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Overview 

 This thesis examines the psychobiological mechanisms contributing to dysregulated 

reward processing differences in two parts: across psychiatric disorders (Part one), and in 

bipolar disorder (Part two). 

 

 Part one comprises a systematic review and meta-analysis examining the extent to 

which four aspects of reward processing, namely the anticipation and evaluation of rewards 

and losses, exist transdiagnostically at the psychobiological level. 26 functional magnetic 

resonance imaging (fMRI) studies that examined whole-brain-based activation during a 

reward task (monetary incentive delay) and compared between patients and matched 

controls were included. Results showed that compared to controls, clinical groups exhibit 

shared increases and decreases in dorsal striatal activity during the evaluation of rewarding 

outcomes and anticipation of negative outcomes respectively. 

 

 Part two presents an empirical study, which sought to combine computational 

modelling and fMRI data to investigate whether momentary changes in mood bias the 

perception of rewards more strongly in individuals with bipolar disorder than matched 

controls. Region-of-interest analyses in the ventral striatum, anterior insula and ventromedial 

prefrontal cortex and exploratory whole-brain analyses were conducted. Although results 

broadly confirmed previous findings that mood-biased influences on reward learning signals 

are represented in the reward system, preliminary evidence suggests that individuals with 

bipolar disorder represent them more strongly than controls in visual processing areas. 

 

 Part three comprises a critical appraisal of the research process. This includes a 

discussion of the author’s influences on the research, the relevance of understanding 

mechanisms in psychological research and treatment and potential challenges of fMRI 

research, concluding with a summary of recommendations. 
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Impact Statement 

The present research has a number of key implications for academic research and 

clinical practice.  

 

In academic research, the results from the meta-analysis of functional magnetic 

resonance imaging (fMRI) studies using a well-validated reward task represent an important 

step towards identifying shared psychobiological processes underlying dysregulated goal-

pursuit and reward processing across psychiatric disorders. This study is the first whole-

brain meta-analysis that examines the shared patterns of brain activation during the 

anticipation and outcome of monetary rewards and losses across multiple psychiatric 

disorders. The meta-analytic findings indicate preliminary evidence for specific 

transdiagnostic facets of motivational processing during the perception of rewards and the 

anticipation of potential losses. These findings hopefully contribute to the body of research 

into transdiagnostic processes underlying psychopathology rather than relying on traditional 

symptom-based approaches. 

 

The findings from the empirical study represent an important step towards empirically 

testing an existing computational model of mood, which makes predictions about the 

recursive relationship between momentary mood fluctuations and perception of reward. The 

empirical study used fMRI to examine the extent to which mood-biased influences on reward 

learning signals are represented in the reward system in a clinical sample of individuals with 

bipolar. The current study provides preliminary evidence that compared to controls, 

momentary mood biases the perception of outcomes more strongly in individuals with bipolar 

disorder, and this tendency is generally higher in individuals with greater mood (manic and 

depressive) symptoms. The presence of stronger mood biases is proposed to generate 

unrealistic expectations of future outcomes, thereby resulting in dysregulated goal-directed 

behaviour. As our study used a cross-sectional design, our findings prompt further 
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longitudinal research to examine whether this neuro-computational model can account for 

exacerbations in mood symptoms in bipolar disorder. 

 

The findings of the fMRI meta-analysis add to the wider literature highlighting a 

potential role for transdiagnostic interventions and call for future studies to look at whether 

these shared processes are amenable to intervention. Upon further replication, the findings 

from the empirical study may hold implications for interventions for bipolar disorder, such as 

those that focus on supporting top-down regulation of escalating expectations or beliefs and 

modulating reward-driven attentional processes, such as mindfulness, which has been 

shown to regulate reward-related neural responses. Overall, identifying psychobiological 

mechanisms underpinning dysregulated goal-pursuit and mood instability is a step forward 

towards making existing clinical interventions more mechanism-focused and hopefully more 

effective. 
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Abstract 

 

Background. Despite evidence that psychiatric disorders show high comorbidity and 

common mechanisms, psychiatric research predominantly examines these mechanisms 

within diagnostic categories. Increasing evidence suggests that dysregulated goal-pursuit 

and reward processing may be shared processes across disorders; however, the extent to 

which they share psychobiological commonalities is unclear. 

 

Objective. We sought to establish the extent to which four aspects of reward processing are 

shared across disorders at the psychobiological level; namely anticipation and evaluation of 

outcomes; both in the reward and loss domain.  

 

Data source. Systematic review and meta-analysis of PubMed and Web of Science 

databases. 

 

Study selection. Selected studies quantified whole-brain fMRI activation during the 

monetary incentive delay task and compared between patients and controls. 

 

Data extraction and synthesis. Coordinates with the following task contrasts: reward 

anticipation, reward outcome, loss anticipation and loss outcome, and corresponding effect 

sizes of brain activation were retrieved for analysis using Seed-based d Mapping.  

 

Results. 26 studies (28 experiments) were included, comprising a total of 619 patients and 

578 controls across 7 disorders (depression: n=9; bipolar disorder: n=6; schizophrenia: n=6; 

obsessive-compulsive disorder: n=3; eating disorder: n=3, post-traumatic stress disorder: 

n=1; borderline personality disorder: n=1). Compared to controls, clinical groups exhibited 

increased right putamen activation during reward outcome and decreased right temporal 
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pole, left caudate and right cerebellum (lobule VI) activation, during loss anticipation. No 

group differences were found for reward anticipation and loss outcome.  

 

Conclusions. We find preliminary evidence that could suggest the presence of specific 

transdiagnostic facets of reward processing across disorders in relation to the evaluation of 

rewards and motivational salience to losses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 14 

1. Introduction 

 

1.1 Transdiagnostic Approaches to Psychological Treatment and Research 

 

Existing psychological treatments and research are largely geared towards treating 

and understanding psychiatric disorders with the assumption that diagnoses hold causal 

explanatory value, although increasing evidence suggests otherwise (Maung, 2016). This 

diagnosis-driven focus has led to the development of an evidence-base for various 

diagnosis-specific treatment approaches (Pilling et al., 2011). Nevertheless, these 

interventions are not always effective for everyone (Andrews et al., 2004). Moreover, clinical 

presentations rarely fit the criteria of an uncomplicated, singular diagnosis; often 

comorbidity, which is likely overlooked in diagnosis-specific interventions, is the norm 

(Jacobi et al., 2014). 

 

To date, research has yet to identify symptoms, biological markers or cognitive 

processes uniquely linked to a psychiatric disorder (Venigalla et al., 2017). Therefore, 

returning to research focusing on mechanisms (Holmes et al., 2018; Insel et al., 2010), could 

contribute to the improvement of existing interventions and the development of novel 

treatments that better target processes of change and have broad utility to address 

comorbidities and differential treatment response (Dalgleish et al., 2020). 

 

There has been success in isolating shared (or transdiagnostic) processes, such as 

attentional and negative thinking biases, which manifest across non-clinical and clinical 

populations (Harvey et al., 2015; Mansell et al., 2008). This has facilitated the development 

of mechanism-informed interventions (Schaeuffele et al., 2021) such as those targeting 

selective attention (MacLeod & Clarke, 2015), perfectionism (Egan et al., 2011) and 

rumination (Watkins, 2016), among others. However, these largely focus on cognitive 

processes, which evidence suggests are influenced by changes in affect (e.g. during 
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stressful situations) and motivation (e.g. in the presence of reinforcers or punishers (Pessoa, 

2009).  

 

1.1.1 Dysregulated goal-pursuit – a potential transdiagnostic mechanism 

 

Recently, researchers have identified reward processing, which encompasses 

reward- and punishment-based learning, decision-making, and goal-pursuit (Berridge & 

Robinson, 2003), as an affective-motivational process implicated across psychiatric 

disorders (Zald & Treadway, 2017). Rewards are defined as stimuli that possess value to 

organisms and are likely to elicit feelings of pleasure and approach behaviour (Schultz, 

2007). The ability to seek rewards and avoid punishment thus facilitates optimal decision-

making and goal-pursuit, which are posited to be impacted across psychiatric disorders 

including mood and anxiety disorders, schizophrenia, substance use disorders and non-

substance addiction behaviours (e.g. problematic gambling). Specifically, decreased goal-

directed behaviour (e.g. amotivation and anhedonia) is reported in depression and 

schizophrenia (Griffiths et al., 2014), whereas increased goal-directed and reward-seeking 

behaviour despite negative consequences are common features in mania, substance use 

disorders and non-substance addiction behaviours (American Psychiatric  Association, 

2013). Additionally, the avoidance of feared stimuli, which may interfere with goal-pursuit, is 

implicated across anxiety disorders (Dickson & MacLeod, 2004). It is therefore argued that 

key symptoms specified as diagnostic criteria across disorders can be explained by an 

overarching reward processing framework.  

 

Advances in functional neuroimaging, particularly functional magnetic resonance 

imaging (fMRI), have facilitated the study of brain regions underlying cognitive and affective 

processes such as reward processing, which occur rapidly at an unconscious level, and 

cannot be quantified from behaviour or accessed via verbal report. FMRI is also a more 

objective measure than a questionnaire; it indirectly measures neural activity resulting from 
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changes in haemodynamic signals while an individual performs a cognitive task, thereby 

providing insights into how rewards are represented in the brain and how that is linked to 

differences in decision-making and goal-directed behaviour (Wang et al., 2016).  

 

The focus of this chapter is to investigate shared neural responses to rewards and 

punishments across psychiatric disorders through a meta-analytic review of fMRI studies of 

a well-validated reward processing task (i.e. monetary incentive delay task, MIDT). An 

overview will be provided of key brain regions implicated in reward processing, two key 

components of reward processing and the MIDT, followed by a review of MIDT fMRI studies 

and current gaps in the literature, before the aims and hypotheses of the meta-analysis are 

presented.  

 

1.2 Neurobiological Circuits Underpinning Reward Processing 

 

The brain circuits closely linked to reward processing include dopaminergic neurons 

in the midbrain that project to the ventral striatum, and other interconnected limbic (e.g. 

amygdala) and cortical areas (e.g. orbitofrontal, ventromedial prefrontal, anterior cingulate 

and insula cortices) (Berridge & Kringelbach, 2015). The ventral striatum is the central hub 

of this network; it responds to cues signalling potential rewards and losses (Carter et al., 

2009), and its activity scales proportionately with increases in reward probability and 

magnitude (Knutson et al., 2001; Knutson & Greer, 2008; Yacubian et al., 2006). 

 

A large body of neuroimaging studies indicates that the striatum, orbitofrontal and 

ventromedial prefrontal cortices are activated by different rewards (e.g. food, art, money) 

(Pessiglione & Delgado, 2015). The orbitofrontal and ventromedial prefrontal cortices have 

been associated with computing the subjective value of stimuli (e.g. money vs. beautiful 

artwork), thereby guiding decision-making in the face of multiple options (Levy & Glimcher, 

2012). Information about value representations is sent to the cingulate and premotor 
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cortices, enabling the evaluation and selection of appropriate actions to obtain rewards and 

avoid negative outcomes (Rolls, 2019).  

 

The striatum also projects to the amygdala and insula, which are implicated in 

affective and attentional processes. The amygdala is a limbic region involved in detecting 

salience (i.e. whether something captures one’s attention), which is central to learning about 

potential threats and rewards (Haber & Knutson, 2010). The insula plays an important role in 

interoception, which refers to attention towards bodily and affective states (e.g. hunger, 

urges) and studies suggest that it generates embodied representations of rewarding and 

punishing outcomes (Damasio, 2004; Paulus & Stewart, 2014).  

 

The insula, together with the anterior cingulate cortex, is part of a large-scale network 

of brain regions (i.e. salience network) that coordinate attentional processes and mediate 

interactions between “reflexive” limbic regions that drive automatic behavioural responses 

and “reflective” frontal cortical circuits involved in cognitive control (Menon & Uddin, 2010). 

Ineffective coordination between these two circuits may bias decision-making towards 

bottom-up, reward- or threat-driven signals, and away from top-down cognitive processes 

required to exert behavioural control, thereby generating suboptimal behavioural responses. 

Investigating differences in the interactions between “reflexive” versus “reflective” networks 

would facilitate greater understanding of mechanisms underlying suboptimal decision-

making and goal-pursuit seen across psychiatric disorders, which could inform clinical 

intervention. 

 

Converging fMRI evidence suggests that imbalances in top-down frontal cortical and 

bottom-up circuits involved in reward and interoception are shared mechanisms underlying 

certain symptoms observed across psychiatric disorders. For instance, reduced regulation of 

the ventral striatum by the dorsolateral prefrontal cortex is proposed to underpin impulsive 

and risky decision-making seen in bipolar disorder and substance use disorders, whereas 
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the reverse pattern has been suggested in depression (Mason et al., 2014; Pujara & 

Koenigs, 2014; Yamamoto et al., 2015). Similarly, excessive ‘top-down’ prefrontal control 

over ‘bottom-up’ circuits has been proposed to underlie restrictive eating patterns and poor 

awareness of bodily signals related to food and hunger in eating disorders (Park et al., 

2014). Taken together, these findings bring us closer to identifying shared neural 

mechanisms that could be targeted, across disorders, in clinical interventions. 

 

1.3 The Anticipation and Outcome of Monetary Rewards and Losses 

 

1.3.1 The incentive-salience model 

 

The incentive-salience model (Berridge, 1996) posits that reward processing involves 

two dissociable psychological components that are not always conscious processes: 

“wanting” and “liking”, which are mediated by different neural systems. “Wanting” refers to 

the motivational, attention-grabbing aspect of rewards and their learned associated cues (i.e. 

incentive salience), whereas the latter refers to the pleasure experienced during the 

outcome of reward (Berridge, 2012).  

 

From this perspective, the enjoyment one experiences from consuming a reward 

may not necessarily generate the motivation to obtain it. The distinction between “wanting” 

and “liking” is consistent with recent conceptualisations of anhedonia, a symptom of 

depression and schizophrenia, which differentiates between a loss of motivation versus 

pleasure in response to previously rewarding activities (Treadway & Zald, 2011).  

 

1.3.2 Monetary Incentive Delay Task (MIDT) 

 

Many cognitive tasks used to assess neural activity during reward processing are 

divided into two distinct temporal components corresponding to processes of “wanting” and 
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“liking”: anticipation (i.e. neural responses to cues that predict reward or loss), and outcome, 

(i.e. neural responses during the outcome or omission of a reward or loss).  

 

A large body of research on reward processing in healthy and clinical populations 

has focused on monetary reward and loss. The MIDT (Knutson et al., 2000), a reward 

processing task that isolates monetary anticipation and outcome of rewards and losses into 

distinct temporal phases, has been well-validated and extensively used in fMRI studies - the 

search term “Monetary Incentive Delay” yields more than 500 studies. 

 

The task includes different learned cues as predictors of reward or loss (e.g. circle-

monetary gain, square-monetary loss, triangle-neutral i.e. no gain or loss) and a target cue, 

which when presented, requires a motor response. The task comprises three sequential 

events: anticipation cue, target presentation and outcome feedback (Figure 1). During 

anticipation, a cue denoting the probability of reward is presented. Following a delay in 

which a fixation cross is presented, the target cue is presented, which requires the 

participant to make the same response in each trial by pressing a button within a time 

window. The participant gains or avoids losing money if their response is within the time 

window, but fails to gain and loses the money if the response exceeds the time allotted. The 

time window within which participants are required to respond is constantly adjusted to 

achieve a successful target rate of approximately 60-66%. During outcome, feedback 

indicating a monetary gain, loss or neutral outcome is provided based on one’s performance 

(i.e. target hit or miss), followed by another delay before the start of the next trial. The 

timings for each phase vary across studies. 

 
 
 
 
 
 
 
 
 



 

 20 

Figure 1 

Schematic diagram of the MIDT 

 

 

The MIDT has a low cognitive demand compared to other reward tasks (e.g. 

guessing tasks) in which participants are unaware of which cues predict greater reward 

probability at the start and have to learn based on the feedback they receive. These types of 

tasks examine reward-based learning that occurs when the actual outcome received is 

better or worse than what was expected. This mismatch results in a prediction error, which 

drives learning and future expectations about reward-related cues and the outcomes they 

predict (Schultz, 2016). However, in the MIDT, cues and their predictive outcomes are 

learned beforehand, typically through practice sessions, in which the task is calibrated to 

each individual’s average response times, thereby minimising learning effects and group 

differences in reaction times (Balodis & Potenza, 2015).  

 

Using the MIDT in conjunction with fMRI facilitates the isolation of neural processes 

recruited during the anticipation and outcome (or “wanting” vs. “liking”) of rewards and 

losses from reward-related learning (e.g. prediction error). Investigating these reward 

processing components and their underlying neural bases across non-clinical and clinical 

populations could foster greater understanding of the mechanisms underlying the 

development and maintenance psychiatric disorders, which could serve as a target in clinical 

interventions. 
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1.4 FMRI Studies of the MIDT in Healthy and Clinical Populations 

 

Several recent meta-analyses have synthesised fMRI studies using the MIDT to 

characterise neural activity underlying reward and loss processing during anticipation and 

outcome in healthy populations. For instance, Wilson and colleagues (2018) found that 

anticipation of monetary reward and loss activated the striatum, anterior cingulate, anterior 

insula and other cortical regions involved in cognitive control. Additionally, monetary reward 

and loss have been shown to recruit overlapping and dissociable neural regions. Oldham 

and colleagues’ (2018) meta-analysis found that both reward and loss anticipation engage a 

common network including the striatum, amygdala, insula and thalamus, whereas reward 

outcome additionally engages the orbitofrontal and ventromedial prefrontal regions, which 

may reflect value representations of rewards received. Dugré and colleagues’ (2018) meta-

analysis on loss processing found robust activations in the anterior cingulate cortex, insula, 

amygdala and striatum during loss anticipation and outcome, in which ventral and lateral 

prefrontal regions are activated during loss anticipation and medial prefrontal regions are 

activated during loss outcome.  

 

Clinical neuroimaging studies using the MIDT have identified differences in neural 

responses during monetary anticipation and outcome in individuals with various psychiatric 

disorders compared to control participants, although studies have large focused on reward 

and not loss processing. Decreased striatal activation to reward in depression has been a 

well-established finding (Arrondo et al., 2015; Pizzagalli et al., 2009; Smoski et al., 2011), 

supporting the theory that individuals with depression exhibit reward hyposensitivity (Alloy et 

al., 2016). However, inconsistencies have been reported about whether other regions (e.g. 

anterior cingulate cortex) show increased (Dichter et al., 2012) or decreased reward-related 

activation (Pizzagalli et al., 2009; Smoski et al., 2011). Similarly, while bipolar disorder has 

been associated with reward hypersensitivity (Alloy et al., 2016), findings from task-fMRI 

studies have been mixed with regards to whether ventral striatal and orbitofrontal activity are 
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increased (Bermpohl et al., 2010; Dutra et al., 2015) or decreased (Johnson et al., 2019; 

Schreiter et al., 2016; Yip et al., 2015) during monetary reward anticipation. FMRI studies 

investigating reward anticipation in schizophrenia have also reported conflicting results of 

decreased (Juckel et al., 2006), increased (Li et al., 2018; Subramaniam et al., 2015) or 

comparable striatal activity relative to healthy controls (Stepien et al., 2018) 

 

Such conflicting findings could be attributed to methodological heterogeneities in 

fMRI protocols, MIDT design, medication and disorder subtypes (e.g. bipolar disorder I or II) 

and severity between studies. Moreover, depressive symptoms have been reported across 

psychiatric disorders (Hägele et al., 2015), which could additionally cloud the findings. 

Hägele and colleagues (2015) found that higher levels of self-reported depressive symptoms 

were associated with decreased ventral striatal activation during reward anticipation across 

multiple disorders including major depression, attention deficit hyperactivity disorder, alcohol 

use disorder and schizophrenia. This finding has been replicated in other studies of 

individuals with chronic pain (Kim et al., 2020), schizophrenia (Arrondo et al., 2015) and 

bipolar disorder (Satterthwaite et al., 2015). This suggests that the presence of depressive 

symptoms, regardless of whether it is a primary feature of a diagnosis, could dampen reward 

and loss processing activity.  

 

These inconsistencies in the literature in relation to task heterogeneity and the 

confounding effects of depressive symptoms across disorders can be addressed using a 

meta-analysis. Heterogeneous reward tasks and stimuli (e.g. non-monetary stimuli such as 

social rewards) may systematically confound findings in the literature; different task types 

require different cognitive demands, thereby potentially engage different patterns of brain 

activity (Balodis & Potenza, 2015; Lutz & Widmer, 2014). Thus, conducting a meta-analysis 

that includes fMRI studies that use the same reward task to identify patterns of shared 

activation implicated across psychiatric disorders during reward processing, could mitigate 

such task-specific confounding effects (e.g. Oldham et al., 2018; Wilson et al., 2018). Meta-



 

 23 

regressions could also investigate potential effects of clinical variables such as depressive 

symptoms across different disorders. Given that several fMRI meta-analyses of the MIDT 

have examined shared patterns of neural activity in monetary reward and loss processing in 

healthy individuals, there is a need to do the same in clinical populations. This is especially 

relevant as multiple disorders share similar symptoms in which individuals’ motivation, goal-

pursuit and decision-making are impacted, all of which could be explained by differences in 

reward processing.  

  

Existing fMRI meta-analyses of reward processing have largely focused on a single 

disorder. These diagnosis-specific meta-analyses have found that, on an aggregate level, 

striatal activations are decreased in individuals with depression, schizophrenia and 

substance use disorders though the findings are equivocal with some finding this reduction 

during reward anticipation (Chase et al., 2018; Leroy et al., 2020; Luijten et al., 2017; Radua 

et al., 2015; Zhang et al., 2013), whilst others found reduced activation during outcome 

(Keren et al., 2018; Radua et al., 2015; Zhang et al., 2013). One meta-analysis collapsed 

reward anticipation and outcome into one phase, which precluded the ability to localise 

striatal deactivation to either reward anticipation or outcome (Ng et al., 2019). Moreover, 

these reviews did not report conclusive results on loss processing across psychiatric 

disorders, potentially because some studies excluded or did not report on loss anticipation or 

outcome trials. In addition, further heterogeneity in these meta-analyses comes from the 

inclusion of studies using monetary and non-monetary reward and loss stimuli (e.g. 

performance feedback) (Chase et al., 2018; Leroy et al., 2020; Ng et al., 2019). Those that 

focused specifically on monetary rewards included studies using different tasks (e.g. 

instrumental reward, gambling and decision-making tasks) (Keren et al., 2018; Luijten et al., 

2017; Radua et al., 2015), making it difficult to infer which processes are implicated. 

 

1.5 Aims and Hypotheses 
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As highlighted, the neural mechanisms underlying reward processing have been 

relatively well-characterised in different psychiatric disorders, but the question of whether 

these constitute transdiagnostic mechanisms has so far been limited to qualitative 

comparisons of studies. Additionally, there are key gaps in the extant literature to be 

addressed. First, the aforementioned meta-analyses have only focused on a single 

psychiatric disorder or on healthy populations and largely focused on reward rather than loss 

processing; to our knowledge, there has yet to be any fMRI meta-analysis of monetary 

reward and loss processing that includes multiple psychiatric disorders. Additionally, 

previous diagnosis-specific meta-analyses on reward processing included studies using 

different task stimuli and paradigms, which precluded the ability to make conclusive 

inferences regarding the specific processes that are implicated. Given the inconsistent 

findings across the task-fMRI literature on monetary reward processing, there is a need to 

reduce sources of variability. One way to do this would be to synthesise findings from 

studies using the same task (e.g. MIDT). Moreover, given previous evidence that depressive 

symptoms were negatively correlated with striatal activation across disorders, it is important 

to examine the effect of depressive symptoms in driving the findings of any differences in 

activation between clinical and control groups. 

 

This study aims to address the abovementioned key gaps. We performed a 

coordinate-based meta-analysis to identify convergence of findings from MIDT fMRI studies 

comparing individuals with psychiatric disorders with healthy controls. Coordinate-based 

meta-analyses test for consistent activation of brain regions across studies; they extract the 

brain coordinates and effect sizes of activation peaks of clusters of statistically significant 

voxels reported in fMRI studies and summarise these results. Our study aims to investigate 

the extent to which disruptions of neural activity underlying monetary reward and loss 

processing, is a transdiagnostic feature across psychiatric disorders. We also explored the 

extent to which depressive symptoms across disorders, as measured by self-report 
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questionnaires, are associated with neural activity during monetary reward and loss 

processing. 

 

In line with previous diagnosis-specific meta-analyses, we expect that individuals 

with psychiatric disorders would show decreased striatal activations compared to healthy 

controls; though it is unclear from the literature whether this should be manifest during 

anticipation (Chase et al., 2018; Leroy et al., 2020; Luijten et al., 2017) or outcome of 

rewards (Keren et al., 2018) or across both (Radua et al., 2015). Additionally, we predicted 

that, across disorders, higher levels of depressive symptoms would be associated with 

decreased ventral striatal activity during reward anticipation (Arrondo et al., 2015; Hägele et 

al., 2015; Kim et al., 2020; Satterthwaite et al., 2015). 

 

2. Methods 

 

2.1 Literature Search  

 

A systematic literature search was conducted on 17/03/2021 to identify fMRI studies 

using the MIDT across psychiatric disorders. The following search terms were used to 

identify potentially eligible studies from Pubmed and Web of Science databases: (fmri) AND 

(monetary incentive delay) OR (fMRI AND monetary AND (reward OR incentiv* OR 

anticipat*)). The reference lists of recent review papers were cross-referenced to identify 

further relevant published studies. We adhered to the Preferred Reporting Items for 

Systematic Reviews and Meta-analyses (PRISMA) guidelines to identify studies that used 

whole-brain analyses of task-fMRI using the MIDT to compare clinical groups diagnosed with 

a psychiatric disorder and healthy control groups (Appendix A). The literature search, 

screening, selection and data extraction was conducted by the author, with a random twenty 

percent of the identified studies screened for inclusion by a second reviewer. Any 



 

 26 

differences in opinion were resolved by discussion with a third reviewer, the author’s 

supervisor.  

 

2.2 Study inclusion 

 

Considering the complexity and scope of the relevant literature, we chose to focus on 

fMRI studies using the MIDT in individuals with psychiatric disorders, excluding 

neurodevelopmental and substance use disorders. 

 

We included studies that 1) were published in peer-reviewed journals, 2) involved 

human participants, 3) were available in the English language, 4) used fMRI in conjunction 

with the MIDT, 5) reported categorical group comparisons between healthy controls and 

individuals with psychiatric disorders, excluding neurodevelopmental and substance use 

disorders, 6) used standardised diagnostic criteria to determine psychiatric diagnoses, 

excluding nonclinical and at-risk individuals (e.g. healthy individuals with family history of 

psychiatric disorders) 7) reported whole-brain coverage and whole-brain group analyses, as 

region-of-interest and small-volume-correction analyses bias coordinate-based meta-

analyses (Müller et al., 2018), 5) reported brain coordinates in a standard stereotactic space 

(e.g. Montreal Neurological Institute, MNI, or Talairach spaces), 8) and included at least one 

of the following conditions: reward anticipation, loss anticipation, reward outcome and loss 

outcome, whereby each condition is contrasted with neutral conditions, where money was 

neither gained nor lost. 

 

We also included placebo or baseline conditions of treatment studies comparing 

clinical and control groups. The study with the largest sample size was included if there was 

sample overlap between studies. For studies reporting whole-brain and small-volume-

correction analyses (e.g. Knutson et al., 2008), peaks with small-volume-correction are 

included if they meet the more conservative threshold used for the whole-brain analyses 
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(Müller et al., 2018). Studies comparing more than one clinical group of interest to healthy 

controls were included as independent datasets, but those comparing subtypes within a 

single clinical group were excluded. 

 

2.3 Data Extraction 

 

We extracted the number, mean age and percentage of females, of participants from 

both clinical and control groups, fMRI acquisition and analysis protocols, MIDT parameters, 

contrast type (e.g. reward vs. neutral anticipation contrast), and peak coordinates and their 

effect sizes. Additionally, mean scores of depressive symptoms for the clinical groups, as 

measured by self-report questionnaires such as the Beck Depression Inventory-II and other 

equivalents, were extracted. Data extraction was repeated by the author. 

 

2.4 Data Analysis 

 

2.4.1 Seed-based d Mapping (SDM) meta-analysis 

 

Coordinate-based meta-analyses were conducted using SDM software 

(https://www.sdmproject.com/) (Radua et al., 2010). This approach identifies brain regions 

that show consistent activation across studies by recreating individual voxel-level maps of 

effect sizes and their variances of contrasts for each study based on the input of peak 

coordinates and their effect sizes. When statistical values other than t-values were reported 

(e.g. z or p-values), they were converted to t-values using the SDM web calculator 

(https://www.sdmproject.com/utilities/?show=Statistics). SDM converts t-values of each peak 

coordinate into Hedges’ g and takes into account the sample size of studies in its 

calculations of within-study variance and between-study heterogeneity, such that studies 

with larger sample sizes and smaller variability contribute more. These estimates of effect 
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sizes (Hedges’ g) and variances for each experiment were used to make forest plots to 

qualitatively examine whether results might be driven by particular experiments.  

 

Unlike other coordinate-based meta-analytic approaches (e.g. Activation Likelihood 

Estimate), SDM offers the possibility to have positive and negative values on the same map, 

offsetting effects of studies that report findings of opposite directionality (i.e. increased vs. 

decreased activation) (Radua & Mataix-Cols, 2012). SDM has been extensively validated in 

previous meta-analyses (Martins et al., 2020; Wilson et al., 2018; Luijten et al., 2017; Radua 

et al., 2014). 

 

In FMRI analyses, appropriate statistical thresholding is warranted to balance the 

need of minimising false positives versus false negatives (Lieberman & Cunningham, 2009). 

In this study, analyses were based on the default number of 50 permutations and an 

uncorrected threshold of p= .005, which has been shown to yield an optimal balance of 

sensitivity and specificity, with a cluster extent of 10 voxels and peak height, SDM-Z value, 

of 1, to further control the probability of detecting false positives (Radua et al., 2012).  

 

Our meta-analyses examined between-group differences (psychiatric disorder vs. 

healthy control) in neural activity during reward anticipation, loss anticipation, reward 

outcome and loss outcome.  

 

2.4.2 Meta-regression 

 

We conducted a meta-regression analysis to assess the effects of depressive 

symptoms on neural activity in individuals with psychiatric disorders during each of the four 

contrasts. 22 out of 28 experiments reported mean depressive symptom scores of 

individuals with psychiatric disorders; 15 experiments used the Beck Depression Inventory 

as a measure of depressive symptoms, 5 used the Hamilton Depression Rating Scale and 2 
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used the Montgomery-Asberg Depression Scale. Mean scores were converted into one 

standardised scale using equipercentile linking (Furukawa et al., 2019; Leucht et al., 2018), 

and were used as regressors. Equipercentile linking identifies scores from different scales 

with equivalent percentile ranks, facilitating the mapping of scores from one scale to another 

(e.g. an individual scoring in the bottom 10% for one scale will be in the same percentile 

rank when scores are converted to a different scale) (González & Wiberg, 2017). Although 

equipercentile linking assumes an association between scores on different scales, which 

may differ in the constructs they tap, it makes fewer assumptions about the distributions of 

scores between scales and facilitates the comparison of measurement errors across scales. 

This makes this method preferable to other alternatives, such as item response theory 

(González & Wiberg, 2017; Gross et al., 2012). 

 

2.4.3 Heterogeneity, jackknife and publication bias analyses 

 

The degree of heterogeneity of the effect sizes of our findings (i.e. significant peak 

coordinates) across studies was evaluated using the I2 index, which measures the 

percentage of between-study variation that is attributed to heterogeneity rather than chance; 

I2 values of 25%, 50% and 75% reflect low, moderate and high heterogeneity respectively 

(Higgins & Thompson, 2002). The replicability of the results for each meta-analysis was 

assessed using jackknife analyses, which involves systematically repeating the meta-

analyses whilst discarding one study at a time, to check the reproducibility of the results 

when individual studies are removed. If a brain region retains its significance in all or most of 

the repeated analyses, it suggests that the effect is highly replicable. Publication bias was 

examined using visual inspection of funnel plots and more formally using Egger’s tests 

(Egger et al., 1997) for each peak coordinate. 
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3. Results 

 

3.1 Included Studies 

 

26 studies with 28 experiments were included, comprising 619 individuals with 

psychiatric disorders and 578 healthy controls, of which 43.2% were female. Of these, 27 

experiments included reward anticipation contrasts, 14 were loss anticipation contrasts, 15 

were reward outcome contrasts and 6 were loss anticipation contrasts (see Figure 2 for 

PRISMA flow diagram). The clinical groups examined included mood disorders (depression: 

n=9; bipolar disorder: n=6), schizophrenia (n=6), obsessive-compulsive disorder (n=3), 

eating disorder (n=3), post-traumatic stress disorder (n=1) and borderline personality 

disorder (n=1). Details of the sample characteristics and contrasts in the included studies are 

shown in Tables 1 and 2 respectively. 
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Figure 2  

PRISMA flow diagram  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1806 studies identified 

138 full articles 

assessed for eligibility 

 980 abstracts 
excluded  
 
688 duplicates 
removed 
 
 

113 excluded: 
 
31 not MIDT 
 
16 no case-control 
comparison 
 
22 no whole-brain 
analysis/coordinates  
 
6 partial brain 
coverage 
 
6 non-clinical 
samples 
 
12 wrong contrast 
 
8 treatment studies 
with no baseline 
comparison 
 
4 overlapping 
studies 
 
5 connectivity 
studies 
 
3 subtype 
comparisons 
 

1 included based on 
reference lists of 

recent review 
articles 

 

 26 studies included 
28 Experiments 

619 Patients 
578 Controls 

  
  

25 studies 
included reward 

anticipation 
contrasts 

27 Experiments 
600 Patients 

559 Controls 

14 studies 
included reward 

outcome contrasts 
15 Experiments 

366 Patients 
328 Controls 

 

14 studies 
included loss 
anticipation 
contrasts 

 14 Experiments 
292 Patients 

280 Controls 

6 studies included 
loss outcome 

contrasts 
6 Experiments 
151 Patients 

135 Controls 
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Table 1  

Sample characteristics of included studies 

Authors Clinical Sample Total 
N 

Female 
% 

Clinical Group:  
n, female (n), age (M, SD) 

Control Group:  
n, female (n), age (M, SD) 

Mean BDI-
equivalent 

score 

Abler et al. 
2008* 

Bipolar Disorder I 36 47.2 12 7 36.70 (7.80) 12 5 36.20 
(11.20) 

12 

Abler et al. 
2008* 

Schizophrenia 12 5 33.90 
(11.20) 

13 

Arrondo et al. 
2015* 

Major Depression 67 20.9 24 7 33.08 (9.15) 21 4 34.33 
(10.11) 

32 

Arrondo et al. 
2015* 

Schizophrenia 22 3 32.73 (7.62) 20 

Balodis et al. 
2013 

Binge Eating 
Disorder 

38 36.8 19 14 43.70 
(12.70) 

19 10 34.80 
(10.70) 

- 

Becker et al. 
2017 

Major Depression 40 40 20 12 43.50 
(12.30) 

20 9 44.90 
(9.60) 

28.10 

Carl et al. 
2016 

Major Depression 53 67.9 33 22 33.20 (6.50) 20 14 31.10 
(8.82) 

25.27 

Choi et al. 
2012 

Obsessive 
Compulsive 
Disorder 

28 0 13 0 24.92 (6.92) 15 0 26.60 
(4.29) 

15.08 

da Silva Alves 
et al. 2013 

Schizophrenia (first 
episode) 

22 0 10 0 22.70 (3.20) 12 0 34.55 
(11.21) 

- 

DelDonno et 
al. 2019 

Major Depression 50 80.0 23 16 25.09 (3.32) 27 23 29.15 
(9.00) 

30 

Dichter et al. 
2012 
 

Major Depression 
(remitted) 

38 71.1 19 15 23.60 (4.09) 19 12 27.90 
(6.30) 

2.63 

Herbort et al. 
2016 

Borderline 
Personality 

44 100 21 21 25.67 (5.98) 23 23 25.78 
(5.75) 

30.38 
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Disorder 
Johnson et al. 
2019 

Bipolar Disorder I 48 47.9 24 12 37.04 (9.87) 24 11 33.92 
(12.15) 

4 

Jung et al. 
2011 

Obsessive 
Compulsive 
Disorder 

40 35.0 20 7 25.70 (6.99) 20 7 24.75 
(3.68) 

16.50 

Kaufmann et 
al. 2013 

Obsessive 
Compulsive 
Disorder 

38 57.9 19 11 34.80 
(11.00) 

19 11 34.90 
(11.80) 

17 

Kirschner et 
al. 2020 

Bipolar Disorder I 
(remitted) 

50 36.0 25 9 37.30 (9.10) 25 9 33.10 
(9.70) 

6 

Knutson et al. 
2008 

Major Depression 
(unmedicated) 

26 65.4 14 9 30.71 (8.80) 12 8 28.67 
(4.25) 

25.38 

Li et al. 2018 Schizophrenia 52 42.3 26 11 22.77 (6.21) 26 11 24.58 
(5.38) 

- 

Nawijn et al. 
2016 

Post-Traumatic 
Stress Disorder 

72 44.4 35 14 42.49 (9.83) 37 18 41.11 
(10.86) 

- 

Pizzagalli et 
al. 2009 

Major Depression 
(unmedicated) 

61 45.9 30 15 43.17 
(12.98) 

31 13 38.80 
(14.48) 

27.48 

Schiller et al. 
2013 

Major Depression 
(remitted) 

38 71.1 19 15 23.60 (4.10) 19 12 27.90 
(6.30) 

2.60 

Schreiter et al. 
2016 

Bipolar Disorder I & 
II 

40 60.0 20 12 41.45 (7.33) 20 12 41.60 
(10.10) 

2 

Simon et al. 
2016 

Binge Eating 
Disorder and 
Bulimia Nervosa 

111 - 56 - 32.66 
(12.24) 

55 - 31.98 
(8.39) 

23.96 

Smoski et al. 
2011 

Major Depression 22 - 9 - 34.30 
(15.10) 

13 - 26.20 
(6.30) 

16.70 

Stepien et al. 
2018 

Schizophrenia 39 35.9 16 2 32.60 (9.20) 23 12 29.50 
(6.60) 

9.10 

Subramaniam 
et al. 2015 

Schizophrenia 57 31.6 37 12 45.14 (9.97) 20 6 43.72 
(13.32) 

- 

Urosevic et al. 
2016 

Bipolar Disorder I, 
II and not otherwise 
specified 

47 38.3 21 8 16.33 (1.66) 26 10 15.90  
(1.32) 

- 
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Note. *Abler et al. (2008) and Arrondo et al. (2015) included two samples of different clinical groups, which were included as two separate 

experiments – the total number of participants and percentage of females are calculated to represent values for the whole study and values for 
the control group (i.e. number of participants, number of females and mean and standard deviations for age) are the same across experiments 
from the same study. “–“ denotes studies that did not report data on depressive symptom scores. BDI = Beck Depression Inventory-II 

 
 

 

 

 

 

 

 

 

 

Yip et al. 2015 Bipolar Disorder II 
& not otherwise 
specified 
(unmedicated) 

40 45.0 20 8 22.59 (0.90) 20 10 22.10 
(0.58) 

12 
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Table 2  

Task contrasts included in each study 

Authors Reward 
Anticipation 

Loss 
Anticipation 

Reward 
Outcome 

Loss 
Outcome 

Abler et al. 2008*  ✓a ✗ ✓a ✗ 

Abler et al. 2008*  ✓a ✗ ✓a ✗ 

Arrondo et al. 2015* ✓ ✗ ✗ ✗ 

Arrondo et al. 2015* ✓ ✗ ✗ ✗ 

Balodis et al. 2013 ✓ ✓ ✓ ✓ 

Becker et al. 2017 ✓ ✗ ✗ ✗ 

Carl et al. 2016 ✓a ✗ ✓a ✗ 

Choi et al. 2012 ✓a ✓ ✗ ✗ 

da Silva Alves et al. 2013 ✓ ✓ ✗ ✗ 

DelDonno et al. 2019 ✓ ✗ ✗ ✗ 

Dichter et al. 2012 ✓ ✗ ✓ ✗ 

Herbort et al. 2016 ✓ ✓ ✗ ✗ 

Johnson et al. 2019 ✓ ✓a ✓ ✗b 

Jung et al. 2011 ✓a ✓ ✓ ✗b 

Kaufmann et al. 2013 ✓a ✓a ✗ ✗ 

Kirschner et al. 2020 ✓ ✗ ✗ ✗ 

Knutson et al. 2008 ✓ ✓a ✓ ✗b 

Li et al. 2018 ✓ ✓ ✓ ✓ 

Nawijn et al. 2016 ✓a ✗ ✓a ✗ 

Pizzagalli et al. 2009 ✓ ✓ ✓ ✓ 

Schiller et al. 2013 ✗ ✓ ✗ ✓ 

Schreiter et al. 2016 ✓a ✓a ✗ ✗ 

Simon et al. 2016 ✓a ✗ ✓a ✗ 

Smoski et al. 2011 ✓ ✗ ✓a ✗ 

Stepien et al. 2018 ✓a ✗ ✗ ✗ 

Subramaniam et al. 2015 ✓ ✓a ✓a ✓ 

Urosevic et al. 2016 ✓ ✗ ✗ ✗ 

Yip et al. 2015 ✓a ✓a ✓a ✓a 

 
Note. *Abler et al. (2008) and Arrondo et al. (2015) included two samples of different clinical 

groups, which were included as two separate experiments.  
aStatistically non-significant finding. bLoss outcome contrasts were reported but not included 
because they were the wrong contrast type. 
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3.2 Meta-Analysis 

 

3.2.1 Reward anticipation and outcome 

 

There were no statistically significant between-group differences in brain activation 

during reward anticipation. During reward outcome individuals with psychiatric disorders 

exhibit increased activation in a cluster including the right putamen compared to healthy 

controls (Table 3, Figure 3). 
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Table 3 

Reward anticipation and outcome meta-analysis results 

Coordinates Regions in cluster Voxels SDM-Z p-value I2 (%) Jackknife Egger test (p-

value) 

Reward anticipation        

No significant between-group differences       

       

Reward outcome (Clinical>Control group)       

34,-12,6 Right putamen 36 3.068 .001 2.71* 13/15 .826 

        

Reward outcome (Control>Clinical group) 
      

No significant between-group differences       

 
Note. *Heterogeneity (I2) results were statistically non-significant (p>.05) 
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Figure 3 

Increased right putamen activation in clinical groups compared to control groups and forest plot of the mean  variance of effect sizes for 
activation differences in the right putamen during reward outcome  
 

 

Note. Visual inspection of forest plot indicates that the two studies with the largest effect sizes (Jung et al., 2011; Li et al., 2018) might be 

driving the effects. All the studies show effects in the same direction. 
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3.2.2 Loss anticipation and outcome 

 

During loss anticipation, individuals with psychiatric disorders exhibit decreased 

activation in three clusters including the right temporal pole, left caudate and right 

cerebellum compared to healthy controls (Table 4, Figure 4). There were no statistically 

significant between-group differences in brain activation during loss outcome. 
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Table 4 

Loss anticipation and outcome meta-analysis results 

Coordinates Regions in cluster Voxels SDM-Z p-value  I2 (%) Jackknife Egger test (p-

value) 

Loss anticipation (Clinical>Control group)        

No significant between-group differences        

        

Loss anticipation (Control>Clinical group)        

36,6,-18 Right temporal pole, superior 
temporal gyrus, Brodmann Area 38 

65 -3.371 .0004  3.99* 12/14 .530 

-14,16,2 Left caudate 23 -3.092 .001  15.65* 12/14 .420 

28,-60,-20 Right cerebellum, hemispheric 
lobule, VI, Brodmann Area 37 

12 -2.870 .002  .70* 8/14 .965 

Loss outcome          

No significant between-group differences        

 
Note. *Heterogeneity (I2) results were statistically non-significant (p>.05) 
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Figure 4 

Regions showing decreased activation during loss anticipation in the a) right temporal pole, b) left caudate and c) right cerebellum lobule VI in 
clinical groups compared to control groups, and their respective forest plots  

 

 
Note. a-b) Visual inspection of forest plots indicate that two studies with the largest effect sizes (da Silva Alves et al., 2013; Li et al., 2018) 

might be driving the effects. a-c) All of the studies show effect sizes in the same direction. 
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3.3 Meta-Regression  

 

Meta-regression analysis revealed a significant association between the severity of 

depressive symptoms and activation in the right lingual gyrus (Brodmann Area 18) during 

reward outcome. Specifically, individuals with psychiatric disorders with higher levels of 

depressive symptom scores exhibited greater right lingual gyrus activation (MNI coordinates: 

14,-58,0; voxels= 27; SDM-Z= 3.132, p< .001; ), which is inconsistent with our hypothesis of 

dampened activation (Figure 5).  

 

3.4 Heterogeneity, Jackknife and Publication Bias Analyses 

 

As seen in Tables 3 and 4, heterogeneity across studies for loss anticipation and 

reward outcome was low and statistically non-significant. Jackknife analyses showed that 

the increased right putamen activation during reward outcome was highly replicable as these 

were preserved in 13 out of 15 combinations. However, the two combinations in which 

findings were not replicated correspond with the exclusion of two studies with the largest 

effect sizes (Figure 3). The decreased activation in the right temporal pole and left caudate 

during loss anticipation were also highly replicable as they remained significant in 12 out of 

14 combinations. However, the two combinations in which findings were not replicated 

correspond with the exclusion of two studies with the largest effect sizes (Figure 4a-b). The 

decreased right cerebellum activation was less replicable as it was only preserved in 8 out of 

14 combinations. Visual inspection of funnel plots showed no clear evidence of publication 

bias (Figures 6-7) and was verified by statistically non-significant Egger’s tests (p≥ .40), 

which assess funnel plot asymmetry – an indicator of whether effect sizes are more 

pronounced in smaller studies (Acar et al., 2018). 
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Figure 5 

Increased right lingual gyrus activation in clinical groups that is correlated with higher levels of depressive symptoms and scatterplot depicting 
positive correlation between mean effect sizes of right lingual gyrus activation and severity of depressive symptoms 

 

 

 

 
 
 
 



     44 

Figure 6  

Funnel plot assessing publication bias of fMRI studies (dots) reporting group differences for 
reward outcome activation in the right putamen 

 

Note. The funnel plot is approximately symmetrical with all the studies lying within the funnel, 

indicating no evidence of publication bias (Egger’s test: p= .83). 
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Figure 7 

Funnel plots assessing publication bias of fMRI studies (dots) reporting group differences for 
loss anticipation activation in the a) right temporal pole, b) left caudate and c) cerebellum 
lobule VI 

 

Note. Low evidence of publication bias for right temporal pole and left caudate (95% of the 

studies lie within the funnel; Egger’s test: p≥ .40). No evidence of publication bias for right 
cerebellum lobule VI as funnel plot is symmetrical with all studies lying within the funnel 
(Egger’s test: p= .97). 
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4. Discussion 

 

The current study is the first meta-analysis to directly quantify putative 

transdiagnostic reward- and loss-related activations, across both anticipation and outcome 

stages of processing. Using a coordinate-based meta-analytic approach, we found specific 

facets of reward- and loss-related processing that are shared across psychiatric disorders. 

We did not find evidence of differences during reward anticipation, but there were shared 

patterns of increased activity during reward outcome. During loss anticipation clinical groups 

exhibited decreased activity relative to healthy controls, but no significant group differences 

were detected during loss outcome. However, notably, follow-up jackknife analyses suggest 

that these findings were preserved in most but not all the iterations. This may suggest that 

significant findings could be due to a small set of studies, as discussed below. We also 

found a positive association between severity of depressive symptoms across disorders and 

brain activation during reward outcome. 

 

4.1 Shared Patterns of Brain Activation During Monetary Reward Processing 

 

4.1.1 Reward anticipation and outcome 

 

Contrary to our predictions, our findings revealed no significant differences in brain 

activation between clinical and control groups during reward anticipation. Based on the 

incentive-salience model (Berridge, 1996), anticipation comprises a motivational component 

(“wanting”), whereas when the outcome is received, this elicits a hedonic component, which 

captures neural responses to pleasure experienced following reward outcome (“liking”). 

Thus, our findings suggest that motivational salience to reward, may not be a core process 

shared across disorders, potentially indicating the presence of categorical distinctions for 

this specific aspect of reward processing, which may be relevant to developing tailored 

clinical intervention. 
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Our findings differ from some of the previous diagnosis-specific meta-analyses 

investigating the anticipation and outcome of monetary rewards and losses, which found 

decreased striatal activations in clinical compared to control groups during either reward 

anticipation or outcome. However, some of these meta-analyses solely used a region-of-

interest approach (Radua et al., 2015), which restricts findings to presupposed brain regions, 

and a different coordinate-based meta-analytic approach – activation likelihood estimate, 

which cannot incorporate studies with non-significant findings. Therefore, their findings are 

more susceptible to publication bias and may overestimate the effects of their findings 

(Müller et al., 2018). This point is exemplified by Keren and colleagues’ (2018) meta-analysis 

that reported significant group differences in the striatum during reward anticipation between 

individuals with depression and healthy controls, but only when studies employing region-of-

interest approaches were included.  

 

Moreover, these meta-analyses focused on a single disorder, unlike our study, which 

investigated shared neural patterns across a broad range of disorders (Table 1). Notably, we 

used a strict whole-brain approach that incorporated studies with non-significant results and 

restricted analyses to a single reward task, which should address some of the 

methodological limitations raised in previous meta-analyses. Our null results therefore lend 

support to the notion that different psychiatric disorders have distinct disorder-specific neural 

reward processing profiles and little shared neural patterns with respect to reward 

anticipation. This is concordant with findings from a recent fMRI meta-analysis similarly 

investigating shared neural patterns, albeit across different cognitive tasks beyond reward, 

which demonstrated diagnostic specificity in ventral striatum activity between disorders, 

supported by whole-brain studies (Sprooten et al., 2017).  

 

During reward outcome, we found that clinical groups exhibited increased activation 

in one cluster encompassing the right putamen, part of the dorsal striatum, which was highly 

replicable as effects remained significant in 13 out of 15 combinations in the jackknife 
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analyses. This could suggest that clinical groups show stronger responses when 

experiencing rewards than control groups. Notably, when the two studies on obsessive-

compulsive disorder (Jung et al., 2011) and schizophrenia (Li et al., 2018) with the strongest 

effect sizes were left out, the findings were not replicable. However, it is clear from the forest 

plot (Figure 3) that the effects across all studies were in the same direction, suggesting 

shared differences in activation. Activity in subcortical striatal areas indicates automatic or 

reflexive stimulus-driven responses rather than a cognitive or reflective goal-driven process, 

although this activity could be up-regulated through top-down cognitive processes including 

attentional mechanisms. Further connectivity analyses are warranted to assess this 

hypothesis. Across disorders, individuals may therefore be particularly driven by bottom-up 

reward responses, which could be targeted in clinical interventions via top-down regulation 

by frontal cortical regions (Mason et al., 2016; Yang et al., 2018). Consistent with this, 

imbalances between bottom-up reward circuits and top-down circuits involved in cognitive 

control have been demonstrated across a range of disorders including eating disorders, 

substance use disorders, major depression and obsessive-compulsive disorder (Heo & Lee, 

2018; Lipton et al., 2019; Park et al., 2014; Paulus & Stewart, 2014).  

 

Notably, the difference in activation between clinical and control groups is localised in 

the dorsal rather than ventral striatum. The dorsal striatum’s role in hedonic processes is 

unclear as previous research more consistently linked ventral striatum responses to 

motivation for reward and its learned cues (“wanting”) and hedonic reward (“liking”). The 

dorsal striatum, in contrast, plays a key role in regulating movement and learning 

associations between actions and outcomes, which facilitates goal-directed behaviour and 

the automatisation of behaviour (i.e. forming habits) (Doherty et al., 2004; Everitt & Robbins, 

2013). 

 

Based on the functional dissociation between the ventral and dorsal striatum, our 

findings of increased dorsal striatum activation may indicate that additional processes, 
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beyond experiencing pleasure, are impacted. For instance, it may reflect compensatory 

mechanisms that support accurate planning and inhibition of motor responses during target 

presentation, which immediately precedes the outcome phase and thus is captured due to a 

spillover effect. Therefore, our findings potentially suggest that across disorders, individuals 

may require greater effort in inhibiting established stimulus-driven behaviours that may be 

suboptimal in favour of novel behavioural repertoires that support goal-directed behaviour.  

 

Alternatively, the increased engagement of the dorsal striatum could indicate 

compensatory strategies in maintaining the information learned following performance 

feedback regarding reward-contingent actions in order to bias action selection towards 

rewarding outcomes (Balleine et al., 2007). Additionally, studies have shown that activation 

in the dorsal striatum is more prominent during tasks in which the outcome is directly 

contingent upon the participant’s actions (Lutz & Widmer, 2014). It is important to note that 

although we interpreted our findings as reflecting compensatory mechanisms, we did not 

investigate whether clinical and control groups differed in behavioural responses (e.g. target 

response times). Many studies do not find or report group differences in behavioural 

performance. Although by design, the MIDT is typically calibrated to individual performance 

and response times, this does not mean that behavioural differences in reward processing 

are absent between clinical and control groups (Balodis & Potenza, 2015).  

 

Taken together, upon further replication, our findings may have wider implications for 

clinical intervention as modulating bottom-up habit-driven responses and supporting the 

learning of actions and consequences could be the focus of transdiagnostic interventions. 

For example, recent research highlights the impact of mindfulness meditation in attenuating 

elevated reward-related responses in the putamen (Kirk & Montague, 2015), suggesting that 

the regulation of bottom-up reward-driven responses is a mechanism that is amenable to 

change by at least some existing clinical interventions. 
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4.2 Shared Patterns of Brain Activation During Monetary Loss Processing 

 

4.2.1 Loss anticipation and outcome 

 

In contrast to our null findings during reward anticipation, we found during loss 

anticipation evidence of decreased activations in the left caudate, part of the dorsal striatum, 

and right temporal pole, which was highly replicated in 12 out of 14 combinations in our 

jackknife analyses. It is important to note that when the two studies on schizophrenia with 

the strongest effect sizes (da Silva Alves et al., 2013; Li et al., 2018) were left out, the 

findings were not replicated. While this may suggest that the effects are driven by 

schizophrenia, findings were replicated when the one a different study on schizophrenia was 

left out. Additionally, the effect sizes across all the studies were in the same direction as 

evidenced by the forest plot (Figure 4a-b, bottom pane). There was also evidence of 

reduced activation in the right cerebellum lobule, though this was replicated in only 8 out of 

14 combinations in our jackknife analyses. This suggests that this finding is less robust and 

may be driven by specific disorders (3 out of the 8 studies included schizophrenia), though 

all the studies showed effect sizes in the same direction (Figure 4c, bottom pane). 

 

The decreased dorsal striatum activity could suggest that clinical groups show 

decreased motivational responses to avoiding losses. Though similar to our findings in 

reward outcome, this activation is localised to the dorsal and not ventral striatum. Hence, 

there may be additional processes beyond motivational salience that is implicated. While the 

MIDT precludes any decision-making and learning of cue-reward contingencies (Knutson & 

Greer, 2008), our findings could indicate that clinical groups show intact representations of 

loss outcomes but exhibit impairments in updating subsequent predictions of future 

outcomes in the dorsal striatum. Hence, these findings suggest that the shared mechanisms 

across psychiatric disorders are potentially related to how learning signals update future 

expectations of how quickly they should respond.  
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A previous meta-analysis of loss processing in the MIDT in a healthy population 

similarly reported activations in the cerebellum (lobule VI) during loss anticipation (Oldham 

et al., 2018). The cerebellum plays a key role in motor functions, specifically, the execution 

of well-timed automatic movements (Timmann et al., 2010); activation in lobule VI, in 

particular, has been demonstrated during simple finger movement tasks like tapping 

(Stoodley & Schmahmann, 2009). Thus, our findings of decreased activation in the 

cerebellum (lobule VI) across clinical groups potentially reflect difficulties in modulating 

motor control in relation to motivationally significant events, thereby failing to prioritise motor 

planning and action to avoid losses. Notably, lobule VI is functionally connected to the 

salience network – a neural circuit involved in detecting relevant information and the 

recruitment of other circuits to modulate behaviour (Habas et al., 2009). Hence, it could be 

argued that our findings suggest impairments in motivational salience towards loss stimuli. 

With regards to reduced activation of temporal pole, previous research has shown that this 

region has strong anatomical connections with the striatum and orbitofrontal cortex (Fan et 

al., 2014), and is involved in the integration of multisensory input and self-referential thinking 

(Northoff et al., 2006; Olson et al., 2007). It could be argued that decreased activation in this 

region reflects difficulties in integrating reward-related- and loss-related information with 

visuo-motor signals. Alternatively, clinical groups may be overly self-referential when trying 

to perform the task successfully, though this interpretation is speculative.  

 

During loss outcome, we found no significant differences in brain activation between 

clinical and control groups, which seemingly indicates that clinical groups process and 

experience losses similarly to control groups. However, this may be due to the relatively 

small number of experiments that included loss outcome contrasts (n=6, with 151 patients 

and 135 controls) or the heterogeneity of the psychiatric disorders included, which may 

indicate that loss outcome involves diagnosis-specific processes. Moreover, the majority of 

the studies used an MIDT with a greater probability of a successful rather than a failed trial: 

out of the 17 studies that reported target hit rates, 15 used a probability rate of at least 
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greater than 60% (see Appendix B). Hence, by design these studies included fewer loss 

than gain trials and therefore may have less power to detect loss-related activations 

resulting in an under-estimations of effects related to loss processing (Ubl et al., 2015). 

 

4.3 Severity of Depressive Symptoms and Reward-Related Brain Activation 

 

Contrary to our expectations, we did not find an association between high levels of 

depressive symptoms and decreased activation in the ventral striatum across disorders 

during reward anticipation or outcome. This finding suggests that the presence of depressive 

symptoms across disorders, regardless of whether they are a primary or secondary feature 

of a diagnosis, do not dampen ventral striatum activity, which contrasts previous findings 

(Arrondo et al., 2015; Hägele et al., 2015).  

 

 Unexpectedly, we instead found a significant positive correlation between the 

severity of depressive symptoms and activation in the right lingual gyrus during reward 

outcome. Our findings seem to converge with a previous meta-analysis of reward processing 

in depression that reported increased lingual gyrus activity; however, this was not discussed 

in their main findings (Zhang et al., 2013). The lingual gyrus has been implicated in the 

processing and encoding of visual stimuli (Leshikar et al., 2012). Greater engagement of the 

lingual gyrus, in individuals with greater depressive symptoms, across disorders, could 

therefore indicate differences in top-down attentional processes rather than affective and 

hedonic processes commonly associated with ventral striatal activation. Barceló and 

colleagues (2000) provided evidence that prefrontal lesions modulated neural activity in 

visual processing areas, and therefore one could speculate that the increased lingual gyrus 

activity indicates compensatory mechanisms in top-down attentional modulation across 

clinical groups during the processing of outcomes. However, this interpretation is speculative 

and the role of the lingual gyrus in reward-related processing merits further study. 

Furthermore, only a subgroup of the experiments included measures of depressive 
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symptoms (reward anticipation: 21 out of 27 experiments, reward outcome: 11 out of 15 

experiments, loss anticipation: 10 out of 14, loss outcome: 3 out of 6). The 6 studies that did 

not collect measures of depressive symptoms examined clinical populations including eating 

disorders, schizophrenia, bipolar disorder and post-traumatic disorder, which may slightly 

underestimate the effects of our findings as depressive symptoms may be present across 

these disorders, even if they are not considered a core feature. 

 

4.4 Strengths and Limitations 

 

This study has several strengths and limitations. Strengths of this current meta-

analysis include focusing on a single well-validated reward task (the MIDT) to favour a 

homogeneous selection of fMRI studies investigating monetary anticipation and outcome. 

This permits greater confidence in interpreting findings of brain activation to the 

circumscribed number of processes involved in the MIDT, as effects would not be driven by 

studies using a particular task. In addition, we comprehensively examined both anticipation 

and outcome stages of processing and for both domains (reward and loss), as loss 

processing is often under reported despite its importance in optimal decision-making (e.g. 

weighing up the costs of potential options). We also adopted a whole-brain meta-analytic 

approach and excluded region-of-interest analyses and studies that reported partial brain 

coverage, to minimise localisation biases.  

 

Our findings should also be interpreted within the context of several limitations 

present in the identification of studies, selection of a meta-analytic approach, analysis and 

the MIDT paradigm itself, some of which are applicable across fMRI meta-analyses. First, 

although an independent reviewer was involved in the process of study selection, the 

process of systematic literature search, data extraction, coding and analysis was conducted 

solely by the author, which increases the likelihood of errors. Related to this point, 

conducting this meta-analysis as a single researcher who had to learn the technical aspects 
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of using the SDM software, which was time intensive, resulted in the absence of a 

methodological quality assessment. Studies of low methodological quality could be a source 

of heterogeneity and the robustness of the findings could have been further examined by 

excluding lower quality studies in follow-up sensitivity analyses. Second, the current meta-

analysis extracted peak coordinates that were reported in studies instead of using raw 

statistical brain maps, which incorporates the full image information, including effect sizes 

and localisation of brain activity (Radua et al., 2014). This is the norm because the latter 

method would require gathering raw images from the authors of the studies included in this 

meta-analysis, which would typically result in a large amount of missing studies.  

 

At the level of analysis, the majority of the included studies focused only on reward 

processing, particularly, reward anticipation, resulting in a smaller number of experiments for 

the other three contrasts. Further to this, although our meta-analysis was focused on 

identifying transdiagnostic processes, it would have been informative to conduct 

confirmatory diagnosis-specific comparisons; however, there were insufficient studies for 

each disorder in all task contrasts (n<10). Additionally, the effect of some potential 

confounders was not examined through sensitivity and subgroup analyses due to the limited 

number of studies included in this meta-analysis. For instance, we collapsed across different 

stages of disorder severity (e.g. within- and out-of-episode), psychotropic medication use 

and different fMRI acquisition and analysis protocols (Appendix B). Moreover, even though 

the studies included here all used MIDT, they report variations in the amount of money 

gained or lost during reward and loss trials (Appendix C). This issue needs to be addressed 

in larger scale studies, which allow for sufficiently powered subgroup analyses to parse the 

effects of these sources of heterogeneity. However, it is important to note that the trade-off 

between robustness and heterogeneity is a common issue plaguing meta-analyses; having 

broad inclusion criteria to include more studies may increase power and reduce effects 

driven by single studies, but also compromise the homogeneity of the included studies 

(Müller et al., 2017). Furthermore, given the limited number of studies, particularly of loss 
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processing, and the range of psychiatric disorders included in this meta-analysis, further 

studies and meta-analyses of the MIDT that are sufficiently powered should be carried out to 

build a more consistent picture of common and dissociable neural signatures underlying the 

anticipation and outcome of rewards and losses across a broader range of disorders – for 

instance, those that are associated with differing levels of sensitivity to threat (e.g. anxiety 

disorders vs. psychopathy).  

 

Finally, although the MIDT involves a simple cognitive and motor component, and is 

thus a good task that isolates reward processing components of anticipation and outcome, 

there may still be some cognitive and motor factors that could be addressed. For instance, it 

may be difficult to disentangle activity related to motivational processes, learning (i.e. the 

expectation and prediction of an outcome) and inhibitory motor responses during the 

anticipation stage and potentially during outcome, particularly for the latter two processes. 

Some studies have included a second anticipation stage following target response and prior 

to outcome (Balodis et al., 2013; Johnson et al., 2019) (Appendix C). Differentiating between 

these two anticipatory stages could disentangle learning from motivational processes as the 

recruitment of the latter process should be minimal following target response (Oldham et al., 

2018). Additionally, future tasks using computational modelling approaches, which impose 

an operational and precise definition of distinct reward processing components, could 

provide a more nuanced insight into these shared processes across psychiatric disorders 

(Pessiglione et al., 2018). For instance, including trial-by-trial regressors of learning 

parameters may facilitate more confident interpretation of the learning processes invoked 

during the MIDT (Cao et al., 2019). 

 

4.5 Conclusion 

This study is the first whole-brain meta-analysis of MIDT fMRI studies that examines 

the shared patterns of brain activation during the anticipation and outcome of monetary 

rewards and losses across multiple psychiatric disorders. Overall, our findings highlight that 
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compared to healthy controls, individuals with psychiatric disorders exhibit shared 

differences in neural activity underlying the processing and hedonic experience of monetary 

gain and the anticipation of monetary loss. Specifically, clinical groups exhibit greater habit-

driven responses to rewards and difficulties in coordinating behavioural responses and 

motivational salience in relation to anticipated negative consequences. Our findings suggest 

a lack of shared differences in neural activity across clinical groups during reward 

anticipation and loss outcome. Additionally, we found a relationship between the severity of 

depressive symptoms and heightened visual processing of rewarding outcome stimuli.  

 

4.6 Implications for future research and clinical practice 

 

We believe that our current findings will contribute towards identifying shared brain-

based correlates to develop a more refined understanding of transdiagnostic processes 

underlying psychopathology rather than relying on traditional symptom-based approaches. 

Future clinical neuroimaging research could adopt a prospective design and examine shared 

neurobiological responses during the MIDT that are associated with treatment response, 

across disorders, following psychological interventions such as behavioural activation or 

cognitive behavioural therapy. This would help to identify shared mechanisms that could be 

more effectively and broadly targeted across psychiatric disorders, in order to address the 

high rates of psychiatric comorbidity and partial treatment response. Moreover, the 

integration of neuroimaging techniques with complementary disciplines like computational 

modelling may help clarify the nature of the transition from general psychiatric vulnerability to 

clinical levels of symptom presentation. In essence, our findings lend preliminary support to 

the transdiagnostic approach to mental health research; however, further replication is 

required in future studies to determine whether reward processing is a shared process 

across disorders. 
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Abstract 

Aims. Bipolar disorder is associated with dysregulated goal-pursuit and reward responsivity, 

which evidence suggests is reflected at the neural level and influenced by dynamic mood 

fluctuations. We sought to combine computational modelling and existing functional 

neuroimaging data to test whether momentary mood biases the perception of rewards more 

strongly in individuals with bipolar disorder than healthy controls. 

 

Methods. 42 participants (21 out-of-episode bipolar disorder patients and 21 matched 

controls) performed a probabilistic reward task during functional magnetic resonance 

imaging. An existing neuro-computational model was used to test the extent to which mood-

biased expected value (EV) and reward prediction error (RPE) signals are represented in 

addition to standard, non-mood-biased signals in the ventral striatum, anterior insula and 

ventromedial prefrontal cortex (VMPFC). 

 

Results. ROI analyses confirmed that mood-biased signals were present in ventral striatum 

and VMPFC, but no group differences were present. However, whole-brain analyses provide 

some evidence of stronger activation in visual processing areas in participants with bipolar 

disorder than controls. Moreover, both ROI and whole-brain analyses indicated that the 

representation of mood-biased signals was positively modulated by mood symptoms in the 

anterior insula, ventral striatum and parahippocampal gyrus and negatively modulated in 

default-mode regions. Participants with bipolar disorder also showed stronger tracking of 

standard RPE than controls in the VMPFC, and limited tracking of standard EV.  

 

Conclusion. Our results suggest preliminary evidence that momentary mood biases the 

perception of outcome in individuals with bipolar disorder. We also found that while 

individuals with bipolar disorder track standard RPEs more intently than controls, they show 

limited updating of value representations, potentially maintaining unrealistic expectations 

about reward.   
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1. Introduction 

 

1.1 Bipolar Disorder 

 

Bipolar disorder is classically defined as a relapsing-remitting condition, which 

features recurrent, oscillatory mood changes that culminate in episodes of depression, 

mania and hypomania (a milder episode of mania in terms of symptom severity and episode 

duration), interspersed with periods of stable mood whilst out-of-episode (Grande et al., 

2016). These mood changes are accompanied by marked behavioural changes; periods of 

elevated mood are typically characterised by increased goal-striving, often with damaging 

consequences, whereas periods of low mood are characterised by decreased motivation 

and pleasure in previously rewarding activities (American Psychiatric Association, 2013).  

  

However, clinical presentations of bipolar disorder often reflect a complicated picture 

and accurate diagnosis remains a challenge, given the overlapping symptoms with other 

disorders, particularly, unipolar depression (Phillips & Kupfer, 2013). Diagnostic 

classifications of bipolar disorder and its subtypes use arbitrary thresholds, which are often 

partially fulfilled, leading to diagnoses that are “not-otherwise-specified” and have “mixed 

features” (i.e. co-occurring manic and depressive symptoms). Moreover, mood instability 

and suboptimal decision-making have been reported to persist in and out-of-episode, and 

across mood episodes (Adida et al., 2011; Broome et al., 2015; Swann et al., 2003), thereby 

challenging the fully episodic view of bipolar disorder. Critically, a significant proportion of 

affected individuals do not fully respond to treatments and relapses are common (Sachs & 

Rush, 2003). It is thus important to investigate the mechanisms underlying mood instability 

and dysregulated goal-directed behaviour in bipolar disorder to better inform diagnosis and 

intervention. 
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This chapter focuses on outlining existing models of bipolar disorder and current 

gaps that need addressing with regards to identifying a plausible psychobiological 

mechanism underlying bipolar disorder. Following this, the application of computational (or 

mathematical) modelling approaches to quantifying the relationship between mood instability 

and reward processing will be discussed, before outlining the present study’s aims and 

hypotheses. 

  

1.2 The Reward Hypersensitivity Account 

  

Rewards are broadly categorised as stimuli that induce approach behaviours and 

subjective feelings of pleasure when obtained, thereby reinforcing cues and actions that 

promote reward attainment (Schultz, 2005). Several researchers have proposed that bipolar 

disorder stems from a dysregulated “behavioural activation system” – a motivational system, 

proposed to regulate positive affect and approach behaviour towards rewards (Alloy & 

Abramson, 2010; Urosević et al., 2008). This model suggests that individuals with bipolar 

disorder exhibit increased sensitivity to reward-related cues following successful goal-

attainment or positive life events. For example, receiving a work promotion could promote 

increased goal-striving behaviour, energy, self-confidence and euphoria, which correspond 

to (hypo)manic symptoms (Urosević et al., 2008). Conversely, events that signal failures in 

goal-attainment (e.g. not receiving the promotion) may excessively deactivate the 

motivational system resulting in depressive symptoms. 

  

However, a psychobiological mechanism that accounts for these transitions in affect 

and behaviour is lacking. Functional magnetic resonance imaging (fMRI) provides one 

objective way of studying, in real time, these multifaceted and rapid processes, which are 

not feasibly captured by self-report measures. Converging findings from fMRI studies of 

healthy populations indicate that the ventral striatum is consistently activated in response to 
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potential rewards and their receipt (e.g. money, food, social rewards) (Sescousse et al., 

2013). 

  

Research has suggested the presence of altered reward-related activations in bipolar 

disorder (Ashok et al., 2017). The behavioural activation system model predicts increases 

and decreases in reward sensitivity in (hypo)mania and depression respectively; however, 

the current fMRI evidence is mixed. For instance, several studies reported no differences in 

reward-related ventral striatum activity between healthy controls and individuals who were 

either in a bipolar manic (Abler et al., 2008; Bermpohl et al., 2010) or depressive episode 

(Chase et al., 2013; Satterthwaite et al., 2015). Even in individuals who are out-of-episode, it 

is unclear whether they exhibit increased sensitivity to rewards (i.e. reward hypersensitivity), 

as measured by greater ventral striatal activation (Caseras et al., 2013; Mason et al., 2014), 

or a dampened neural response (Schreiter et al., 2016; Yip et al., 2015). These inconsistent 

findings could suggest the presence of significant variations in mood within and out-of-

episode (Broome et al., 2015), highlighting the need to investigate how moment-to-moment 

fluctuations in mood influence reward-related behaviours in bipolar disorder. 

  

1.3 Applying Computational Modelling to the Study of Mood Instability 

  

Computational modeling has facilitated the development of quantitative, theory-

driven models to better explain empirically observed data across multiple units of analysis 

(Guest & Martin, 2021), placing behavioural, genetic, neurobiological and psychological 

measures within one mechanistic framework. Different competing models can therefore be 

compared against each other to more precisely infer neuro-computational mechanisms 

underlying mood instability in bipolar disorder. 

  

1.3.1 Reinforcement-learning theory 
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Optimal learning and decision-making requires accurate representations of outcomes 

generated by potential choices. These representations can be operationalised through 

reinforcement-learning – a framework in which the difference between the expected value 

(EV) of a rewarding outcome and the actual outcome obtained is used to generate a learning 

signal referred to as the reward prediction error (RPE). This RPE signal is used to improve 

expectations of future outcomes (Garrison et al., 2013). In other words, when there is a 

discrepancy between expectations and outcomes, this ‘error’ is noticed, and to effectively 

learn from it, the brain must update future expectations, thereby guiding future behaviour. 

RPE signals have also been shown to impact mood (Rutledge et al., 2014); emerging 

evidence suggests that this relationship is bidirectional rather than one-way, as discussed in 

a subsequent section. 

  

1.3.2 Neurobiological basis of EV and RPE signals 

  

A large body of neurobiological work has linked the RPE signal to dopamine neuron 

activity in the midbrain and their projections to the ventral striatum. When outcomes are 

either better or worse than expected (i.e. positive or negative RPE), the activity of these 

neurons increases and decreases, respectively (Schultz, 2015). Several meta-analyses 

indicate that RPE signals are encoded by the ventral striatum, anterior insula and 

ventromedial prefrontal cortex (VMPFC) (Chase et al., 2015; D’Astolfo & Rief, 2017; 

Garrison et al., 2013). 

 

The ventral striatum is a key region involved in goal-directed behaviour (Doherty et 

al., 2004). It responds to cues signalling potential rewards and losses (Carter et al., 2009) 

and its activity increases with greater reward magnitude (Knutson et al., 2001). The anterior 

insula is implicated in interoception – the mapping of bodily signals and affective states 

(Craig, 2009). It is also part of a large-scale salience network that coordinates attentional 

processes including the detection of salient events (Menon & Uddin, 2010). The VMPFC has 
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been implicated in encoding the subjective value of rewards and is posited to receive and 

integrate valuation signals from the ventral striatum (Hare et al., 2011; Mason et al., 2014). 

  

Bartra and colleagues’ (2013) meta-analysis demonstrated that the striatum, anterior 

insula and VMPFC were implicated in the subjective valuation of prospects, with the former 

two regions responding to both rewarding and aversive outcomes. Additionally, the 

estimation of EV signals during the anticipation of rewards has been shown to involve these 

three regions (Gläscher et al., 2009; Rolls et al., 2008; van der Meer & Redish, 2011). 

  

1.3.3 Quantifying the relationship between mood and perception of reward 

  

Recently, researchers have used the above reinforcement-learning framework to 

study the dynamic relationship between emotional states and decision-making processes. 

These findings suggest that violations of expectations in relation to outcomes (i.e. RPEs) 

drive transient mood fluctuations (Eldar & Niv, 2015; Eldar et al., 2016; Otto et al., 2016; 

Vinckier et al., 2018). A potential explanation of the inconsistent findings in the existing 

bipolar disorder fMRI literature on reward could therefore be the variability in mood occurring 

during experiments, both across and within participants. At the individual level, mood states 

are likely to fluctuate within a single experiment, in response to rewards, which in turn would 

bias the valuation of subsequent rewards. For instance, a string of rewarding outcomes 

would increase one’s mood especially if better than expected (e.g. winning several bets on a 

roulette game), thereby increasing the value of subsequent reward outcomes, and vice-

versa for a string of worse-than-expected outcomes (Eldar et al., 2016; Otto et al., 2016). In 

support of this, Mason and colleagues (2014) found that, out-of-episode, residual mood 

symptoms of mania and depression (which presumably led to differences in mood during the 

experiment) were associated with an up- and down-regulation of reward-related activation in 

the ventral striatum. Eldar and colleagues (2016) argued that these mood biases can be 

adaptive. For example, a level of positive mood bias may help one cope with negative 
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events; however, in excessive amounts, it can lead to an overly optimistic outlook, resulting 

in the belief that one is invulnerable to negative events. 

  

Recent research that applied computational models to fMRI data in healthy 

participants has provided emerging empirical support that moment-to-moment mood 

fluctuations affect the perception of rewards and influence subsequent decision-making. 

Eldar and Niv (2015) found that healthy individuals with higher self-reported traits of mood 

instability valued monetary rewards differently following an event that influenced their current 

mood state (i.e. winning or losing a much larger sum of money on a wheel of fortune). This is 

exemplified by greater RPE-related activity in the striatum and VMPFC during a positive 

mood state (after winning $7) and vice-versa. They compared a mood-biased reinforcement-

learning model, in which mood biases the perception of reward value, against non-mood-

biased (standard) models, in which mood exerts no effect on reward valuation. In this mood-

biased model, a mood bias parameter is included, which captures the influence of mood on 

perceived reward. This generates mood-biased EV and RPE signals, which may elicit further 

mood instability and unrealistic expectations. Mood is quantified as the accumulation of 

recent outcomes, which biases the perception of reward. For example, reward will be 

perceived as larger after a string of $7 wins (i.e. good mood) resulting in inflated RPE 

estimates. The results indicated that the mood-biased model better represented RPE-related 

activity in the striatum, outperforming the standard model. 

  

In related work, Vinckier and colleagues (2018) found that mood fluctuations induced 

by positive and negative performance feedback modulated neural activity in the VMPFC and 

anterior insula. This in turn influenced the valuation of potential wins and losses during 

decision-making. Specifically, greater VMPFC activity was associated with increased risk-

taking due to inflated expectations of potential wins whereas greater anterior insular activity 

was associated with decreased risk-taking due to inflated expectations of potential losses. 

Finally, Rutledge and colleagues (Rutledge et al., 2014) demonstrated that EV and RPE 
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signals in the striatum predict moment-to-moment positive mood in relation to outcomes 

during a reinforcement-learning task. Self-reported positive mood was also shown to be 

associated with anterior insula activity. 

  

Drawing from this work, Mason and colleagues (2017) proposed a computational 

account of bipolar disorder, based on this dynamic interplay between fluctuating mood states 

and perception of reward. While a moderate mood bias may be adaptive and facilitate 

optimal learning about a changing environment, individuals with bipolar disorder may 

inherently have stronger mood biases. This could result in recursive cycles of marked 

escalations in mood, expectations and behaviour, which culminate in manic symptoms when 

mood is elevated. Conversely, as expectations about rewards become increasingly 

unrealistic, the mismatch between high expectations and actual outcomes lead to negative 

RPEs and a deterioration in mood, culminating in depressive symptoms. Notably, the model 

predicts that a strong mood bias would result not only in reward hypersensitivity (when 

momentary mood is elevated) but also in dampened sensitivity (when momentary mood is 

low), thereby offering an explanation for the conflicting empirical data on reward sensitivity in 

bipolar disorder discussed in an earlier section. 

  

Taken together, recent computational fMRI studies demonstrate the two-

way/bidirectional relationship between mood and reward processing (Eldar & Niv, 2015). 

Importantly, they provide initial evidence that mood fluctuations can modulate EV (Vinckier 

et al., 2018) and RPE signals (Eldar & Niv, 2015) represented in the ventral striatum, 

anterior insula and VMPFC. Moreover, these studies highlight the role of anterior insula 

activation as a neural correlate of momentary mood (Rutledge et al., 2014; Vinckier et al., 

2018). However, the above studies were conducted with healthy populations, highlighting 

the need to examine whether findings translate to clinical populations. 
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1.4 Aims and Hypotheses 

  

The present study aims to test whether momentary mood fluctuations bias the 

perception of outcomes in a clinical sample (i.e. individuals with bipolar disorder who are 

out-of-episode). We will investigate this by applying an existing mood-biased reinforcement-

learning model (Eldar & Niv, 2015) to previously collected behaviour and fMRI data (Mason 

et al., 2014). Eldar and Niv (2015) have validated a model that formalises mood based on 

the accumulation of recent outcomes. We predict that this model, which allows mood to vary 

dynamically and bias the perception of rewards, would represent reward-related neural 

activity in addition to a standard model in which mood exerts no effect. Based on findings 

that increased tracking of mood-biased signals is associated with greater self-reported 

hypomanic traits (Eldar & Niv, 2015), we expect that individuals with bipolar disorder will 

show stronger mood biases. Additionally, we predict that individuals with bipolar disorder 

with higher levels of mood (manic and depressive) symptoms would show stronger mood 

biases as measured by greater reward-related brain activation. 

  

Given that previous research has highlighted the important roles of the ventral 

striatum, anterior insula and VMPFC in representing EV and RPE signals, this study will 

employ a region-of-interest (ROI) approach focusing on these three regions. We also report 

whole-brain analyses given that two fMRI studies have examined mood’s influence on 

reward perception, and none have characterised this in a clinical sample. 

  

In summary, this study sought to test three hypotheses:  

H1a) Mood-biased EV will be represented in the three ROIs (ventral striatum, anterior insula 

and VMPFC) in addition to standard EV;  

H1b) Participants with bipolar disorder will show increased tracking of mood-biased EV in 

the three ROIs, relative to matched controls; 
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H2a) Mood-biased RPE will be represented in the three ROIs in addition to standard RPE; 

H2b) Participants with bipolar disorder will show increased tracking of mood-biased and 

RPE in the three ROIs, relative to matched controls,  

 

H3a) Higher levels of manic and depressive symptoms, indicative of stronger underlying 

mood bias (Mason et al., 2017), will be associated with increased tracking mood-biased EV; 

H3b) Higher levels of manic and depressive symptoms will be associated with increased 

tracking mood-biased RPE. 

 

Finally, given evidence that anterior insula represents subjective momentary mood 

(Rutledge et al., 2014; Vinckier et al., 2018), we examined whether activity in this region 

tracked model-estimated mood during outcome, the phase in which mood is updated 

(Rutledge et al., 2014), as a confirmatory check that the neuro-computational model fitted 

plausible values of mood. 
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2. Methods 

 

2.1 Design 

  

This study is a secondary analysis of behavioural and fMRI data in which adults 

diagnosed with bipolar disorder and healthy controls underwent fMRI scanning whilst 

performing a Roulette task (Mason et al., 2014). The present study extends this earlier work 

by applying a computational model-based approach, in which momentary changes in mood 

are modelled and their influence on reward-related learning signals (i.e. EV and RPE) is 

quantified. 

  

2.2 Power Analysis 

  

Power analysis was informed by Eldar and Niv (2015)’s study, which compared 

striatal and VMPFC activations between healthy participants exhibiting low versus high trait 

mood instability, as defined by median split on the Hypomanic Personality Scale (Eckblad & 

Chapman, 1986). Using a similar reward-based task, they found a significant difference in 

striatal activations between participants with high and low mood instability with an effect size 

of d=.90, which we used to determine the implied power in our study. We conducted a power 

calculation using G*power (Faul et al., 2007) and yielded 89% implied power with our 

sample size of 42 participants at an alpha level of .05. Given that our study examines striatal 

activation between a clinical sample (i.e. individuals with bipolar disorder) and healthy 

controls, the effect size obtained should be significantly larger than those obtained in Eldar 

and Niv (2015)’s sample of healthy participants. 
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2.3 Participants 

  

Participants with out-of-episode bipolar disorder were recruited from specialist 

affective disorder clinics and local mental health trusts within Greater Manchester, United 

Kingdom. Healthy control participants were recruited from the general community, matched 

for age, sex and years of education. Informed written consent was obtained from all 

participants. 

  

For inclusion in this study, participants had to be between 18 and 45 years of age, 

have a weekly alcohol intake below 26 units and report no substance use four months 

before the study. The Structured Clinical Interview for DSM-IV Axis I Disorders (SCID) (First 

et al., 2005) was used to confirm the diagnosis of bipolar disorder and screen healthy control 

participants. Individuals who did not meet threshold for either manic or depressive episodes 

(i.e. out-of-episode) for two months before the study were included. None of the controls 

warranted further assessment on any of the SCID modules. Individuals were excluded if they 

had received antipsychotic medication six months before the study. 

  

2.4 Procedure 

  

All participants completed questionnaires before fMRI scanning and performed a 

Roulette Task (detailed below) during scanning. 

  

2.4.1 Questionnaires 

  

Depressive symptoms were assessed using the 17-item Hamilton Depression Rating 

Scale (HAMD) (Hamilton, 1960) with possible total scores ranging from 0 to 52. Manic 

symptoms were assessed using the 11-item Bech-Rafaelsen Mania Scale (MAS) (Bech, 

1995), with possible total scores ranging from 0 to 44. 
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2.4.2 Roulette task 

  

Participants completed a variant of a validated Roulette task (van Eimeren et al., 

2009), in which reward probability and magnitude were independently manipulated. Each 

trial consists of three stages: choice, anticipation and outcome (Figure 1). During choice, 

participants chose between four options that confer the same probability of reward. In low 

probability trials (25% chance of reward), participants selected one of four individual colours 

that made up the Roulette wheel. In high probability trials (75% chance of reward), they 

selected between four sets of three colours and won if the Roulette wheel stopped on any 

one of the three colours. The stake on offer (reward magnitude) was also presented prior to 

choice, with equal numbers of low (£3) and high (£9) magnitude trials. During anticipation, 

the Roulette wheel spun (3-4s). At outcome, the wheel stopped spinning with the location of 

the Roulette ball indicating whether the participant had won or lost the amount of money 

shown to be at stake at the choice phase. 

  

Participants were instructed to respond within the fixed duration of the choice phase; 

otherwise, a random choice would be automatically selected for that trial. They were 

informed that they would be paid the actual winnings following task completion. Participants 

completed 272 trials across eight blocks, each lasting approximately six minutes. 
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Figure 1 

 
Schematic of the Roulette task and parametric regression of EV and RPE signals 

 
  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. a) Participants placed bets on which colour would win in a Roulette spin. The trial 

sequence included three phases: choice, anticipation and outcome. b) Visual illustration of 
the regression of parametric modulators: standard and mood-biased EV and RPE signals, 
onto fMRI signal during anticipation and outcome. Adapted with permission from (Mason et 
al., 2014). 
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2.5 FMRI Acquisition and Preprocessing 

  

A 1.5-Tesla Philips scanner was used to acquire eight runs of 150 volumes of 

functional images using an echo-planar image sequence with repetition-time = 2450ms, 

echo-time = 25ms, flip angle = 90°, slices = 30 in ascending order, slice thickness = 4mm, 

in-plane resolution = 1.5 x 1.5mm and a standard field-of-view. 

  

Following acquisition, preprocessing of raw fMRI data is needed to account for non-

neuronal signals including head motion, MRI-induced artifacts, physiological contributions 

and tissues outside the scope of study and minimise data variability (Caballero-Gaudes & 

Reynolds, 2017). 

  

SPM12 (Wellcome Department of Cognitive Neurology, University College London) 

and Matlab R2018b were used to preprocess and analyse images. Each participant’s 

functional images were motion-corrected using a six-parameter rigid-body transformation to 

the mean image and slice-time-corrected to the middle slice. Functional images were next 

co-registered with each participant’s structural image, spatially normalised to the Montreal 

Neurological Institute (MNI) standard template and smoothed using an 8mm Gaussian 

kernel. Intrinsic autocorrelations were accounted for by AR(1) and low frequency drifts were 

removed via the 128s high pass filter. The author additionally used the ArtRepair toolbox 

(Mazaika et al., 2009) to minimise the impact of artifacts via the interpolation of outlier 

volumes. 

 

2.6 Statistical FMRI Parametric Analyses 

  

Individual first-level analyses were conducted using a whole-brain general linear 

model (GLM) as implemented in SPM12. FMRI BOLD responses in each run for each 

participant were modelled using regressors representing the three task conditions (Choice, 
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Anticipation and Outcome) and six motion-realignment parameters to reduce residual effects 

of motion. Additional regressors including standard and mood-biased EV and RPE estimates 

were calculated per trial. 

  

On each trial, standard EVs are calculated for gain outcome (positive EV), loss 

outcome (negative EV), and the net of these two quantities (net EV = positive + negative 

EV). Net EV is calculated as the product of reward magnitude and probability (positive EV) 

added to the product of loss magnitude and probability (negative EV). When we refer to 

standard EV, we refer to standard net EV values. Standard RPE was calculated in each trial 

as the difference between standard EV and the actual outcome (outcome minus net EV). 

Mood-biased EV and RPE estimates were calculated using Eldar and Niv (2015)’s mood-

biased model (Table 1). Mood is modelled as the accumulation of recent outcomes 

(Appendix D). 

 

We generated standard and mood-biased EV and RPE estimates using a Matlab 

analysis script that implemented Eldar and Niv (2015)’s computational model. Because 

mood-biased learning signals are very highly correlated with standard signals, they cannot 

be entered into regression models due to collinearity. To solve this, mood-biased learning 

signals were calculated as the difference between standard and mood-biased signals. These 

quantities were entered as parametric modulators (i.e. regressed against neural activation 

on each trial) during anticipation (standard EV and mood-biased EV) and during outcome 

(standard RPE and mood-biased RPE). In total, the first-level GLM model included 13 

regressors, which were convolved with a canonical haemodynamic response function. 

Individual contrast images (Choice, Anticipation, Anticipation-standard EV, Anticipation-

mood-biased EV, Outcome, Outcome-standard RPE and Outcome-mood-biased RPE) were 

computed. Individual contrast images of interest (standard and mood-biased EV and RPE) 

from the first-level were passed to a second-level GLM to examine within-group and 
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between-group activations. These analyses produced mean statistical maps of the contrast 

images of interest computed at the first-level analysis for each group.  
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Table 1 

Calculations of EV and RPE learning signals 

Condition 
name 

Probability Magnitude Standard 
positive 

EV 

Standard 
negative 

EV 

Net EV 
(Standard 
positive + 
negative 

EV) 

Outcome Standard 
RPE 

(Outcome
– Net EV) 

Mood-
biased net 

EV 
 

Mood-
biased 

Outcome  

Mood-biased RPE  

Unexpected 
low reward 

0.25 3 0.75 -2.25 -1.5 3 4.5 Net EV 
scaled by 

mood 

 Outcome 
scaled by 

mood 

Mood-biased Outcome – 
mood-biased net EV  

Unexpected 
low loss 

0.25 3 .75 -2.25 -1.5 -3 -1.5 Net EV 
scaled by 

mood 

Outcome 
scaled by 

mood 

Mood-biased Outcome – 
mood-biased net EV 

Unexpected 
high reward 

0.25 9 2.25 -6.75 -4.5 9 13.5 Net EV 
scaled by 

mood 

Outcome 
scaled by 

mood 

Mood-biased Outcome – 
mood-biased net EV 

Unexpected 
high reward 

0.25 9 2.25 -6.75 -4.5 -9 4.5 Net EV 
scaled by 

mood 

Outcome 
scaled by 

mood 

Mood-biased Outcome – 
mood-biased net EV 

Expected 
low reward 

0.75 3 2.25 -0.75 1.5 3 1.5 Net EV 
scaled by 

mood 

Outcome 
scaled by 

mood 

Mood-biased Outcome – 
mood-biased net EV 

Expected 
low loss 

0.75 3 2.25 -0.75 1.5 -3 -1.5 Net EV 
scaled by 

mood 

Outcome 
scaled by 

mood 

Mood-biased Outcome – 
mood-biased net EV 

Expected 
high reward 

0.75 9 6.75 -2.25 4.5 9 4.5 Net EV 
scaled by 

mood 

Outcome 
scaled by 

mood 

Mood-biased Outcome – 
mood-biased net EV 

Expected 
high loss 

0.75 9 6.75 -2.25 4.5 -9 -4.5 Net EV 
scaled by 

mood 

Outcome 
scaled by 

mood 

Mood-biased Outcome – 
mood-biased net EV 

Note. Positive EV = Probability x Magnitude; Negative EV = (1-Probability) x (-1 x Magnitude); net EV = positive EV + negative EV; RPE = 

Outcome – net EV; mood = model-estimated mood multiplied by a mood bias parameter of 1.2
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2.6.1 ROI analyses 

 

To examine whether anticipatory and outcome activation in the ventral striatum, 

anterior insula and VMPFC are parametrically modulated by standard and mood-biased EV 

and RPE within and between groups, we conducted ROI analyses in these regions. ROI 

analyses are a common approach to fMRI analysis when there are clear a-priori regional 

predictions of task-related activation based on prior research (Poldrack, 2007). Corrections 

for multiple comparisons at the whole-brain level are overly conservative when there are 

clear predictions; ROI analyses limit the number of statistical tests to several ROIs and 

control for Type I errors (Poldrack, 2007). 

  

The WFU PickAtlas tool (version 3.0.5) was used to generate an anatomical bilateral 

ventral striatum ROI mask by selecting the left and right nucleus accumbens regions (Figure 

2a). Peak coordinates for the VMPFC (x=-8, y=44, z=-2) were taken from Mason and 

colleagues (2014)’s study whereas peak coordinates for the bilateral anterior insula (left: x=-

30, y=22, z=-6; right: x=32, y=20, z=-6) were taken from Vinckier and colleagues (2018)’s 

study to create ROI masks using 8mm spheres centered around peak coordinates (Figures 

2b-c). The mean fMRI signal (beta estimates) across voxels in these ROIs for each 

participant were extracted for each contrast of interest using MarsBaR SPM toolbox 

(http://marsbar.sourceforge.net/) and exported to Statistical Package for the Social Sciences 

(SPSS) for further analyses. 

 

One-sample t-tests were conducted in SPSS on brain activity during the anticipation 

and outcome phases in the bilateral ventral striatum, bilateral anterior insula and VMPFC 

separately to test whether the regression weights for EV and RPE learning signals (standard 

or mood-biased) are different from zero – i.e. whether the ROIs represent the learning 

signals above what would be expected by chance.  
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Repeated-measures analysis of variance (ANOVA) tests were also conducted in 

SPSS during the anticipation and outcome phases in the three ROIs separately. EV and 

RPE learning signals (standard or mood-biased) were entered as within-group factors and 

group (healthy control or bipolar disorder) was entered as the between-group factor. For 

bilateral regions (ventral striatum and anterior insula), laterality (left or right) was additionally 

entered as a within-group factor. The significance threshold for the repeated-measures 

ANOVA ROI analyses was Bonferroni-corrected for three ROIs [p= .016 (.05/3)]. 
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Figure 2 

Region-of-interest masks for a) bilateral ventral striatum, b) bilateral anterior insula, and c) VMPFC  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b)  c)  
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2.6.2 Exploratory whole-brain analyses 

  

Whole-brain within-group and between-group activations were calculated using one-

sample and two-sample t-tests, respectively, with a cluster-corrected p< .05 family-wise error 

rate. This means that the significance level pertains to the likelihood that a cluster of 

contiguous voxels did not arise by chance. The necessary size of the cluster is denoted by 

the value of the cluster extent threshold (i.e. k threshold). 

  

2.6.3 Modulation of anticipatory and outcome activation by mood symptoms 

  

Depressive and manic symptom scores were entered as covariates in separate ROI 

and whole-brain analyses. These analyses only included participants with bipolar disorder 

because healthy controls, by design, reported very low levels of depressive and manic 

symptoms. 

  

2.7 Normality and Multicollinearity Checks 

  

To evaluate whether assumptions of normality for parametric testing were met, the 

normality of available continuous demographic and questionnaire data of interest (HAMD 

and MAS) were verified using the Shapiro-Wilk test and a skewness and kurtosis of between 

±1.00 (Appendix E). Shapiro-Wilk tests were statistically significant for manic but not 

depressive symptom scores (p>.05). A log transformation was subsequently applied to 

manic symptom scores. 

  

To assess multicollinearity, a Pearson’s correlation was conducted between 

depressive and manic symptom scores of participants with bipolar disorder, yielding 

moderate and significant correlations between the two (r = .60, p< .001). However, we 

entered depressive and manic symptom scores as covariates into one rather than separate 
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fMRI regression models to elucidate associations between BOLD responses and mood 

symptoms. Entering them separately may increase the risk of Type I errors, as there is 

insufficient power to tease the effects of depressive and manic symptoms apart. 
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3. Results 

 

3.1 Demographic Characteristics 

 

Twenty-one participants with bipolar disorder and twenty-one healthy controls 

participated in this research. Participant demographic data is presented in Table 2.  

 

An independent samples t-test and chi-square analysis indicated no significant 

between-group differences in age (p= .34) and sex (p= .76). As expected, participants with 

bipolar disorder had higher depressive (M= 3.83) and manic symptoms (M= 3.55) than 

controls (M= .60; M= .38) [depressive symptoms: t(24.90)=-4.73, p< .001; manic symptoms: 

t(33.08)=-5.61, p< .001]. T-tests for unequal variances were reported because Levene’s test 

for homogeneity of variances was violated [depressive symptoms: F(1,40)=20.60, p< .001; 

manic symptoms: F(1,40)=9.44, p= .004].  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

 89 

Table 2 

Participant demographics 

  Bipolar 
disorder,  

n=21 

Healthy 
controls, 

n=21 

Statistic p-

value 

Age, M (SD)* 35.95 (8.34) 33.25 
(9.32) 

t(38) = -.97 .34 

Female, n (%) 11 (52.4%) 9 (42.9%) χ2(1) = .38 .76 

Years of education,  
M (SD)* 

14.08 (2.47) 14.70 
(2.29) 

t(38) = .83 .41 

Primary diagnosis, n     

 BD-I 18    

 BD-II 3    

Current comorbidity, 
n* 

    

 GAD 2    

Lifetime diagnoses, 
n* 

    

 AUD/SUD 10    

 Panic disorder 4 1   

 GAD 2    

 OCD 1    

Medications, n*     

 Lithium 8    

 Valproate 5    

 Lamotrigine 2    

 SSRI 3    

 SNRI 3    

 Benzodiazepine 1    

 z hypnotic 3    

 None 4    

HAMD-17, M (SD) 3.83 (2.96) 0.6 (1.04) t(24.90) = -4.73 p<.001 

MAS-11, M (SD) 3.55 (3.09) 0.38 (1.11) t(25.05) = -4.43 p<.001 

 
Note. *Data from 2 participants are missing and not included. BD-I = Bipolar I Disorder; BD-II 

= Bipolar II Disorder; GAD = Generalised Anxiety Disorder; AUD = Alcohol Use Disorder; 
SUD = Substance Use Disorder; OCD = Obsessive-Compulsive Disorder; HAMD = Hamilton 
Depression Rating Scale; MAS = Bech-Rafaelsen Mania Score; SSRI = Selective Serotonin 
Reuptake Inhibitor; SNRI = Serotonin-Norepinephrine Reuptake Inhibitor 

 
 
 
 
 
 
 
 



 

 90 

3.2 ROI Analyses 

  

We tested whether 1) ROIs represent learning signals during anticipation (standard 

and mood-biased EV) and outcome (standard and mood-biased RPE) using one-sample t-

tests, and 2) whether individuals with bipolar disorder track mood-biased signals more 

strongly than controls, using repeated-measures ANOVA. A summary of the statistical 

findings for one-sample t-tests and ANOVAs are presented in Tables 3 and 4 respectively. 

  

3.2.1 Tracking of EV signals (H1a) and group differences in tracking of EV signals 

(H1b) during anticipation 

  

Ventral striatum. Counter to our predictions, ventral striatum activation did not track 

standard EV in either group as confirmed with one-sample t-tests (Table 3, Figure 3a); 

additionally, ventral striatum activation tracked mood-biased EV only in healthy controls 

[one-sample t-test: t(20)=2.54, p= .019]. Findings from the repeated measures ANOVA 

revealed no significant main effects or interactions (Table 4). 

  

Anterior insula. Similarly, anterior insula activation did not track standard or mood-

biased EV in either group (Table 3, Figure 3b). No significant main effects or interactions 

were found, though the interaction between EV and group trended towards showing greater 

tracking of mood-biased than standard EV in controls and standard than mood-biased EV in 

participants with bipolar disorder (Table 4, Figure 3b). 

  

VMPFC. VMPFC activation did not track mood-biased EV in either group (Table 3, 

Figure 3c); additionally, VMPFC activation tracked standard EV only in controls [one-sample 

t-test: t(20)=-2.44, p= .024]. Visual inspection of the plotted graph suggests that EV-

modulated VMPFC activations are small and negative across groups (Figure 3c). No 

significant main effects or interactions were found (Table 4). 
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Table 3 

Summary of one-sample t-tests results 

 Learning 
signal 

 M t df p 

Healthy controls      

Ventral 
striatum 

Standard EV  .12 .40 20 .697 

 Mood-biased EV .10 2.54 20 .019 

 Standard RPE  .35 7.04 20 .0000001 

 Mood-biased 
RPE 

.04 .64 20 .529 

       

Anterior insula Standard EV  -.03 -1.33 20 .198 

 Mood-biased EV .04 .89 20 .385 

 Standard RPE  .14 2.35 20 .029 

 Mood-biased 
RPE 

.06 1.00 20 .328 

       

VMPFC Standard EV  -.05 -2.44 20 .024 

 Mood-biased EV -.03 -.77 20 .451 

 Standard RPE  .11 2.37 20 .028 

 Mood-biased 
RPE 

.12 2.05 20 .054 

       
Bipolar disorder      

Ventral 
striatum 

Standard EV  .04 1.18 20 .253 

 Mood-biased EV -.01 -.19 20 .853 

 Standard RPE  .36 3.60 20 .002 

 Mood-biased 
RPE 

.06 .69 20 .498 

       

Anterior insula Standard EV  .02 .47 20 .644 

 Mood-biased EV -.05 -1.39 20 .180 

 Standard RPE  .18 2.93 20 .008 

 Mood-biased 
RPE 

.05 .75 20 .46 

       

       

VMPFC Standard EV  .02 .48 20 .640 

 Mood-biased EV -.09 -1.26 20 .223 

 Standard RPE  .40 3.75 20 .001 

 Mood-biased 
RPE 

.07 .72 20 .481 
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Figure 3 

Modulation of anticipatory activity by EV: a) controls track mood-biased EV in the ventral 
striatum, b) neither group tracks standard and mood-biased EV in the anterior insula and c) 
controls track standard EV in the ventromedial prefrontal cortex 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note. 
*Significant one-sample t-test. HC = healthy control; BD = bipolar disorder 

 
  

a) 

b) 

c) 

* 

* 
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3.2.2 Tracking of RPE signals (H2a) and group differences in tracking of RPE signals 

(H2b) during outcome  

 

Ventral striatum. As expected, ventral striatum activation tracked standard RPE 

across groups as confirmed by one-sample t-tests [Figure 4a, controls: t(20)=7.04, p< .001; 

bipolar disorder: t(20)=3.60, p= .002], whereas mood-biased RPE was not tracked by either 

group (Table 3). The ventral striatum showed a significant main effect of RPE learning signal 

[F(1,40)=11.81, p= .001], but no significant interactions (Table 4). 

 

Follow-up pairwise comparison tests indicated stronger modulation of outcome 

activation by standard than mood-biased RPE across groups (controls: p= .018, 95% CI [.06, 

.56]; bipolar disorder: p= .022, 95% CI [.05, .54]). Counter to our expectations, we did not 

find evidence of between-group differences in which mood-biased RPE was tracked more 

strongly by participants with bipolar disorder than controls (p≥ .86) (Figure 4a). 

 

Anterior insula. Anterior insula activation tracked standard RPE across both groups 

as confirmed by one-sample t-tests [Figure 4b; controls: t(20)=7.04, p< .001; bipolar 

disorder: t(20)=2.35, p= .029], whereas mood-biased RPE was not tracked by either group 

(Table 3) (Figure 4b). However, no significant main effects or interactions were found (Table 

4, p≥ .18). 

 

VMPFC. VMPFC activation tracked standard RPE across both groups as confirmed 

by one-sample t-tests [Figure 4c; controls: t(20)=2.37, p< .028; bipolar disorder: t(20)=3.75, 

p= .001]. A one-sample t-test confirmed that VMPFC activation weakly tracked mood-biased 

RPE at trend-level only in controls [controls: t(20)=2.05, p= .054; bipolar disorder: t(20)=-

1.26, p= .223]. The VMPFC showed a significant interaction between group and RPE 

learning signal [Figure 4c; F(1,40)=18.23, p< .001].  
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Follow-up pairwise comparisons indicated that standard RPE (M= .40) was tracked 

more strongly than mood-biased RPE (M= .07) in individuals with bipolar disorder (p= .006, 

95% CI [.10, .56]). However, in controls, standard RPE (M= .11) was tracked comparably to 

mood-biased RPE (M= .12) (p= .915, 95% CI [-.24, .22]). We found a significant between-

group difference in which standard RPE was tracked more strongly in individuals with bipolar 

disorder (M= .40) than controls (M= .11) (p= .018, 95% CI [.05, .52]). No significant 

differences in mood-biased RPE modulated activity were found between controls (M= .12) 

and participants with bipolar disorder (M= .07) (p= .623, 95% CI [-.17, .28]). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



 

 95 

Table 4 

Summary of repeated measures ANOVA results 

  Factors F df p 

EV      

Ventral striatum    

 Main effects    

  Laterality .004 1, 40 .950 

  EV .12 1, 40 .734 

  Group .70 1, 40 .408 

      

 Interactions    

  Laterality*Group .08 1,40 .774 

  EV*Group 2.58 1,40 .116 

  Laterality*EV .55 1, 40 .462 

  Laterality*EV*Group .002 1, 40 .965 

      

Anterior insula    

 Main effects    

  Laterality .14 1, 40 .714 

  EV .004 1, 40 .950 

  Group .44 1, 40 .511 

      

 Interactions    

  Laterality*Group .07 1, 40 .796 

  EV*Group 3.03 1, 40 .09 

  Laterality*EV 1.96 1, 40 .169 

  Laterality*EV*Group .09 1, 40 .763 

      

VMPFC     

 Main effects    

  EV .65 1, 40 .425 

  Group .04 1, 40 .839 

      

 Interactions    

  EV*Group 1.42 1, 40 .241 

      

RPE      

Ventral striatum    

 Main effects    

  Laterality 1.36 1, 40 .251 
  RPE 11.81 1, 40 .001 
  Group .05 1, 40 .832 
      
 Interactions    
  Laterality*Group .006 1, 40 .938 
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  RPE*Group .003 1, 40 .955 
  Laterality*RPE .11 1, 40 .744 
  Laterality*RPE*Group .74 1, 40 .395 
      
Anterior insula    
 Main effects    
  Laterality 1.22 1, 40 .277 
  RPE 1.9 1, 40 .176 
  Group .112 1, 40 .74 
      
 Interactions    
  Laterality*Group .48 1, 40 .277 
  RPE*Group .13 1, 40 .724 
  Laterality*RPE .62 1, 40 .436 
  Laterality*RPE*Group .002 1, 40 .963 
      
VMPFC     
 Main effects    
  RPE 3.98 1, 40 .053 
  Group 1.96 1, 40 .169 
      
 Interactions    
  RPE*Group 4.61 1, 40 .038 
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Figure 4 

Modulation of outcome activity by RPE: a) both groups track standard RPE more strongly 
than mood-biased RPE in the ventral striatum, b) both groups track standard RPE, but not 
mood-biased RPE in the anterior insula and c) participants with bipolar disorder track 
standard RPE more strongly than controls in the ventromedial prefrontal cortex  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note. *Significant pairwise comparisons at p< .05. HC = healthy control; BD = bipolar 

disorder 

a) * * 

b) 

c) * * 
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3.3 Modulation of Anticipatory and Outcome ROI Activation by Mood Symptoms and 

Model-Estimated Mood 

 

As mentioned in the Methods section, follow-up analyses of the effect of mood 

symptoms on EV- and RPE-modulated activity were restricted to participants with bipolar 

disorder as controls, by design, reported very low levels of depressive and manic symptoms. 

Follow-up analyses were also conducted to test whether outcome activation in the anterior 

insula was modulated by trial-wise model-estimated mood values.  

 

3.3.1 H3a: Tracking of EV signals during anticipation 

 

Anterior insula. The anterior insula showed no additional significant main effect or 

interactions when mood symptoms were added as covariates (Appendix F), though the main 

effect of depressive symptoms trended towards significance (p= .02; Bonferroni-corrected p> 

.016).  

 

The ventral striatum and VMPFC showed no additional significant main effects or 

interactions (Appendix F).  

 

3.3.2 H3b: Tracking of RPE signals during outcome 

 

Anterior insula. The anterior insula showed additional significant main effect of 

laterality [F(1,18)=7.77, p= .012], interaction between laterality and manic symptoms 

[F(1,18)=7.41, p= .014] and main effect of manic symptoms [F(1,18)=7.49, p= .014] .  

 

Follow-up pairwise comparison tests suggest no significant differences in RPE-

modulated activity between left (M= .12) and right anterior insula (M= .11) (p= .72, 95% CI [-

.05, .07]). Follow-up Spearman’s correlations indicated that manic symptoms were 
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significantly correlated with right, but not left anterior insula activity modulated by the mean 

values of standard and mood-biased RPE added together [ρ(21)= .69, p= .001; ρ(21)= .43, 

p= .051 ] (Figure 5a). We found that manic symptoms were positively correlated with mood-

biased, but not standard RPE-modulated activity in the anterior insula [ρ(21)= .53, p= .013; 

ρ(21)= .10, p= .668] (Figure 5b). 

 

Follow-up analyses showed that model-estimated mood modulated right anterior 

insula activation in participants with bipolar disorder [one-sample t-test: M= 1.87, t(20)=2.04, 

p= .024], but not controls [one-sample t-test: M= .13, t(20)= .18, p= .43]. No significant group 

differences were found, though participants with bipolar disorder trended towards showing 

greater activity modulated by model-estimated mood, compared to controls [t(40)= 1.50, p= 

.07]. Model-estimated mood also modulated left anterior insula activation in controls [one-

sample t-test: M= 1.60, t(20)=3.09, p= .002], but not in participants with bipolar disorder 

though the latter trended towards showing greater activation modulated by model-estimated 

mood [one-sample t-test: M= .93, t(20)=1.44, p= .08]. No significant group differences were 

found  [t(40)= .81, p= .21]. 

 

The ventral striatum and VMPFC showed no additional significant main effects or 

interactions (Appendix F).  
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Figure 5 

Higher levels of manic symptoms are associated with greater outcome-locked activation in 
the a) right anterior insula modulated by mean of standard and mood-biased RPE and b) in 
the bilateral anterior insula modulated by mood-biased RPE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note. MAS = Bech-Rafaelsen Mania Scale  
 
 

a) 

b) 

(21)= .69, p= .001 

(21)= .53, p= .013 
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3.4 Exploratory Whole-Brain Analyses  

 

Within-group activations in healthy controls and participants with bipolar disorder for 

standard and mood-biased EV and RPE signals at a cluster-corrected threshold are 

presented below and summarised in Appendix G.  

 

Because of the exploratory nature of our whole-brain analyses and the highly related 

constructs of standard and mood-biased EV and RPE, which would likely yield small effects, 

a less conservative p(uncorrected)< .001 threshold was used for between-group activations 

(Appendix H). 

 

Standard and mood-biased EV- and RPE-modulated activations were not 

significantly correlated with either depressive or manic symptoms at the cluster-corrected 

level; results at the p(uncorrected)< .001 threshold are presented below and summarised in 

Appendix I.  

 

3.4.1 Tracking of EV signals and group differences in tracking of EV signals during 

anticipation 

 

Modulation of anticipatory activation by standard EV was observed only in controls 

and not in participants with bipolar disorder. Healthy controls exhibited significant clusters of 

activation in the right angular and inferior parietal gyri modulated by standard EV (Appendix 

G; Figure 6a-b). Neither group showed mood-biased EV-modulation of anticipatory 

activation even at p(uncorrected)< .001 (Table 3). 

 

Healthy controls exhibited greater modulation of anticipatory activation by standard 

EV in the right paracentral lobule and by mood-biased EV in the left parahippocampal gyrus 

than participants with bipolar disorder (Appendix H; Figure 7a). Participants with bipolar 
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disorder exhibited greater modulation of anticipatory activation by mood-biased EV in the left 

calcarine (Appendix H; Figure 7b). 

 

Standard EV-modulated activations in the right anterior insula and left caudate were 

negatively correlated with depressive symptoms and standard EV-modulated activity in the 

right caudate was positively correlated with manic symptoms (Appendix I). Mood-biased EV-

modulated activity was not significantly correlated with either depressive or manic 

symptoms. 

 

3.4.2 Tracking of RPE signals and group differences in tracking of RPE signals during 

outcome 

 

Modulation of outcome activation by standard RPE, but not mood-biased RPE, was 

observed in controls and participants with bipolar disorder. Healthy controls exhibited 

significant RPE-modulated activity in the right superior parietal and olfactory gyri whereas 

participants with bipolar disorder exhibited significant RPE-modulated activity across multiple 

regions including the precuneus, nucleus accumbens, anterior and middle cingulate cortices, 

middle temporal and frontal gyri (Appendix G; Figure 6a-b). Mood-biased RPE-modulation of 

outcome activation was observed in both groups only at an uncorrected threshold (Table 3; 

Figure 6c-d). 

 

Participants with bipolar disorder exhibited greater modulation of outcome activation 

by standard RPE in the precuneus, middle temporal, supramarginal and lingual gyri, 

supplementary motor area, caudate, and anterior cingulate cortex and by mood-biased RPE 

in the right middle occipital gyrus than controls (Appendix H; Figure 7c). Only the standard 

RPE-modulated activity in the precuneus survived cluster-correction. 
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Standard RPE-modulated activations in the bilateral parahippocampal gyurs were 

positively correlated with depressive symptoms whereas standard RPE-modulated activity in 

the left thalamus and left precentral gyrus were negatively correlated with depressive 

symptoms (Appendix I). Standard RPE-modulated activity in the bilateral precuneus was 

negatively correlated with manic symptoms. Mood-biased RPE-modulated activity in the left 

nucleus accumbens was positively correlated with depressive symptoms whereas mood-

biased RPE-modulated activity in the right inferior parietal gyrus and right precuneus were 

negatively associated with manic symptoms.  
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Figure 6 

Modulation of within-group whole-brain activation by a) standard expected value and reward 
prediction error in healthy controls, b) standard reward prediction error in participants with 
bipolar disorder, c) mood-biased reward prediction error in healthy controls and d) mood-
biased reward prediction error in participants with bipolar disorder 

 

 
 
 
Note. Red-yellow and blue-green colours represent EV and RPE signals respectively. b) 
Only standard RPE-modulated activity in participants with bipolar disorder is shown, as 
standard EV-modulated activity did not survive cluster-correction; c-d) Across groups, mood-
biased EV showed no significant activations at cluster-level or p(uncorrected)< .001 

thresholds and mood-biased RPE-modulated activations did not survive cluster-correction. 
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Table 3 

Within-group whole-brain activation of mood-biased EV and RPE at p(uncorrected)<. 001 
threshold 
 

   Peak MNI  

 Description of brain regions k x y z t 

Healthy controls      

Mood-
biased 
EV  

No significant within-group activations     

      

       

Mood-
biased 
RPE 

Left cuneus 18 -2 -78 22 3.89 

Left thalamus 17 -12 -24 4 3.73 

Right middle temporal gyrus 8 48 -40 2 3.72 

 Left calcarine 6 -20 -76 8 3.69 

 Left lingual gyrus 6 0 -64 4 3.47 

       
Bipolar disorder      

Mood-
biased 
EV 

No significant within-group activations     

      

       

       

Mood-
biased 
RPE 

Right middle occipital gyrus 17 36 -70 38 4.11 

Left superior anterior cingulate 
cortex 

60 0 30 20 3.77 

Right pregenual anterior 
cingulate cortex 

28 10 44 18 3.76 

 Right middle temporal gyrus 7 64 -26 -6 3.74 

 Left precentral gyrus 5 -46 4 46 3.6 

 Right putamen 6 22 0 8 3.47 

 
Note. MNI = Montreal Neurological Institute; EV = expected value; RPE = reward prediction 

error 
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Figure 7 

Group differences in the modulation of whole-brain anticipatory and outcome activation by 
standard and mood-biased signals, p(uncorrected)< .001  
 

 
 
Note. Red-yellow and blue-green colours represent EV and RPE signals respectively.  
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4. Discussion 

 

This study aimed to take account of momentary changes in mood and its effects in 

biasing the perception of reward in a clinical sample with bipolar disorder and matched 

controls. We utilised an existing neuro-computational model of mood (Eldar & Niv, 2015) to 

investigate whether mood-biased learning signals (EV and RPE) are represented in addition 

to non-mood-biased (standard) signals in the ventral striatum, anterior insula and VMPFC. 

We also examined whether mood-biased signals would be tracked more strongly in these 

regions in individuals with bipolar disorder than matched controls, and whether these effects 

are modulated by mood symptoms.  

 

Overall, the results provide some evidence for greater representation of mood-biased 

signals in individuals with bipolar disorder. This is exemplified by group-level differences in 

the precuneus and occipital regions and positive modulation by mood symptoms as 

exemplified by increased activation in the anterior insula, ventral striatum, and 

parahippocampal gyrus, and the deactivation of regions that comprise the default-mode 

network (precuneus and posterior parietal cortex) (Broyd et al., 2009). As expected, both 

groups tracked standard RPE in all three ROIs, in line with previous findings (Chase et al., 

2015; D’Astolfo & Rief, 2017; Garrison et al., 2013); notably, participants with bipolar 

disorder track standard RPE-modulated VMPFC activity more strongly than controls.  

 

4.1 Mood-Biased Learning Signals and Modulation by Mood Symptoms 

 

Whole-brain analyses under a less conservative threshold indicate that individuals 

with bipolar disorder track mood-biased RPE signals in several regions including the anterior 

cingulate cortex and putamen (i.e. dorsal striatum), which are implicated in selecting optimal 

actions based on learned associations to support goal-directed behaviour (Akam et al., 

2021; Balleine et al., 2007). These results could therefore indicate the influence of 
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momentary mood on the recruitment of attentional and motor control processes, driven by 

momentary mood, involved in adjusting behaviour to achieve a desired goal. While ROI 

analyses found limited, representation of mood-biased signals in participants with bipolar 

disorder, healthy controls were shown to track mood-biased EV, and to a lesser extent, 

mood-biased RPE signals, in the ventral striatum and VMPFC respectively.  

 

Whole-brain analyses additionally found some group-level differences, in which 

participants with bipolar disorder showed greater mood-biased EV- and RPE-modulated 

activity in visual processing areas (e.g. calcarine and middle occipital gyrus) than controls. 

This could indicate greater attentional engagement driven by momentary mood towards 

expected outcomes and RPEs. This view accords with previous studies documenting the 

impact of positive mood on the broadening of visual attention (Wadlinger & Isaacowitz, 

2006), leading to greater mobilisation of effort in obtaining and seeking rewards in bipolar 

disorder (Johnson et al., 2017). Additionally, controls showed greater tracking of mood-

biased EV signals than participants with bipolar disorder in the parahippocampal gyrus – a 

region involved in encoding and retrieving memory representations (Bohbot et al., 2015). 

This suggests greater integration of mood-biased RPE representations from previous trials 

in memory, resulting in more realistic expectations of future outcomes, rather than eliciting 

large mood fluctuations with each trial-wise RPE. It is important to note, however, that the 

above findings were under a less conservative threshold and begs further replication. 

 

One possibility for the above pattern of results, in which mood-biased influences on 

learning signals were detected predominantly under a less conservative whole-brain 

threshold, could be higher heterogeneity within the bipolar disorder group. Indeed, we found 

evidence that differences in mood symptoms modulated several effects (see paragraphs 

below). In addition, mood-biased signals were computed assuming a moderate level of 

mood bias, which could still be adaptive (Eldar et al., 2016), and therefore not optimal for our 

task and clinical sample. Given that we approximated this level of mood bias from Eldar and 
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Niv (2015)’s healthy sample with higher mood instability, determined by a median split, it 

could be argued that half of our healthy participants would have the same levels of mood 

bias whereas participants with bipolar disorder would have stronger mood bias values. 

Therefore, using higher values of mood bias in future analyses might better discriminate the 

effects of mood-biased signals in individuals with bipolar disorder.  

 

In our ROI analyses, we found that greater residual manic symptoms are associated 

with stronger mood-biased influences on RPE signals in the right anterior insula, which has 

previously been linked to reward-based salience (Wang et al., 2015). This is corroborated by 

our follow-up analyses, which found that model-estimated mood positively modulated 

outcome activation in the right anterior insula in participants with bipolar disorder, who 

trended towards showing greater activation than controls, consistent with previous findings 

(Rutledge et al., 2014). Whole-brain level analyses demonstrated that increased manic 

symptoms were associated with reduced mood-biased RPE-modulated PPC and precuneus 

activity, which is part of the default-mode network. This network is activated during the 

processing of internal mental states when individuals are not engaged in a task (Broyd et al., 

2009). Our findings thus indicate that greater manic symptoms are associated with greater 

salience towards and task-focus during the perception of outcomes. Similarly, individuals 

with greater depressive symptoms track mood-biased RPE-modulated ventral striatum 

activity more strongly, suggesting greater mood-biased affective and motivational responses 

to outcomes (Rutledge et al., 2014). Individuals with more depressive symptoms also show 

increased and decreased tracking of standard RPE signals in regions involved in memory 

(parahippocampal gyrus) and motor processing (thalamus and primary motor cortex) 

respectively (Wang et al., 2020). This may suggest greater encoding of RPEs in memory, 

which fails to translate to optimal planning and execution of goal-directed behaviours.  

 

Notably, while higher levels of depressive symptoms were associated with decreased 

standard EV-modulated activation in the caudate and anterior insula, higher levels of manic 
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symptoms was associated with increased caudate activity. The caudate, part of the dorsal 

striatum, is implicated in selecting actions contingent upon learned action-outcome 

associations (Balleine et al., 2007). This dissociation could suggest that manic symptoms 

promote greater salience towards outcomes and mobilisation of effort towards selecting 

actions that promote reward-seeking and vice-versa for depressive symptoms. However, 

further work, in which separate positive and negative EV signals are regressed against 

dorsal striatum activation, is warranted to confirm this, as in our study, EV was modelled as 

the net value of positive and negative EVs (for potential rewards and losses respectively).  

 

Taken together, we found that residual manic symptoms and momentary mood 

biases the perception of outcomes, highlighting the impact of mood states on mood bias i.e. 

an individual with greater mood symptoms will experience a stronger effect of mood bias on 

reward perception. One could argue that these manic symptoms represent trait-level mood 

rather than mood states. As such, our findings in which anterior insula activity is modulated 

by manic symptoms could reflect a trait-based mechanism such that individuals with greater 

manic symptoms have a stronger trait-level mood bias. In line with this, Mason and 

colleagues (2017) proposed that strong mood biases represent vulnerability factors that 

generate and maintain mood symptoms in bipolar disorder. However, further longitudinal 

studies are warranted to assess whether the tendency for mood to bias reward perception 

varies with fluctuating mood states or manifests as a trait. 

 

4.2 Differences in the Representation and Propagation of Standard Learning Signals 

 

Both ROI and whole-brain analyses indicate that compared to controls, individuals 

with bipolar disorder showed stronger RPE-modulated activity in the VMPFC and precuneus 

respectively, with the latter finding surviving cluster-correction. This could suggest greater 

emotional impact of discrepancies between expectations and outcomes (Rutledge et al., 

2014). Other reward task-fMRI studies have interpreted outcome-locked precuneus 
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activation as indexing arousal levels and reward responsivity (Bradley et al., 2017; Koch et 

al., 2018). Individuals with bipolar disorder could thus be oversensitive to RPEs, updating 

expectations abruptly, which could trigger marked mood fluctuations and goal-directed 

behaviour. For instance, successive wins on a roulette game may result in the 

overgeneralisation of these better-than-expected outcomes and inflated expectations of 

experiencing future events of low probability (e.g. winning the lottery). Previous studies show 

that individuals with bipolar disorder perform comparably to controls on behavioural 

measures of reinforcement-learning (Barch et al., 2017; Lewandowski et al., 2016; Strauss 

et al., 2015); however, one study reported that individuals who most recently experienced a 

manic rather than depressive episode showed increased sensitivity to outcomes and vice-

versa (Linke et al., 2011). Notably, there might be other mechanisms (top-down attentional 

or cognitive processes) beyond the biasing effect of momentary mood on reward perception 

that might explain the increased RPE-modulated activity in participants with bipolar disorder. 

 

Although ROI and whole-brain analyses suggest that individuals with bipolar disorder 

robustly track standard RPEs, and to a lesser extent, mood-biased RPEs, they show modest 

representation of EV signals. This could suggest that, unlike healthy controls, individual with 

bipolar disorder show a lack of integration of trial-wise RPEs and updating of value 

representations. As a result, it could be that such failures in integration maintain unrealistic 

expectations of outcomes, which generate further mood instability when those expectations 

are not met (Mason et al., 2017). Our findings potentially suggest more efficient cross-talk 

between regions tracking standard RPE (ventral striatum, anterior insula, VMPFC) and EV 

(VMPFC), which is likely the final common pathway for selecting goal-directed actions and 

choices (Gläscher et al., 2009). This is corroborated by whole-brain analyses, in which only 

controls showed overlapping standard EV and RPE-modulated activity in the posterior 

parietal cortex (PPC) – a region posited to orient attention towards reward-associated visual 

representations of choices during decision-making (Sacré et al., 2017).  
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However, in order to derive directional relationships of how learning signals are 

propagated between regions, studies using analysis techniques that model causal 

relationships between brain regions (e.g. dynamic causal modelling) are warranted. 

Moreover, there remains an open question pertaining to how mood-biased learning signals 

are propagated across brain regions and whether it is distinct to how standard signals are 

propagated. It would be interesting to investigate if the propagation of mood-biased learning 

signals among the ventral striatum, anterior insula and VMPFC show alterations between 

individuals with bipolar disorder and healthy controls. Understanding these functional neural 

dynamics would facilitate the identification of precise network-level mechanisms underlying 

mood instability in bipolar disorder, which can be targeted with better efficacy in clinical 

intervention. Moreover, further research can examine how these network dynamics change 

across contexts (e.g. across development, within and out-of-episode, and after treatment). 

 

Alternatively, another possibility that could explain the relatively weak representation 

of EV signals in general is the greater tracking of negative EV signals across participants. In 

support of this, previous research demonstrated that losses are weighted more heavily than 

gains of similar value (i.e. loss aversion) (Kahneman & Tversky, 1979). Additionally, other 

computational work suggests that negative RPEs exert greater influences than positive 

RPEs in modulating (decreasing vs. increasing) gambling behaviour (Otto et al., 2016). 

Future work could therefore apply a model, which regresses positive and negative EV and 

RPE values separately. More robust representation of mood-biased signals could also be 

obtained if mood is modelled and initialised as a value based on participants’ mood 

symptoms such that negative mood values are modelled for individuals with higher levels of 

depressive symptoms and vice-versa for manic symptoms. 

 

4.3 Strengths and Limitations 
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This is the first study to apply a neuro-computational model of mood to fMRI data in a 

clinical sample and to examine effects of momentary mood in the loss domain. However, our 

findings should be interpreted within the context of several limitations. First, we utilised a 

paradigm with explicit cues that reduces behavioural differences attributed to learning 

effects, which meant that we could not estimate each participant’s learning rate parameter, 

and derived mood bias and learning rate parameters from Eldar and Niv (2015)’s sample. As 

such, this precluded being able to confirm that the mood bias and learning rate parameters 

we selected explained participants’ momentary mood and choices, which could have 

underestimated inter-individual variability. Alternatively, a future study could use a different 

task, in which learning rate and mood bias parameters for each participant could be derived; 

this was not feasible in this study, which is a secondary analysis of an existing dataset. 

However, a recent study suggests that regressing individual learning rates yields minimal 

changes to results (Wilson & Niv, 2015). Moreover, the mood-biased reinforcement-learning 

model has been validated in Eldar and Niv’s (2015) study, and we additionally confirmed in 

our further analyses that model-estimated mood is tracked by the anterior insula, in line with 

previous studies (Rutledge et al., 2014; Vinckier et al., 2018).  

 

Second, given that this is the first study to implement Eldar and Niv (2015)’s neuro-

computational model within a clinical population, the findings of this study should be 

considered as preliminary and holds no immediate clinical utility. Third, although our power 

analysis suggests that an implied power of 89% was achieved with our sample size (N=42), 

our findings could be restricted to this dataset and may not be generalisable across other 

populations. Further replication with larger sample sizes in future task-based fMRI studies of 

clinical populations are therefore warranted. Fourth, this study did not control for the 

potentially confounding effects of medication on reward-related neural activity. Although this 

was partially mitigated through the exclusion of individuals who used antipsychotic 

medication, future studies could examine reward processing in unmedicated or medication-

naïve individuals with bipolar disorder. 



 

 114 

4.4. Conclusion 

 

In summary, our findings provide some evidence that individuals with bipolar disorder 

track mood-biased RPEs more strongly than controls, and this tendency was increased in 

those with greater manic symptoms. We also found that individuals with bipolar disorder who 

were out-of-episode track violations of expectations in relation to outcomes (i.e. RPEs) more 

closely than healthy controls. However, unlike healthy controls, they show limited integration 

of these RPEs and updating of standard and mood-biased value representations.  

 

4.4.1 Implications for future research and clinical practice 

 

Given the null findings reported in relation to the ROI analyses, the results of this 

study could inform hypotheses for future research to more thoroughly investigate whether 

these brain regions represent mood-biased EV and RPE signals in individuals with bipolar 

disorder. As our study was conducted with individuals who were out-of-episode, further 

studies are needed to assess the role of dynamic mood states in biasing reward perception 

in bipolar disorder within (hypo)manic and depressive episodes and how that might relate to 

dysregulated goal-directed behaviour. Additionally, longitudinal studies are needed to 

examine the degree to which reinforcement-learning in bipolar disorder is modulated by trait-

level differences in mood instability versus momentary changes in mood. At present, the 

findings of this study hold no direct implications for clinical practice. However, with further 

replications and studies, future clinical fMRI studies could yield findings that hold more 

immediate implications for interventions for bipolar disorder. For instance, a recent study has 

shown that interventions that target reward-driven attentional processes, such as 

mindfulness, have been shown to down-regulate RPE signals in the brain (Kirk et al., 2019).. 
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1. Introduction 

 

This critical appraisal discusses key themes that arose during the research process. 

First, researcher influences and positionality will be highlighted. Second, the relevance of 

understanding mechanisms underlying psychological distress and those that promote 

recovery will be discussed in relation to the present research. Third, the promises and pitfalls 

of neuroimaging and computational psychiatry research and its current application to 

psychological clinical practice will be presented. Finally, general recommendations for 

clinical fMRI research are summarised. 

 

1.1 Influences on the Present Research 

 

Before starting clinical training, I was a research assistant in a clinical neuroimaging 

lab, which conducted studies using functional magnetic resonance imaging (fMRI) and 

investigated the neurobiological mechanisms underlying substance use disorders. I was 

there for a yearlong placement as part of my master’s programme and during my time there, 

I thoroughly enjoyed the research process and even participated in several neuroimaging 

studies as a participant. As a novice who did not have prior programming experience, I 

found neuroimaging analyses to be challenging at times and was often learning through trial 

and error. However, I found it exciting to be using innovative and novel techniques in the 

pursuit of understanding the relationship between brain and behaviour, especially when it 

has the potential to contribute to the refinement and development of clinical interventions.  

 

Whilst I was on my research placement, I was introduced to multiple perspectives of 

psychological theory and the possibility for integrating disciplines that I had thought could not 

be reconciled e.g. neuropsychoanalysis. This value of integration is what propels me to 

further my interests and skills in conducting clinical neuroimaging research. As a person who 

had graduated university and was undecided about pursuing either a research or clinical 
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career, my experiences have led me to pursue and hold more of a both/and position. As a 

trainee clinical psychologist, I recognise the importance of conducting service-level research 

and generating practice-based evidence to improve and inform clinical practice. In tandem, I 

also aspire to use my unique position as a clinician to engage in clinical neuroscience 

research, which at times have been criticised as being too reductionist (Krakauer et al., 

2017). This research project was thus congruent with my prior experiences with 

neuroimaging research and my personal and professional values of integrative working and 

thinking. 

 

1.2 The Importance of Understanding Mechanisms 

 

Throughout my involvement in this research, I thought about the link between my 

therapeutic work with services users and the psychobiological mechanisms underlying the 

development and maintenance of psychological distress, and importantly, those that 

promote the alleviation of psychological distress. In my personal clinical experience, I find 

that service users I have worked with appreciated formulations, which included both 

psychological and neurobiological levels of explanation, though notably, this may not always 

be the case for all service users. In my work with children and families, I use Dr Dan Siegel’s 

Hand Model of the Brain (Siegel & Hartzell, 2013), to explain how the brain perceives and 

copes with threat and trauma, which affects how we regulate emotions. Including such 

explanations to explain how our cognitions, physiological sensations and emotions are 

interlinked may be helpful for some service users in understanding how and why we may 

feel certain emotions within certain contexts. Conducting research that further elucidates 

brain-behaviour relationships may provide a deeper understanding of such mechanisms, 

which can be included in clinical formulations to help normalise and validate service users’ 

experiences. 
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A number of recommendations have been suggested for the future of mental health 

research including the importance of elucidating shared and dissociable mechanisms 

underlying the development and maintenance of psychological distress and existing 

psychological interventions across multiple disciplines and levels of analysis, including 

genes, neural structure and function, behaviour, self-report and interviews (Holmes et al., 

2018; Insel et al., 2010). Returning to research focusing on mechanisms could potentially 

contribute to the improvement of clinical interventions. For instance, computational modelling 

frameworks such as the application of reinforcement learning models could be used to 

understand mechanisms that generate and maintain psychological distress (Nair et al., 

2020), and examine whether these mechanisms are shared across disorders (Zald & 

Treadway, 2017). Reinforcement learning models could potentially be used to evaluate 

existing psychological therapies such as CBT (Nair et al., 2020) and mindfulness (Kirk et al., 

2019), and explain why certain people may not benefit from certain therapies (Moutoussis et 

al., 2018).  As such, understanding how symptoms of psychological distress manifest within 

and across disorders and why psychological therapies work for some and not others could 

help towards refining interventions that better target agents of change, have broad utility 

across disorders, and afford greater precision in tailoring interventions to individuals 

(Dalgeish et al., 2020).  

 

In relation to shifting the focus on mechanistic research, the meta-analysis and 

empirical study both examine psychobiological processes underlying psychological distress, 

at the level of functional brain activity. While the former adopted a transdiagnostic approach 

and examined shared processes underlying dyregulated goal-pursuit and reward processing 

across disorders, the latter focused on using computational modelling approaches to fMRI 

data to examine mechanisms underlying mood instability in bipolar disorder. 

 

 Findings from the empirical study provide encouraging evidence that momentary 

mood fluctuations affect how individuals perceive reward (e.g. higher or lower than its actual 
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value). This is evident by reward-related brain activity in several regions including the 

anterior insula, which was found to be modulated by mood (manic and depressive) 

symptoms and model-estimated mood. This mood bias effect is posited to be an adaptive 

mechanism, which allows for optimal decision-making and goal-pursuit (Eldar et al., 2016). 

Based on Mason and colleagues (2017)’s neuro-computational framework, the presence of 

an inherently strong mood bias is proposed to result in unrealistic expectations of future 

outcomes, resulting in manic episodes when momentary mood is elevated and depressive 

episodes when momentary mood is low in bipolar disorder. Our findings lend support to this 

model: individuals with bipolar exhibit greater mood-biased influences on the perception of 

outcomes than controls, exemplified by stronger activity in visual processing areas. 

However, this specific finding is reported at a less conservative threshold, uncorrected for 

multiple comparisons, which inflates the chances of finding false positives – a common issue 

in neuroimaging research that will be discussed in the next section. Therefore, further 

sufficiently powered studies with larger samples are warranted to further characterise mood 

bias influences on reward perception in individuals with bipolar disorder. 

 

On reflection, it is important to note that the empirical study applied a neuro-

computational model of mood to fMRI data within a controlled experimental setting. A 

computational model, which claims to explain mood instability within the context of task 

performance, should generalise its findings to predict real-world fluctuations in momentary 

mood (Nair et al., 2020). As such, researchers have argued for the use of ecologically valid 

tasks in elucidating the psychobiological mechanisms underlying symptoms of psychological 

distress and developing mechanism-focused interventions (Scholl & Klein-Flügge, 2018). 

There remains an open question as to whether the neuro-computational model applied in 

our study is predictive of real-world momentary mood fluctuations that unfold over a 

naturalistic timescale, which could be the focus of future research. 
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Notably, both the empirical study and the meta-analysis investigate mechanisms at 

the level of functional brain activity. While the former focused on psychobiological 

mechanisms underlying mood instability in one disorder (i.e. bipolar disorder), the latter 

focused on shared processes underlying dysregulated reward processing across psychiatric 

disorders. Reflecting on this level of analysis (i.e. task-dependent functional brain activity), 

both studies have identified putative brain regions that underpin specific psychobiological 

mechanisms underlying dysregulated reward processing and mood instability; however, they 

do not reveal information about how these regions may interact with each other. Importantly, 

these psychobiological processes likely involve multiple brain regions and networks. 

Approaches that aim to find evidence for directional relationships and functional connectivity 

between brain regions (e.g. Dynamic Causal Modelling) can extend findings of local 

activation to network-level connectivity. Such functional coupling between regions could be 

measured across different contexts – for instance across developmental stages and 

following therapy. Integrating research from multiple levels of analysis therefore could bring 

about greater understanding of the mechanisms underlying psychological distress. 

 

In addition to understanding the mechanisms that contribute to the maintenance of 

psychological distress, it is important to understand how existing clinical interventions work. 

Although there is a large body of evidence that psychological treatments are effective for 

individuals experiencing mental health difficulties, there is significant variation in treatment 

response. Understanding why and how psychological interventions work is therefore integral 

because it could help clarify which service users would benefit from specific types of 

intervention i.e. what works for whom and under what circumstances (Holmes et al., 2014). 

An increasing body of neuroimaging research is focusing on identifying treatment-related 

mechanisms, and has highlighted the role of top-down frontal cortical regions in modulating 

activity in limbic regions, which are altered following therapy across modalities (Marwood et 

al., 2018; Mason et al., 2016; Perez et al., 2016). However, while fMRI has provided 

emerging insights into the potential mechanisms underlying intervention and the 
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maintenance of psychological distress, it is important to be aware the potential challenges 

involved in conducting neuroimaging research, which are discussed below. 

 

1.3 Potential Challenges and Pitfalls of Functional Neuroimaging  

 

Functional neuroimaging, particularly, fMRI, has been considered a ground-breaking 

non-invasive tool for gaining insight into the inner workings of the brain since its inception 

nearly three decades ago (Rosen & Savoy, 2012). Measuring brain activity associated with 

specific cognitive processes while the brain is engaged in a task (i.e., task-fMRI) has 

provided researchers greater insight into the neural bases of human behaviour and the 

opportunity to study individual differences in brain function and how that might relate to 

differences in behaviour (Matthews et al., 2006). The logic is as follows: If a brain region, 

such as the ventral striatum, is activated during a reward task, the differences in the extent 

to which this region is activated between individuals, is posited to reflect differences in 

reward sensitivity and goal-directed behaviour (Schreuders et al., 2018). Hence, fMRI 

became heralded as a tool for studying how the brains of individuals differ (e.g. across 

development), and therefore is posited to hold great promise for identifying neural processes 

underlying psychiatric disorders (Canario et al., 2021; Habecker et al., 2016; Saeed, 2018). 

 

During the process of reviewing the current fMRI literature investigating reward-

related brain activation and interpreting the findings of the present research, several key 

themes were observed, particularly in relation to the replicability of task-fMRI findings, 

interpretation of fMRI results, and the gap between research and clinical translation.  

 

1.3.1 The fMRI replication crisis and false-positive neuroimaging 

 

In parallel with psychological research in general (Nosek et al., 2021), fMRI research 

has been experiencing a crisis of replication (Hong et al., 2019). Replication refers to testing 
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the reliability of an existing finding across independent samples, thereby protecting against 

false positives and negatives and contributing to greater validity of scientific findings (Pernet 

& Poline, 2015). Unfortunately, researchers have little incentive to conduct replication 

studies due to certain systemic factors, namely, the privileging of novel and statistically 

significant findings by scientific journals over replicable and non-significant ones (Evans, 

2017). Moreover, the inherent high cost and time-intensive process of data collection in fMRI 

research may deter researchers from attempting to replicate studies (Turner et al., 2018). 

 

Indeed, a recent study reported that more than half of neuroimaging findings in the 

cognitive neuroscience and psychology disciplines likely represent false positives (Szucs & 

Ioannidis, 2017). FMRI studies often have low sample sizes (e.g. n<20), which contribute to 

inadequate statistical power and overestimated effect sizes and make findings less likely to 

be successfully replicated (Szucs & Ioannidis, 2020). This was evident across the studies 

included in the meta-analytic review, 40% of which had sample sizes of less than 20 in each 

group and most of which did not report a formal power analysis. Similarly, the empirical 

study had a sample size of 21 participants in each group.  

 

One of the main culprits of false-positive neuroimaging is a construct known as 

“researcher degrees of freedom” (Simmons et al., 2011) – the undisclosed flexibility in the 

ways that fMRI analysis is conducted. Often, the analysis of fMRI data entails various 

choices that seem arbitrary – the type of analysis software used, pre-processing and 

analysis pipelines and correction for multiple comparisons, among others (Wicherts et al., 

2016). For instance, Carp (2012) demonstrated that slightly altering the parameters during 

analysis yielded 6,912 different analysis protocols. Therefore, the opportunistic use of such 

methodological flexibility in the pursuit of obtaining statistically significant findings have large 

impacts on study outcomes, thus inflating false-positive findings and limiting replicability of 

fMRI findings (Hong et al., 2019). Additionally, errors in analysis and coding are easy to 

make, especially for researchers such as myself who have limited programming background. 
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Several initiatives have been proposed to encourage open sharing of neuroimaging data and 

code to increase transparency and replicability of results (e.g. Neurovault, Open fMRI, 

GitHub, etc.) (Pernet & Poline, 2015). 

 

In the meta-analytic review, I endeavoured to reduce the flexibility of analysis by 

closely adhering to Müller and colleagues’ (2018) recommended guidelines for conducting 

fMRI meta-analyses, and the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines. Additionally, in the empirical study, detailed information was 

provided with regards to fMRI data acquisition, first-level and second-level analyses and the 

computational model formula applied to the data, as recommended by Poldrack and 

colleagues’ (2008) guidelines for reporting an fMRI study. Adhering to these guidelines 

aimed to facilitate the transparency of the methodological choices made and future 

replicability. In order to minimise errors wherever I could, I used the batch mode wherever 

possible on Statistical Parametric Mapping (SPM) so that I could save scripts and code and 

use them to re-run the same analysis, thereby facilitating reproducibility of results. However, 

on reflection, the lack of pre-registration and pre-specification of hypotheses and planned 

analyses precluded maximal transparency of the research conducted and thereby may 

reduce the trust that other researchers place in the reported findings of this research. 

Additionally, it perpetuates the systemic issues around researcher degrees of freedom and 

other problematic research practices (Pernet & Poline, 2015).  

 

1.3.2 Interpreting fMRI results 

 

It is argued that one of the potential pitfalls in fMRI research is the way inferences 

are drawn. The typical interpretation made in fMRI studies is that when a cognitive process 

happens, specific brain regions engaged in that process become active and that pattern of 

brain activity is what is captured by fMRI. The reverse of this, in which an interpretation is 

made regarding the involvement of a cognitive process, which is not directly tested, simply 
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based on observed brain activity (i.e. reverse inference) can be quite misleading (Poldrack, 

2006). Similarly, null findings can lead researchers to fallaciously conclude an absence of 

effects. Many neuroimaging studies, including the present research, use similar reverse 

inferences to account for the occurrence of unexpected regions of activation. For instance, in 

the meta-analysis, the decreased temporal pole activation observed across psychiatric 

disorders compared to control groups during loss anticipation was a relatively unexpected 

finding, which prompted some speculation about what this activation meant using other 

studies that have found similar activation in this area.  

 

Reverse inferences make a strong assumption that there is a one-to-one mapping 

between brain structure and function and its success is contingent upon the degree of 

functional specialisation of the brain region in question (Henson, 2005). In other words, the 

more a region is involved in multiple cognitive processes, the less certain one can be about 

the engagement of a particular cognitive process when activation within this region is 

observed (Schleim & Roiser, 2009). Therefore, interpretations that comprise reverse 

inferences are weaker and such inferences should be interpreted with caution and treated as 

a working hypothesis that requires further evaluation. Making reverse inference 

interpretations is a common pitfall in fMRI research and, speaking from my limited 

experience in this field, one way to develop sound interpretations is through collaboration, 

especially with individuals from different disciplines. 

 

1.3.3 FMRI in translation: the wide gap between research and clinical application 

 

Often, the stated objective of a large proportion of fMRI and neuroscience research 

within psychology is to achieve translation of findings into clinical practice in order to improve 

diagnosis and clinical intervention. Since its inception, there has been a notable paradigm 

shift in psychiatric research towards a dimensional and transdiagnostic approach to 

psychiatric diagnosis and away from traditional symptom-based classifications (Insel et al., 
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2010). However, although a substantial body of fMRI research includes psychiatric 

populations, often with compelling findings, the impact of fMRI in psychological clinical 

practice is still minimal. At present, fMRI research is still at the stage of identifying and 

validating neurobiological mechanisms underlying psychiatric disorders.  

 

As highlighted above, the poor replicability of fMRI findings and high cost of fMRI 

scanning are some of the factors that limit its application to clinical practice. In addition, 

perhaps the gap in clinical translation partly lies with the novelty and availability of 

compelling tools in neuroscience, which may obscure the very objective it sets out to 

achieve. Some researchers suggest that advances in neuroscience has seen a rise in 

technique-driven research (Krakauer et al., 2017) and within the context of mental health 

research may run the risk of being too reductionist (Borsboom et al., 2018). Psychological 

distress can be explained not just via neurobiological processes but also via various 

contextual factors (sociocultural influences, past experiences, inter-generational family 

narratives, systems of privilege and oppression, etc.) in which individuals are situated within 

and construct meaning (Marková, 2018). Given the massively multi-faceted aspects and 

transdiagnostic mechanisms that underpin psychiatric disorders, a comprehensive 

understanding of the multiple mechanisms underlying psychiatric disorders will require the 

integration of pluralist accounts (Kendler, 2008). This highlights the need for cross-discipline 

collaboration in order to inch closer towards bridging the gap between research and clinical 

translation. For instance, finding collaborators with the technical knowledge of neuroimaging 

research and statistical and computational modelling, could result in better study design and 

preprocessing methodology to improve the validity and reproducibility of findings. Similarly, 

fostering collaboration with clinicians may help in integrating computational frameworks with 

psychological theory and refining research hypotheses. 

 

On reflection, the ways in which fMRI research questions are posed and how 

conclusions are drawn depend on the epistemological stance of the researcher, one’s 
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training background and familiarity with fMRI research. Given my limited experience in 

neuroimaging research and programming, the research process was largely focused on 

navigating the complex terrain of fMRI research and analysis: developing an understanding 

of computational modelling in the study of mood and reward, learning how to use multiple 

software packages for fMRI meta-analysis and the empirical study and troubleshooting 

errors and re-running analyses. As such, it was easy to lose sight of the ambitious ideals of 

using my position as a clinician to use a psychological framework to inform the undertaking 

of this present research, as I was focused on the technical aspects of the project. This 

included taking little time in reconciling and reflecting on the tensions related to my 

epistemological position as a researcher conducting neuroimaging research and as a 

clinician who (hopefully) draws from a social constructivist approach.  

 

1.4 Conclusions and Recommendations For Future Research 

 

Neuroimaging research provides a method to identify psychobiological mechanisms 

underpinning psychiatric disorders and clinical interventions, which holds implications for the 

improvement of existing interventions and the development of novel treatment approaches. 

The integration of psychological and neurobiological accounts of mental health difficulties 

allows for the development of richer formulations that can be used in clinical practice. 

Although neuroimaging research holds significant promise, at present, much of 

neuroimaging research is still focused on expanding current understanding of neural 

mechanisms underlying psychological processes and clinical phenomena. For neuroimaging 

research to be reach clinical translation, efforts should be directed by researchers as well as 

journal and funding agencies to support the replication of findings and encourage sound 

research practices, which include pre-registering the study and planned hypotheses, and 

open sharing of data or code. Furthermore, for neuroimaging research to achieve clinical 

utility, it is imperative to foster collaboration between individuals from different disciplines 

(e.g. clinicians, neuroscientists, statisticians, engineers, etc.) and those using a range of 
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research methods (e.g. quantitative, qualitative and mixed-methods). This is a monumental 

task and it is no surprise why it is challenging to bridge the wide gap between neuroimaging 

research and clinical practice; however, I believe such integration of thinking and working is 

essential before clinical translation can be achieved.   
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Appendix A: PRISMA checklist 

Section/topic  # Checklist item  Reported on page #  

TITLE   

Title  1 Identify the report as a systematic review, meta-
analysis, or both.  

11-12 

ABSTRACT   

Structured summary  2 Provide a structured summary including, as applicable: 
background; objectives; data sources; study eligibility 
criteria, participants, and interventions; study appraisal 
and synthesis methods; results; limitations; conclusions 
and implications of key findings; systematic review 
registration number.  

12-13 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of 
what is already known.  

12,23,24 

Objectives  4 Provide an explicit statement of questions being 
addressed with reference to participants, interventions, 
comparisons, outcomes, and study design (PICOS).  

23-24 

METHODS   

Protocol and registration  5 Indicate if a review protocol exists, if and where it can 
be accessed (e.g., Web address), and, if available, 
provide registration information including registration 
number.  

NA 

Eligibility criteria  6 Specify study characteristics (e.g., PICOS, length of 
follow-up) and report characteristics (e.g., years 

considered, language, publication status) used as 
criteria for eligibility, giving rationale.  

25-26 

Information sources  7 Describe all information sources (e.g., databases with 
dates of coverage, contact with study authors to 
identify additional studies) in the search and date last 
searched.  

25 

Search  8 Present full electronic search strategy for at least one 
database, including any limits used, such that it could 
be repeated.  

25 

Study selection  9 State the process for selecting studies (i.e., screening, 
eligibility, included in systematic review, and, if 

applicable, included in the meta-analysis).  

25-26 

Data collection process  10 Describe method of data extraction from reports (e.g., 
piloted forms, independently, in duplicate) and any 
processes for obtaining and confirming data from 
investigators.  

24,26 

Data items  11 List and define all variables for which data were sought 
(e.g., PICOS, funding sources) and any assumptions 
and simplifications made.  

26 

Risk of bias in individual 
studies  

12 Describe methods used for assessing risk of bias of 
individual studies (including specification of whether 
this was done at the study or outcome level), and how 
this information is to be used in any data synthesis.  

27 

Summary measures  13 State the principal summary measures (e.g., risk ratio, 11,25,27 
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From:  Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097  

difference in means).  

Synthesis of results  14 Describe the methods of handling data and combining 
results of studies, if done, including measures of 

consistency (e.g., I2
) for each meta-analysis.  

27-29 

Section/topic  # Checklist item  Reported on page #  

Risk of bias across studies  15 Specify any assessment of risk of bias that may affect 
the cumulative evidence (e.g., publication bias, 
selective reporting within studies).  

28-29 

Additional analyses  16 Describe methods of additional analyses (e.g., 
sensitivity or subgroup analyses, meta-regression), if 

done, indicating which were pre-specified.  

28-29 

RESULTS   

Study selection  17 Give numbers of studies screened, assessed for 
eligibility, and included in the review, with reasons for 
exclusions at each stage, ideally with a flow diagram.  

30-31 

Study characteristics  18 For each study, present characteristics for which data 
were extracted (e.g., study size, PICOS, follow-up 
period) and provide the citations.  

32-34 

Risk of bias within studies  19 Present data on risk of bias of each study and, if 
available, any outcome level assessment (see item 12).  

NA 

Results of individual studies  20 For all outcomes considered (benefits or harms), 
present, for each study: (a) simple summary data for 
each intervention group (b) effect estimates and 
confidence intervals, ideally with a forest plot.  

38,41,43 

Synthesis of results  21 Present results of each meta-analysis done, including 
confidence intervals and measures of consistency.  

36-43 

Risk of bias across studies  22 Present results of any assessment of risk of bias 
across studies (see Item 15).  

42 

Additional analysis  23 Give results of additional analyses, if done (e.g., 
sensitivity or subgroup analyses, meta-regression [see 
Item 16]).  

42-45 

DISCUSSION   

Summary of evidence  24 Summarize the main findings including the strength of 
evidence for each main outcome; consider their 
relevance to key groups (e.g., healthcare providers, 
users, and policy makers).  

46-56 

Limitations  25 Discuss limitations at study and outcome level (e.g., 
risk of bias), and at review-level (e.g., incomplete 
retrieval of identified research, reporting bias).  

53-55 

Conclusions  26 Provide a general interpretation of the results in the 
context of other evidence, and implications for future 
research.  

55-56 

FUNDING   

Funding  27 Describe sources of funding for the systematic review 
and other support (e.g., supply of data); role of funders 
for the systematic review.  

NA 
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Appendix B: FMRI data acquisition and analysis parameters of included studies 

Authors Scanner Tesla Slices Slice 
thickness 

TR ms TE ms Software FWHM Stereotaxic 
space 

Statistical 
threshold 

Abler et al. 
2008 

Siemens Trio 3 21 3 1500 35 SPM2 8 MNI Uncorrected, p< 

.005 
Arrondo et al. 
2015 

Siemens Trio Tim 3 32 - 2000 30 FSL 6 MNI Corrected, p<.05 

Balodis et al. 
2013 

Siemens Trio Tim 
(2 scanners) 

3 25 4 1500 27 SPM5 6 MNI Corrected, p<.05 

Becker et al. 
2017 

Siemens 
Magnetom Trio 

3 28 4 2000 30 SPM8 6 MNI Uncorrected, 
p<.001, k=20 

Carl et al. 
2016 

General Electric 3 34 - 1500 30 FSL 5 MNI Corrected, p<.005, 
z>4.0, k≥10 

Choi et al. 
2012 

Siemens 
AVANTO 

1.5 21 - 2340 52 SPM8 4 MNI Corrected, p<.05 

da Silva Alves 
et al. 2013 

Philips system 3 35 3 2000 30 SPM8 8 TAL Corrected, p<.05 

DelDonno et 
al. 2019 

General Electric 
Signa 

3 29 4 2000 30 SPM8 5 MNI Corrected, p<.05 

Dichter et al. 
2012 

General Electric 3 32 - 2000 30 FSL 5 MNI Corrected, p<.005, 
k=10, z>2.58 

Herbort et al. 
2016 

Siemens Trio Tim 3 37 3 2000 30 SPM8 8 MNI Corrected, p<.05 

Johnson et al. 
2019 

General Electric 
Signa 

1.5 24 4 2000 40 AFNI 4 TAL Corrected, p<.05 

Jung et al. 
2011 

Siemens 
AVANTO 

1.5 25 5 2340 52 SPM2 4 MNI Corrected, p<.05 

Kaufmann et 
al. 2013 

Siemens Sonata 1.5 33 - 1870 40 SPM8 8 TAL Corrected, p<.01 

Kirschner et 
al. 2020 

Philips Achieva 3 38 3 2000 25 SPM8 6 MNI Corrected, p<.05 
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Knutson et al. 
2008 

General Electric 1.5 24 4 - 40 AFNI 4 TAL Corrected, p<.05 

Li et al. 2018 Siemens 3 31 - 2000 30 SPM8 8 MNI Corrected, p<.001 

Nawijn et al. 
2016 

Philips Achieva 3 37 3 3000 27.63 SPM8 8 MNI Corrected, p<.05 

Pizzagalli et 
al. 2009 

Siemens 
Symphony/Sonat
a 

1.5 35 3 2500 35 FS-FAST 6 MNI Corrected, p<.05 

Schiller et al. 
2013 

General Electric 3 32 4 2000 30 FSL 5 MNI Corrected, p<.05 

Schreiter et al. 
2016 

Siemens Trio 3 28 4 2000 30 SPM8 9 MNI Corrected, p<.05 

Simon et al. 
2016 

Siemens Trio Tim 3 30 3 2000 30 SPM8 8 MNI Corrected, p<.05 

Smoski et al. 
2011 

General Electric 
4T LX Nvi 

4 34 - 1500 31 FSL 5 MNI Corrected, p<.05 

Stepien et al. 
2018 

Philips Achieva 3 38 3 2000 25 SPM8 6 MNI Corrected, p<.05 

Subramaniam 
et al. 2015 

Siemens Trio Tim 3 35 - 2400 30 SPM8 8 MNI Corrected, p<.05 

Urosevic et al. 
2016 

Siemens Trio Tim 
(2 scanners) 

3 34 - 2000 28 FSL 8.77-
9.19 

MNI Corrected, p<.05 

Yip et al. 2015 Siemens Trio 3 25 4 1500 27 SPM8 6 MNI Corrected, p<.05 

 
Note. TR = repetition time; TE = echo time; FWHM = full-width at half-maximum; MNI = Montreal Neurological Institute; TAL = Talairach and 

Tournoux Atlas; SPM = Statistical Parametric Mapping; FSL = FMRIB Software Library; AFNI = Analysis of Functional NeuroImages; FS-FAST 
= FreeSurfer Functional Analysis Stream 
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Appendix C: Monetary incentive delay task parameters of included studies 

 

Authors Magnitude Number 
of trials 

Cue 
duration 

(ms) 

Anticipation 
duration (ms) 

Target duration 
(ms) 

Fixation cross 
duration (ms) 

Outcome 
duration 

(ms) 

Intertrial 
Interval 

(ms) 

Hit rate 
% 

Abler et al. 
2008 

$ .40, 1.25 120 750 3000 1500 - 1500 - 60 

Arrondo et al. 
2015 

£ .01, 1 60 - - - - - 2000-6000  

Balodis et al. 
2013 

$ 0, 1, 5 110 1000 3000-5000 - 4000-6000 1200 - 66 

Becker et al. 
2017 

€ 2 40 6000 - - - 6000-9000  

Carl et al. 
2016 

$ 2 40 2000 2000-2500 0-500 - 3000 - 66 

Choi et al. 
2012 

₩ 0, 1000 - 350 4180-4480 200-500 - 1500 5170-9850  

da Silva Alves 
et al. 2013 

€ .20, 1, 5 144 - - 160-350 - - - - 

DelDonno et 
al. 2019 

$ .20, 5 100 500 2000 250 (tailored to 
individual 

response time) 

1750-3750 2000 4000 50-80 

Dichter et al. 
2012 

$ 1 160 2000 2000-2500 0-500 - 3000 - 66 

Herbort et al. 
2016 

 € .50, 10 204 1000 500-3500 520-600 500-3500 750 1000-4000 66 

Johnson et al. 
2019 

$ .20, 1, 5 180 2000 2000-2500 150-470 1030-2350 2000 - 66 

Jung et al. 
2011 

₩ 0, 1000 - 350 4180-4480 200-500 - 1500 5170-9850 - 

Kaufmann et 
al. 2013 

€ .10, .60, 3 144 250 3740-4240 150-500 1420-1720 1870 3280-3780 66 

Kirschner et 
al. 2020 

CHF .40, 2 72 750 2500-3000 - - 2000 1000-9000 - 
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Knutson et al. 
2008 

$ 0, .20, 1, 5 180 250 2000-2500 160-360 - 1650 - 66 

Li et al. 2018 - 60 250 2000-2500 - 300-3500 - - 60 

Nawijn et al. 
2016 

€ 1 (win) 
€ .50 (loss) 

162 1000-3000 (cue merged 
with anticipation) 

Tailored to 
individual 

response time 

1000 1500 1000-3000 66 

Pizzagalli et 
al. 2009 

$ 1.96 - 2.34 
(win)  

$1.81- 2.19 
(loss) 

120 1500 3000-7500 Tailored to 
individual 

response time 

4400-8900 1500 3000-
12000 

50 

Schiller et al. 
2013 

$1 160 2000 2000-2500 500 - 3000 - 66 

Schreiter et al. 
2016 

€ 2 - 6000 (cue merged with 
anticipation) 

100 - 3000 - - 

Simon et al. 
2016 

€ .20, 1 220 750 3000 1000 - 1500 1000-8000 - 

Smoski et al. 
2011 

$ 1 80 2000 2000-2500 500 - 3000 - 66 

Stepien et al. 
2018 

CHF .40, 2 72 750 2500-3000 1000 - 2000 1000-9000 - 

Subramaniam 
et al. 2015 

$ 1 180 500 2000-8000 500 500 1500 2000-8000 68 

Urosevic et al. 
2016 

$ .25, 1, 5 60 250 2000-2500 180-280 ~1500 1650 100 70 

Yip et al. 2015 S 1, 5 110 1000 3000-5000 Tailored to 
individual 

response time 

3000-5000 1200 - 67 
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Appendix D: Computational model formula 

 

Standard reinforcement-learning model  

In the standard model, reward expectations were formalised as the net expected 

value (EV) of the possible outcomes; that is the probability and value of winning the sum of 

money at stake combined with the probability and value of losing this stake (see Table 1). 

Reward prediction error (RPE), was operationalised as the difference between the actual 

outcome value (R) obtained and the expected value i.e. RPE = R – EV. 

 

Mood-biased model  

To account for effects of mood on valuation, the standard model is modified to 

compute mood-biased RPEs using perceived (mood-biased) outcome value (Rmood-biased) 

instead of the objective outcome (R) (Eldar & Niv, 2015). In addition, we allowed mood on 

each trial to influence EV, leading to estimates of mood-biased net expected value 

(EVmood-biased) for each trial. 

 

Rmood-biased = R * mbiasmood(t)        (1) 

 

RPEmood-biased = Rmood-biased – EVmood-biased     (2) 

 

Here, mbias is the mood bias parameter that indicates the direction and degree of 

mood bias. If mbias = 1, mood does not bias the perception of reward or expected value. 

With mbias > 1, mood exerts positive feedback i.e. reward is perceived as larger in a good 

mood and smaller in a bad mood, whereas the reverse is true with 0<mbias<1 would 

correspond to a negative feedback on reward value. In our present study, we set mbias to 

1.2, based on the average mbias derived from Eldar and Niv (2015)’s sample of healthy 

participants who scored relatively high on the Hypomanic Personality Scale (determined by 

a median split) (Eckblad & Chapman, 1986), a measure of trait mood instability.  



 

 144 

 

Before applying mood to R and EV, we constrained mood using a sigmoid function, 

allowing it to take values between -1 and 1: mood = tanh(mood) 

 

 

EVmood-biased = EV * mbiasmood(t)       (4) 

 

 

As per Eldar and Niv (2015)’s model, we quantified mood on each trial, mood (t), as 

the product of mood at the beginning of the trial, mood(t-1), and the RPE on the current trial, 

RPE(t):  

 

mood(t) = mood(t-1) * (1- mrate) + (mrate * RPE(t))      (5) 

 

Here, mrate is the mood-update rate, which quantifies how quickly mood is updated 

from trial-to-trial. 

 

Unlike Eldar and Niv (2015)’s study, we did not use subjective ratings of mood to as 

a confirmatory check of how well the model captures participants’ self-reported mood during 

the task. However, Eldar and Niv (2015) have confirmed the validity of this model; that it 

outperformed the standard and other reinforcement-learning models and explained 

participants’ trial-by-trial choices and subjective mood ratings well. Hence, we assume that 

the model fits well here.  

 

Given that in our task, the probability and magnitude of outcomes were fixed and 

made explicit in each trial, the RPEs do not have utility for updating expectations. Hence, the 

choice data in our task was not informative to infer each participant’s learning rate, mood-

update rate (see below), mood bias parameter (mbias), and mood. Multiple studies have 
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shown that RPEs are still tracked in tasks with minimal learning components (Rutledge et 

al., 2017; Rutledge et al., 2014). Given that we cannot infer mrate from our task, we imposed 

a group-level mrate on all participants, which may not fully capture inter-individual variability. 

We set mrate to .1, consistent with Eldar and Niv (2015)’s model.  
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Appendix E: Tests of normality for questionnaire data 

 

 
 

Questionnaire Shapiro-Wilk Skewness Kurtosis 

 Statistic p-value   

HAMD 0.93 0.16 0.41 -0.92 

MAS 0.90 0.03* 0.77 -0.24 

MAS log 0.93 0.17 -0.27 -0.97 

 
Note. *Statistically significant p< .05; HAMD= Hamilton Depression Rating Scale; MAS= 

Bech-Rafaelsen Mania Scale; MAS log= log-transformed MAS 
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Appendix F: Follow-up analyses of the effect of mood symptoms on EV- and RPE-

modulated activity in the three regions of interest 

  Factors F df p 

EV      

Ventral striatum    

 Main effects    

  Laterality 3.12 1, 18 .094 

  EV .21 1, 18 .649 

  HAMD 1.01 1, 18 .329 

  MAS 2.57 1, 18 .126 

      

 Interactions    

  Laterality*HAMD .07 1, 18 .792 

  Laterality*MAS 5.05 1, 18 .037 

  EV*HAMD 2.01 1, 18 .174 

  EV*MAS 1.47 1, 18 .241 

  Laterality*EV 1.81 1, 18 .196 

  Laterality*EV*HAMD .32 1, 18 .577 

  Laterality*EV*MAS 3.15 1, 18 .093 

      

Anterior insula    

 Main effects    

  Laterality .26 1, 18 .616 

  EV .40 1, 18 .534 

  HAMD 6.18 1, 18 .023 

  MAS 2.02 1, 18 .173 

      

 Interactions    

  Laterality*HAMD .35 1, 18 .561 

  Laterality*MAS .01 1, 18 .914 

  EV*HAMD .02 1, 18 .889 

  EV*MAS 2.32 1, 18 .145 

  Laterality*EV 1.53 1, 18 .232 

  Laterality*EV*HAMD 2.14 1, 18 .161 

  Laterality*EV*MAS .66 1, 18 .427 

      

VMPFC     

 Main effects    

  EV .17 1, 18 .684 

  HAMD 1.04 1, 18 .322 

  MAS 1.10 1, 18 .309 

  

 

   

 Interactions    

  EV*HAMD 1.84 1, 18 .192 

  EV*MAS .87 1, 18 .363 
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RPE      

Ventral striatum    

 Main effects    

  Laterality .001 1, 18 .973 
  RPE 1.67 1, 18 .212 
  HAMD .25 1, 18 .625 
  MAS 1.66 1, 18 .214 
      
 Interactions    
  Laterality*HAMD .87 1, 18 .363 
  Laterality*MAS 1.5 1, 18 .237 
  RPE*HAMD 1.53 1, 18 .232 
  RPE*MAS .22 1, 18 .644 
  Laterality*RPE .70 1, 18 .415 

 

 Laterality*RPE*HAMD .02 1, 18 .893 
  Laterality*RPE*MAS .87 1, 18 .364 
      
Anterior insula    
 Main effects  

 
 

  Laterality 7.77 1, 18 .012 
  RPE 2.98 1, 18 .102 
  HAMD .95 1, 18 .342 
  MAS 7.49 1, 18 .014 
      
 Interactions    
  Laterality*HAMD .31 1, 18 .586 
  Laterality*MAS 7.41 1, 18 .014 

 

 RPE*HAMD .05 1, 18 .821 
  RPE*MAS 1.53 1, 18 .232 
  Laterality*RPE .58 1, 18 .457 
  Laterality*RPE*HAMD 3.25 1, 18 .088 
  Laterality*RPE*MAS .03 1, 18 .874 
    

 
 

VMPFC   

 

 

 Main effects  

 
 

 

 RPE 3.10 1, 18 .095 

 

 HAMD .08 1, 18 .775 

 

 MAS .18 1, 18 .678 

 

 

 

  
 

 

Interactions   

 
 

 RPE*HAMD .64 1, 18 .433 

 

 RPE*MAS .04 1, 18 .844 
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Appendix G: Within-group whole-brain activations during anticipation and outcome, 

at cluster-corrected p< .05 threshold 

   Peak MNI    

 Cluster description k x y z Brodmann 
Area 

t p 

Healthy controls        

Standard 
EV 

Right angular gyrus, right 
supramarginal gyrus 

635 34 -62 48 39 5.21 <.001 

        

 Right inferior frontal 
operculum, right middle 
frontal gyrus 

318 46 12 34 44 4.91 .01 

         

Mood-
biased 
EV 

No significant within-group activations     

        

         

Standard 
RPE 

Right superior parietal gyrus, 
right olfactory gyrus, right 
inferior parietal gyrus 

530 32 -64 50 7 6.09 .001 

         

 Right olfactory gyrus, left 
nucleus accumbens 

454 6 14 -8 25 5.20 .001 

         

Mood-
biased 
RPE 

No significant within-group activations    

     

Bipolar disorder    

Standard 
EV 

No significant within-group activations    

     

Mood-
biased 
EV 

No significant within-group activations    

         

Standard 
RPE 

Bilateral Cuneus 1747 2 -72 18 18 6.35 <.001 

          Right nucleus accumbens, 
right putamen 

1608 14 10 -10 - 6.01 <.001 

          Left middle temporal gyrus, 
left angular gyrus 

332 -50 -58 20 39 4.59 .006 

         

 Left pregenual anterior 
cingulate cortex 

2445 -10 38 10 - 4.55 <.001 

         

 Left superior frontal gyrus, 
left middle frontal gyrus 

289 -14 34 52 8 4.61 .012 
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Note. MNI = Montreal Neurological Institute; EV = expected value; RPE = reward prediction 

error 
 

 Right middle frontal gyrus 203 42 18 44 8 4.47 .044 

         

 Right middle cingulate 
cortex, right supplementary 
motor area 

207 4 4 36 32 4.47 .041 

         

 Left precuneus, bilateral 
middle cingulate cortex 

318 -12 -52 34 32 4.02 .015 

         

Mood-
biased 
RPE 

No significant within-group activations     
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Appendix H: Between-group whole-brain activations during anticipation and outcome, 

p(uncorrected)<.001  

 
Note. EV = expected value; RPE = reward prediction error; HC = healthy controls; BD = 

bipolar disorder 

   Peak MNI    

 Cluster description k x y z Brodmann 
Area 

t p 

Standard 
EV 
HC>BD 

Right paracentral lobule, 
right precentral gyrus, 
right postcentral gyrus 

55 12 -26 68 4 3.82 <.001 

         

Standard 
EV 
BD>HC 

No significant between-group differences     

         

Mood-
biased EV 
HC>BD 

Left parahippocampal 
gyrus 

8 -26 -28 -22 37 4.06 <.001 

         

Mood-
biased EV 
BD>HC 

Left calcarine/precuneus 6 -18 -52 6 30 3.48 .001 

         

Standard 
RPE 
HC>BD 

No significant between-group differences     

         

Standard 
RPE 
BD>HC 

Left precuneus, cuneus 560 -4 -64 20 31 5.74 <.001 

Left middle temporal 
gyrus 

63 -50 -60 18 39 4.05 <.001 

Right supramarginal 
gyrus 

13 64 -48 26 39 4.17 <.001 

Right supplementary 
motor area 

165 8 0 60 6 3.90 <.001 

Left caudate 10 -14 8 10 - 3.83 <.001 

Right angular gyrus 5 42 -62 26 39 3.55 <.001 

Left lingual gyrus 10 -16 -54 0 19 3.54 <.001 

 Left superior anterior 
cingulate cortex 

5 0 36 4 - 3.48 <.001 

         

Mood-
biased 
RPE 
HC>BD 

No significant between-group differences     

         

Mood-
biased 
RPE 
BD>HC 

Right middle occipital 
gyrus 

5 36 -70 38 39 3.71 <.001 
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Appendix I: Modulation of anticipatory and outcome whole-brain activation by 

depressive and manic symptoms in participants with bipolar disorder, 

p(uncorrected)< .001 

   Peak MNI  

 Cluster description k x y z t 

Negative modulation by depressive symptoms 

Standard EV  Right anterior insula 46 30 22 -6 5.16 

Left caudate 10 -8 14 4 4.08 

       

Mood-biased 
EV 

No significant modulations 

Standard RPE  Left thalamus 7 -10 -10 -2 4.01 

 Left precentral gyrus 6 -44 8 32 3.89 

 Left retrosplenial cortex 10 -38 -20 -8 3.80 

       

Mood-biased 
RPE 

No significant modulations 

Positive modulation by depressive symptoms 

Standard EV No significant modulations 

       

Mood-biased 
EV  

No significant modulations     

Standard RPE Left parahippocampal 
gyrus 

8 -18 -12 -26 4.39 

 Right parahippocampal 
gyrus 

12 12 -8 -22 4.21 

       

Mood-biased 
RPE 

Left nucleus accumbens 5 -4 18 -2 4.01 

       

Negative modulation by manic symptoms 

Standard EV No significant modulations 

       

Mood-biased 
EV 

No significant modulations     

      

Standard RPE Left and right calcarine 17 0 -58 10 5.32 

Mood-biased 
RPE 

Right inferior parietal 
gyrus 

9 54 -44 50 4.07 

 Right precuneus 5 14 -50 44 4.02 

       

Positive modulation by manic symptoms 
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Standard EV Right caudate 33 8 10 -2 4.95 

Mood-biased 
EV 

No significant modulations 

Standard RPE No significant modulations 

Mood-biased 
RPE 

No significant modulations 

 
Note. EV = expected value; RPE = reward prediction error; HC = healthy controls; BD = 

bipolar disorder 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 

 


