UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Multi-model mapping of phonemic fluency

Cipolotti, L; Xu, T; Harry, B; Mole, J; Lakey, G; Shallice, T; Chan, E; (2021) Multi-model mapping of phonemic fluency. Brain Communications , 3 (4) 10.1093/braincomms/fcab232. Green open access

[thumbnail of Xu_fcab232_VoR.pdf]
Preview
Text
Xu_fcab232_VoR.pdf - Published Version

Download (852kB) | Preview

Abstract

The voluntary generation of non-overlearned responses is usually assessed with phonemic fluency. Like most frontal tasks, it draws upon different complex processes and systems whose precise nature is still incompletely understood. Many claimed aspects regarding the pattern of phonemic fluency performance and its underlying anatomy remain controversial. Major limitations of past investigations include small sample size, scant analysis of phonemic output and methodologically insufficient lesion analysis approaches. We investigated a large number of patients with focal unilateral right or left frontal (n = 110) or posterior (n = 100) or subcortical (n = 65) lesions imaged with magnetic resonance or computed tomography and compared their performance on the number of overall responses, words produced over time, extremely infrequent/unknown words and inappropriate words generated. We also employed, for the first time parcel‐based lesion-symptom mapping, tract-wise statistical analysis as well as Bayesian multi-variate analysis based on meta-analytically defined functional region of interest, including their interactions. We found that left frontal damage was associated with greater impairment than right frontal or posterior damage on overall fluency performance, suggesting that phonemic fluency shows specificity to frontal lesions. We also found that subcorticals, similar to frontals, performed significantly worse than posteriors on overall performance suggesting that subcortical regions are also involved. However, only frontal effects were found for words produced over time, extremely infrequent/unknown and inappropriate words. Parcel‐based lesion-symptom mapping analysis found that worse fluency performance was associated with damage to the posterior segment of the left frontal middle and superior gyrus, the left dorsal anterior cingulate gyrus and caudate nucleus. Tract-wise statistical analysis revealed that disconnections of left frontal tracts are critical. Bayesian multi-variate models of lesions and disconnectome maps implicated left middle and inferior frontal and left dorsomedial frontal regions. Our study suggests that a set of well localized left frontal areas together with subcortical regions and several left frontal tracts are critical for word generation. We speculate that a left lateralized network exists. It involves medial, frontal regions supporting the process of ‘energization’, which sustains activation for the duration of the task and middle and inferior frontal regions concerned with ‘selection’, required due to the competition produced by associated stored words, respectively. The methodology adopted represents a promising and empirically robust approach in furthering our understanding of the neurocognitive architecture underpinning executive processes.

Type: Article
Title: Multi-model mapping of phonemic fluency
Open access status: An open access version is available from UCL Discovery
DOI: 10.1093/braincomms/fcab232
Publisher version: https://doi.org/10.1093/braincomms/fcab232
Language: English
Additional information: © The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Keywords: frontal lobes, executive functions, fluency, focal lesion, lesion-symptom mapping
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences > Institute of Cognitive Neuroscience
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Brain Repair and Rehabilitation
URI: https://discovery.ucl.ac.uk/id/eprint/10136613
Downloads since deposit
35Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item