication by s P S is given by s ¨ px b mq “

psxq b m for any x P S and m P M . This comes with maps of abelian groups

f˚ : M Ñ f#pMq

sending m ÞÑ 1 b m, and defines a covariant functor from R-modules to S-

modules [8, p227].

We now recall the following basic properties of the extension of scalars

map, which follow from the standard properties of tensor products.
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Proposition 1.2 ([26, p145]). Let f : R Ñ S and g : S Ñ T be ring homo-

morphisms and let M and N be R-modules. Then

(i) f#pM ‘ Nq – f#pMq ‘ f#pNq

(ii) f#pRq – S

(iii) pg ˝ fq#pMq – pg# ˝ f#qpMq.

If P pRq denotes the set of (finitely generated) projective R-modules, then

the first two properties show that f# induces a map f# : P pRq Ñ P pSq which

restricts to each stable class. If f : R Ñ S and M is an R module, then let

f˚ : M Ñ f#pMq be the map m ÞÑ 1 b m.

Recall that, if R, R1, R2 and sR are rings, then a pullback diagram

R “
R R2

R1
sR

i2

i1 j2

j1

is a Milnor square if either j1 or j2 are surjective. If P1 P P pR1q, P2 P P pR2q

are such that there is a sR-module isomorphism h : pj1q#pP1q Ñ pj2q#pP2q,

then define an R-module:

MpP1, P2, hq “ tpx, yq P P1 ˆ P2 : hppj1q˚pxqq “ pj2q˚pyqu ď P1 ˆ P2,

where multiplication by r P R is r ¨ px, yq “ ppi1q˚prqx, pi2q˚prqyq. It was shown

by Milnor that MpP1, P2, hq is projective [33, Theorem 2.1].

Let AutRpP q denote the set of R-module automorphisms of an R-module

P , and we will write this as AutpP q when R is understood from the context.

The main result on Milnor squares is as follows.

18



Theorem 1.3 ([33, Section 2]). Suppose R is a Milnor square and Pi P P pRiq

for i “ 1, 2 are such that sP “ pj1q#pP1q – pj2q#pP2q as sR-modules. Then there

is a one-to-one correspondence

AutpP1qzAutp sP q{AutpP2q Ø tP P P pRq : pi1q#pP q – P1, pi2q#pP q – P2u

given by sending a coset rhs to MpP1, P2, hq for any representative h.

Let R be a ring. Recall the following definitions from algebraic K-theory:

(i) Let K0pRq denote the Grothendieck group of the monoid of isomor-

phism classes of projective R-modules P pRq, i.e. the abelian group

generated by rP s for P P P pRq, with relations rP1 ‘P2s “ rP1s ‘ rP2s
for all P1, P2 P P pRq

(ii) Let K1pRq “ GLpRqab where GLpRq “
Ť

n GLnpRq with respect to

the inclusions GLnpRq ãÑ GLn`1pRq.

It is straightforward to see that K0 and K1 are functors from the category

of rings to abelian groups. Let R “ RpR,R1, R2, sRq be the pullback diagram

defined above for rings R1, R2 and sR. The following is referred to as the

Mayer-Vietoris sequence for a Milnor square R.

Theorem 1.4 ([33, Theorem 3.3]). If R is a Milnor square, then there is an

exact sequence

K1pRq ÝÑ K1pR1q ˆK1pR2q ÝÑ K1p sRq BÝÑ K0pRq ÝÑ K0pR1q ˆK0pR2q ÝÑ K0p sRq

where, if x P K1p sRq is represented by h P GLnp sRq, then Bpxq “ rMpRn
1 , R

n
2 , hqs´

rRns, and all other maps are functorial.

The following can be found in [9] and gives a convenient way to split a ring

R as a pullback. Since all maps are surjective, this is a Milnor square.
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Lemma 1.5 ([9, Example 42.3]). Let I and J be two-sided ideals in a ring R.

Then there is a pullback diagram:

R{pI X Jq R{J

R{I R{pI ` Jq

For example, we obtain the following when R “ ZG be the integral group

ring of a finite group by considering the trivially intersecting ideals I “

Kerpf˚ : ZG Ñ ZHq “ Kerpε : ZN Ñ Zq ¨ ZG and J “ ΣN ¨ ZG where

ΣN “
ř

gPN g is the group norm.

Corollary 1.6. Let G be a finite group which has quotient H “ G{N where

N is a normal subgroup of G. Then there is a Milnor square

ZG Λ

ZH pZ{nZqrHs

where Λ “ ZG{ΣN and n “ |N |.

This will be crucial in our later applications since, by combining this with

Theorem 1.3, we get a way to compare projective ZG modules to projective

ZH modules where H is a quotient of G.

1.3 Locally free modules

From now on, we will let Λ be a Z-order in a finite-dimensional semisimple

Q-algebra A.

Recall that an A-module M is projective if there exists an A-module M 1

20



such that M ‘ M 1 – Ai is free for some i ě 0. For a prime p, let Zp denote

the p-adic integers and let Λp “ Λ bZ Zp. We say a Λ module M is locally

projective if Mp “ M bZ Zp is a projective Λp module for all primes p. The

following is well-known.

Proposition 1.7 ([45, Lemma 2.1]). Let M be a Λ module. Then M is pro-

jective if and only if M is locally projective.

Similarly, we say that M is locally free (of rank n) if there exists n ě 1

for which Mp is a free Λp module of rank n for all p prime. In the special

case where A “ QG and Λ “ ZG for G a finite group, we have the following

refinement of Proposition 1.7.

Proposition 1.8 ([45, p156]). Let G be a finite group. If M is a ZG module,

then M is projective if and only if M is locally free.

In light of this, we will now restrict our attention to locally free Λ modules.

Define the locally free class group CpΛq to be the equivalence classes of locally

free Λ modules up to the relation P „ Q if P ‘Λi – Q‘Λj for some i, j ě 0.

By abuse of notation, we write rP s to denote both the class rP s P CpΛq and,

where convenient, the set of isomorphism classes of locally free modules P0

where rP0s “ rP s.

We also define the class set ClsΛ as the set of isomorphism classes of

rank one locally free Λ-modules, which is finite by the Jordan-Zassenhaus

theorem [8, Section 24]. This comes with the stable class map

r ¨ sΛ : ClsΛ Ñ CpΛq

which sends P ÞÑ rP s. This map is always surjective due to the following.

This was proven by A. Fröhlich in [16] using idelic methods, generalising the
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case Λ “ ZG first obtained by Swan [40, Theorem A]. However, it is worth

noting that the first part follows already from the cancellation theorems of

Bass and Serre [45, Section 2].

Proposition 1.9 ([16, p115]). If M is a locally free Λ module, then:

(i) There exists M0 P ClsΛ such that M – M0 ‘ Λi for some i ě 0

(ii) There exists a left-ideal I Ď Λ for which M0 – I.

We say that Λ has locally free cancellation if P ‘Λ – Q‘Λ implies P – Q

for all locally free Λ-modules P and Q. By Proposition 1.9, we have that Λ has

locally free cancellation if and only if r ¨ sΛ is bijective, i.e. #ClsΛ “ #CpΛq.

More generally, we say that a class rP s P CpΛq has cancellation if P1 ‘

Λ – P2 ‘ Λ implies P1 – P2 for all P1, P2 P rP s. We say that Λ has stably

free cancellation when rΛs has cancellation, i.e. when every stably free Λ

module is free. It will often be convenient to write ClsrP spΛq “ r ¨ s´1
Λ prP sq

and SFpΛq “ ClsrΛspΛq so that, by Proposition 1.9, a class rP s P CpΛq has

cancellation if and only if #ClsrP spΛq “ 1.

Recall that rP s P CpΛq can be represented as a graded tree with vertices

the isomorphism classes of non-zero modules P0 P rP s, edges between each

P0 P rP s and P0 ‘Λ P rP s and with grading from the rank of each locally free

Λ module. By Proposition 1.9, this takes the following simple form where the

set of minimal vertices corresponds to ClsrP spΛq (see Fig. 5.1).

The following is a consequence of a general cancellation theorem of H. Ja-

cobinski which depends on deep results of M. Eichler on strong approximation.

Theorem 1.10 ([20, Theorem 4.1]). If Λ satisfies the Eichler condition, then

Λ has locally free cancellation. In particular, ClsrP spΛq “ tP u for all P P

ClspΛq.
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...

Figure 1.1: Tree structure for rP s P CpΛq

We conclude this section by collecting the basic properties of locally free

modules which we will use in this thesis.

Proposition 1.11. If M is a locally free Λ module, then:

(i) M b Q is a free A module.

(ii) M b pZ{nZq is a free Λ b pZ{nZq module for all n ě 1.

The first part is a consequence of the Noether-Deuring theorem and its

proof can be found in [15, p. 407]. The second part is well-known [39, Remark

4.9] though we were not able to locate a proof in the literature except in the

case Λ “ ZG [40, Theorem 7.1]. For convenience, we include a proof below

which generalises the proof of [40, Theorem 7.1].

Proof of (ii). First note that Λ{n – Λ bZ pZ{nZq. In particular, if M is a Λ

module, then M{n – M bZ pZ{nZq can be viewed as a Λ{n module.

By Proposition 1.9, it suffices to consider the case where M is locally free

of rank one. By Proposition 1.7, we have that M bZ Zp – Λp for all p prime.

Since Z ãÑ Zp induces an isomorphism Z{pZ Ñ Zp{pZp, we have that

M{p – M bZ pZp{pZpq – pM bZ Zpq bZp pZp{pZpq

– Λp bZp pZp{pZpq – Λ bZ pZp{pZpq – Λ{p.
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Let ap P M be such that raps P M{p maps to 1 P Λ{p under this isomorphism.

As in the proof of Hensel’s lemma, we can check that the map 1 ÞÑ raps also

defines an isomorphism Λ{ppkq Ñ M{ppkq for all k ě 1

If n “ pk11 ¨ ¨ ¨ pkrr is a factorisation into distinct primes, then the Chinese

remainder theorem implies that there exists αi P Z such that αi ” 1 mod pi

and αi ” 0 mod pj for i ‰ j. By the argument above, there exists ai P M such

that the map 1 ÞÑ rais gives an isomorphism Λ{pki Ñ M{pki . If a “
řr

i“1 αiai,

then it is easy to see that the map 1 ÞÑ a defines an isomorphism Λ{n Ñ M{n

as required.

Corollary 1.12. Suppose f : Λ Ñ Λ̄ is a surjective ring homomorphism for a

finite ring Λ̄. If M is a locally free Λ module, then M b Λ̄ is a free Λ̄ module.

Proof. Note that Λ̄ “ Λ{I for a two-sided ideal I Ď Λ and, since Λ is a Z-order

in A, we have that Z Ď Λ. Since Λ̄ is finite, I Ď Λ must have finite index and

so I X Z “ pnq Ď Z for some n ě 1. In particular, this implies that nΛ Ď I

and so there is a composition Λ Ñ Λ{n Ñ Λ{I. Hence, if M is a locally free

Λ module, then M b Λ̄ – pM{nq b Λ̄. Since M{n is a free Λ{n module by

Lemma 1.11, we have that M b Λ̄ is a free Λ̄ module.

In particular, this shows that locally free Λ modules cannot be detected

on A or on any finite ring quotients of Λ. For example, if Λ “ ZG, then

M P ClspZGq has M b Q – QG and M b Fp – FpG. Hence locally free ZG

modules cannot be studied using the usual techniques of representation theory.

For later purposes, we will also need to define the defect group DpΛq “

Kerpi˚ : CpΛq Ñ CpΓqq where i : Λ ãÑ Γ and Γ Ď A is a maximal order.

Note that i˚ is surjective by [46, Theorem A10]. By [46, Theorem A24], this is

independent of the choice of Γ and, if f : Λ1 Ñ Λ2 is a map of Z-orders, then

f induces a map f˚ : DpΛ1q Ñ DpΛ2q.
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We will now specialise the theory presented in Section 1.2 to the special

case of locally free Λ modules. Let KLF
0 pΛq denote the subgroup of K0pΛq

generated by rP s for P a locally free Λ-module.

Lemma 1.13 ([45, p157]). There is an isomorphism of abelian groups

KLF
0 pΛq –ÝÑ Z ‘ CpΛq

sending rP s ÞÑ prankpP q, rP sq where rankpP q denotes the rank of P as a locally

free module.

Let Λ, Λ1 and Λ2 be Z-orders in finite-dimensional semisimple Q-algebras

A, A1, A2 respectively, let sΛ be a finite ring and suppose there is a Milnor

square:

R “
Λ Λ2

Λ1
sΛ

i2

i1 j2

j1

s Since sΛ is a finite ring, we have that sΛ b Q “ 0. Since Q is a flat module,

tensoring the above diagram with Q gives another pullback diagram which

implies that the map

pi1, i2q b Q : Λ b Q Ñ pΛ1 b Qq ˆ pΛ2 b Qq

is an isomorphism, i.e. A – A1 ˆ A2.

In this context, Theorem 1.4 can be generalised as follows.

Proposition 1.14. If R is as above, then there is an exact sequence

K1pΛq ÝÑ K1pΛ1q ˆ K1pΛ2q ÝÑ K1psΛq BÝÑ CpΛq ÝÑ CpΛ1q ˆ CpΛ2q ÝÑ 0
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where, if x P K1psΛq is represented by h P GLnpsΛq, then Bpxq “ rMpΛn
1 ,Λ

n
2 , hqs,

and all other maps are functorial.

This is essentially proven in [39, 6.2], though the result is stated in a

different form. For convenience, we will include a proof below which pieces

together the argument in [39, 6.2].

Proof. Consider the Mayer-Vietoris sequence for R given by Theorem 1.4, and

the connecting homomorphism B : K1psΛq Ñ K0pΛq. Using the full hypoth-

esis on R, including that sΛ is a finite ring and so sΛ b Q “ 0, we get that

MpΛn
1 ,Λ

n
2 , hq is a locally free Λ module of rank n for all h P GLnpsΛq. Hence,

with respect to the inclusion CpΛq Ď KLF
0 pΛq Ď K0pΛq induced by Lemma

1.13, we have that ImpBq Ď CpΛq.

This implies that we have a sequence

K1pΛq ÝÑ K1pΛ1q ˆ K1pΛ2q ÝÑ K1psΛq BÝÑ CpΛq ÝÑ CpΛ1q ˆ CpΛ2q

which is exact at each of the K1 terms. By the identification in Lemma

1.13, the map pi1, i2q˚ : CpΛq Ñ CpΛ1q ˆ CpΛ2q is the restriction of the map

pi1, i2q˚ : K0pΛq Ñ K0pΛ1q ˆ K0pΛ2q, and so the sequence is also exact at

CpΛq. To see that pi1, i2q˚ : CpΛq Ñ CpΛ1q ˆCpΛ2q is surjective note that, by

the discussion above, pi1, i2q b Q is an isomorphism and so

pi1, i2q# : CpΛq Ñ CpΛ1 ˆ Λ2q – CpΛ1q ˆ CpΛ2q

is surjective, by Theorem 1.15.

We will now give general conditions under which we can relate cancellation

over two orders Λ1 and Λ2 when there is a map f : Λ1 Ñ Λ2. The following
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was shown by Swan and generalises an earlier result of Fröhlich [16, VIII].

Theorem 1.15 ([46, Theorem A10]). Let f : Λ1 Ñ Λ2 be a map of Z-orders

in a semisimple Q-algebra A such that the induced map f˚ : Λ1bZQ ↠ Λ2bZQ

is surjective. Then the diagram

ClspΛ1q ClspΛ2q

CpΛ1q CpΛ2q

f#

r ¨ sΛ1 r ¨ sΛ2

f#

is a weak pullback with all maps surjective.

In particular, if P1 P ClsΛ1 and P2 “ f#pP1q P ClsΛ2, then this implies

that the map

f# : ClsrP1spΛ1q Ñ ClsrP2spΛ2q

is surjective. Hence, if rP1s has cancellation, then rP2s has cancellation.

Let G be a finite group with quotient H. By Corollary 1.6, the situation of

Theorem 1.15 arises when Λ1 “ ZG , Λ2 “ ZH and f : ZG Ñ ZH is induced

by the quotient map and is itself surjective. In particular, we have:

Corollary 1.16. Let G be a finite group which has a quotient H. Then:

(i) If ZG has locally free cancellation, then ZH has locally free cancella-

tion.

(ii) If ZG has stably free cancellation, then ZH has stably free cancella-

tion.

1.4 Central Picard groups

We will now consider the question of when a locally free Λ module can be

represented by a two-sided ideal I Ď Λ and so has the additional structure of
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a bimodule. This was first considered by Fröhlich [14] and Fröhlich-Reiner-

Ullom [15], and we recount the basic theory here for use in Chapter 2.

Recall that, for a ring R, an pR,Rq-bimodule M is invertible if there exists

an pR,Rq-bimodule N and bimodules isomorphisms

f : M bR N Ñ R, g : N bR M Ñ R

such that the following diagrams commute:

M bR N bR M R bR M

M bR R M

fbid

idbg

N bR M bR N R bR N

N bR R N

gbid

idbf

The central Picard group PicentpRq is the group of pR,Rq-bimodule isomor-

phism classes of pR,Rq-bimodules M for which xm “ mx for all m P M and

all central elements x P ZpRq.

If M is an pR1, R2q-bimodule and fi : Si Ñ Ri are ring homomorphisms for

i “ 1, 2, then we write f1Mf2 to denote the pS1, S2q-bimodule with left action

s ¨ m :“ f1psqm for s P S1, m P M and with right action m ¨ s :“ mf2psq for

s P S2, m P M . If f1 is the identity, we write this as Mf2 and similarly, if f2 is

the identity, we write f1M .

It will be useful to know when two modules in PicentpRq are actually

isomorphic as left R-modules. To determine this, let AutZpRq denote the

group of automorphisms of R as an abelian group, i.e. as a Z-module. Define

the set of central automorphisms to be

AutcentpRq “ tf P AutZpRq : fpcq “ c, c P Cu
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where C “ ZpRq. Let InpRq “ tf P AutcentpRq : fpxq “ λxλ´1,λ P Rˆu de-

note the subset of inner automorphisms and let OutcentpRq “ AutcentpRq{ InpRq.

If f P AutcentpRq, then Rf P PicentpRq. Since Rf – R as bimodules for

all f P InpRq, this defines a map ω : OutcentpRq Ñ PicentpRq.

Proposition 1.17 ([9, Theorem 55.12]). Let X, Y P PicentpRq. Then X –

Y as left R-modules if and only if X – Yf as pR,Rq-bimodules for some

f P AutcentpRq.

We now consider the special case where R “ Λ is a Z-order in a finite-

dimensional semisimple Q-algebra. Let IpΛq denote the multiplicative group

of two-sided ideals I Ď Λ which are invertible in the sense that there exists

a fractional two-sided ideal J Ď Q ¨ Λ for which I ¨ J “ Λ. If I P IpΛq, then

it follows that I is invertible as a pΛ,Λq-bimodule and, since I is an ideal, we

have that xm “ mx for all m P I and x P ZpΛq. This implies that I represents

a class rIs P PicentpΛq. Moreover, we have:

Proposition 1.18 ([9, Corollary 55.18]). There is an isomorphism of abelian

groups:

PicentpΛq – IpΛq{tΛa : a P pQ ¨ Cqˆu

where C “ ZpΛq is the centre of Λ.

We will now specialise even further to the case of locally free Λ modules.

Define the locally free Picard group LFPpΛq Ď PicentpΛq to be the subgroup

consisting of pΛ,Λq-bimodules M such that M P ClspΛq is locally free as a left

Λ-module.

Proposition 1.19 ([9, Proposition 55.29]). LFPpΛq is the set of two-sided

ideals I Ď Λ for which I P ClspΛq. That is, if I Ď Λ is a two-sided ideal such
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that I P ClspΛq, then there exists J Ď Λ two-sided with J P ClspΛq such that

I bΛ J – Λ – J bΛ I as pΛ,Λq-bimodules.

In particular this shows that, if I Ď Λ be a two-sided ideal such that

I P ClspΛq, then I induces a bijection I bΛ ´ : ClspΛq Ñ ClspΛq.

In this context, we can consider an even stronger notion of local freeness

than for left modules. We say that a pΛ,Λq-bimodule M is locally free as

a bimodule if there exists i ě 1 such that, for all p prime, Mp – Λi
p are

isomorphic as pΛp,Λpq-bimodules. We will now need the following two closely

related results.

Proposition 1.20 ([9, Proposition 55.16]). Let R be a commutative Noethe-

rian local ring and let Λ be a commutative finitely generated R-algebra. Then

PicentpΛq “ 1.

In particular, if Λ is an Z-order in a finite-dimensional semisimpleQ-algebra

A and C “ ZpΛq, then Cp is a commutative finitely generated Zp-algebra and

Cppq is a commutative finitely generated Zppq-algebra. Since Zp and Zppq are

both Noetherian, this implies that PicentpCpq “ 1 and PicentpCppqq “ 1.

The following was shown by Fröhlich (see also [9, Theorem 55.25]). Note

that, since τ 1 ˝ τ factors PicentpCpq, the fact that τ 1 ˝ τ “ 0 follows from

PicentpCpq “ 1.

Theorem 1.21 ([14, Theorem 6]). For all but finitely many primes p, we have

PicentpΛpq “ 1 and there is an exact sequence

1 Ñ PicentpCq τÝÑ PicentpΛq τ 1
ÝÑ

ź
p

PicentpΛpq Ñ 1

where C “ ZpΛq is the centre of Λ and τpMq “ M bC Λ for M P PicentpCq.
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This leads to the following three equivalent characterisations of locally free

bimodules. This is presumably well-known, though we were not able to locate

a proof in the literature.

Corollary 1.22. Let I Ď Λ be a two-sided ideal such that I P ClspΛq. Then

the following are equivalent:

(i) I is generated by central elements

(ii) I is locally free as a bimodule, i.e. for all p prime, Ip – Λp are

isomorphic as pΛp,Λpq-bimodules.

(iii) For all p prime, Ippq – Λppq are isomorphic as pΛppq,Λppqq-bimodules.

Proof. By Proposition 1.19, I represents a class rIs P PicentpΛq. The equiva-

lence of (i) and (ii) now follows from Proposition 1.18 and Theorem 1.21.

Now, (iii) implies (ii) since Λp “ Zp bZ Λ – Zp bZppq Λppq. In order to show

that (i) implies (iii), suppose that I is generated by central elements and, for

p prime, let τ 2 : PicentpΛq Ñ PicentpΛppqq be the induced map. Then there is

a commutative diagram:

PicentpCq PicentpΛq

PicentpCppqq PicentpΛppqq

τ

τ2

where all maps are the induced maps. By Proposition 1.20, we have that

PicentpCppqq “ 1 and so τ 2 ˝ τ “ 0. Since I is generated by central elements,

rIs P Impτq and so rIppqs “ τ 2pIq “ 0 P PicentpΛppqq which implies that

Ippq – Λppq as pΛppq,Λppqq-bimodules.
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Chapter 2

Cancellation for modules over

orders in semisimple Q-algebras

In this chapter, we will establish Theorem 2.6 which is a new cancellation the-

orem for orders in semisimple Q-algebras. This constitutes the main technical

heart of this part of the thesis.

2.1 Cancellation over fibre squares

Let Λ be a Z-order in a finite-dimensional semisimple Q-algebra A and let

A – A1 ˆ A2 be an isomorphism of Q-algebras. For i “ 1, 2, let Λi be the

projections onto Ai, which is a Z-orders in Ai. If Λ1 “ Λ{I1 and Λ2 “ Λ{I2,

then I1 X I2 “ t0u and so, by Lemma 1.5, there is a pullback diagram

R “
Λ Λ2

Λ1
sΛ

i2

i1 j2

j1
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where sΛ “ Λ{pI1`I2q. Since pi1, i2qbQ induces the isomorphism A Ñ A1ˆA2,

we must have that sΛbQ “ 0 which implies that sΛ is a finite ring. We will write

R “ RpΛ, A1, A2q to denote the diagram induced by the splitting A – A1ˆA2.

Consider the maps

ClsR : ClspΛq Ñ ClspΛ1q ˆ ClspΛ2q, CR : CpΛq Ñ CpΛ1q ˆ CpΛ2q

which are both induced by the extension of scalars maps ppi1q#, pi2q#q.

Lemma 2.1. Let P P ClspΛq and let Pk “ pikq#pP q P ClspΛkq for k “ 1, 2.

Then ClsR restricts to a surjection

ClsR : ClsrP spΛq ↠ ClsrP1spΛ1q ˆ ClsrP2spΛ2q

and r ¨ sΛ restricts to a surjection

r ¨ sΛ : Cls´1
R pP1, P2q ↠ C´1

R prP1s, rP2sq.

Proof. Since pi, jq : Λ Ñ Λ1ˆΛ2 is a map of Z-orders in A such that pi1, i2qbQ

is an isomorphism, Theorem 1.15 implies that the diagram

ClspΛq ClspΛ1q ˆ ClspΛ2q

CpΛq CpΛ1q ˆ CpΛ2q

ClsR

r ¨ sΛ r ¨ sΛ1 ˆ r ¨ sΛ2

CR

is a weak pullback in that ClspΛq maps onto the pullback of the lower right

corner. Hence the fibres of r ¨ sΛ map onto the fibres of r ¨ sΛ1 ˆ r ¨ sΛ2 and the

fibres of ClsR map onto the fibres of CR, as required.

In order to determine when r ¨ s is bijective, i.e. when Λ has locally free
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cancellation, it is therefore useful to give the explicit forms for the fibres of

ClsR and CR respectively.

Since j1 and j2 are both surjective in our construction above, R is a Milnor

square. We also have that locally free sΛ-modules are free since sΛ is finite and

hence semilocal [39, Remark 4.9], and so sΛ – pj1q#pP1q – pj2q#pP2q as sΛ-
modules. Hence we have the following by Theorems 1.3 and 1.4 respectively.

Proposition 2.2. For k “ 1, 2, let Pk P ClspΛkq. Then there is an isomor-

phism of left sΛ modules ϕk : pjkq#pPkq Ñ sΛ and, for any such ϕk, there is a

one-to-one correspondence

AutpP1qzsΛ {̂AutpP2q Ø Cls´1
R pP1, P2q

where the maps AutpPkq Ñ sΛˆ are defined via the map ϕkp1 b ´q : Pk Ñ sΛ.
Proposition 2.3. For k “ 1, 2, let Pk P ClspΛkq. Then there is a one-to-one

correspondence
K1psΛq

K1pΛ1q ˆ K1pΛ2q
Ø C´1

R prP1s, rP2sq.

For i “ 1, 2, Morita equivalence gives us maps

ψi : AutpPiq “ EndpPiqˆ Ñ K1pEndpPiqq – K1pΛiq.

These maps fit into a commutative diagram

AutpPiq K1pEndpPiqq K1pΛiq

sΛˆ K1psΛq

h#

–

K1ph#q
K1phq

where h “ j1 or j2 respectively (see, for example, [46, Corollary A17]). We
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can therefore define a map

ΨP1,P2 : AutpP1qz sΛˆ{AutpP2q ↠ K1psΛq
K1pΛ1q ˆ K1pΛ2q

which can be shown to coincide with the map induced by r ¨ s under the equiv-

alences given in Propositions 2.2 and 2.3. Hence, by the previous discussion,

we have that Λ has locally free cancellation if and only if ΨP1,P2 is a bijection

for all P1, P2 such that P1 “ pi1q#pP q and P2 “ pi2q#pP q for some P P ClspΛq.

Now consider the constant KR “ | K1psΛq
K1pΛ1qˆK1pΛ2q | associated to R. It follows

from Lemma 2.1 that r ¨ sΛ is surjective and so |AutpP1qzsΛˆ{AutpP2q| ě KR.

Lemma 2.4. Let P1 P ClspΛ1q and P2 P ClspΛ2q and suppose that

|AutpP1qz sΛˆ{AutpP2q| “ KR.

Then |Cls´1
R pP1, P2q X Clsr rP spΛq| “ 1 for all r rP s P C´1

R prP1s, rP2sq.

Proof. By Propositions 2.2 and 2.3, we have that

|AutpP1qz sΛˆ{AutpP2q| “ |Cls´1
R pP1, P2q|, KR “ |C´1

R prP1s, rP2sq|

and so |Cls´1
R pP1, P2q| “ |C´1

R prP1s, rP2sq| by our hypothesis. By Lemma 2.1,

this implies that we have a bijection

r ¨ sΛ : Cls´1
R pP1, P2q Ñ C´1

R prP1s, rP2sq.

The result follows since r ¨ s´1
Λ pr rP sq “ Cls´1

R pP1, P2q X Clsr rP spΛq.

We will now prove the following, which is the main result of this section.
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Theorem 2.5. Let R be as above, let P P ClspΛq and let Pk “ pikq#pP q P

ClspΛkq for k “ 1, 2. Suppose that |Autp rP1qz sΛˆ{Autp rP2q| “ KR for allrP1 P ClsrP1spΛ1q and rP2 P ClsrP2spΛ2q. Then ClsR induces a bijection

ClsrP spΛq – ClsrP1spΛ1q ˆ ClsrP2spΛ2q.

Subject to the hypothesis, this implies that rP s P CpΛq has cancellation if

and only if rP1s P CpΛ1q has cancellation and rP2s P CpΛ2q has cancellation.

Proof. Recall that, by Lemma 2.1, there is a surjection

ClsR |ClsrP spΛq: Cls
rP spΛq Ñ ClsrP1spΛ1q ˆ ClsrP2spΛ2q

which has fibres pClsR |ClsrP spΛqq
´1p rP1, rP2q “ Cls´1

R p rP1, rP2q X ClsrP spΛq. By

Lemma 2.4, we have that |Cls´1
R p rP1, rP2qXClsrP spΛq| “ 1 for all rP1 P ClsrP1spΛ1q

and rP2 P ClsrP2spΛ2q and this implies that ClsR |ClsrP spΛq is a bijection.

2.2 Main cancellation theorem for orders in

semisimple Q-algebras

As before, let Λ be a Z-order in a finite-dimensional semisimple Q-algebra A,

and let R “ RpΛ, A1, A2q denote the fibre square corresponding to a splitting

A – A1 ˆ A2 of Q-algebras.

The main aim of this section will be to prove the following which is our

main cancellation theorem for orders in semisimple Q-algebras.

Theorem 2.6. Let P P ClspΛq and let P1 “ pi1q#pP q P ClspΛ1q. Suppose the

following conditions are satisfied by R:
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(i) Λ2 satisfies the Eichler condition

(ii) The map Λˆ
1 Ñ K1pΛ1q is surjective

(iii) Every rP1 P ClsrP1spΛ1q is represented by a two-sided ideal I Ď Λ1

which is generated by central elements.

Then the map pi1q# : ClsrP spΛq Ñ ClsrP1spΛ1q is a bijection.

Subject to the hypothesis, this implies that rP s P CpΛq has cancellation

if and only if rP1s P CpΛ1q has cancellation. Note that, by Corollary 1.22, a

two-sided ideal I Ď Λ1 is locally free as a pΛ1,Λ1q-bimodule if and only if it is

generated by central elements. In particular, hypothesis (iii) is satisfied if I is

generated by central elements.

The proof will be given in Section 2.2.4 and will depend on Lemmas 2.9,

2.10 and 2.11 which roughly correspond to the three conditions in Theorem 2.6.

The first lemma is due to Swan.

2.2.1 The Eichler condition

The following can be shown by combining [46, Corollary A17, Theorem A18].

Theorem 2.7. Let Λ be a Z-order in a semisimple Q-algebra, let f : Λ ↠ sΛ
be a ring epimorphism for sΛ finite and let P P ClspΛq. Then fpAutpP qq ď sΛˆ

is a normal subgroup and the map AutpP q Ñ K1psΛq induces an isomorphism

sΛˆ{AutpP q – K1psΛq{K1pΛq.

Remark 2.8. By Theorem 2.5, it can be shown that this implies Theorem 1.10.

We can apply this to the case where R “ RpΛ, A1, A2q for a splitting of

Q-algebras A – A1 ˆA2. In the case where either Λ1 or Λ2 satisfies the Eichler

condition, we will adopt the convention that Λ2 satisfies the Eichler condition.
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Lemma 2.9. Let R be as above. If Λ2 satisfies the Eichler condition then, for

all Pk P ClspΛkq for k “ 1, 2, there is a bijection Cls´1
R pP1, P2q – Cls´1

R pP1,Λ2q.

Proof. By Theorem 2.7, there are isomorphisms sΛˆ{AutpP2q – K1psΛq{K1pΛ2q –sΛˆ{Λˆ. This implies that there is a bijection

AutpP1qz sΛˆ{AutpP2q – AutpP1qz sΛˆ{Λˆ
2

which is equivalent to Cls´1
R pP1, P2q – Cls´1

R pP1,Λ2q by Proposition 2.2.

2.2.2 Unit representation for K1

Lemma 2.10. Let R be as above and suppose:

(i) Λ2 satisfies the Eichler condition

(ii) The map Λˆ
1 Ñ K1pΛ1q is surjective.

Then |Λˆ
1 z sΛˆ{Λˆ

2 | “ KR.

Proof. Since mHpΛ2q “ 0, Theorem 2.7 implies that the map sΛˆ Ñ K1psΛq

induces an isomorphism sΛˆ{Λˆ
2 – K1psΛq{K1pΛ2q. The relevant maps fit into

a commutative diagram

Λˆ
1

sΛˆ{Λˆ
2

K1pΛ1q
K1psΛq
K1pΛ2q

–

and so ImpΛˆ
1 Ñ sΛˆ{Λˆ

2 q “ ImpK1pΛ1q Ñ K1psΛq{K1pΛ2qq since the map

Λˆ
1 Ñ K1pΛ1q is surjective. Hence we have |Λˆ

1 z sΛˆ{Λˆ
2 | “ KR.
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2.2.3 Two-sided ideals over orders in semisimple Q-algebras

The main result of this section is as follows. This gives a method of construct-

ing locally free two-sided ideals over Λ from locally free two-sided ideals over

the projections Λk subject to certain conditions.

Lemma 2.11. Let R be as above and, for k “ 1, 2, suppose Ik Ď Λk is a two-

sided ideal such that Ik P ClspΛkq and which is generated by central elements.

Then there exists a two-sided ideal I Ď Λ with I P ClspΛq such that

(i) For k “ 1, 2, there is a pΛk,Λq-bimodule isomorphism

pikq#pIq – pIkqik
(ii) There is a bijection

I bΛ ´ : Cls´1
R pP1, P2q Ñ Cls´1

R pI1 bΛ1 P1, I2 bΛ2 P2q.

Remark 2.12. This actually holds under the weaker hypothesis that pIkqppq –

pΛkqppq are isomorphic as ppΛkqppq, pΛkqppqq-bimodules for all primes p | |sΛ|.

We will begin by proving the following embedding result, which can be

viewed as a generalisation of [40, Theorem A] to bimodules.

Proposition 2.13. Let I Ď Λ be a two-sided ideal generated by central ele-

ments such that I P ClspΛq. Then, for all n ‰ 0, there exists a two-sided ideal

J Ď Λ such that I – J as pΛ,Λq-bimodules and J X Z is coprime to pnq.

Note that, by Corollary 1.22, this holds whenever I is locally free as a

bimodule. In order to prove this, we will need the following two lemmas.

Lemma 2.14. Let n ‰ 0 be an integer and let I Ď Λ be a two-sided ideal

such that I P ClspΛq and, for all p | n prime, there is a pΛppq,Λppqq-bimodule

isomorphism Ippq – Λppq. Then there is a pΛ{n,Λ{nq-bimodule isomorphism

f : Λ{n Ñ I{n, 1 ÞÑ ras for some a P ZpΛq X I.
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Proof. For each p | n prime, consider the bimodule isomorphism f : Λppq Ñ

Ippq, 1 ÞÑ raps for some ap P Ippq. There exists m ‰ 0 such that map P I Ď Ippq

and f 1 : Λppq Ñ Ippq, 1 ÞÑ rmaps is still a bimodule isomorphism, and so we can

assume that ap P I Ď Ippq. Since f is a bimodule isomorphism, we have that

ap P ZpΛppqq and so ap P ZpΛq X I.

Now, f induces a bimodule isomorphism Λppq{p – Ippq{p. Since Zppq{p –

Z{p, there are bimodule isomorphisms Λ{p – Λppq{p and I{p – Ippq{p and

so there exists a bimodule isomorphism fp : Λ{p Ñ I{p, 1 ÞÑ raps. It is

straightforward to check that the map rfpi : Λ{pi Ñ I{pi, 1 ÞÑ raps is also a

bimodule isomorphism for all i ě 1.

In general, suppose n “ pn1
1 ¨ ¨ ¨ pnk

k for distinct primes pi, and integers

ni ě 1 and k ě 1. By the Chinese remainder theorem, Z{n – Z{pn1
1 ˆ ¨ ¨ ¨ ˆ

Z{pnk
k . By tensoring with Λ or I, we see that there are bimodule isomorphisms

Λ{n – Λ{pn1
1 ˆ ¨ ¨ ¨ ˆ Λ{pnk

k and I{n – I{pn1
1 ˆ ¨ ¨ ¨ ˆ I{pnk

k . Hence, by the

bimodule isomorphism constructed above, there is a bimodule isomorphism

f : Λ{n Ñ I{n, 1 ÞÑ ras for some a P Z ¨ xap1 , ¨ ¨ ¨ , apky Ď ZpΛq X I.

Lemma 2.15. Let n ‰ 0 be an integer, let I Ď Λ be a two-sided ideal such

that I P ClspΛq, and let f : Λ{n Ñ I{n, 1 ÞÑ ras be a pΛ{n,Λ{nq-bimodule

isomorphism for some a P ZpΛq X I. Then Λa – Λ as a pΛ,Λq-bimodule and

there exists m ‰ 0 such that mI Ď Λa and pn,mq “ 1.

Proof. Since a P ZpΛq, Λa is a bimodule and there is a map of bimodules

ϕ : Λ Ñ Λa, x ÞÑ xa. To see that ϕ is a bimodule isomorphism, note that it

is clearly surjective and is injective since f is a bijection.

Since f is an isomorphism, we have I “ Λa`nI as ideals in Λ and so there

is an equality of finitely generated abelian groups I{Λa “ n¨I{Λa. Hence, as an

abelian group, I{Λa is finite of order m where pn,mq “ 1. Since m ¨ I{Λa “ 0,
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we have that mI Ď Λa.

Proof of Proposition 2.13. Let I Ď Λ be a two-sided ideal such that I P ClspΛq

and which is generated by central elements. By Corollary 1.22, this implies

that Λppq – Ippq are isomorphic as bimodules for all p. By Lemma 2.14, there

is a pΛ{n,Λ{nq-bimodule isomorphism f : Λ{n Ñ I{n, 1 ÞÑ ras for some

a P ZpΛq X I. By Lemma 2.15, this implies that there is a pΛ,Λq-bimodule

isomorphism ψ : Λa Ñ Λ which sends xa ÞÑ x and there exists m ‰ 0 with

pn,mq “ 1 and mI Ď Λa. Let J “ ψpmIq Ď ψpΛaq “ Λ, which is a two-

sided ideal since ψ is a map of bimodules. Finally, note that the map I Ñ J ,

x ÞÑ ψpmxq is a pΛ,Λq-bimodule isomorphism, and m “ ψpmaq P ψpmIq “ J

implies that J X Z “ pm0q where m0 | m and so pn,m0q “ 1.

We will also need the following lemma. In the statement of Lemma 2.11,

this shows that part (ii) follows from part (i).

Lemma 2.16. Let R be as above and suppose I Ď Λ, Ik Ď Λk are two-sided

ideals such that I P ClspΛq, Ik P ClspΛkq and pikq#pIq – pIkqik are isomorphic

as pΛk,Λq-bimodules for k “ 1, 2. Then there is a bijection

I bΛ ´ : Cls´1
R pP1, P2q Ñ Cls´1

R pI1 bΛ1 P1, I2 bΛ2 P2q.

Proof. By Proposition 1.19, there exists a two-sided ideal J Ď Λ such that

J P ClspΛq and I bΛ J – Λ – J bΛ I as pΛ,Λq-bimodules. In particular, I is

invertible as a bimodule and determines a bijection I bΛ ´ : ClspΛq Ñ ClspΛq

with inverse J bΛ ´.

Now suppose P P Cls´1
R pP1, P2q, i.e. that pikq#pP q – Pk are isomorphic as
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left Λk modules for k “ 1, 2. Then

pikq#pI bΛ P q “ Λk bΛ pI bΛ P q – pIkqik bΛ P

– pIk bΛk
Λkq bΛ P – Ik bΛk

Pk

and so pI bΛ ´qpCls´1
R pP1, P2qq Ď Cls´1

R pI1 bΛ1 P1, I2 bΛ2 P2q. Similarly, we

can show that pJ bΛ ´qpCls´1
R pI1 bΛ1 P1, I2 bΛ2 P2qq Ď Cls´1

R pP1, P2q. Hence

I bΛ ´ restricts to the required bijection.

Finally, we will now use Proposition 2.13 to complete the proof of Lemma 2.11.

Proof of Lemma 2.11. By Lemma 2.16, it suffices to prove part (i) only. Let

k “ 1 or 2. By Proposition 2.13 we can assume, by replacing Ik with a

bimodule isomorphic two-sided ideal, that Ik X Z is coprime to |sΛ|. Let n P

Ik X Z be such that n ‰ 0 and let m P Z be such that nm ” 1 mod |sΛ|, which

exists since p|sΛ|, nq “ 1. Consider the left sΛ module homomorphisms

ψk : sΛ Ñ sΛ bΛk
Ik, 1 ÞÑ m b n, ϕk : sΛ bΛk

Ik Ñ sΛ, x b y ÞÑ xjkpyq

where x P sΛ and y P Ik Ď Λk. Note that ϕkpψkp1qq “ mjkpnq “ mn “ 1 P sΛ
and ψkpϕkpx b yqq “ pxjkpyqmq b n “ xm b yn “ xmn b y “ x b y. This

shows that ψk and ϕk are mutual inverses and so are both bijections.

Now let M “ tpx1, x2q P I1 ˆI2 : ϕ1p1bx1q “ ϕ2p1bx2qu Ď Λ1 ˆΛ2, which

is a left Λ-module under the action λ ¨ px1, x2q “ pi1pλqx1, i2pλqx2q for λ P Λ.

This coincides with the standard pullback construction for projective module

over a Milnor square R [33]. However, for the ϕk chosen above, we further

have M “ tpx1, x2q P I1 ˆ I2 : j1px1q “ j2px2qu and so M is a pΛ,Λq-bimodule

with action λ ¨ px1, x2q ¨ µ “ pi1pλq ¨ x1 ¨ i1pµq, i2pλq ¨ x2 ¨ i2pµqq for λ, µ P Λ.
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Note that M Ď Λ1 ˆ Λ2 Ď Q ¨ pΛ1 ˆ Λ2q “ Q ¨ Λ and so there exists

k P Z with k ‰ 0 for which kM Ď Λ. Hence I “ kM is a two-sided ideal

in Λ which is bimodule isomorphic to M . Now note that M P ClspΛq as a

left Λ-module by [39, Lemma 4.4], and so I P ClspΛq. Finally note that, by

the proof of [33, Theorem 2.3], the map f : pikq#pMq Ñ pIkqik which sends

λk b px1, x2q ÞÑ λk ¨ xk for λk P Λk is a left Λk module isomorphism. This is

also a right Λ-module isomorphism since

fppλk b px1, x2qq ¨ λq “ fpλk b px1 ¨ i1pλq, x2 ¨ i2pλqqq

“ λk ¨ xk ¨ ikpλq “ fpλk b px1, x2qq ¨ ikpλq

and so pikq#pIq – pikq#pMq – pIkqik are bimodule isomorphic, as required.

2.2.4 Proof of Theorem 2.6

By Theorem 2.5 and Lemma 2.9, it suffices to show that #Cls´1
R p rP1, P2q “ KR

for all rP1. By Lemma 2.9 (ii), there is a bijection Cls´1
R p rP1, P2q – Cls´1

R p rP1,Λ2q

and, by Lemma 2.10, we have that #Cls´1
R pΛ1,Λ2q “ KR. Hence it suffices to

show that, for all rP1, there is a bijection Cls´1
R p rP1,Λ2q – Cls´1

R pΛ1,Λ2q.

By assumption, there exists a two-sided ideal I1 Ď Λ1 such that I1 – rP1 as

left Λ1 modules and such that pI1qp – pΛ1qp are isomorphic as bimodules for all

primes p | |sΛ|. By Lemma 2.11, there exists a two-sided ideal I Ď Λ such that

I P ClspΛq and pi1q#pIq – pI1qi1 as pΛ1,Λq-bimodules and pi2q#pIq – pΛ2qi2 as

pΛ2,Λq-bimodules. By Lemma 2.16, this induces a bijection

I bΛ ´ : Cls´1
R pΛ1,Λ2q Ñ Cls´1

R pI1,Λ2q,

and so there a bijections Cls´1
R p rP1,Λ2q – Cls´1

R pΛ1,Λ2q, as required.
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Chapter 3

Cancellation for modules over

integral group rings

The aim of this chapter will be to specialise Theorem 2.6 to the case of integral

group rings ZG. We will then prove Theorem A by combining this with an

additional cancellation theorem of R. G. Swan which is given in Theorem 3.11.

3.1 Binary polyhedral groups and the Eichler

condition

Recall from Proposition 1.8 that, for a finite group G, a ZG module is projec-

tive if and only if it is locally free. In particular, ZG has projective cancellation

if and only if ZG has locally free cancellation. In order to determine when ZG

has projective cancellation it suffices, by Theorem 1.10, to consider the case

where G fails the Eichler condition, i.e. if no copy of H “ M1pHq appears in

the Wedderburn decomposition of the real group ring RG.

We will now determine the finite groups G which fail the Eichler condition.
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Firstly note that a binary polyhedral group is a non-cyclic finite subgroup of

Hˆ where H is the real quaternions. Since there is a double cover of Lie groups

f : Hˆ – S3 Ñ SOp3q, the binary polyhedral groups are the preimages of the

non-cyclic finite subgroups of SOp3q which are the dihedral groupsD2n of order

2n for n ě 2 and the symmetry groups of platonic solids.

The double cover of D2n is the quaternion group of order 4n for n ě 2:

Q4n “ xx, y | x2 “ y2, yxy´1 “ x´1y.

The symmetry groups of platonic solids are the tetrahedral, octahedral and

icosahedral groups T , O, I. These have double covers the binary tetrahedral,

binary octahedral and binary icosahedral groups, which have presentations:

rT “ xa, b, c | a2 “ b3 “ c3 “ abcyrO “ xa, b, c | a2 “ b3 “ c4 “ abcyrI “ xa, b, c | a2 “ b3 “ c5 “ abcy.

The following is well-known [46] though a proof does not appear explicitly

in the literature except in the backward direction [9, p305].

Proposition 3.1. G satisfies the Eichler condition if and only if G has no

quotient which is a binary polyhedral group.

Proof. If G fails the Eichler condition, the Wedderburn decomposition gives

a map G Ñ Hˆ. Since G is an R-basis for G, the image must contain an

R-basis for H. Since H is non-commutative, the image must be non-abelian

and so a binary polyhedral group. Conversely, a quotient of G into a binary

polyhedral group gives a representation G Ñ Hˆ which does not split over R
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or C since the image is non-abelian. Hence the representation is irreducible

and so represents a term in the Wedderburn decomposition.

Remark 3.2. It is possible to compute mHpGq in terms of the quotients of G

which are binary polyhedral groups. We will consider this in Section 4.2.

3.2 Proof of Theorem A for quaternionic quo-

tients

In order to determine when ZG has projective cancellation it suffices, by The-

orem 1.10, to consider the case where G fails the Eichler condition. By Propo-

sition 3.1, this implies that G has a quotient H which is a binary polyhedral

group and so, by Corollary 1.6, there is a Milnor square:

RG,H “
ZG Λ

ZH pZ{nZqrHs

where Λ “ ZG{ΣN and n “ |G|{|H|.

We now aim to prove the following by specialising Theorem 2.6 to RG,H .

Theorem 3.3. Let G be a finite group and suppose G has a quotient H such

that mHpGq “ mHpHq and H is of the form

Q8, Q12, Q16, Q20.

Then ZG has projective cancellation.

Let G is a finite group with a quotient H such that mHpGq “ mHpHq and

H “ Q8, Q12, Q16 or Q20, and suppose conditions (i)-(iii) of Theorem 2.6 hold
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for RG,H . If PG P ClspZGq and PH “ pi1q#pPGq P ClspZHq, then Theorem 2.6

implies that there is a bijection

pi1q# : ClsrPGspZGq Ñ ClsrPH spZHq.

It was shown by Swan in [46, Theorem I] that ZH has projective cancellation

for H “ Q8, Q12, Q16, Q20. This implies that #ClsrPH spZHq “ 1 and so

#ClsrPGspZGq “ 1 holds for all PG P ClspZGq. In particular, this would imply

that ZG has projective cancellation.

Hence, in order to complete the proof of Theorem 3.3, it suffices to verify

that conditions (i)-(iii) of Theorem 2.6 hold for RG,H . Since R is flat, RG,H bR

is a pullback diagram and so RG – RHˆpΛbRq. SincemHpGq “ mHpHq, this

implies that Λ satisfies the Eichler condition and so (i) applies automatically.

Conditions (ii) and (iii) will be verified in the following two sections.

3.2.1 Unit representation for quaternion groups

We say that that K1pZGq is represented by units when the map ZGˆ Ñ

K1pZGq is surjective. The problem of when K1pZGq is represented by units

for G a finite group was studied in detail by B. Magurn, R. Oliver and L.

Vaserstein [27]. In particular, they showed:

Lemma 3.4 ([27, Theorems 7.15 - 7.18]).

(i) K1pZQ4nq is represented by units if n “ 2k or if n is prime with

#CpZrζnsq odd.

(ii) K1pZQ116q is not represented by units.

If p “ 3 or 5, then it is well known that #CpZrζpsq “ 1. Hence K1pZHq is

represented by units when H “ Q8, Q12, Q16 or Q20, which implies that RG,H
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satisfies conditions (ii).

3.2.2 Projective modules over quaternion groups

We say that a locally free module P P ClspΛq is represented by a two-sided

ideal I Ď Λ if P – I are isomorphic as left Λ-modules. The aim of this section

will be to prove the following, which implies that RG,H satisfies condition (iii).

Proposition 3.5. For 2 ď n ď 5, every P P ClspZQ4nq is represented by a

two-sided ideal I Ď ZQ4n which is generated by central elements. In particular,

P is locally free as a pZQ4n,ZQ4nq-bimodule.

We begin by discussing two families of two-sided ideals which will suffice

to represent all projective modules P P ClspZQ4nq in the case 2 ď n ď 5. Note

that, by [46, Theorem III], we have that #ClspZQ4nq “ 2 for 2 ď n ď 5.

Swan modules

Let G be a finite group, let N “
ř

gPG g denote the group norm and let r P Z

with pr, |G|q “ 1. Then the two-sided ideal pN, rq Ď ZG is projective as a

left ZG module and is known as a Swan module. If r ” s mod |G|, then

pN, rq – pN, sq by [41, Lemma 6.1] and so we often write r P pZ{|G|qˆ. Note

that N, r P ZpZGq and so pN, rq is generated by central elements.

By [46, Theorem VI], we have that rpN, 3qs ‰ 0 P CpZQ2nq for n ě 3 where

pN, 3q is a Swan module. Since #ClspZQ2nq “ 2 for n “ 3, 4, this implies that:

ClspZQ8q “ tZQ8, pN, 3qu, ClspZQ16q “ tZQ16, pN, 3qu

which implies Proposition 3.5 for the groups Q8 and Q16.
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Two-sided ideals of Beyl and Waller

In order to prove Proposition 3.5 for the groups Q12 and Q20, we will now

consider a family of projective two-sided ideals in ZQ4n which were first intro-

duced by R. Beyl and N. Waller in [1].

For n ě 2, define Pa,b “ pa ` by, 1 ` xq Ď ZQ4n for a, b P Z such that

pa2 ` b2, 2nq “ 1 if n is odd and pa2 ´ b2, 2nq “ 1 if n is even. It follows

from [1, Proposition 2.1] that Pa,b is a two-sided ideal and is projective as a

left ZQ4n module. For α P ZQ4n, let pαq Ď ZQ4n denote the two-sided ideal

generated by α. If n is odd, then there is a Milnor square

R “
ZQ4n{pxn ` 1q Zrζ2n, js

Zrjs pZ{nqrjs

i2

i1 j2

j1

x, y ζ2n, j

´1, j ´1, j

where ZQ4n{px`1q – Zrjs and ZQ4n{pxn´1 ´xn´2 `¨ ¨ ¨´1q – Zrζ2n, js Ď HR.

If n “ p is an odd prime then, by Propositions 2.2 and 2.3, we have that

Cls´1
R pZrζ2p, js,Zrjsq C´1

R prZrζ2p, jss, rZrjssq

Fprjsˆ

Zrjsˆ ˆ Zrζp, jsˆ
K1pFprjsq

K1pZrjsq ˆ K1pZrζ2p, jsq

r ¨ s

ϕ

where ϕ is induced by the map Fprjsˆ Ñ K1pFprjsq. It follows from [1,

Proposition 2.2] that Pa,b P Cls´1
R pZrζ2n, js,Zrjsq with corresponding element

ra ` bjs P Fprjsˆ

ZrjsˆˆZrζp,jsˆ .

This allows us to deduce the following, which is an extension of [2, Theorem

3.11] in the case where n “ p is an odd prime.

Lemma 3.6. Let p be an odd prime with #CpZrζpsq odd and let Pa,b “ pa `
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by, 1 ` xq Ď ZQ4p for pa2 ` b2, 4pq “ 1. Then:

(i) Pa,b is free if and only if p | a or p | b

(ii) Pa,b is stably free if and only if a2 ` b2 is a square mod p.

Proof. By [27, Lemma 7.5], we have that Zrζp, jsˆ “ xZrζpsˆ, jy. Furthermore,

the map Zrζpsˆ Ñ Fprjsˆ sends ζp to 1 and so has image Fˆ
p since units of any

length are achievable. This implies that:

Fprjsˆ

Zrjsˆ ˆ Zrζp, jsˆ – Fprjsˆ{Fˆ
p ¨ xjy

and so Pa,b is free if and only if ra ` bjs “ 1 P Fprjsˆ{Fˆ
p ¨ xjy.

Since Zrjs is a Euclidean Domain, we have K1pZrjsq “ Zrjsˆ “ t˘1,˘ju

and, since Fprjs is a finite and hence semilocal ring, we have K1pFprjsq –

Fprjsˆ. It follows from [27, Lemmas 7.5/7.6] that, if #CpZrζpsq odd, then

ImpK1pZrζp, jsqq “ xFˆ
p ,KerpNqqy where N : Fprjsˆ Ñ Fˆ

p , x ` yj ÞÑ x2 ` y2

is the norm on Fprjs. In particular, there is an isomorphism:

N :
K1pFprjsq

K1pZrjsq ˆ K1pZrζ2p, jsq
–

Fprjsˆ

xZrjsˆ,Fˆ
p ,KerpNqy

Ñ Fˆ
p {NpFˆ

p q – Fˆ
p {pFˆ

p q2.

Hence the map ϕ coincides by the map

N : Fprjsˆ{Fˆ
p ¨ xjy Ñ Fˆ

p {pFˆ
p q2

which is induced by N : Fprjsˆ Ñ Fˆ
p , x ` yj ÞÑ x2 ` y2. In particular, Pa,b

is stably free if and only if ra2 ` b2s “ 1 P Fˆ
p pFˆ

p q2. The result follows by

evaluating these conditions.

If p “ 3 or 5 then, as noted in Section 3.2.1, we have that #CpZrζpsq “ 1.

In the case p “ 3, we have p12 ` 22, 12q “ 1 and 3 ∤ 1, 2 and, in the case p “ 5,
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we have p12 ` 42, 20q “ 1 and 5 ∤ 1, 4. Since #ClspZQ4pq “ 2 for p “ 3, 5, we

have:

ClspZQ12q “ tZQ12, P1,2u, ClspZQ20q “ tZQ20, P1,4u.

We will now show that the Pa,b are generated by central elements. Our

strategy will be to introduce a new family a two-sided ideals which are gen-

erated by central elements and show that the Pa,b can be expressed in this

form.

If s P Z is odd, then let zs “ p´1q
s´1
2 px´ s´1

2 ´ x´ s´3
2 ` ¨ ¨ ¨ ` x

s´1
2 q and letrN “ 1 ´ x ` x2 ´ ¨ ¨ ¨ ´ x2n´1. If t P Z, then let αs,t “ zs ` t ¨ rNy P ZQ4n.

Lemma 3.7. Let n ě 2 and let r, s, t P Z where ps, 2nq “ pr, 2nq “ 1. Then

pαs,t, rq Ď ZQ4n is projective as a left ZQ4n module and αs,t P ZpZQ4nq.

Proof. It is easy to see that zs, rN P ZpZQ4nq and that rNx “ rNx´1. Hence we

have yαs,t “ αs,ty and xαs,t “ zsx ` tp rNxqy “ zsx ` tp rNx´1qy “ αs,tx, which

implies that αs,t P ZpZQ4nq. Since r P pαs,t, rq and pr, 4nq “ 1, we have that

pαs,t, rq is a projective ZQ4n module by [40, Proposition 7.1].

Lemma 3.8. Let n ě 2 and let a, b P Z be such that pa2 ´ p´1qnb2, 2nq “ 1.

(i) If r “ pa2 ´ p´1qnb2q{ gcdpa, bq, then there exists a0, b0 P Z such that

a ” a0 mod r, b ” b0 mod r, pa0, 2nq “ 1 and 2n | b0

(ii) Pa,b “ pαs,t, rq Ď ZQ4n where s “ a0 and t “ b0{2n.

In particular, Pa,b is generated by central elements.

Proof. Since pr, 2nq “ 1, there exists x, y P Z such that rx ` 2ny “ 1. Then

a0 “ a ` rxp1 ´ aq and b0 “ 2nyb have the required properties.

Now recall that Pa,b “ pa`by, 1`xq. If d “ gcdpa, bq, then 1
d
pa´byq P ZQ4n

and so r “ 1
d
pa ´ byq ¨ pa ` byq P Pa,b. In particular, since a ” a0 mod r and

b ” b0 mod r, this implies that Pa,b “ pa ` by, 1 ` x, rq “ pa0 ` b0y, 1 ` x, rq.
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Let s “ a0 and t “ b0{2n. If e : ZQ4n Ñ ZQ4n is the function which

evaluates at x “ ´1, then

epαs,tq “ epzsq ` tep rNqy “ s ` tp2nqy “ a0 ` b0y

s which implies that a0 ` b0y ” αs,t mod 1 ` x and so Pa,b “ pαs,t, 1 ` x, rq.

Since s “ a0 has ps, 2nq “ 1, we can let ℓ ě 1 be such that ℓs ” 1

mod 2n. Similarly to the proof of [2, Lemma 1.3], we now define tzs “

p´xq
s´1
2

řℓ´1
i“0p´xsqi so that zsz̄s ” 1 mod rN . This implies that z̄sαs,t “

z̄szs ` rNz̄sty ” 1 mod rN since rN P ZpZQ4nq. Since px ` 1q rN “ 0, this

implies that p1 ` xqz̄sαs,t “ 1 ` x. Hence 1 ` x P pαs,tq and so Pa,b “ pαs,t, rq.

By Lemma 3.7, this implies that Pa,b is generated by central elements.

By Lemma 3.8, this implies that P1,2 Ď ZQ12 and P1,4 Ď ZQ20 are gener-

ated by central elements. This completes the proof of Proposition 3.5.

We have now shown that, if G is a finite group with a quotient H such

that mHpGq “ mHpHq and H “ Q8, Q12, Q16 or Q20, then conditions (i)-(iii)

of Theorem 2.6 hold for RG,H . This completes the proof of Theorem 3.3.

Remark 3.9. This argument can also be used to prove Theorem A in the case

H “ rT . However, we will leave this case until the following section.

3.3 Proof of Theorem A for exceptional quo-

tients

The main result of this section is as follows. This generalises [46, Corollary

13.5, Theorem 13.7] which corresponds to the case G “ H.
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Theorem 3.10. Let G be a finite group and suppose G has a quotient H such

that mHpGq “ mHpHq and H is of the form

rT , rO, rI or rT n ˆ rIm for n,m ě 0.

Then ZG has projective cancellation.

Let Λ be a Z-order in a semisimple separable Q-algebra A which is finite-

dimensional over Q. Then we can write A – A1ˆ¨ ¨ ¨ˆArˆB, where the Ai are

totally definite quaternion algebras with centres Ki and B satisfies the Eichler

condition, i.e. mHpBq “ 0. Let ΓΛ be the projection of Λ onto A1 ˆ ¨ ¨ ¨ ˆ Ar.

Let R “ RpΛ, A1 ˆ ¨ ¨ ¨ ˆ Ar, Bq denote the corresponding fibre square.

Suppose that ΓΛ Ď A1 ˆ ¨ ¨ ¨ ˆ Ar is maximal, and so of the form ΓΛ “

Λ1 ˆ ¨ ¨ ¨ ˆ Λn where Λi Ď Ai is a maximal order for i “ 1, ¨ ¨ ¨ , r. ThensΛ “ sΛ1 ˆ ¨ ¨ ¨ ˆ sΛr where sΛi is the image of Λi under the map ī : ΓΛ Ñ sΛ.
It is well-known that there is a finite extension K{Ki for which Ai b K –

MnpKq where n “ rK : Kis. If ϕ : Ai b K Ñ MnpKq is an isomorphism, then

we define the reduced norm as the map

νi : Ai Ñ Ki

given by sending λ ÞÑ detpϕpλ b 1qq. It can be shown that ν is independent

of the choice of K and ϕ. For an order Γi Ď Ai, this restricts to a map

νi : Γ
ˆ
i Ñ Oˆ

Ki
.

Theorem 3.11 ([46, Theorem 13.1]). Let R be as above and suppose that the

projection ΓΛ Ď A1 ˆ ¨ ¨ ¨ ˆ Ar is a maximal order. For i “ 1, ¨ ¨ ¨ , r and every

maximal OKi
-order Γi Ď Ai, suppose that:

(i) νipΓˆ
i q “ pOˆ

Ki
q`
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(ii) There is at most one prime p such that psΛiqppq “ 0 and p is ramified

in Ai. If p exists, then pΓiqˆ
0 “ Kerpνi : Γˆ

i Ñ Oˆ
Ki

q has a subgroup

of order p ` 1.

Then Λ has locally free cancellation if and only if ΓΛ has locally free cancella-

tion.

For a finite group G, we can write QG – A1 ˆ ¨ ¨ ¨ ˆ Ar ˆ B where the Ai

are totally definite quaternion algebras and B satisfies the Eichler condition.

As above, let ΓZG is the projection of ZG onto A1 ˆ ¨ ¨ ¨ ˆAr and let r “ rpGq

denote the value of r in the decomposition of QG above.

The following was proven in [46, Proposition 4.11] and [46, p84].

Lemma 3.12. If G “ rT , rO or rI, then rpGq “ 1 and ΓZG is a maximal order

in AZG. Furthermore:

(i) AZ rT has centre Z, is ramified only at p “ 2 and pΓZ rT qˆ
0 – rT

(ii) AZ rO has centre Zr
?
2s, is finitely unramified and pΓZ rOqˆ

0 – rO
(iii) AZrI has centre Zr1

2
p1 `

?
5qs, is finitely unramified and pΓZrIqˆ

0 – rI.
By [46, Lemmas 13.8, 13.9], we have that ΓZr rTnˆrIms – Γn

Z rT ˆΓm
ZrI for n,m ě

0. The following is an straightforward exercise.

Lemma 3.13. Let f : G ↠ H have mHpGq “ mHpHq. Then QG – QH ˆ B

where B satisfies the Eichler condition and the projection map QG Ñ QH

induces an isomorphism ΓZG – ΓZH .

Proof of Theorem 3.10. By Lemma 3.13 and the discussion above, ΓZG is of

the form ΓZ rO or Γn
Z rT ˆΓm

ZrI for some n,m ě 0. In particular, ΓZG is a maximal

order whose components are maximal orders in AZ rT , AZ rO or AZrI .
If Γ “ ΓZ rT , ΓZ rO or ΓZrI , then [46, p84] implies that Γ has projective can-

cellation and #CpΓq “ 1, and so ΓZG has projective cancellation also. Hence,

54



to show that ZG has projective cancellation, it suffices to show that the con-

ditions (i), (ii) of Theorem 3.11 hold for maximal orders in AZ rT , AZ rO or AZrI .
Firstly note that, if Γ “ ΓZ rT , ΓZ rO or ΓZrI and A “ AZ rT , AZ rO or AZrI respec-

tively, then #CpΓq “ 1 implies that every maximal order in A is conjugate to

Γ. In particular, it suffices to check (i), (ii) for Γ only.

To show (i) holds, note that ppOKqˆq2 Ď νpΓˆq Ď ppOKqˆq` where K is

the centre of A. By Lemma 3.12, we have that K “ Q, Qp
?
2q “ Qpζ8 ` ζ´1

8 q

or Qp
?
5q “ Qpζ10 ` ζ´1

10 q. In each case, we have CpOKq “ 1 and so pOˆ
Kq` “

pOˆ
Kq2 by, for example, [46, Corollary B24]. Hence νpΓˆq “ ppOKqˆq`.

To show (ii) holds, there is nothing to check in the case Γ “ ΓZ rO or ΓZrI since
A is finitely unramified by Lemma 3.12. If Γ “ ΓZ rT , then A is ramified only

at p “ 2 and pΓZ rT qˆ
0 – rT contains an element of order p ` 1 “ 3. Hence this

condition is satified regardless of whether or not psΛiqppq “ 0 for R “ ZG.

Remark 3.14. Generalising the remark of Swan in the proof of [46, Corollary

13.5], we note that this argument would also work in the case H “ Q12.

By combining Theorem 3.10 with Theorem 1.10 and Theorem 3.3, we have

now completed the proof of Theorem A from the Introduction.
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Chapter 4

Groups with periodic

cohomology

In this chapter, we will study groups with periodic cohomology and establish

the properties of these groups which are needed to prove Theorem B as a

consequence of Theorem A. We will also classify the groups G with 4-periodic

cohomology for which mHpGq ď 2.

4.1 Basic definitions and properties

We say that a group G has k-periodic cohomology for some k ě 1 if its Tate

cohomology groups satisfy Ĥ ipG;Zq “ Ĥ i`kpG;Zq for all i P Z and that G has

periodic cohomology if it has k-periodic cohomology for some k. We will begin

by recalling a few basic facts about groups with periodic cohomology, much of

which can be found in [5, Chapter XI].

Firstly, if G has k-periodic cohomology, then G is a finite group and k is

even [22, Chapter 7]. Well known examples include cyclic groups Cn of order
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n ě 1 and the quaternion groups Q4n of order 4n for n ě 2. By the calculations

in [5, p251-254], we have

pH ipCn;Zq “

$’&’%Z{nZ, n even

1, n odd

pH ipQ4n;Zq “

$’’’’’&’’’’’%
Z{4nZ, n ” 0 mod 4

Qab
4n, n ” 2 mod 4

0, n odd

where Qab
4n “ Z{4Z when n is odd and Z{2Z2 when n is even. Hence Cn has

2-periodic cohomology and Q4n has 4-periodic cohomology. More generally, it

can be shown that all binary polyhedral groups have 4-periodic cohomology.

The following gives equivalent criteria for when a group G has periodic

cohomology.

Proposition 4.1 ([5, Theorem 11.6]). If G is a finite, then the following are

equivalent:

(i) G has periodic cohomology

(ii) G has no subgroup of the form Cp ˆ Cp for p prime

(iii) The Sylow subgroups of G are cyclic or generalised quaternionic Q2n.

Let SL2pFpq be the special linear group of degree 2 over Fp, let TL2pFpq be

the non-split extension of C2 by SL2pFpq [52, Proposition 1.2 (iii)] and recall

that rT – SL2pF3q, rO – TL2pF3q and rI – SL2pF5q. Let OpGq be the unique

maximal normal subgroup of odd order. If G has periodic cohomology, then

the type of G is determined by G{OpGq as follows [52, Corollary 2.6]. For later

convenience, we will split II and V into two classes.
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Type I IIa IIb III IV Va Vb VI

G{OpGq C2n Q8 Q2n , n ě 4 rT rO rI SL2pFpq, p ě 7 TL2pFpq, p ě 5

Furthermore, the groups within each type can be classified explicitly. We

refer the reader to [11, Section 1], [22, Chapter 7] and [52, Sections 1,2] for

details. For the purposes of this chapter, it will be useful to recall this classi-

fication for the groups of types I and II.

Type I Recall that G has type I if and only if its Sylow subgroups are cyclic,

and G has a presentation

G “ xu, v | um “ vn “ 1, vuv´1 “ ury

for some r P Z{m where rn ” 1 mod m and pn,mq “ 1 [52, Lemma 3.1].

We will write Cm ¸prq Cn to denote this presentation, where Cn “ xuy and

Cm “ xvy. By [22, p165], we can assume that m is odd.

Type II Recall that, if G has type II, then OpGq ď G has cyclic Sylow

subgroups and so there exists n ě 3 and t, s odd coprime such that

G – pCt ¸prq Csq ¸pa,bq Q2n .

Furthermore, if Ct “ xuy, Cs “ xvy and Q2n is as above, then Q2n acts via

ϕx : u ÞÑ ua, v ÞÑ v, ϕy : u ÞÑ ub, v ÞÑ v

for some a, b P Z{t with a2 ” b2 ” 1 mod t [52, Theorem 3.6]. If s “ 1, then

we will abbreviate this to Ct ¸pa,bq Q2n .
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4.2 Quaternionic representations

For the rest of this section, we will assume all groups are finite and will write

f : G ↠ H to denote a surjective group homomorphism. We will also assume

basic facts about quaternion groups; for example, Q2n has proper quotients

C2 and the dihedral groups D2m for 1 ă m ă n. We begin with the following

observation.

Proposition 4.2. Let f : G ↠ H where G and H have periodic cohomology.

If |H| ą 2, then G and H have the same type.

Proof. Note that fpOpGqq ď H has odd order and so is contained in OpHq.

In particular, f induces a quotient f : G{OpGq ↠ H{OpHq. Hence it suffices

to show that there are no (proper) quotients among groups in the family

F “ tC2n , Q2m , SL2pFpq,TL2pFpq : n ě 2,m ě 3, p ě 3 primeu

unless both are cyclic. Firstly, the quotients of Q2n are D2m for 1 ă m ă n

and C2 which are not in F . It is easy to verify that the quotients of SL2pF3q

are C3, A4 and the quotients of TL2pF3q are C2, S3, S4, none of which are in

F .

For p ě 5, it is well known [12] that SL2pFpq has one (proper) normal sub-

group C2 with quotient PSL2pFpq and similarly TL2pFpq has normal subgroups

C2, SL2pFpq with quotients PGL2pFpq, C2. These groups are not in F (see,

for example, [52, Proposition 1.3]).

If G is a finite group, we say that two quotients f1 : G ↠ H1, f2 : G ↠ H2

are equivalent, written f1 ” f2, if Kerpf1q “ Kerpf2q are equal as sets. Note

that, if f1 ” f2, then H1 – H2 are isomorphic as groups.
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For a prime p, let Gp be the isomorphism class of the Sylow p-subgroup of

G. It is useful to note that, if 1 Ñ N Ñ G Ñ H Ñ 1 is an extension, then

there is an extension of abstract groups 1 Ñ Np Ñ Gp Ñ Hp Ñ 1.

Lemma 4.3. Let f : G ↠ H where G and H have periodic cohomology and

4 | |H|. If f 1 : G ↠ H 1 and |H| “ |H 1|, then f ” f 1, i.e. H – H 1 and

Kerpfq “ Kerpf 1q.

Proof. Let H “ G{N , H 1 “ G{N 1 and define Ḡ “ G{pN XN 1q. Since there are

successive quotients G ↠ Ḡ ↠ H, we have Gp ↠ Ḡp ↠ Hp for all primes p.

If Gp is cyclic, then this implies Ḡp is cyclic. If not, then p “ 2 and G2 “ Q2n

which has proper quotients D2m for 2 ď m ď n ´ 1 and C2. Since H has

periodic cohomology, H2 is cyclic or generalised quaternionic and so H2 “ Q2n

since 4 | |H2|. Hence Ḡ2 “ Q2n since G2 ↠ H2 factors through Ḡ2, and so Ḡ

has periodic cohomology.

Now note that K “ N{pN XN 1q and K 1 “ N 1{pN XN 1q are disjoint normal

subgroups of Ḡ and so K ¨ K 1 “ K ˆ K 1 ď Ḡ by the recognition criteria for

direct products. Hence K ˆ K 1 ď Ḡ and, since Ḡ has periodic cohomology,

Proposition 4.1 (ii) implies that |K| and |K 1| are coprime. Since |N | “ |N 1|,

this implies that |K| “ |K 1| “ 1 and so |N | “ |NXN 1| “ |N 1| and N “ N 1.

Let BpGq denote the set of equivalence classes of quotients f : G ↠ H

where H is a binary polyhedral group. Since 4 | |H|, Lemma 4.3 gives:

Corollary 4.4. Let G have periodic cohomology and let f1, f2 P BpGq. Then

f1 ” f2 if and only if Impf1q – Impf2q.

In particular, this shows that BpGq is in one-to-one correspondence with

the isomorphism classes of binary polyhedral groups H which are quotients of

G. We will often write H P BpGq when there exists f : G ↠ H with f P BpGq.
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In order to determine BpGq, it suffices to determine the set of maximal

binary polyhedral quotients BmaxpGq, i.e. the subset containing those f P BpGq

such that f does not factor through any other g P BpGq. The rest of this section

will be devoted to proving the following:

Theorem 4.5. If G has periodic cohomology, then the type and the number

of maximal binary polyhedral quotients #BmaxpGq are related as follows.

Type I IIa IIb III IV Va Vb VI

#BmaxpGq 0,1 1,2,3 1 1 1 1 0 0

Type I Recall from Section 4.1 that, if G has type I, then G – Cm ¸prq Cn

where

Cm ¸prq Cn “ xu, v | um “ vn “ 1, vuv´1 “ ury

for some m odd with pn,mq “ 1 and some r P Z{m with rn ” 1 mod m.

If G has a binary polyhedral quotient H, then Proposition 4.2 implies that

H “ Q4a for a ą 1 odd and 4 | n since m is odd.

Lemma 4.6. Let G “ Cm ¸prq C4n. Then G has a quotient Q4a if and only if

a | m and r ” ´1 mod a.

Proof. Recall that Q4a “ Ca ¸p´1q C4. If a | m and and r ” ´1 mod a, then

xua, v4y ď G is normal since r4 ” 1 mod a implies uv4u´1 “ u1´r4v4 P xua, v4y.

This implies that G{xua, v4y – Ca ¸prq C4 “ Q4a since r ” ´1 mod a.

Conversely, if f : G ↠ Q4a, then Q4a – xfpuqy ¸prq xfpvqy and |xfpuqy| | m,

|xfpuqy| | 4n. Since Q4a contains a maximal normal cyclic subgroup C2a, and

m is odd, we must have xfpuqy ď Ca. So a | m, which implies that pa, 4nq “ 1

and xfpuqy ď C4 for some C4 ď Q4a. Hence xfpuqy “ Ca and xfpvqy “ C4
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since they generate Q4a. As Ca ď Q4a is unique and C4 ď Q4a is unique up to

conjugation, we can write Q4a – xfpuqy ¸p´1q xfpvqy, i.e. r ” ´1 mod a.

Now suppose G has two maximal binary polyhedral quotients fa : G ↠
Q4a, fb : G ↠ Q4b for some a, b ą 1 odd, and we can assume a is maximal.

Then Lemma 4.6 implies that a, b | m and r ” ´1 mod a and r ” ´1 mod

b. If d “ lcmpa, bq, then d | m and r ” ´1 mod d and so there is a quotient

fd : G ↠ Q4d by Lemma 4.6. By Corollary 4.4 (or the proof of Lemma 4.6),

fa and fb factor through fd which implies that a “ b “ d as fa and fb are

maximal. By Corollary 4.4 again, this implies that fa and fb are equivalent.

In particular, this shows that #BmaxpGq ď 1.

Type II Recall from Section 4.1 that, if G has type II, then

G – pCt ¸prq Csq ¸pa,bq Q2n

where n ě 3, t, s are odd coprime and a, b P Z{t with a2 ” b2 ” 1 mod t.

If G has a binary polyhedral quotient H, then the proof of Proposition 4.2

implies that H{OpHq “ Q2n and so H “ Q2nm for some m odd.

Lemma 4.7. Let G “ pCt ¸prq Csq ¸pa,bq Q2n. Then G has a quotient Q2nm if

and only if m | t, r ” 1 mod m and Q2nm – Cm ¸pa,bq Q2n.

Proof. If m | t and r ” 1 mod m, then xum, vy ď G is normal since uvu´1 “

u1´rv P xum, vy. This implies that G{xum, vy – Ct¸pa,bqQ2n which has quotient

Cm ¸pa,bq Q2n since m | t. If Q2nm – Cm ¸pa,bq Q2n , then G has quotient Q2nm.

Conversely, suppose f : G ↠ Q2nm. Let h : G ↠ G{xu, vy – Q2n and note

that, if g : Q2nm ↠ Q2n , then Kerpg ˝ fq “ Kerphq “ xu, vy by Corollary 4.4

and so Kerpfq ď xu, vy. By composing g with an element of AutpQ2nq, we can
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assume g˝f “ h and so Q2nm – Kerpgq¸xfpxq, fpyqy. Since fpvq P Kerpgq has

a trivial action by xfpxq, fpyqy – Q2n , this implies fpvq “ 1, i.e. v P Kerpfq.

This implies Kerpfq “ xuℓ, vy for some ℓ | t and we need ℓ “ m since Kerpfq ď

G has index 2nm. Hence m | t and, by normality, uvu´1 “ u1´rv P xum, vy

and so r ” 1 mod m. Finally, we have Q2nm – G{xum, vy – Cm ¸pa,bq Q2n .

Lemma 4.8. If m ě 1, then Q2nm – Cm ¸pa,bq Q2n if and only if

pa, bq “

$’&’%p1,´1q, p´1, 1q, p´1,´1q, if n “ 3

p1,´1q, if n ě 4.

Proof. It follows easily from the standard presentation that Q2nm – Cm¸p1,´1q

Q2n . If f : Q2nm ↠ Q2n , then Kerpfq “ Cm is unique by Corollary 4.4. Hence

Q2nm – Cm ¸pa,bq Q2n if and only if there exists θ P AutpQ2nq such that

ϕpa,bq “ ϕp1,´1q ˝ θ where ϕpi,jq : Q2n Ñ AutpCmq – pZ{mqˆ has ϕpi,jqpxq “ i,

ϕpi,jqpyq “ j. This implies that Impϕpa,bqq ď Impϕp1,´1qq “ x1,´1y “ t˘1u

and so a, b P t˘1u. If pa, bq “ p1, 1q, then Q2nm – Cm ˆ Q2n which is a

contradiction unless m “ 1, in which case p1, 1q “ p1,´1q. In particular,

pa, bq P tp1,´1q, p´1, 1q, p´1,´1qu.

If n “ 3, then θ1 : x ÞÑ y, y ÞÑ x satisfies ϕp1,´1q ˝ θ1 “ ϕp1,´1q and

θ2 : x ÞÑ y, y ÞÑ xy satisfies ϕp1,´1q ˝ θ2 “ ϕp´1,´1q. Hence all pa, bq are possible.

If n ě 4, then

AutpQ2nq “ tθi,j : x ÞÑ xi, y ÞÑ xjy | i P pZ{2n´1qˆ, j P Z{2n´1u

and ϕp1,´1q ˝θi,j “ ϕp1,´1q for all i, j and so only pa, bq “ p1,´1q is possible.

Now suppose G has type IIb, i.e. G{OpGq “ Q2n for some n ě 4. By

combining Lemmas 4.7 and 4.8, we get thatG has a quotientQ2nm if and only if
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m | t, r ” 1 mod m and pa, bq “ p1,´1q mod m. If G has two distinct maximal

binary polyhedral quotients fi : G ↠ Q2nmi
for i “ 1, 2, then m1,m2 | t, r ” 1

mod m1,m2 and pa, bq ” p1,´1q mod m1,m2. If m “ lcmpm1,m2q, then

this implies that m | t, r ” 1 mod m and pa, bq ” p1,´1q mod m and so

f : G ↠ Q2nm. By Corollary 4.4, m ą m1,m2 and f1 and f2 must factor

through f which is a contradiction. Hence #BmaxpGq “ 1.

A similar argument works in the case where G has type IIa, i.e. G{OpGq “

Q8. If G has four distinct maximal binary polyhedral quotients fi : G ↠ Q8mi

for i “ 1, 2, 3, 4, then Lemmas 4.7 and 4.8 imply there exists i, j for which

pa, bq ” p1,´1q, p´1, 1q and p´1,´1q mod mi,mj. By a similar argument to

the above, this implies that fi, fj factors through f : G ↠ Q8m where m “

lcmpmi,mjq which is a contradiction since mi ‰ mj and fi, fj are maximal.

Hence 1 ď #BmaxpGq ď 3.

If G has quotients Q8mi
and Q8mj

, then this implies that pa, bq mod mi and

pa, bq mod mj are distinct which is a contradiction unless pmi,mjq “ 1.

Types III, IV, Va If G has type III, IV or Va, then G{OpGq “ rT , rO or rI.
If f : G ↠ H is another binary polyhedral quotient H, then Proposition 4.2

implies that H – G{OpGq. By Corollary 4.4, f is equivalent to the quotient

G ↞ G{OpGq. Hence #BmaxpGq,#BpGq “ 1.

Types Vb, VI Suppose G has type Vb or VI. Since no binary polyhedral

groups have type Vb or VI, Proposition 4.2 implies that G has no binary

polyhedral quotients. Hence #BmaxpGq,#BpGq “ 0. This completes the

proof of Theorem 4.5.

Recall that mHpGq denotes the number of copies of H in the Wedderburn

decomposition of RG for a finite group G, i.e. the number of one-dimensional
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quaternionic representations.

Proposition 4.9. Let f : G ↠ H be a quotient. Then mHpGq “ mHpHq if

and only if every g P BpGq factors through f , i.e. if f˚ : BpHq Ñ BpGq is a

bijection.

Proof. Firstly note that mHpGq ě mHpHq holds in general by lifting quater-

nionic representations. By looking at the real Wedderburn decomposition,

every one-dimensional quaternionic representation of G corresponds to a map

ϕ : G Ñ Hˆ such that the image contains an R-basis for H. In particular, Imϕ

is a non-abelian finite subgroup of Hˆ and so is a binary polyhedral group.

Hence quaternionic representations of G precisely correspond to lifts of rep-

resentations from binary polyhedral groups. Since every quotient from G to a

binary polyhedral group factors through H, every quaternionic representation

over G lifts from one over H. The result now follows.

For example, this recovers the well-known fact that G satisfies the Eichler

condition if and only if G has no quotient which is a binary polyhedral group

[9, Theorem 51.3]. It also follows that, if G has a unique maximal binary

polyhedral quotient H, then mHpGq “ mHpHq.

We now show how to use this to deduce the following from Theorem 4.5.

Theorem 4.10. If G has periodic cohomology, then type and mHpGq are re-

lated as follows.

Type I IIa IIb III IV Va Vb VI

mHpGq ě 0 ě 1 odd ě 2 even 1 2 2 0 0

Type Vb, VI If G has type Vb or VI, then Theorem 4.5 implies that G has

no binary polyhedral quotients and so mHpGq “ 0 by Proposition 4.9.
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Type IIb, III, IV, Va If G has type IIb, III, IV or Va, then Theorem 4.5

implies that #BmaxpGq “ 1, i.e. G has a unique maximal binary polyhedral

quotient H. By Proposition 4.9, we must have that mHpGq “ mHpHq. By

Proposition 4.2, H has the same type as G. Recall that mHpQ4nq “ tn{2u [22,

Section 12]. If G has type IIa, then H “ Q2nm for n ě 4, m ě 1 odd and

mHpQ2nmq “ 2n´3m ě 2 is even. If G has type III, IV or Va, then H “ rT , rO
or rI respectively which have mHp rT q “ 1, mHp rOq “ 2 and mHprIq “ 2.

Type IIa If G has type IIa, then Theorem 4.5 implies that #BmaxpGq “

1, 2, 3. If b “ #BmaxpGq, let fi : G ↠ Q8mi
denote the maximal binary

polyhedral quotients for 1 ď i ď b. By the proof of Theorem 4.5, the mi are

coprime and so the maximal quotient factoring through any two of the fi is

the unique quotient f : G ↠ Q8. Since mHpQ8mi
q “ mi and mHpQ8q “ 1, it

can be shown using real representation theory that

mHpGq “
bÿ

i“1

pmHpQ8mi
q ´ 1q ` mHpQ8q “

$’’’’’&’’’’’%
m1, if b “ 1

pm1 ` m2q ´ 1, if b “ 2

pm1 ` m2 ` m3q ´ 2, if b “ 3

which is odd since the mi are odd. This completes the proof of Theorem 4.10.

4.3 Proof of Theorem B

The aim of this section will be to prove the following theorem from the Intro-

duction:

Theorem B. Let G have periodic cohomology and let P be a projective ZG
module. Then
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(i) If mHpGq ď 2, then rP s has cancellation

(ii) If mHpGq “ 3, then:

(a) If Syl2pGq is cyclic, then rP s has non-cancellation

(b) If rP s P DpZGq, then rP s has non-cancellation

(iii) If mHpGq ě 4, then rP s has non-cancellation.

Our proof will build upon the following, which was proved by Swan in [46].

Lemma 4.12 ([46, Theorem I]). If G has a quotient Q4n for n ě 7, then rP s

has non-cancellation for all projective ZG modules P .

In contrast to (ii), we have the following which follows from [46, Theorem

III]. See also the discussion at the end of Section 3.2.2.

Proposition 4.13. The quaternion group Q24 of order 24 has mHpQ24q “

3 and a non-cyclic sylow 2-subgroup Syl2pQ24q “ Q8. Furthermore, rZGs

has non-cancellation but there exists a projective ZQ24 module P with rP s R

DpZQ24q for which rP s has cancellation.

We begin by using the results of Swan [46, Theorems I-III] to show that

Theorem B holds in the cases where G is a binary polyhedral group. Recall

from Section 4.2 that mHpQ4nq “ tn{2u, mHp rT q “ 1 and mHp rOq “ mHprIq “ 2.

The groups with mHpGq ď 2 have cancellation in every class by [46, Theorem

I] and, by the remark following [46, Theorem I], the groups with mHpGq ě 4

have non-cancellation in every class. The only groups with mHpGq “ 3 are

G “ Q24 and Q28. In the latter case, Syl2pQ28q “ C4 and indeed ZQ28 has

non-cancellation in every class (by the same remark used previously). In the

former cases, the fact that rP s has non-cancellation whenever rP s P DpZQ24q
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follows from close inspection of [46, Theorem III] (see also the discussion at

the end of Section 3.2.2).

We will now prove Theorem B by verifying it in three separate cases ac-

cording to the number of maximal binary polyhedral quotients #BmaxpGq (see

Section 4.2).

Case: #BmaxpGq “ 0 By Proposition 4.9, this is equivalent to mHpGq “ 0.

By Theorem 1.10, we know that ZG has projective cancellation, i.e. rP s has

cancellation for all projective ZG modules P . This completes the proof of

Theorem B in this case.

Case: #BmaxpGq “ 1 By Proposition 4.9 again this implies that, if H is

the unique maximal binary polyhedral quotient, then mHpGq “ mHpHq. If

mHpGq ď 2, then mHpHq ď 2 and so H is of the form Q8, Q12, Q16, Q20, rT , rO
or rI by the discussion above. In particular, by Theorem A, ZG has projective

cancellation. This completes the proof of (i) in this case.

Let f : G ↠ H denote the quotient map, let P be a projective ZG module

and let P 1 “ f#pP q be the projective ZH module obtained by the extension

of scalars. If rP 1s has non-cancellation, then rP s has non-cancellation by The-

orem 1.15. Hence, in order to verify Theorem B, it suffices to show that rP 1s

fails cancellation in the cases (ii) and (iii).

Suppose that mHpGq “ mHpHq “ 3. If Syl2pGq is cyclic, then Syl2pHq

is a quotient of Syl2pGq and so is cyclic. Since Theorem B holds for binary

polyhedral groups, this implies that rP 1s has non-cancellation. If instead we

have rP s P DpZGq then, since f# induces a map f# : DpZGq Ñ DpZHq,

we have P 1 “ f#pP q P DpZHq. Similarly, this implies that rP 1s has non-

cancellation which completes the proof of (ii). If mHpGq “ mHpHq ě 4, then
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rP 1s has non-cancellation by Lemma 4.12 and this completes the proof of (iii)

in this case.

Case: #BmaxpGq ą 1 By Theorem 4.5, we know that G necessarily has

type IIa and #BmaxpGq “ 2 or 3. By the calculations made in the proof of

Theorem 4.10, we have that BmaxpGq “ tQ8m1 , ¨ ¨ ¨ , Q8mb
u where the mi are

odd coprime and

mHpGq “

$’&’%pm1 ` m2q ´ 1, if b “ 2

pm1 ` m2 ` m3q ´ 2, if b “ 3

depending on the two cases that arise. We will assume that m1 ă ¨ ¨ ¨ ă mb.

Note that mHpGq “ 3 only when b “ 2, m1 “ 1 and m2 “ 3. In this

case, G has a quotient Q24 and so Syl2pGq is non-cyclic. Furthermore, if P is

a projective ZG module with rP s P DpZGq, then rP s has non-cancellation by

Theorem 1.15 since its image lies in DpZQ24q under the extension of scalars

map. In all other cases, we have mHpGq ě 5 and G must have a quotient Q8m

for some m ě 5. By Lemma 4.12, we have that ZQ8m has non-cancellation

in every class. In particular, by Theorem 1.15 again, ZG must have non-

cancellation in every class. This completes the proof of Theorem B in this

case, and ultimately completes the proof of Theorem B.

4.4 Groups with 4-periodic cohomology

The aim of this section will be to classify the groups G with 4-periodic coho-

mology for which mHpGq ď 2. This will be of particular use in Chapter 6.

We will begin by recalling the classification of groups with 4-periodic co-
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homology. This can be found in [22], though we will adopt the notation of

Milnor [32]. The complete list is as follows where, in addition, we will also

assume each family contains G ˆ Cn for any G listed with pn, |G|q “ 1.

(i)1 Cn for n ě 1, the cyclic group of order n (Type I).

(ii)1 D4n`2 for n ě 1, the dihedral group of order 4n ` 2 (Type I).

(iii)1 Q4n for n ě 2 and rT , rO, rI (Type II).

(iv)1 Dp2n,mq “ Cm ¸p´1q C2n for n ě 3 and m ě 3 odd (Type I).

(v)1 P 1
8¨3n “ Q8 ¸ϕ C3n for n ě 2, where ϕ : C3n Ñ AutQ8 sends the

generator z P C3n to ϕpzq : x ÞÑ y, y ÞÑ xy (Type III).

(vi)1 P 2
48n “ Cn ¨ rO for n ě 3 odd, the not-necessary-split extension which

has cyclic Sylow 3-subgroup and has action rO ↠ rO{ rT “ C2 ď AutCn

(Type IV).

(vii)1 Qp2na; b, cq “ pCa ˆ Cb ˆ Ccq ¸ϕ Q2n for n ě 3 and a, b, c ě 1 odd

coprime with b ą c. If Ca “ xpy, Cb “ xqy and Cc “ xry, then

the action is given by ϕpxq : p ÞÑ p, q ÞÑ q´1, r ÞÑ r´1 ϕpyq : p ÞÑ
p´1, q ÞÑ q´1, r ÞÑ r (Type II).

In the above list, we have also indicated which type each family of groups

has. There are, in particular, no groups of type V or VI which have 4-periodic

cohomology.

Note that, in the notation of Section 4.2, we have Qp2na; b, cq – Cabc ¸pt,sq

Q2n where t and s are such that pt, sq ” p1,´1q mod a, pt, sq ” p´1,´1q mod

b and pt, sq ” p´1, 1q mod c. It is easy to see that Qp2na; b, cq has a quotient

Qp2naq.

Theorem 4.14. The groups G with 4-periodic cohomology for which mHpGq ď
2 are as follows where each family contains G ˆ Cn for any G listed with

pn, |G|q “ 1.
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(i) Cn for n ě 1

(ii) D4n`2 for n ě 1

(iii) Q8, Q12, Q16, Q20, rT , rO, rI
(iv) Dp2n, 3q, Dp2n, 5q for n ě 3

(v) P 1
8¨3n for n ě 2

(vi) P 2
48n for n ě 3 odd

(vii) Qp16;m,nq for m ą n ě 1 odd coprime.

Proof. First note that we can ignore the groups of the form GˆCn for G listed

and pn, |G|q “ 1 since mHpG ˆ Cnq “ mHpGq in these cases.

It can be shown that the groups in (i)1, (ii)1 satisfy the Eichler condition

[22, Section 12]. For the groups G in (iii)1, we use that mHpQ4nq “ tn{2u,

mHp rT q “ 1, mHp rOq “ 2 and mHprIq “ 2 as mentioned previously.

In case (iv)1, suppose G has a binary polyhedral quotient H. Explicit

computation shows that ZpHq “ C2 and so the quotient map f : G ↠ H must

have fpZpGqq Ď ZpHq “ C2. If x P Cm and y P C2n are generators, it is easy to

see that ZpDp2n,mqq “ xy2y “ C2n´1 which has index two subgroup N “ xy4y.

Hence f factors through G{xy4y “ Cm ¸p´1qC4 “ Q4m. By Proposition 4.9, we

have that mHpGq “ mHpQ4mq “ pm ´ 1q{2 since m is odd and so mHpGq ď 2

if and only if m “ 3 or 5 and any n ě 3.

The groups in (v)1 all have quotient rT and so have Type III by Propo-

sition 4.2 and so, by Theorem 4.10, we have mHpP 1
8¨3nq “ 1. Similarly, the

groups in (vi)1 have quotient rO and so have Type IV by Proposition 4.2 and

so, by Theorem 4.10, we have mHpP 2
48nq “ 2.

For the groups in (vii)1, suppose G “ Qp2na; b, cq has mHpGq ď 2 for

a, b, c ě 1 odd coprime with b ą c. If n “ 3, then G has Type IIa and it is
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easy to see that G “ Qp8a; b, cq – Qp8c; a, bq – Qp8b; c, aq and so has quotients

Q8a, Q8b and Q8c. This implies that mHpGq ě mHpQ8aq “ a which implies

a “ 1 since a is odd, and similarly b “ c “ 1. This is a contradiction since

b ą c. If n ě 4, thenG has a quotientQ2na and somHpGq ě mHpQ2naq “ 2n´3a

and so n “ 4 and a “ 1. In particular, if mHpGq ď 2, then we can take G to

be Qp16;m,nq for some m ą n ě 1 odd coprime.

By the remark before the statement of the theorem, we have that G –

Cmn ¸pt,sq Q16 where t and s are such that pt, sq ” p´1,´1q mod m and

pt, sq ” p´1, 1q mod n, and so t “ ´1. Since G has Type IIb, Theorem 4.5

implies that G has a unique maximal binary polyhedral quotient and, since G

has a quotient Q16, this must be of the form Q16k for some k ě 1. By Lemmas

4.7 and 4.8, G has a quotient Q16k if and only if k | mn and pt, sq ” p1,´1q

mod k. Since t “ ´1, this implies 1 ” ´1 mod k and so k “ 1 since k is

odd. In particlar, Q16 is the maximal binary polyhedral quotient and so, by

Proposition 4.9, we have mHpGq “ mHpQ16q “ 2.

Remark 4.15. For the groups in the list, the groups in (i)1, (ii)1 havemHpGq “ 0,

and the groups Q8 ˆ Cn, Q12 ˆ Cn and rT ˆ Cn from (iii)1 and the groups in

(v)1 all have mHpGq “ 1. All other groups in the list have mHpGq “ 2.
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Part II

Applications to Wall’s D2

problem
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Chapter 5

Preliminaries on algebraic

complexes

Let D2pGq denote the set of polarised homotopy classes of pairs pX, ρXq where

X is a finite D2 complex and ρX : π1pXq – G is an isomorphism, i.e. where

pairs pX, ρXq, pY, ρY q are equivalent if there exists a homotopy equivalence

h : X Ñ Y such that ρY ˝π1phq˝ρ´1
X “ idG. This is a graded graph with grading

given by the Euler characteristic χpXq and edges between between each pX, ρq

and pX _ S2, ρ`q where ρ` is induced by the collapse map X _ S2 Ñ X.

Let AlgpG, 2q denote the set of chain homotopy classes of algebraic 2-

complexes over ZG, which are chain complexes pF˚, B˚q of the form

F2
B2ÝÑ F1

B1ÝÑ F0

where the Fi are free and H0pF˚q – Z where Z has trivial G-action. This is a

graded graph with grading χpEq “ rankpF2q ´ rankpF1q ` rankpF0q and edges

between each E “ pF˚, B˚q and E ‘ ZG “ pF2 ‘ ZG pB2,0qÝÝÝÑ F1
B1ÝÑ F0q.

In this chapter, we will establish the necessary preliminaries which we
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will need to prove Theorem C. In Section 5.1, we will show that D2pGq and

AlgpG, 2q are isomorphic as graded trees and in Section 5.3 we will show how

AlgpG, 2q can be understood in terms of projective ZG modules in the case

where G has 4-periodic cohomology.

5.1 Polarised homotopy types and algebraic 2-

complexes

The aim of this section will be to prove the following. Our proof will be a mild

generalisation of the arguments of Johnson in [23].

Theorem 5.1. Let G be a finite group. Then there exists an isomorphism of

graded trees rC˚ : D2pGq Ñ AlgpG, 2q

which is the same as the cellular chain map X ÞÑ C˚p rXq when X is a finite

2-complex.

We begin by noting that every finite D2 complex is a finite D3 complex

and so is homotopy equivalent to a finite 3-complex by [47, Theorem E]. We

therefore lose no generality in assuming throughout that every finite D2 com-

plex is a finite 3-complex. Let pX, ρq P D2pGq and consider the cellular chain

complex

C˚pXq “ pC3p rXq C2p rXq C1p rXq C0p rXqqB3 B2 B1

where the Cip rXq are free Zrπ1pXqs modules under the monodromy action. We

can use ρ to identify this with a chain complex of ZG modules which we denote

C˚pX, ρq. We will now show the following which is also our definition for rC˚:
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Proposition 5.2. Let pX, ρq P D2pGq. Then C˚pX, ρq is chain homotopy

equivalent to an algebraic 2-complex E over ZG. In particular, we definerC˚pX, ρq “ E.

To prove this, we will need the following two lemmas. Note that, since

ImpB3q Ď kerpB2q, there is a well-defined map rB2 : C2p rXq{ ImpB3q Ñ C1p rXq.

Lemma 5.3 ([23, Proposition 6.6]). Let pX, ρq P D2pGq. Then there is a

chain homotopy equivalence ϕ : C˚pX, ρq Ñ C 1
˚pX, ρq where

C 1
˚pX, ρq “ pC2p rXq{ ImpB3q C1p rXq C0p rXqq.

rB2 B1

Lemma 5.4 ([23, Proposition 6.5]). Let pX, ρq P D2pGq and let C˚pX, ρq “

pC˚p rXq, B˚q0ď˚ď3. Then C2p rXq{ ImpB3q is a stably free ZG module.

Proof of Proposition 5.2. By Lemma 5.4, there exists i, j ě 0 for which there

is an isomorphism f : C2p rXq{ ImpB3q‘ZGi – ZGj. We can now define a chain

homotopy equivalence

C 1
˚pX, ρq

E

f˚
“

¨̊
˚̋̊ C2p rXq{ ImpB3q C1p rXq C0p rXq

ZGj C1p rXq ‘ ZGi C0p rXq

f˝pid, 0q

rB2
pid, 0q

B1

id

pB2, 0q˝f´1 pB1, 0q

‹̨‹‹‚
where E is an algebraic 2-complex over ZG. Hence, by combining with

Lemma 5.3, we obtain a chain homotopy equivalence f˚˝ϕ : C˚pX, ρq Ñ E.

We now turn to the proof of Theorem 5.1. By Proposition 5.2, rC˚ is a

well-defined map and it is clear that rC˚pX _ Snq » rC˚pXq ‘ ZG and so rC˚

gives a map of graded graphs. Note that AlgpG, 2q is a tree [22, Section 52].

In particular, rC˚ is an isomorphism of graded trees if and only if it is bijective.

76



There are many proofs in the literature that rC˚ is surjective (see [48, Theorem

4] or [28, Theorem 2.1]) and so it remains to show that rC˚ is injective.

We will now need the following two lemmas. The first is proven in the case

where X and Y are finite 2-complexes in [23, Proposition 2.2]. The proof for

finite D2 complexes is similar and so will be omitted for brevity.

Lemma 5.5. Let pX, ρXq, pY, ρY q P D2pGq be such that Xp1q “ Y p1q. If ν :

C˚pX, ρXq Ñ C˚pY, ρY q is a chain map, then ν is chain homotopy equivalent

to a chain map ϕ such that ϕ |Cip rXq“ id for i ď 1.

Let PHTpG, 2q Ď D2pGq be the subgraph corresponding to the polarised

homotopy types of finite 2-complexes.

Lemma 5.6 ([23, Lemma 2.3]). Let pX, ρXq, pY, ρY q P PHTpG, 2q be such

that Xp1q “ Y p1q. If ϕ : C˚pX, ρXq Ñ C˚pY, ρY q is a chain map such that

ϕ |Cip rXq“ id for i ď 1, then there exists a map f : X Ñ Y such that f˚ “ ϕ˚,

f |Xp1q“ id and ρX “ ρY ˝ π1pfq.

We will now use these lemmas to prove Theorem 5.1. The outline of the

argument is taken from [23, Section 6].

Proof of Theorem 5.1. Let pX, ρXq, pY, ρY q P D2pGq and note that, by the ar-

gument of [23, Proposition 2.1], we can assume that Xp1q “ Y p1q by replacing

each space with a polarised homotopy equivalent space. Suppose there is a

chain homotopy rν : rC˚pXq Ñ rC˚pY q. By Lemma 5.3, this lifts to a chain

homotopy ν : C˚pX, ρXq Ñ C˚pY, ρY q and, by Lemma 5.5, this is chain ho-

motopy equivalent to a chain homotopy ϕ : C˚pX, ρXq Ñ C˚pY, ρY q such that

ϕ |Cip rXq“ id for i ď 1.

Let iX : Xp2q ãÑ X denote the inclusion and note that this induces a

ZG chain map piXq˚ : C˚pXp2qq Ñ C˚pXq where the 2-skeleton Xp2q comes
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equipped with the polarisation ρXp2q “ ρX ˝ π1piXq, and similarly for Y p2q.

Since pϕ ˝ iXq3 “ 0, the composition ϕ˚ ˝ piXq˚ : C˚pXp2qq Ñ C˚pY q can be

viewed as a chain map

ϕ˚ ˝ piXq˚ : C˚pXp2qq Ñ C˚ď2pY q – C˚pY p2qq.

Since pϕ ˝ iXq˚ “ id for ˚ ď 1, Lemma 5.6 implies that there exists a map

f : Xp2q Ñ Y p2q such that f˚ “ ϕ˚ ˝ piXq˚, f |Xp1q“ id and ρXp2q “ ρY p2q ˝π1pfq.

By composing with iY , we can assume f : Xp2q Ñ Y which instead has that

ρXp2q “ ρY ˝ π1pfq.

We now claim that f has an extension F : X Ñ Y such that F˚ “ ϕ˚ :

H2p rXq Ñ H2prY q, which is an isomorphism since ϕ˚ is a homology equivalence.

Since X and Y are finite D2 complexes, we have that Hip rXq “ HiprY q “ 0 for

i ‰ 2. This implies that F is a homology equivalence and so is a homotopy

equivalence by Whitehead’s theorem. Since F ˝ iX “ f and ρXp2q “ ρY ˝π1pfq,

this implies that ρX “ ρY ˝π1pF q and so F is the required polarised homotopy

equivalence from pX, ρXq to pY, ρY q.

To find the extension F , first let

X “ Xp2q Yα1 e
3
1 Yα2 ¨ ¨ ¨ Yαn e3n

for 3-cells e3i – D3 and attaching maps αi P π2pXp2qq, where such a decompo-

sition exists since X is assumed to be a finite 3-complex.

Using cellular chains, we have that B3pe3i q “ αi where we are using the

identification ImpB3q Ď kerpB2q – π2pXp2qq, and so αi P ImpB3q for all i “
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1, . . . , n. Note that there is a commutative diagram

π2pXp2qq π2pXq

kerpB2q kerpB2q{ ImpB3q

piXq˚

– –

q

where q is the quotient map. This shows that ImpB3q “ kerppiXq˚q. Consider

the composition f˚ “ ϕ˚ ˝ piXq˚ : π2pXp2qq Ñ π2pY q. Since ϕ˚ is a homology

equivalence, this implies that kerppiXq˚q “ kerpf˚q. By combining with the

above two results, we get that αi P kerpf˚q and so the maps f ˝αi P π2pY q are

nullhomotopic for all i “ 1, . . . , n.

By standard homotopy theory, this implies that there exists an extension

F : X Ñ Y . In particular, since f ˝ αi : S
2 Ñ Y is null-homotopic, there is

a map fi : e
3
i Ñ Y for which fi ˝ i “ f ˝ αi for i : S2 “ Be3i ãÑ e3i and so

we can get a well-defined map F : X Ñ Y by defining F |e3i “ fi for each i “

1, . . . , n. Finally note that, by the above diagram, piXq˚ : π2pXp2qq Ñ π2pXq

is surjective. Since F˚ ˝ piXq˚ “ ϕ˚ ˝ piXq˚ for ˚ ď 2, this implies that F˚ “

ϕ˚ : π2pXq Ñ π2pY q or, equivalently, that F˚ “ ϕ˚ : H2p rXq Ñ H2prY q.

5.2 Projective chain complexes over integral

group rings

The aim of this section will be to recall basic preliminaries on projective chain

complexes and the Swan finiteness obstruction. For ZG modules A and B, we

define ProjnZGpA,Bq to be the set of chain homotopy classes of exact sequences
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of ZG modules

E “ p0 Ñ B
ιÝÑ Pn´1

Bn´1ÝÝÝÑ Pn´2 Ñ ¨ ¨ ¨ Ñ P1
B1ÝÑ P0

εÝÑ A Ñ 0q

where the Pi are projective. By a chain homotopy, we formally mean a chain

map which restricts to a chain homotopy equivalence on the middle terms

pP˚, B˚q. For brevity, we will often omit the maps ι and ε in our description of

E.

Define the Euler class to be epEq “
řn´1

i“0 p´1qirPis P CpZGq, which only

depends on the chain homotopy type of E. For a class χ P CpZGq, we define

ProjnZGpA,B;χq to be the subset of ProjnZGpA,Bq consisting of those exten-

sions with χpEq “ χ. Let Ωχ
npAq denote the set of ZG modules B for which

ProjnZGpA,B;χq is non-empty. If n ě 2 then, for any B0 P Ωχ
npAq, we have

Ωχ
npAq “ tB : B‘ZGi – B0‘ZGj, i, j ě 0u, i.e. Ωχ

npAq is a stable module [41].

We also define

ProjnZGpA,Ωχ
npAq;χq “

ğ
BPΩχ

npAq

ProjnZGpA,B;χq

which is a graded graph with grading χpEq “
řn´1

i“0 p´1qi rankpPiq and with

edges between each E to the stabilised complex

E ‘ ZG “ pPn´1 ‘ ZG pBn´1,0qÝÝÝÝÝÑ Pn´2 Ñ ¨ ¨ ¨ Ñ P1
B1ÝÑ P0q.

We can also define Ωχ
´npBq to be the set of ZGmodulesA for which ProjnZGpA,B;χq

is non-empty and we can similarly define a graded graph ProjnZGpΩχ
´npBq, B;χq.

Recall that, for a ZG module A, its dual is defined as A˚ “ HomZpA,Zq

which is a left ZG module under the action defined by pg ¨ϕqpxq “ ϕpg´1 ¨xq for

80



ϕ P A˚ and g P G. For χ P CpZGq, we will write Ωχ
npAq˚ “ tB˚ : B P Ωχ

npAqu.

Recall also that a ZG module A is a ZG lattice if its underlying abelian group

is free, i.e. of the form Zn for some n ě 0. If A is a ZG lattice, then A˚ is

a ZG lattice and there is an isomorphism pA˚q˚ – A [22, Section 28]. If P

is projective, then so is P ˚ and we also have pP ˚q˚ – P since projective ZG

modules are ZG lattices.

If E “ pP˚, B˚q P ProjnZGpA,Bq, then define

E˚ “ pP ˚
0

B˚
1ÝÑ P ˚

1 Ñ ¨ ¨ ¨ Ñ P ˚
n´2

B˚
n´1ÝÝÝÑ P ˚

n´1q.

Lemma 5.7 ([22, Proposition 28.4]). Let A and B be ZG lattices. Then we

have E˚ P ProjnZGpB˚, A˚q and pE˚q˚ » E are chain homotopy equivalent.

By addition of elementary complexes, we can show that every projective

extension E with epEq “ 0 is chain homotopy equivalent to an extension with

the Pi free provided n ě 2. In particular, ProjnZGpA,B; 0q can be taken to be

the set of chain homotopy types of exact sequences E with the Pi free. We

also let ΩnpAq “ Ω0
npAq.

It was shown by Swan [41, Theorem 4.1] that a group G has n-periodic

cohomology if and only if there exists an exact sequence of the form

0 Ñ Z Ñ Pn´1 Ñ Pn´2 Ñ ¨ ¨ ¨ Ñ P1 Ñ P0 Ñ Z Ñ 0

where the Pi are projective, i.e. if ProjnZGpZ,Zq is non-empty. By taking the

map P0 Ñ Pn´1 which factors through Z, this can be turned into in n-periodic

projective resolution. We say that G has free period n if such a resolution

exists with the Pi free or, equivalently, if ProjnZGpZ,Z; 0q is non-empty.

Define the Swan map S : pZ{|G|qˆ Ñ CpZGq sends r ÞÑ rpN, rqs, where
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pN, rq is the module defined in ??, and define the Swan subgroup to be TG “

ImpSq. If G has n-periodic cohomology and E P ProjnZGpZ,Zq, then we define

the Swan finiteness obstruction to be the class

σnpGq “ repEqs P CpZGq{TG.

It was shown by Swan that σnpGq is independent of the choice of E [41,

Lemma 7.3]. Furthermore, we have:

Theorem 5.8 ([41]). Let G have n-periodic cohomology. Then the following

are equivalent:

(i) G has free period n.

(ii) σnpGq “ 0 P CpZGq{TG.

(iii) There is a finite CW-complex X such that X » Sn´1 and G acts freely

on X.

It took over 20 years until the first example of a group with σnpGq ‰ 0 was

found by R. J. Milgram [31]. It was later shown by J. F. Davis [10] that the

group Qp16; 3, 1q with 4-periodic cohomology has free period 8, which is the

example of minimal order. Conversely, we also have:

Proposition 5.9 ([46, Lemma 7.4]). Let G have n-periodic cohomology and

let PG be a projective ZG module for which σnpGq “ rPGs P CpZGq{TG. Then

there exists E P ProjnZGpZ,Zq for which epEq “ rPGs P CpZGq.

The formulation (iii) has the following consequence for finite Poincaré 3-

complexes X since, if π1pXq is finite, then rX » S3.

Corollary 5.10. A finite group G is the fundamental group of a finite Poincaré

3-complex if and only if G has free period 4.
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5.3 Classification of algebraic 2-complexes

This section will largely be dedicated to the proof of the following. From now

on, we will assume that G is a finite group.

Theorem 5.11. Let G have 4-periodic cohomology. Then there is an isomor-

phism of graded trees

Ψ : AlgpG, 2q Ñ rPGs

for any projective ZG module PG for which σ4pGq “ rPGs P CpZGq{TG.

A similar statement appears in [22, Theorem 57.4] though, due to a gap in

the proof of Theorem 56.9, the argument given only applies in the case of min-

imal algebraic 2-complexes. Furthermore, the argument that tE P AlgpG, 2q :

χpEq “ ru and tP P rPGs : rankpP q “ ru are in one-to-one correspondence for

all r ě 1 assumes that the former set is non-empty for each r, and this was

only subsequently shown when G has free period 4 [22, p234].

Let µ2pGq be the minimum value of χpEq over all E P AlgpG, 2q. Since G

is finite, we have µ2pGq ě 1 [42, Corollary 1.3].

Proposition 5.12. If G has 4-periodic cohomology, then µ2pGq “ 1.

In order to prove this, we first need the following three lemmas. Recall that

the augmentation ideal is the module I “ kerpε : ZG Ñ Zq where ε : ZG Ñ Z

sends g ÞÑ 1 for all g P G.

Lemma 5.13. Let G be a finite group and let α : Z Ñ ZGn be injective. If

cokerpαq is a ZG lattice, then cokerpαq – I˚ ‘ ZGn´1.

Proof. The case n “ 1 follows from the fact that α “ rΣ for r ‰ 0 since

ZG{Σ – I˚, and the case n ě 2 follows from [22, Proposition 29.2].

83



Lemma 5.14. Let P be a projective ZG-module, let r “ rankpP q and let I be

the augmentation ideal. Then there exists a ZG lattice J for which

I ‘ P “ J ‘ ZGr.

Proof. Since G is a finite, [40, Theorem A] implies that P is of the form

P “ P0 ‘ZGr´1 for some rank one projective ZG module P0 and so it suffices

to prove the case r “ 1. Let ϕ : P Ñ Z be the surjection obtained by taking

the composition

P Ñ P b Q – QG Ñ Q

whose image is a non-trivial finitely-generated subgroup of Q, and so isomor-

phic to Z. If J “ kerpϕq then, by applying Schanuel’s lemma to the exact

sequences

0 Ñ I Ñ ZG Ñ Z Ñ 0, 0 Ñ J Ñ P Ñ Z Ñ 0,

we get that I ‘ P – J ‘ ZG.

Lemma 5.15 ([51, p514]). Let J be a ZG lattice. Then ExtkZGpJ,ZGq “ 0 for

all k ě 1.

Proof of Proposition 5.12. Since G has 4-periodic cohomology, the discussion

in Section 5.2 implies that there exists an exact sequence of ZG-modules

0 Ñ Z αÝÑ F3 Ñ P2 Ñ F1 Ñ F0 Ñ Z Ñ 0

where P2 is projective and, by addition of elementary complexes, we can as-

sume the Fi are free. By Lemma 5.13, cokerpαq – I˚ ‘ ZGr where r “

84



rankpF3q ´ 1. This gives an exact sequence:

0 Ñ I˚ ‘ ZGr Ñ P2 Ñ F1 Ñ F0 Ñ Z Ñ 0.

Now let P̄2 be a projective for which F2 “ P2 ‘ P̄2 is free. By forming the

direct sum with length two exact sequence, we get

0 Ñ I˚ ‘ P Ñ F2 Ñ F1 Ñ F0 Ñ Z Ñ 0

for P “ ZGr ‘ P̄2 projective. By dualising the result in Lemma 5.14, we can

write I˚ ‘ P “ J ‘ ZGs where s “ rankpP q.

Let i denote the injection i : J ‘ ZGs – I˚ ‘ P Ñ F2, and consider the

exact sequences:

0 Ñ J Ñ F2{ipZGsq Ñ F1 Ñ F0 Ñ Z Ñ 0, 0 Ñ ZGs Ñ F2 Ñ F2{ipZGsq Ñ 0.

The first exact sequence implies that F2{ipZGsq is a ZG lattice. By Lemma

5.15, this implies that Ext1ZGpF2{ipZGsq,ZGsq “ 0 and so F2 – F2{ipZGsq ‘

ZGs by the second exact sequence. Hence we get an exact sequence

0 Ñ J Ñ F2 Ñ F1 ‘ ZGs Ñ F0 Ñ Z Ñ 0

which defines an algebraic 2-complex E. Since J – I˚ – ZG|G|´1 as abelian

groups, we have that χpEq “ 1 which completes the proof.

Recall that a graded tree is a fork if it has a single vertex at each non-

minimal level (i.e. grade). The following was shown by W. H. Browning.

These results were never published, though an alternate proof can be found

in [18, Corollary 2.6].
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Theorem 5.16 ([4, Theorem 5.4]). Let G be a finite group. Then AlgpG, 2q

is a fork.

On the other hand, if G is a finite group, then [40, Theorem A] implies

that every projective ZG module P is of the form P “ P0 ‘ZGr for some rank

one projective ZG module P0. This implies that rP s is also a fork.

Hence, in order to prove Theorem 5.11, it suffices to prove that there is

a bijection Ψ between AlgpG, 2q and rPGs at the minimal levels, i.e. that

there is a one-to-one correspondence between tE P AlgpG, 2q : χpEq “ 1u and

tP P rPGs : rankpP q “ 1u (see Fig. 5.1). We now need the following two

results.
...

ΨÝÝÝÝÑ

...

Figure 5.1: Tree structures for AlgpG, 2q and rPGs

Proposition 5.17. There is an isomorphism of graded trees

AlgpG, 2q – Proj3ZGpZ,Ω3pZq; 0q.

Proposition 5.18. Let χ “ rP s P CpZGq. Then there is an map of graded

trees

Φ : Proj1ZGpΩ3pZq,Z;χq Ñ rP s

given by p0 Ñ Z Ñ P0 Ñ J Ñ 0q ÞÑ P0, which is a bijection at the minimal

level.
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The first is immediate from the discussion in Section 5.2, and the second

is a consequence of the following mild extension of [22, Corollary 56.5].

Lemma 5.19. For i “ 1, 2, let Pi be projective ZG modules of rank one and

let Ei “ p0 Ñ J Ñ Pi Ñ Z Ñ 0q be exact sequences of ZG-modules. Then

there is a chain homotopy equivalence E1 » E2 if and only if P1 – P2.

The following will be useful in comparing Propositions 5.17 and 5.18.

Lemma 5.20. Let G have 4-periodic cohomology and let PG be a projective

ZG module for which σ4pGq “ rPGs P CpZGq{TG. If χ “ rP ˚
Gs P CpZGq, then

Ω3pZq “ Ωχ
1 pZq˚.

Proof. By Proposition 5.9, there exists E P Proj4ZGpZ,Zq with epEq “ rPGs.

By addition of elementary complexes, we can assume that

E “ pP B3ÝÑ F2
B2ÝÑ F1

B1ÝÑ F0q

where the Fi are free, so that P P rPGs.

Let J “ kerpB2q “ ImpB3q. Then J P Ω3pZq and there are exact sequences

E “ p0 Ñ Z αÝÑ P
βÝÑ J Ñ 0q, E˚ “ p0 Ñ J˚ β˚

ÝÑ P ˚ α˚
ÝÑ Z Ñ 0q,

where E˚ is exact by Lemma 5.7 since Z and J are ZG lattices. Hence J˚ P

Ωχ
1 pZq. Since pJ˚q˚ – J , this implies that J P Ωχ

1 pZq˚. Hence Ω3pZq “ Ωχ
1 pZq˚

since two stable modules are equal if they intersect non-trivially.

Recall that, if J is a ZG module, then an automorphism ϕ : J Ñ J induces

a map ϕ˚ : HnpG; Jq Ñ HnpG; Jq. If J P ΩnpZq, then HnpG; Jq – Z{|G| [22,
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p132]. By fixing this identification, the construction ϕ ÞÑ ϕ˚ induces a map

νJ : AutZGpJq Ñ pZ{|G|qˆ.

Let S : pZ{|G|qˆ Ñ CpZGq denote the Swan map, as in Section 5.2. Then:

Lemma 5.21 ([22, Theorems 54.6, 56.10]). Let χ P CpZGq and J P Ωχ
npZq.

Then ImpνJq Ď kerpSq and there is a bijection

ProjnZGpZ, J ;χq – kerpSq{ ImpνJq.

In particular, ProjnZGpZ, J ;χq only depends on J and not on n or χ.

Proof of Theorem 5.11. First note, since the map P ÞÑ P ˚ is an involution on

the class of projective ZG modules, it must induce an isomorphism of graded

trees rPGs – rP ˚
Gs. Hence, by Propositions 5.17 and 5.18, it suffices to prove

that the graded trees

Proj3ZGpZ,Ω3pZq; 0q, Proj1ZGpZ,Ωχ
1 pZq;χq

contain the same number of extensions at the minimal level, where χ “ rP ˚
Gs.

To see this, let J P Ω3pZq be minimal and note that AutZGpJq – AutZGpJ˚q

and so there is a bijection ImpνJq – ImpνJ˚q. In particular, we have bijections

Proj3ZGpZ, J ; 0q – kerpSq{ ImpνJq » kerpSq{ ImpνJ˚
q – Proj1ZGpZ, J˚;χq.

By Lemma 5.20, the map J ÞÑ J˚ induces a bijection Ω3pZq – Ωχ
1 pZq. We can

now extend the bijection Proj3ZGpZ, J ; 0q – Proj1ZGpZ, J˚;χq over all J P Ω3pZq

at the minimal level, and this completes the proof.
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Chapter 6

Wall’s D2 problem for groups

with 4-periodic cohomology

The aim of this chapter will be to use the results in the previous chapters to

study the D2 property for groups with 4-periodic cohomology.

As we shall see, these groups are of particular importance for the D2 prob-

lem. In Section 6.2, we will see how the D2 property for groups with 4-periodic

cohomology would resolve part of an open problem on the cell structure of fi-

nite Poincaré 3-complexes. In addition, these groups were conjectured by J.

M. Cohen [6] to be the only candidates for counterexamples to the D2 problem.

6.1 Proof of Theorem C

Recall that, if P “ xs1, ¨ ¨ ¨ , sn | r1, ¨ ¨ ¨ , rmy is a presentation of a group G,

then the deficiency of P is defined to be defpPq “ n ´ m. We say that P
is a balanced presentation if defpPq “ 0, i.e. if P has the same number of

generators and relations.
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The aim of this section will be to prove the following theorem from the

Introduction:

Theorem C. Suppose G has 4-periodic cohomology. Then:

(i) If G has the D2 property, then G has a balanced presentation

(ii) If G has a balanced presentation and mHpGq ď 2, then G has the D2

property.

First note the following which follows immediately from Theorem B by

noting that, if G has n-periodic cohomology and σnpGq “ rPGs P CpZGq{TG,

then rPGs P DpZGq.

Proposition 6.2. Let G have n-periodic cohomology and let PG be a projective

ZG module for which σnpGq “ rPGs P CpZGq{TG. Then rPGs has cancellation

if and only if mHpGq ď 2.

We can now use this to establish the following:

Theorem 6.3. Let G have 4-periodic cohomology. Then D2pGq has cancella-

tion if and only if mHpGq ď 2.

Proof. Let PG be such that σ4pGq “ rPGs P CpZGq{TG. By combining Theo-

rems 5.1 and 5.11, we get that there is an isomorphism of graded trees

Ψ ˝ rC˚ : D2pGq Ñ rPGs

and so D2pGq has cancellation if and only if rPGs has cancellation. By Propo-

sition 6.2, rPGs has cancellation if and only if mHpGq ď 2.

Proof of Theorem C. Recall that, as discussed in Section 5.1, G has the D2

property if and only if the induced map Ψ˝ rC˚ : PHT pG, 2q Ñ rPGs is bijective.

90



Suppose G has the D2 property. Then Ψ ˝ rC˚ is bijective and, since

rPGs contains a projective ZG module of rank one, there must exist pX, ρq P

PHT pG, 2q such that χpXq “ 1. If P is a presentation such that X » XP ,

then defpPq “ 1 ´ χpXq “ 0 and so P is a balanced presentation as required.

Now suppose that mHpGq ď 2 and G has a balanced presentation P . By

Theorem 6.3, rPGs has cancellation and so rPGs “ tP0 ‘ZGr : r ě 0u for some

projective P0 of rank one. Let P1 “ Ψp rC˚pXPqq, which has rankpP1q “ 1 since

χpXPq “ 1. Since P1 P rP s, this implies that P1 – P0. In particular, for all

r ě 0, we have Ψp rC˚pXP _rS2qq – P0 ‘ZGr and so Ψ˝ rC˚ is surjective. Since

Ψ ˝ rC˚ is injective, it must be bijective and so G has the D2 property.

6.2 CW-structures for Poincaré 3-complexes

Recall that an oriented finite Poincaré n-complex is a finite CW-complex with

a fundamental class rXs P HnpX;Zq such that

´ X rXs : Cn´˚pX;Zrπ1pXqsq Ñ C˚pX;Zrπ1pXqsq

is a simple chain homotopy equivalence. By Poincaré duality, every closed

topological n-manifold has the structure of a finite Poincaré n-complex, but

there exists finite Poincaré n-complexes which are not homotopy equivalent to

any closed topological n-manifold [17].

By Morse theory, every closed n-manifold has a cell structure with a single

n-cell. In [49], Wall investigated the question of whether or not this is also

true for finite Poincaré n-complexes. He firstly noted the following:

Theorem 6.4 ([49, Theorem 2.4]). Let n ě 3. If X is a finite Poincaré n-

complex, then there exists a Dpn´1q complex K and a map f : Sn´1 Ñ K for
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which there is a homotopy equivalence

X » K Yf D
n.

If K is homotopy equivalent to a finite pn ´ 1q-complex, then the splitting

X » KYfD
n gives a cell structure on X with a single n-cell. Recall that every

Dn complex is homotopy equivalent to a finite n-complex provided n ě 3 [47,

Theorem E]. In particular, K is homotopy equivalent to a finite pn ´ 1q-

complex if n ě 4. If n “ 3, then K is homotopy equivalent to a finite 2-

complex provided π1pKq has the D2 property. Since π1pKq – π1pXq, we can

state this as:

Theorem 6.5 ([49]).

(i) If n ě 4, then every finite Poincaré n-complex has a cell structure

with a single n-cell

(ii) If n ě 3 and G has the D2 property, then every finite Poincaré 3-

complex X with π1pXq – G has a cell structure with a single 3-cell.

Since it is not known whether or not every group has the D2 property, this

does not imply that every finite Poincaré 3-complex has a cell structure with

a single 3-cell. In particular, this remains a significant open problem:

Problem 6.6. Does every finite Poincaré 3-complex have a cell structure with

a single 3-cell?

In contrast to all dimensions ě 4, not every finitely presented group arises

as the fundamental group of a finite Poincaré 3-complex. In particular, the

following is well known:

Proposition 6.7. If X is a Poincaré 3-complex, then π1pXq is either infinite

or has 4-periodic cohomology.
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Remark 6.8. In fact, the finite groups which arise as the fundamental groups

of finite Poincaré 3-complexes are precisely the groups with free period 4.

By combining this with Theorem 6.5, this gives the following:

Proposition 6.9. Suppose every group with free period 4 has the D2 property.

Then every finite Poincaré 3-complex with finite fundamental group has a cell

structure with a single 3-cell.

It is therefore of particular interest to study the D2 property for groups

with 4-periodic cohomology. This was first pointed out by Johnson [21] (see

also [22, Chapter 11]).

We conclude this section by noting the following consequence of Theorem C

for the cell structures of finite Poincaré 3-complexes.

Theorem 6.10. Suppose G has free period 4 and consider the following:

(i) G has the D2 property

(ii) Every finite Poincaré 3-complex over G has a cell structure with a

single 3-cell

(iii) Some finite Poincaré 3-complex over G has a cell structure with a

single 3-cell

(iv) G has a balanced presentation.

Then (i) ñ (ii) ñ (iii) ñ (iv). If mHpGq ď 2, then (i) ô (ii) ô (iii) ô (iv).

Proof. We will begin by showing that (i) ñ (ii) ñ (iii) ñ (iv). Note that

(i) ñ (ii) is proven in Theorem 6.5 and (ii) ñ (iii) by Remark 6.8, and so it

remains to show that (iii) ñ (iv). First note that, by Remark 6.8, there exists

a finite Poincaré 3-complex X with π1pXq – G. It follows from the definition

that there is an isomorphism of abelian groups H3´˚pXq – H˚pXq. By the
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universal coefficients theorem, we have that rankZpHipXqq “ rankZpH ipXqq

and so:

χpXq “
3ÿ

i“0

p´1qi rankZpHipXqq “ 0.

If X has a cell structure with a single 3-cell then, with respect to this cell

structure, we have X » Xp2q Yf D
3 for some map f : S2 Ñ Xp2q. Note that

K “ Xp2q is a finite 2-complex with χpKq “ χpXq ` 1 “ 1. In particular, if P
is a presentation such that K » XP , then P is a balanced presentation.

Finally, if mHpGq ď 2, then Theorem C shows that (iv) ñ (i). Hence, in

this case, we have (i) ô (ii) ô (iii) ô (iv) as required.

6.3 Balanced presentations for groups with pe-

riodic cohomology

If G has periodic cohomology, then H2pG;Zq “ 0 (see, for example, [44]).

In particular, by Theorem C, the groups G with 4-periodic cohomology are

either counterexamples to the D2 problem or give a new supply of groups with

efficient presentations.

This gives some response to comments made by L. G. Kovács [25, p212] and

J. Harlander [19, p167] on the scarcity of efficient finite groups. In contrast,

we conjecture:

Conjecture 6.11. If G has periodic cohomology, then G has a balanced pre-

sentation.

By [54, Chapter 6], the groups in (i)1, (iii)1, (iv)1, (v)1 are all finite 3-manifold

groups which are well-known to have balanced presentations. This follows, for

example, from Theorem 6.10 since 3-manifolds have cell structures with a single
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3-cell. The groups in (ii)1 also have balanced presentations (see [22, p236]).

Proposition 6.12. If G is in (i)1-(v)1, then G has a balanced presentation.

We have not been able to find balanced presentations for any of the groups

in (vi), but have succeeded for the following groups in (vii). These groups

overlap in the case where k “ n “ 1 with the groups in [34, Theorem 3.1].

Proposition 6.13. If n ě 3 and a, b, k ě 1 odd coprime, then:

Qp2na; b, 1q ˆ Ck – xx, y | ykxbyk “ xb, xyx “ y2
n´2a´1y.

By combining Propositions 6.12 and 6.13 with Theorem C, we obtain:

Theorem 6.14. Suppose G is in (i)-(v) or has the form Qp16;n, 1q ˆ Ck for

some n, k ě 1 odd coprime. Then G has the D2 property.

This was previously shown by M. N. Dyer [13] for the groups in (i) and by

Johnson [22] for the groups in (ii) and for many of the groups in (iii). Note

that not all of these groups have free period 4; an example is Qp16; 3, 1q [10].

The simplest groups that we have not been able to find balanced presen-

tations for are P 2
48¨3 and Qp16; 3, 5q. The following is therefore of immediate

practical interest:

Question 6.15. Do P 2
48¨3 or Qp16; 3, 5q have balanced presentations?

These correspond to the groups G31
144, G

22
240 in GAP’s Small Groups Library.
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6.4 Potential counterexamples to the D2 prob-

lem

Recall that a ZG module M has the Swan property (or is a ‘Swan module’)

if dZGpMq “ maxp||G| dZpGpM b Zpq where dRp ¨ q is the number of R-module

generators.

In 1977, J. M. Cohen proposed the group Q32 as a counterexample to the

D2 problem [6, Section 4]. More generally, he conjectured the following.

Conjecture 6.16 ([50, Problem D3]). Let X be a finite D2 complex. Then

X is homotopy equivalent to a finite 2-complex if and only if π2pXq has the

Swan property or π1pXq is infinite.

The following was proved by Cohen as a consequence of [7, Theorem 3],

where I is the augmentation ideal. This gives another reason why the D2

property for groups with 4-periodic cohomology is of particular interest.

Proposition 6.17 ([6, p415]). Let X be a finite D2 complex such that π2pXq

does not have the Swan property and G “ π1pXq is finite. Then:

(i) G has free period 4.

(ii) χpXq “ 1.

(iii) π2pXq is non-cyclic, i.e. π2pXq fl I˚.

We will now show the following as an application of Theorem 6.3. Recall

that ZG modules A and B are AutpGq-isomorphic if there exists a bijection

ϕ : A Ñ B such that, for some θ P AutpGq, ϕpg ¨ xq “ θpxq ¨ϕpxq for all x P A.

Corollary 6.18. Suppose the “if” part of Conjecture 6.16 holds. If G does

not have the D2 property, then G has free period 4 and mHpGq ě 3.
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Proof. By Proposition 6.17, G has free period 4 and there exists a finite D2

complex X with π1pXq “ G, χpXq “ 1 and π2pXq fl I˚. Recall that, in

Proposition 5.12, we constructed a finite D2 complex XG with π1pXGq “ G

and χpXGq “ 1 whenever G has 4-periodic cohomology. Since G has free

period 4, we can take J “ I˚ in the proof of Proposition 5.12 which gives

that π2pXGq – I˚. In particular, X _ rS2 » XG _ rS2 for some r ě 1. If

X » XG, then π2pXq and π2pXGq would be AutpGq-isomorphic which is a

contradiction since π2pXq is non-cyclic and π2pXGq – I˚ – ZG{Σ. Hence

D2pGq has non-cancellation and so mHpGq ě 3 by Theorem 6.3.

We say that two presentations P andQ for a groupG are exotic ifXP fi XQ

and defpPq “ defpQq or, equivalently, if XP _ rS2 » XQ _ rS2 for some r ě 0.

The following was shown recently by Mannan and Popiel [29]. This is the only

known example of an exotic presentation for a finite non-abelian group.

Theorem 6.19 ([29, Theorem A]). The quaternion group Q28 has presenta-

tions

P1 “ xx, y | x7 “ y2, xyx “ yy, P2 “ xx, | x7 “ y2, y´1xyx2 “ x3y´1x2yy

such that π2pXP1q fl π2pXP2q are not AutpQ28q-isomorphic. Hence XP1 fi XP2.

We now proceed to point out the following two consequences.

Theorem 6.20. The “only if” part of Conjecture 6.16 is false.

Proof. By the remark after [29, Theorem A], we have that dZQ28pπ2pXP1qq “ 1

and dZQ28pπ2pXP1qq ‰ 1. However, π2pXP1q ‘ ZGr – π2pXP2q ‘ ZGr for some

r ě 0 and so π2pXP1q b Zp – π2pXP2q b Zp for p | |G| prime since ZpG is

semisimple by Maschke’s theorem. This implies that dZpGpπ2pXP2q b Zpq “ 1
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for all p | |G| and so π2pXP2q does not have the Swan property. This contradicts

the “only if” direction of Conjecture 6.16 since XP2 is a finite 2-complex.

Theorem 6.21. Q28 has the D2 property and mHpQ28q “ 3.

In [1], this is proposed as a counterexample by F. R. Beyl and N. Waller

and so this answers their question in the negative (see also [30, p23]).

Proof. Note that Q28 is a finite 3-manifold group and so has σ4pQ28q “ 0.

Hence, as in the proof of Theorem C, it suffices to show that the injective

map of graded trees Ψ ˝ rC˚ : PHTpQ28, 2q Ñ rZQ28s is in fact bijective. By

the discussion in Section 5.3, PHTpQ28, 2q and rZQ28s are both forks. By [46,

Theorem III], there are two rank one stably free ZQ28 modules and so rZQ28s

has two vertices at the minimal level. By Theorem 6.19, PHT pQ28, 2q has at

least two vertices at the minimal level. Hence the injective map Ψ ˝ rC˚ must

be bijective, and so Q28 has the D2 property.

It should be possible to replicate this proof for other groups with 4-periodic

cohomology and mHpGq ě 3. We expect that the quaternion groups contain

the main difficulties associated with the case mHpGq ě 3, and so we ask:

Question 6.22. Does Q4n have the D2 property for all n ě 2?

The case Q32 is of particular significance since it was the first proposed

counterexample to the D2 problem [6, p415].
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