1 Exploring Safety Climate Factors in Construction

Abstract: This paper aims to explore and to make explicit of the existing safety climate 2 assessment tools and dimensions. The concept of safety climate is firstly discussed with a review 3 4 of different safety climate factors from the published literature. A qualitative research method was employed to explore the safety climate factors through a systematic review using four 5 6 databases and specific keywords. A total of 68 papers were selected for the screening process. 7 The screening process allowed to select the final 18 safety climate assessment tools and papers 8 consisting of 98 safety climate factors spanning over a period of 39 years (1980 - 2019). 9 Construction organizations may consider these factors to assess the current maturity level of their safety climate and to develop plans to achieve the required level. It is recommended that the 10 11 factors discussed in this paper may be validated first before they are incorporated in the 12 assessment of safety climate.

13

Keywords: Health & Safety, Management, Safety & hazards, Safety Climate, Assessment,
Construction Industry, Safety in Construction, Safety Climate Factors.

16 **1. Introduction**:

17

18 Occupational and safety-related expenditure results in a huge cost and considered as an 19 additional burden on the economy of the countries. A press release of the International Labour 20 Organization shows an estimate of occupational safety and health-related issue cost an annual 21 amount of 4% to the world gross domestic product (ILO, 2013). For the year 2018, the world 22 gross domestic product was estimated at the US \$ 87.51 trillion, thus the cost of occupational 23 safety and health-related factors for the same year can be around US \$ 3.5 trillion. It is difficult 24 to gauge the cost of accidents involving injuries and deaths resulting from poor occupational 25 safety and health condition as these have multiple implications. Umar and Egbu (2018-a) while 26 discussing the root causes of accidents noted that there are five main stakeholders associated with accidents at the workplace. These stakeholders include the affected workers itself, the 27 family and friends of those workers, the co-workers, the employer, and society. All these 28 29 stakeholders have to bear the costs of poor occupational safety and health conditions for a long 30 period of life. Many researchers have conducted their research around the causes of accidents,

thus the causes of accidents in different industries are well known and preventable in most cases 31 32 (Umar and Egbu, 2018-b). Different studies have shown that the cost of an accident could more than the cost of prevention; however many organizations don't have such awareness thus they 33 remain reluctant to spend on the problems such as accidents which don't arise more frequently 34 (Umar et al, 2018-a). Similarly, safety and health-related factors don't get priority in many 35 organizations and get the least attention from managers as reported by Umar and Wamuziri 36 (2016). The model for improving the safety performance of construction organizations in Oman 37 presented by Umar and Wamuziri (2016) also stress on the awareness of the benefits of 38 improved safety performance. Similarly, health factors such as body mass index, blood pressure, 39 40 and heart rate are also considered important in relation to the safety and productivity of workers 41 (Umar et al., 2018-b).

42

The construction industry is growing rapidly in all countries and recognized as the main source 43 for providing jobs to different workers globally. It is expected that the global construction 44 industry will reach to 14 trillion US\$ in 2025 which was 9.5 trillion US\$ in 2014, reflecting an 45 overall growth of 67% as shown in figure 1(Statista, 2017). In the Gulf Cooperation Council 46 (GCC) member countries, the economy is heavily reliant on oil and gas export and contributes up 47 to 50% of the total gross domestic product (GDP) (Umar and Wamuziri, 2017). In recent years, 48 the dip in oil and gas prices somehow has affected the GCC construction industry as well (Umar 49 and Egbu, 2018). A comparison of the contract awarded in the GCC countries, in the first quarter 50 of 2017 and 2018, therefore, shows an overall decline of US \$ 5.0 Billion (Ventures, 2018). The 51 52 construction contract awarded in the first three months of 2017 and 2018, in GCC countries is shown in figure 2. While there is an impact on the construction industry due to the overall 53 economic situation, different studies have shown that the construction industry will be growing 54 55 in the near future. Umar et al. (2018-a), while discussing the occupational safety and health regulations in Oman, reported that the value of the construction industry in Oman will grow to 56 57 6.88 Billion Omani Rial by 2026, which was 2.26 Billion Omani Rial in 2016. Moreover, the construction GDP in Oman is forecast to grow to 15.4% of the total GDP by 2026. Overall, they 58 59 reported that the construction growth rate is forecasted to be at peak in 2020 (figure 3).

- 60 61
- 62 Figure 1: Global Construction Industry Growth (Statista, 2017).

63

64 Figure 2: Comparison of Awarded Construction Contracts In GCC (Ventures, 2018).

65

66 Figure 3: Oman Infrastructure and Construction Industry Forecasts (2016-2026).

67

68 With all this growth and improvement in the construction industry, it is also regarded as the second most hazardous industry after manufacturing. If it is considered that the occupational 69 safety and health-related costs will be 4% of the total costs of the construction projects in 2018, 70 the total costs of occupational safety and health will thus be equal to US \$ 0.456 trillion. 71 72 Similarly, Umar (2016) reported the cost of accidents in Omani construction industry considering two criteria using the available data which includes the number of workers in the 73 74 construction industry and the value of construction projects in a financial year. He concluded that the compensation costs of accidents are to be 3.74 million/year based on the number of workers 75 76 in the construction industry. The reported costs of accidents based on the value of construction projects were estimated at US\$ 3.237 billion. The International Labour Organization data for the 77 78 year 2015 indicate that every year 108,000 workers died on construction site due to different 79 occupational safety and health conditions. In the developing world, There are higher risks $(3\sim6)$ 80 times more) of death linked with construction work in developing countries (ILO, 2015). Although there is no organization in Oman which collect and analyze construction accidents, 81 different studies have shown that these accidents result into a huge cost to Omani economy 82 (Umar and Wamuziri, 2016). For instance Umar et al. (2018) while considering the occupational 83 84 safety and health regulations in Oman reported that the accidents related expenditures in Oman 85 rose from 1 Million OMR (=2.6 Million US\$) in 2012 to 2.9 Million OMR (=7.53 Million US\$) in 2016, reflecting an increase of 1.9 Million OMR in five years or 0.38 Million OMR in one 86 87 year. Similarly, Umar and Egbu (2018-a), while evaluating the main causes of accidents in construction in Oman, reported a total of 623 different types of accidents that took place in only 88 89 one project as shown in table 1. This project estimated budget was US \$ 305.90 Million and 90 there many similar projects in execution stage that time, however, the authors were not able to 91 obtain the accidents data in these projects due to several reasons. First of all, there is no 92 organization in Oman which aimed to collect and analyzed the construction accidents in Oman 93 on regular basis, and secondly, construction organizations reluctant to the public their record of accidents as they feel this may affect their organization reputation. Similarly, another research 94

95 study which aimed to investigate the causes of the delay in construction projects in Oman 96 reported the accidents at the site as one of the main causes of delay in construction projects 97 (Umar, 2018).

98

99 Table 1: Different Types of Accidents in a Construction Project in Oman

100

101 Considering all these challenges associated with safety and health in the construction industry, 102 many researchers have proposed solutions on how to overcome them by improving the safety and wellbeing of the peoples working in this industry. These solutions cover the incorporation of 103 104 safety in all stages of a construction project from design until the demolition of the project. A 105 study conducted by Bong et al., (2015) investigated the role designer in workplace health and safety in the construction industry of South Africa and concluded that Designers are aware of the 106 hazards on sites and design firms are willing to embrace the guidelines if they are protected from 107 liability. Umar (2016-b) while defining the safety leadership in construction stressed on the key 108 attributes of safety leadership and noted that without a clear definition towards safety leadership, 109 a misalignment between safety expectations may occur which can create a misappropriation 110 towards safety efforts. In the last two decades, the appreciation and importance of 111 administrative, managerial and social factors for an improved safety performance has 112 significantly increased. The focus on the safety culture and safety climate has been expanded. 113 This article presents the research of using safety climate approach to improve safety performance 114 in construction organizations. There have been a number of safety climate tools developed by 115 116 many researcher and organizations which have been used in different industries. The varieties of the existing safety climate tools and factors could cause confusion among the decision-makers 117 when they wish to use a specific tool or factor. The level of such confusion could be greater in 118 the construction industry as most of the existing tools have been developed focusing on other 119 industries such as manufacturing. This research, therefore, aims to review the existing safety 120 121 climate factors used in different safety tools since 1980 and identify the most prevailing factors that can be used in the construction industry of Oman. The safety climate factors identified in 122 this research will help to decision-makers especially those from the construction industry, to 123 124 choose the most appropriate safety climate factors for the assessment of the safety climate of 125 their organization or project. The terms of safety culture and safety climate are first discussed in the next section. The safety climate tools developed by different researchers and organizations in 126

the past 38 years (1980-2019) have been identified using an internet search considering the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram described by Moher et al., (2009). This model required a transparent step by step approach to be adopted in the qualitative or quantitative analysis. These steps include identification, screening, eligibility and final inclusion of the studies considered in the analysis. The safety climate factors used in these tools are discussed in the later section with a specific reference to the construction industry. Finally a framework is proposed to use these factors in a safety climate assessment tool.

134 **2. Safety Climate and Safety Culture:**

The focus on elements which impact safety and safety improvements within organizations has 135 been significantly shifted in the last century. Scientists and experts have established the safety 136 culture and safety climate as fundamental elements in curtailing injuries, illnesses, and deaths at 137 the workstation. Safety climate may be classified as a subgroup of organizational climate which 138 provides a direction to safety management, complementing the frequent predominant 139 engineering path. An understanding of the safety climate elements can be helpful in improving 140 the safety performance of a construction organization. Additionally, safety climate findings are 141 regarded to be more precise (e.g. multi-sliced) and provide pro-active ground for improving 142 143 safety, rather than reactive (after the fact) in which data from accident numbers and accident and incident investigations are used (Seo et al., 2004). Hale and Hovden (1998) define three periods 144 of safety which includes the technical period (the 1920's), the human factor period (1970's) and 145 the management system period (1980's). The third period of safety spread-out the attention to 146 147 include safety culture and safety climate. The approach of safety culture was accurately presented and delineated after the Chernobyl accident which took placed in 1986 (INSAG, 148 1992). Thus, enthusiasm in the approach of safety culture has been significantly increased as 149 safety researchers and practitioners have solicited to characterize and operationalize this 150 151 approach (Clarke, 2000). One of the reasons for this is that rich safety culture and a mature safety climate are considered among the most important elements in attaining a safe workplace 152 153 (Bergh et al., 2013; Umar et al., 2019). To enhance the level of safety culture and safety climate, it is crucial to, first gauge the existing level of safety culture and safety climate, then agree what 154 155 level of safety culture and safety climate is required, obtainable and desired, and then to make strategies to accomplish the safety culture and safety climate, which is desired (AIChE, 2012). 156

157

158 The safety climate can be defined as common understandings between the employees of a social 159 unit, of policies, procedures, and practices connected to safety in a business ((Kines, et al., 2011). The Centre for Construction Research and Training (CPWR) defined safety climate as 160 workgroup members' common thoughts of management and workgroup safety-related policies, 161 procedures and practices (CPWR, 2014). Many construction organizations are trying to enhance 162 163 their safety climate dimensions as a way to step closer to the target of obtaining zero accidents at workplaces (CPWR, 2014). Similarly, Zohar (1980) described the safety climate as a view of 164 workers' understandings about the respective significance of safer acts in their work-related 165 behaviour. There are several definitions of safety culture endorsed by many researchers; 166 167 however, the Cox and Cox (1991) definition appear to be more concise and simple. They described safety culture, as the attitudes, beliefs, understandings, and values that employees 168 contribute in connection to safety. Scientists and experts have established safety culture and 169 safety climate as fundamental elements in curtailing injuries, illnesses, and deaths at 170 workstations. A recent study conducted by Chan et al. (2017-a) considering the Hong Kong 171 construction industry with increasing number ethnic minorities workers, concluded that the 172 safety climate is significantly associated with the degree of safety participation and safety 173 compliance. Similarly, Umar et al. (2017-b) in their research on the factors that influence safety 174 climate in construction concluded that it is important to involve all the team members of 175 construction project including the managers, engineers, supervisors, and workers to ascertain the 176 177 factors that may have a high influence on safety climate in a local context. A study on safety climate which targets only a specific occupational group in construction will, therefore, represent 178 179 only the view of that particular group and thus cannot be considered as a view of the whole construction team. Any safety climate assessment tool developed on such studies will provide 180 misleading results and will mislead the decision-makers. The process of using safety climate 181 assessment tool to improve safety performance in construction organizations as described by 182 183 Umar and Wamuziri (2017) is shown in figure 1. The concept of using safety climate approach 184 in Gulf Cooperation Council (GCC) member countries was first truly discussed by Umar and Wamuziri (2017). Umar and Egbu (2018) reported different safety climate factors relevant to the 185 construction industry in Oman. The main drawback of this study was that the data was only 186 187 collected from a small number of respondents using a semi-structured interview approach. The 188 only justification for using this approach of research with a limited number of respondents mentioned by the authors was the nature of study which they claimed as an exploratory. The next 189

- 190 section describes the method adopted to identify the main safety climate assessment tools
- developed in the past 39 years spanning from 1980 -2019. In the later section, the safety climate
- 192 factors or dimensions used in these tools are discussed.
- 193

194 Figure 4. Process of Using Safety Climate to Improve Safety Performance (Umar and

195 **Wamuziri, 2017).**

196 **3. Research Methodology:**

197 The research methods in social science are commonly classified as quantitative or qualitative. Quantitative research stresses quantification in data collection and examination. It takes a 198 199 deducible way to the connection among theory and research and stress are kept on the confirmation of theories. Quantitative research method integrates the norms and practices of the 200 201 natural scientific model and positivism. It views the social phenomenon as an outer objective 202 truth (Cooper et al., 2006). On the other side, a qualitative research approach stresses on words and contexts despite quantification in data collection (Opdenakker, 2006). It stresses an 203 introductory approach in the relationship between theory and research and focus is settled on the 204 205 formation of theories. Majority of the researchers prefer to incorporate both qualitative and 206 qualitative methods, referred to as a combined research method and highly appreciated in the literature due to certain advantages (Umar and Egbu, 2018). The research, however, presented in 207 this paper is somehow exploratory in nature; therefore a qualitative method with limited use of 208 the quantitative method was considered to be a more suitable method for data collection. The 209 210 process of the research adopted here was guided by Bryman (2016) as shown in figure 5.

211

212 Figure 5. Process of Qualitative Research

213

Bryman (2012) while describing the different research methods related to the qualitative research outlined one of the methods as the collection of qualitative analysis of texts and documents. He further explained that websites and webpages can be the potential and reliable sources for both quantitative and qualitative research methods. The main research question for this research was the simple one "what is the most common safety climate factors used in safety climate assessment tools". To collect the relevant data, four main databased were searched for the relevant papers. Since it was revealed from the literature review that in the last 40 years, the 221 topic of safety climate and safety climate assessment tools have therefore attracted the attention 222 of researchers in construction management. Clearly, a huge work in the area of safety climate was carried out since 1980, which was defined as a management system period by Hale and 223 224 Hovden (1998). This was the period of safety which results in the inclusion of safety culture to the safety management system. The approach of safety culture was accurately presented and 225 226 delineated after the Chernobyl accident which took placed in 1986 (INSAG, 1992). Thus for search criteria, the period of 1980-2019, spanning over a period of 39 years was selected. Two 227 terms "safety climate assessment tools" and "safety climate factors" were used for the search 228 purpose. For screening purpose, only the safety climates factors and tools which were used in 229 230 construction, utilities and oil, and gas sectors were selected. To ensure that a systematic review process is adopted in this study, the research method for the review was guided by Preferred 231 232 Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The PRIMA guidelines required to follow a four steps process to include the final of studies in the systematic review and 233 meta-analysis. These steps include the Identification, Screening, Eligibility, and Inclusion of the 234 235 existing studies.

236 4. Results and Discussion:

237 A total of 68 papers and reports using specified keywords were selected for download from the databases. 18 safety climate assessment tools and papers were able to pass the screening criteria 238 as shown in table 2. Briefly, the number of assessment tools and papers found through this 239 databases search was one in each year of 1980, 1991, 1997, 2000, 2004, 2005, 2006 and 2010. 240 241 There were two safety climate assessment tools and papers in 2008, three assessment tools found in 2011. One relevant paper was found in 2016, three in 2017 and one in 2018. The numbers of 242 leading safety climate factors used in these assessment tools stood at 98. The result shows that in 243 the first 19 years from 1980 to 1999 only three (17%) safety climate assessment tools were 244 developed. In the next phase of 17 years from 2000 to 2018, the number of safety climate 245 assessment tools was 15 (83%). There were two safety climate assessment tools (11%) which 246 247 were not divided into factors or dimensions, while the remaining safety climate tools (89%) were divided into factors or dimensions, ranging from 2 to 8 factors in each tool. The most common 248 249 and top-ranked factors used in these tools were;

250

a) Management or Organizational Commitment towards Safety

- b) Safety Training
- c) Employees Involvement in Safety
- d) Workers Safety Behavior
- e) Safety Communication
- 256 f) Safety Accountability and Justice
- 257 g) Supervisory Leadership
- 258

259 Table 2: Details of Safety Climate Assessment Tools Factors

- 260 In the next section, these leading safety climate factors are discussed in details.
- 261

262 4.1. Management or Organizational Commitment towards Safety:

263 One of the most common factors used in the identified safety climate tools can be referred to as 264 management or organizational commitment towards safety. The first safety climate assessment tools designed by Zohar in 1980 was consist of 40 items covering eight different safety climate 265 dimensions or factors and the first one was management attitude toward safety (Zohar, 1980). 266 Management or organizational commitment toward safety can be displayed in a variety of ways. 267 268 The literature review around management commitment suggests that in organizations where the 269 number of accidents was low, top managers of that organizations were found to be involved personally in all safety-related issues on a routine basis (Cohen et al. 1975; Zohar, 1980). On the 270 271 other hand, a similar commitment was not evident in organizations with a high rate of accidents 272 (Shafai-Sahrai, 1971; Cleveland et al. 1978; Zohar, 1980). In commercial organizations, the 273 business priorities are informed through the top managers of that organization. Thus directly or 274 indirectly these mangers are the main source of information related to the priorities and goals of such organizations (Kines et al. 2011). They further while quoting the organizational climate 275 theories, noted that the worker's safety behavior is based on the organization rules, policies, 276 procedures, and practices. If in these rules, policies, procedures, and practices safety gets 277 priority, it will be reflected through workers safe acts. Similarly, if safety remains one of the 278 organizational priorities, it will be informed through the top managers of organizations which 279 280 could be helpful in promoting a safe working environment. The results of this research show that "management commitment" is one of the main factors used in nine (70%) different safety 281 282 climate assessment tools. Overall, the discussion suggests that organizational or management

283 commitment has a major impact to promote safety culture in the organizations, thus need to be 284 considered as part of the safety climate assessment tool.

285

286 **4.2. Safety Training:**

Zohar (1980) while discussing and comparing the organizations with high of accidents and low 287 288 rates of accidents found that emphasize on safety training was the second factors which 289 differentiate these organizations. Similarly, in mature organizations safety training for new 290 workers was found to be an integral part of their orientation. In such organizations, follow up and periodic training of workers was carried out on a routine basis in these organizations (NSC, 291 292 1969; Cohen et al., 1975). In a review of different safety climate tools conducted by Flin et al. 293 (2000), observed that necessary safety training for workers was one of the main factors used in these tools. A research study carried out by Zahoor et al. (2016) related to occupational safety 294 295 and health performance in the Pakistani construction industry, concluded that safety training was on the top of the most neglected factors. They further concluded that construction organizations 296 which don't address the training issue could face a higher injuries rate in their organizations. In 297 construction projects, workers are expected to works with different machines and equipment 298 299 during the execution cycle of the project. This it is important that such workers should have 300 enough knowledge of the operation of the equipment. Umar and Egbu (2018a) while finding the 301 root causes of accidents in construction projects analyzed a total of 623 accidents in a highway 302 project and noted that 14% of total accidents were caused machines and equipment. Such 303 accidents can only be reduced when workers have appropriate training which incorporates both 304 operational and safety components of machines. The finding of the research conducted by Neal et al. (2000) emphasizes that apart from specific safety training (work-related), a training which 305 highlights the importance of safety has a greater effect to enhance the overall organizational 306 307 climate. This fact was well established in a workshop organized by the Center to Protect 308 Workers' Rights (CPWR) and The National Institute for Occupational Safety and Health 309 (NIOSH) in the United States in June 2013. The aim of this workshop was to improve the understanding of the safety climate in construction (CPWR (2017). A total of 72 nominated 310 construction stakeholders representing the broad of the industry participated in this workshop 311 312 including, 25% representation from contracting organizations, 12% from employer associations, 14% from workers associations, 40% from researchers and academics, 6% from consulting 313 organizations (6%), and 4% from insurance companies. The participants concluded that safety 314

training is one of the main factors of safety climate and needs to use in the assessment tools. In general, the observation leads to the conclusion that the safety climate of a construction organization or a construction project could not be completely measured without considering the factor of safety training.

319

320 **4.3. Employees Involvement in Safety:**

321 Employee's safety involvement refers to the activities undertaken by workers at the workplace 322 which includes the assistance of colleagues, encouraging safety compliance at the workstation, demonstration of safety initiatives and attempt to enhance the safety performance at the 323 324 workstation. The employee's perceptions related to safety risk and control can be directly linked 325 to their participation and responsibility for safety. It has been evident by Walter and Haines (1988) that employees mostly give importance to discrete responsibility when it comes to work 326 with associated safety and health matters. This finding further appears to be consistence with the 327 finding of Frenkel et al. (1980) and Nelkin and Brown (1984). They noted that employees 328 depend on their personal efforts to manage the occupational safety or health-related issue to work 329 330 station despite to ask the help or assistance from management or other sources. This is however not the case in construction workers. The study conducted by Dedobbeleer and Beland (1991) on 331 332 the measurement of safety climate at construction projects observed that construction workers consider safety as a nexus between the workers and organizational management. The safety 333 climate factors suggested by the above two authors, therefore, have only two factors i.e. (i) 334 organizational commitment towards safety and (ii) employees participation. Since the knowledge 335 336 and understanding of safety climate have widely expanded, therefore considering only management commitment and worker involvement in a safety climate assessment tool may not 337 serve the purpose. The limited number factor in this tool was, therefore, one the main drawbacks, 338 but this doesn't warrant on the credibility of these factors. Participation of workers in safety was 339 one of the factors in the safety climate tool developed by the Health and Safety Executive in the 340 341 UK (HSE, 1997). Workers participation in safety were further regarded as an important factor in most of the safety climate assessment tools. For instance, the safety climate tool developed by 342 Seo et al. (2004) considered the worker's participation important not only in the safety-related 343 matters but also in the decision associated with safety. This factor was continuously considered 344 345 and placed in the safety climate assessment tools developed in later years (Pousette et al. 2008; CISCIS, 2008; CPWR, 2017). 346

347

348 **4.4. Workers Safety Behavior:**

The current literature around safety and health-related issue suggest that personal factors 349 350 including noncompliance with safety guideline either by an error or mistake could result into accidents at the workplace (Neal et al. 2000; DeArmond et al. 2011; Umar and Egbu, 2018-a). 351 352 An important factor to understand that why occupational accidents take place at the workstation 353 is to see the contribution of workplace behavior jointly developed by the group of workers in that place. Fung et al. (2016) in their research on safety awareness of construction workers explored 354 the external factors with the psychological climate that the workers possess on their safety 355 356 awareness. The model proposed by Umar and Egbu (2018-a) to trace the causes of accidents involves a variety of factors associated directly with workers behavior. When this model was 357 358 applied to a highway project to access the causes of accidents in that project, it was revealed that 41% of the accidents on that project were due to those factors directly linked with the workers. 359 Simulation-Based research conducted by Nasirzadeh et al. (2017) observed that unsafe behavior 360 361 of different agents is varied throughout the project duration due to the interactions with other 362 agents as well as the safety-related regulations that exist in the site. Campbell et al. (1993) viewed the worker's individual factors such as adherence and compliance of safety procedure, 363 364 important in safety performance, but these factors are highly influenced by workers knowledge, skill, and ambition. Earlier the model for safety performance proposed by Neal and Griffin 365 (1997) had two factors for safety performance i.e. compliance and participation of workers. The 366 results of a research conducted by Clarke (2006) using the meta-analysis technique, suggested 367 368 that there is a difference between safety compliance and safety performance. The safety 369 compliance can be referred to the adherence of organizational safety guidance and performing the work-related task in a safe way. DeArmond et al. (2011) reported that safety behavior may 370 371 not only contribute to safety performance directly, but it is very helpful to promote a safe 372 working environment when workers participate in meeting and training related to safety.

Recent research exploring the safe behavior concluded that safety attitude, safety knowledge, and supporting workplace are the main indicators of safety behavior. The improvement in safety attitude and safety knowledge may result in the highest feasible proportion of safety behavior among the workers (Mohammadfam et al., 2017). A recent study conducted by Chan et al. (2017-b) suggests that there is growing evidence that reflects that a large number of ethnic minorities are employed in the construction industry in many countries to meet the labor 379 shortage. The study also suggests that these workers have high fatal and non-fatal injuries rate as 380 compared to local workers. A similar situation of construction workers was also reported by Lyu et al. (2018). Both the studies further reveal that perceptions on safety climate of such workers 381 from ethnic minorities' are significantly varied by nationality, marital status, family members 382 support, and drinking habit. Majority of the workers in GCC countries are from overseas, thus 383 384 their behavior and safety climate perceptions could be highly affected by the factors such as nationality, marital status, family members support, and drinking habit. The review of safety 385 climate assessment tools reported in table 2, shows that safety behavior directly or indirectly as 386 part of the majority (64%) of the tools. The worker's safety behavior appears to be an important 387 388 factor of the safety climate assessment tools, thus need to be considered part of the safety climate 389 in construction.

390

4.5. Safety Communication:

Generally, frequent communication and interaction with colleagues are mandatory channels to 392 393 develop or improve social setup including organizational climate. The existing literature suggests that most of the researchers considered communication as a factor which constitutes the 394 395 organizational climate. For instance, James and James (1989) viewed that organizational climate can be assessed considering the factors related to the individual and or workplace. Similarly, 396 Siew (2015) considered Poor communication on safety and health-related issues as a major cause 397 398 of incidents/accidents and recognized it as a key challenge to construction practitioners. The 399 general organization's climate can be measured by considering the working environment which 400 may include factors such as leadership, role, and communication (James and McIntyre, 1996). There have been a number of studies which concludes that effective safety communication is one 401 of the safety climate factors which can be used to predict the safety performance of a specific 402 organization (Zohar, 1980; Zohar and Luria, 2005; Pousette et al., 2008; Kines et al., 2011). 403 404 When the organization encourages open communication on the safety-related issue, it spread a 405 strong message on how safety is given values in that organization (Hofmann and Stetzer, 1998). Safety communication is therefore not only to be regarded for sharing information, but it is a 406 channel to share ideas and views to help others to learn new things and to incorporate the 407 408 innovative thought in the existing procedures. Jeffcott et al. (2006) emphasized the learning 409 process to develop a safety culture. They suggested that the collection, analysis, and sharing of relevant data is very important to develop such a culture, where the workers don't hesitate to 410

report their mistake or error. Workers normally share their mistake or error when they have full 411 412 trust on the management, thus open and rich communication becomes a more important factor in organizational safety climate not only for safety performance but also to maintain the trust of 413 their workers (Kines et al., 2011). Safety communication, therefore, should be effective and 414 should be multiway, from management to employees, from employees to the management and 415 416 among the employees. Similarly, Hale (2000) also emphasized the need for open communication in organizations to improve their safety performance. One of the other aspects of safety 417 communication which is related is the language barrier, is more important in the Omani 418 construction industry due to its diversity. For instance, the Omani construction industry is 419 420 heavily populated (92%) by foreigner workers (Umar and Egbu, 2018-b). These workers belong 421 to different Asian and African countries. These workers have a low educational level and can only speak and understand their native languages. This situation results in similar 422 communication barriers outlined by Gittleman et al. (2010). Construction organizations in Oman, 423 therefore, will have to assess the level of communication barriers first before they can further 424 improve the safety communication in their organizations. This discussion further leads the 425 426 authors that safety communication is one of the important dimension of the safety climate and need to be considered in such an assessment. 427

428

429 **4.6. Safety Accountability and Justice:**

It is considered as an important factor that organizations should maintain a fair and just system to 430 deal with the safety-related issues and to ensure that their employees feel no fear to report the 431 432 errors and mistakes. Reason (1997) while discussing the safety culture, argued that in a mature 433 safe working environment, the workers should be convinced to report the error to their supervisors. Similarly, it is very important the error and mistake either results into an accident or 434 not needs to be dealt properly and the responsibility of such situation should be fixed carefully as 435 the blame can result into an obstacle in learning (Jeffcott et al. 2006). Similarly, the employees 436 437 who act unsafely knowing well that his act is unsafe and the employees who act unsafely by mistake should not be considered for the same punishments (Weiner et al. 2008). This can be 438 however challenging to differentiate among such unsafe acts. A just working environment, 439 440 therefore, needs to base on the trust, but there has to be a clear line between an acceptable and 441 non-acceptable behavior. Organ (1997) defined the organizational citizenship behavior as a volunteer behavior which is very difficult to be recognized by organizations reward procedures, 442

443 however, such behavior promotes the effective functioning of organizations. He further stated 444 that the workers, who take actively the safety responsibility of their's-selves and others and participate in safety-related activities, display the organizational citizenship behavior. Kines et al. 445 (2011) argued that workers safety behavior and safety responsibility are positively influenced by 446 the organization rules and procedure which are applicable to the safety matters. In other words, 447 448 an effective just system for dealing accidents and unsafe act in an organization will promote safe behavior in workers and will encourage them to accept the responsibility of safety. Recently, 449 Umar and Wamuziri (2017) in their research on the improvement of safety performance using 450 safety climate factors discussed safety justice as an integral factor of constructions' safety 451 452 climate. They further considered that safety managers in construction organizations need to be accountable for safety expectation through their annual appraisal and performance evaluation. 453 Such factors need to be considered further in their promotion to a higher position, pay rising or 454 renewal of the contract. Overall, the organizations need to provide a fair system which should 455 reflect the accountability and justice for safety. The investigations of the root causes of accidents 456 are compulsory to ensure blame-free accountability. Similarly, the workers need to be rewarded 457 458 for the exceptional safe act to promote safety and to display a fair system. The review of the safety climate assessment tools discussed in this research reveals that safety accountability and 459 safety justice were among the most common factors considered by several authors in their safety 460 climate assessment tools, which trigger out that such factors need to be considered in the 461 462 assessment of safety climate of construction organizations or construction projects.

463

464 **4.7. Supervisory Leadership:**

465 The finding of the research conducted by the Seo et al, (2004) shows that commitment form management or organization towards safety and support associated with safety from site 466 supervisor are the two main factors used more frequently in the safety climate tools. The role of 467 safety leadership was considered important in the safety performance of the workers by 468 469 Hofmann and Morgeson (2004). The existing literature on safety climate and safety culture reflects that many researchers reference leadership directly as a key for improved safety. 470 Hofmann and Morgeson (2004) concluded that the leadership is further directly linked with other 471 472 positives results in organization performance; for instance, it can improve and display an effective managerial commitment, production and can reduce absenteeism of workers. In reality, 473 organization leaders have the responsibility to develop a mature culture within the organization 474

475 that is effective to deliver a safe working environment. Many researchers stressed that 476 supervisors and managers have the initial responsibility to reflect their commitment to safety and such commitment needs to be clearly seen by the workers. For instance, the supervisors and 477 478 managers are required to take quick actions on the matters arise from the accident reports as it is 479 helpful in the development of workers trust on the management (Mayer et al. 1995; Burns et al. 480 2006). The literature review suggests that employees trust in management or organization play a significant role in developing a safety culture. The results of research conducted by Cox et al. 481 482 (2006) shows that the worker's distrust in management has a negative effect on the effectiveness 483 of the safety culture. Trust in management or organization was viewed so important factor of by 484 Kines et al. (2011) that they recommend it to be used in safety climate assessment tool. The review of the safety climate tools presented in this research shows safety leadership was regarded 485 486 as an important factor and was used directly or indirectly in these tools. For instance, the safety climate tools developed by Seo et al. (2004) and Center for Protection of Worker's Right 487 (SPWR, 2017) used the supervisory leadership as a main or direct factor in their tools, similarly 488 the tools developed by Kines et al. (2011) used it indirectly by merging it with the trust in 489 490 management factor. Generally, supervisory leadership is to be expected to have safety leadership abilities. Similarly, safety leadership in construction is considered as an integral element of 491 492 supervisory leadership that includes discipline, engagement, values, demonstration, vision, and promotion. The research conducted by Umar and Egbu (2018) on safety climate factors in Oman 493 494 considered the site supervisor role to be an integral part of the safety climate assessment tools. 495 Overall, the above discussion concludes that organization performance is highly linked to 496 supervisory or managerial leadership. The case with safety performance is the same as it is considered to be highly influenced by the supervisors or managers roles and leadership abilities. 497

498 **5. Framework for Using Safety Climate Approach:**

To use the safety climate to improve the safety performance of construction organization, management of the organizations need to find what elements are significant to each safety climate factor discussed in the above section. To know this, they will need to develop a set of statements to support each factor and then validate these elements through a survey among the organization staff. The elements which are statistically significant should be used to develop a safety climate assessment tool. Each safety climate factors may have at least 10 elements. Such safety climate tool is then to be used to collect the data from different groups of workers. Each 506 element of a safety climate factor may be scored on a Likert scale of 1-5 (1 = strongly disagree, 5 507 = strongly agree). Construction organizations who wish to use this safety climate approach for the assessment of their organization or project safety climate will have to finally calculate the 508 mean value of each safety climate factor using the collected data. These mean values can be 509 presented on a radar chart to effectively display the area where the organization needs to focus. 510 511 Based on the mean values of each safety climate factor, the maturity level will be determined. 512 Similarly, based on the maturity level; the type of plan to achieve the required level of maturity will be established. As a guideline, if the mean score of a safety climate factor is ≤ 4 , a short 513 term plan (6 months) is appropriate to enhance the maturity level further. Similarly, if the mean 514 515 score of a safety climate factor is ≤ 3 , then a medium-term plan (6 – 12 months) is appropriate. Long term plan (12 – 24 months) is appropriate if the mean score of a safety climate factor is \leq 516 2. 517

518 Figure 6 shows the results of the safety climate assessment (example) presented on a radar chart. 519 The respondents in this assessment were, let say the site supervisors. The figure clearly shows that the organization needs to first focus on the "Management Commitment" as it has a mean 520 score of just 2.1. Since the mean score of this factor is less than 3, therefore the organization will 521 need to develop a medium-term plan (6 - 12 months) to improve the maturity of this factor. 522 Similarly, the factor "Safety Training" has a mean score of 4.2. If the construction organization 523 wishes to improve the maturity level of this factor further, a short term plan (6 months) will be 524 525 implemented. After successfully implementing all the plans, the construction organization needs 526 to assess the maturity level of all the factors. In other words, this has to be a continuous process. 527

528

Figure 6: Results of Safety Climate Assessment (Example)

It is also important the construction organizations in the GCC region ensure that their employees 529 530 feel free to participate in such assessments. Construction organizations in the region will have to 531 develop trust among the workers by ensuring that their responses should be considered 532 anonymous and it will have no implication on their job security. The main drawback of the 533 newly developed safety climate assessment tool is the language. It is currently written in English, 534 however most of the white color construction workers currently unable to read and write English. In this situation, it is recommended that the data from such workers may be collected through an 535 interview and the responses may be recorded on the tool. This idea, however, has some 536

537 disadvantages. For instance, the worker may feel under-pressure and would not be able to 538 disagree with the items as someone is monitoring his/her response. In other words, the data 539 collection is not anonymous. The other disadvantage of this method is that the workers in GCC region are from different nationalities and it would be difficult for construction organization to 540 find the appropriate person to conduct the interview and record the response of the workers on 541 542 the tool. Another solution for this situation is to develop a mobile application which could 543 translate the tool into the mother language of the respondents. The application should have the ability to display and speak the translation of the tool into the local languages. Such application 544 may also be connected to the main server of the organization and should have the ability to 545 546 process the responses automatically.

547 The conclusion of the paper is provided in the next section.

548 6. Conclusion:

549

550 Due to the complexity of the construction industry and construction projects, safety remains a 551 major challenge which needs to be addressed. One of the latest approaches to improve safety 552 performance is the safety climate concept which was truly introduced as part of the safety management system during 1980. Safety climate was defined in a variety of ways by many 553 554 researchers but in general, it is referred to the share perceptions of workers on different aspects 555 of organizational procedures and protocols related to safety. The terms safety climate and its different dimensions were highly discussed and elaborated in the past 39 years since 1980. This 556 article attempted to review these safety climate factors and make an explicit of the most 557 prevailing factors. A qualitative research method incorporating the major databases spanning 558 559 over 39 years (1980-2019) was used to identify the leading safety climate factors. After the screening process, a total of 18 safety climate tools with 98 safety climate dimensions were 560 selected for a review in this article. The PRISMA flow diagram and guidelines were followed to 561 search the existing literature. Finally, the most common safety climate factors including, a) 562 Management or Organizational Commitment towards Safety; b) Safety Training; c) Employees 563 Involvement in Safety; d) Workers Safety Behavior; e) Safety Communication; f) Safety 564 Accountability and Justice and g) Supervisory Leadership, are discussed in more details. These 565 leading safety climate factors can be assessed through a safety climate assessment tool which can 566 be paper-based or electronic-based depending on the capability of organizations and workers. 567

568 Each safety climate factors will be supported by a number of questions which respondents will 569 score on a Likert scale of five. The results of such assessment will help the organizations to develop strategies to improve the perceptions of these factors by making short (~2 months), 570 medium (~12 months) or long (~24 months) term plans. For instance, an organization can 571 572 exemplarily demonstrate the management commitment towards safety by using a number of 573 ideas including; i) Develop safety-related policies, guidelines, and procedures which are aligned 574 with organizations that displayed best safety performance; ii) Visit construction site by senior management and adopt appropriate safety behavior; iii) Provide appropriate safety resources; iv) 575 Participation of senior management in safety-related meetings; v) Aim for zero accidents at 576 577 construction sites. The main limitation of this research is that the common safety climate factors are derived from the published literature only. For a more robust study, it is necessary to validate 578 the results through a questionnaire or interview. This appears a limitation of the study, however, 579 at the same times, this provides a room for further research. The study considered a specific 580 period of time (1980 - 2018) assuming the fact that the terms safety culture and safety climate 581 have attracted the focus of many researchers due to the evolution of human factors in 582 organizations performance, but this does not mean that there could be no study prior to 1980 583 which focus on factors related to safety culture and safety climate. Most of the studies which are 584 considered in this research were conducted in advanced countries, thus it could be difficult to 585 conclude that the safety climate factors used in these studies could be relevant to the construction 586 587 in developing countries. The maturity level of the construction industry is different in different countries. For instance, the construction industry in Oman is not that advanced as of the UK. The 588 589 UK construction industry is highly regulated through different regulatory organizations and regulations such as Health and Safety Executive (HSE), Construction Design and Management 590 591 (CDM regulations) and Construction Skills Certification Scheme (CSCS). Construction workers in these two countries will have a different interpretation and the importance of a specific safety 592 593 climate factor may be varied. Thus, it is important to validate the safety climate factors derived 594 in this research before they could be adopted in a specific country or region. The main challenge which is also important and needs to be explored is how small construction organizations with 595 limited resources will be benefitted from the use of a safety climate approach to enhance their 596 597 safety performance.

598 599 600	References:
601 602 603 604	AIChE (American Institute of Chemical Engineers) (2012) Safety Culture: What Is at Stake? AIChE, New York, NY, USA. See <u>http://www.aiche.org/ccps/topics/elements-process-safety/commitment-process-safety/process-safetyculture/building-safety-culture-tool-kit/what-is-at-stake</u> (accessed 01/12/2017).
605	Bergh, M., Shahriari, M. and Kines, P., 2013. Occupational safety climate and shift work.
606	Chemical Engineering Transactions, 31(2013): 403 - 408.
607	https://doi.org/10.3303/CET1331068.
608	Bong, S., Rameezdeen, R., Zuo, J., Li, R.Y.M. and Ye, G., 2015. The designer's role in
609	workplace health and safety in the construction industry: post-harmonized regulations in
610	South Australia. International Journal of Construction Management, 15(4), pp.276-287.
611	<u>https://doi.org/10.1080/15623599.2015.1094850</u> .
612 613	Bryman, A., 2012. Social research methods, 4 th edition. Oxford University Press Inc. New York, USA.
614 615	Bryman, A., 2016. Social research methods, 5 th edition. Oxford University Press Inc. New York, USA.
616	Burns, C., Mearns, K. and McGeorge, P., 2006. Explicit and implicit trust within safety culture.
617	Risk Analysis, 26(5), pp.1139-1150. <u>https://doi.org/10.1111/j.1539-6924.2006.00821.x</u> .
618	Campbell, J.P., McCloy, R.A., Oppler, S.H., Sager, C.E., 1993. A theory of performance. In:
619	Schmitt, J., Borman, W.C. Associates. Personnel Selection in Organizations. Jossey-Bass,
620	San Francisco, CA, USA. pp. 35-69.
621	Chan, A.P., Javed, A.A., Wong, F.K., Hon, C.K. and Lyu, S., 2017-a. Evaluating the safety
622	climate of ethnic minority construction workers in Hong Kong. Journal of Professional
623	Issues in Engineering Education and Practice, 143(4), p.04017006.
624	https://doi.org/10.1061/(ASCE)EI.1943-5541.0000333.
625	Chan, A.P., Wong, F.K., Hon, C.K., Lyu, S. and Javed, A.A., 2017-b. Investigating ethnic
626	minorities' perceptions of safety climate in the construction industry. Journal of safety
627	research, 63, pp.9-19. https://doi.org/10.1016/j.jsr.2017.08.006.
628 629 630	Cheyne, A., Cox, S., Oliver, A., Toma's, J.M., 1998. Modelling safety climate in the prediction of levels of safety activity. Work and Stress 12 (3), 255–271. <u>https://doi.org/10.1080/02678379808256865</u> .
631	CISCIS (Construction Industry Safety Climate Index Software) 2008. Occupational Safety &
632	Health Council, Hong Kong, North Point, Hong Kong. See:
633	https://www.housingauthority.gov.hk/mini-site/site-safety/en/tools/safety-climate-index-
634	survey/index.html. (accessed 28/02/2019).
635 636	Clarke, S. (2000), Safety culture: underspecified and overrated? International Journal of Management Reviews, 2(1), 65-90. <u>https://doi.org/10.1111/1468-2370.00031</u> .
637	Clarke, S., 2006. The relationship between safety climate and safety performance: a meta-
638	analytic review. Journal of Occupational Health Psychology 11, 315–327.

639 640 641	Cleveland, R. J., Cohen, H. H., Smith, M. J., & Cohen, A. Safety program practices in record holding plants. Cincinnati, Ohio: National Institute for Occupational Safety and Health, 1978.
642 643 644 645	Cohen, A., Smith, M., and Cohen, H. H. Safety program practices in high vs. low accident rate companies—An interim report (U.S. Department of Health, Education and Welfare Publication No. 75-185). Cincinnati, Ohio: National Institute for Occupational Safety and Health, USA. 1975.
646 647	Cooper, D.R., Schindler, P.S. and Sun, J., 2006. Business research methods (Vol. 9). New York: McGraw-Hill Irwin. <u>https://trove.nla.gov.au/work/16067972</u> .
648 649	Cox, S. and Cox, T., 1991. The structure of employee attitudes to safety: A European example. <i>Work & stress</i> , 5(2), pp.93-106. <u>https://doi.org/10.1080/02678379108257007.</u>
650 651	Cox, S., Jones, B. and Collinson, D., 2006. Trust relations in high-reliability organizations. Risk analysis, 26(5), pp.1123-1138. <u>https://doi.org/10.1111/j.1539-6924.2006.00820.x</u> .
652 653 654	CPWR (2017), The Centre for construction research and training repot "Strengthening Jobsite Safety Climate" 2017. Maryland, USA. See: http://www.cpwr.com/safety-culture/strengthening-jobsite-safety-climate (accessed: 25/05/2017).
655 656 657	CPWR (Center for Protection of Worker's Right) (2014) The Center for Construction Research and Training Report 'Strengthening Jobsite Safety Climate'. CPWR, Silver Spring, Washington, USA.
658 659 660 661	DeArmond, S., Smith, A.E., Wilson, C.L., Chen, P.Y. and Cigularov, K.P., 2011. Individual safety performance in the construction industry: Development and validation of two short scales. Accident Analysis & Prevention, 43(3), pp.948-954. <u>https://doi.org/10.1016/j.aap.2010.11.020</u> .
662 663	Dedobbeleer, N. and Béland, F., 1991. A safety climate measure for construction sites. Journal of safety research, 22(2), pp.97-103. <u>https://doi.org/10.1016/0022-4375(91)90017-P</u> .
664 665 666	Flin, R., Mearns, K., O'Connor, P., Bryden, R., 2000. Measuring safety climate: identifying the common features. Safety Science 34 (1e3), 177-192. <u>https://doi.org/10.1016/S0925- 7535(00)00012-6</u> .
667 668 669 670	Frenkel, R.L., Priest, W.C. and Ashford, N.A., 1980. Occupational safety and health: A report on worker perceptions. Monthly Lab. Rev., 103(11), 11-14. See: <u>https://dspace.mit.edu/bitstream/handle/1721.1/116688/9.%20occupational%20safety%2</u> <u>0and%20health%20worker%20perceptions.pdf?sequence=1</u> (accessed: 02/08/2018).
671 672 673 674	Fung, I.W., Tam, V.W., Sing, C.P., Tang, K.K.W. and Ogunlana, S.O., 2016. Psychological climate in occupational safety and health: the safety awareness of construction workers in South China. International journal of construction management, 16(4), pp.315-325. <u>https://doi.org/10.1080/15623599.2016.1146114</u> .
675 676 677 678	 Hale AR and Hovden J (1998) Management and culture: the third age of safety. A review of approaches to organizational aspects of safety, health and environment. In Occupational Injury: Risk, Prevention and Intervention (Feyer A-M and Williamson A (eds)). pp. 129–227. Taylor & Francis Ltd., London, UK.
679	Hale, A.R., 2000. Culture's confusions. Safety Science 34, 1-14.

680	Hofmann, D.A. and Morgeson, F.P., 2004. The role of leadership in safety. In "The psychology
681	of workplace safety". Edited by Julian Barling and Michael R. Frone. American
682	Psychological Association, Washington, DC, USA. pp.159-180.
683	Hofmann, D.A., Stetzer, A., 1998. The role of safety climate and communication in accident
684	interpretation: implications for learning from negative events. Academy of Management
685	Journal 41 (6), 644-657. <u>https://doi.org/10.5465/256962</u> .
686	HSE, UK (Health and Safety Executive) (1997). Safety Climate Assessment Tool. London,
687	United Kingdom. See: http://www.lboro.ac.uk/departments/sbe/downloads/pmdc/safety-
688	climate-assessment-toolkit.pdf (accessed 01/07/2017).
689 690 691 692	ILO (International Labour Organization). 2013. ILO calls for urgent global action to fight occupational diseases. International Labour Organization. Geneva, Switzerland. See: http://www.ilo.org/global/about-the-ilo/newsroom/news/WCMS_211627/langen/index.htm (accessed 22/07/2018).
693	ILO (International Labour Organization); 2015. Construction: a hazardous work. See:
694	http://www.ilo.org/safework/areasofwork/hazardous-work/WCMS_356576/lang
695	en/index.htm (accessed 11/03/2017).
696 697 698	INSAG (International Nuclear Safety Advisory Group) (1992) INSAG-7: The Chernobyl Accident: Updating of INSAG-1, Safety Series No. 75-INSAG-7. INSAG, Vienna, Austria.
699	Institute of Work & Health (2011). Benchmarking Organizational Leading Indicators for the
700	Prevention and Management of Injuries and Illnesses: Final Report. Institute of Work &
701	Health, Ontario, Canada. See: http://www.iwh.on.ca/benchmarking-organizational-
702	leading-indicators (accessed 30/06/2017).
703 704	James, L.A., James, L.R., 1989. Integrating work environment perceptions: Explorations into the measurement of meaning. Journal of Applied Psychology 74, 739-751.
705	James, L.R., McIntyre, M.D., 1996. Perceptions of organizational climate. In: Murphy, K. (Ed.),
706	Individual Differences and Behavior in Organizations. Jossey-Bass, San Francisco, CA,
707	pp. 416-450.
708	Janie L.Gittleman., Paige C.Gardner., ElizabethHaile., Julie M.Sampson., Konstantin
709	P.Cigularov., Erica D.Ermann., PeteStafford., and Peter Y.Chen., 2010. [Case Study]
710	City Center and Cosmopolitan Construction Projects, Las Vegas, Nevada: Lessons
711	learned from the use of multiple sources and mixed methods in a safety needs
712	assessment. Journal of Safety Research Volume 41(3), Pages 263–281.
713	<u>https://doi.org/10.1016/j.jsr.2010.04.004</u> .
714 715 716	Jeffcott, S., Pidgeon, N., Weyman, A., Walls, J., 2006. Risk, trust, and safety culture in UK train operating companies. Risk Analysis 26 (5), 1105-1121. <u>https://doi.org/10.1111/j.1539-6924.2006.00819.x</u> .
717	Kines, P., Lappalainen, J., Mikkelsen, K.L., Olsen, E., Pousette, A., Tharaldsen, J., Tómasson, K.
718	and Törner, M., 2011. Nordic Safety Climate Questionnaire (NOSACQ-50): A new tool
719	for diagnosing occupational safety climate. International Journal of Industrial
720	Ergonomics, 41(6), pp.634-646. <u>https://doi.org/10.1016/j.ergon.2011.08.004</u> .

721	Lyu, S., Hon, C., Chan, A., Wong, F. and Javed, A., 2018. Relationships among safety climate,
722	safety behavior, and safety outcomes for ethnic minority construction workers.
723	International journal of environmental research and public health, 15(3), p.484.
724	https://doi.org/10.3390/ijerph15030484.
725	Mayer, R.C., Davis, J.H. and Schoorman, F.D., 1995. An integrative model of organizational
726	trust. Academy of management review, 20(3), pp.709-734.
727	<u>https://doi.org/10.5465/amr.1995.9508080335</u> .
728 729 730	Mohammadfam, I., Ghasemi, F., Kalatpour, O. and Moghimbeigi, A., 2017. Constructing a Bayesian network model for improving safety behavior of employees at workplaces. Applied ergonomics, 58, pp.35-47. <u>https://doi.org/10.1016/j.apergo.2016.05.006</u> .
731 732 733	Moher D, Liberati A, Tetzlaff J, Altman DG, Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS medicine. 2009 Jul 21;6(7):e1000097.
734 735 736 737	Nasirzadeh, F., Khanzadi, M. and Mir, M., 2018. A hybrid simulation framework for modelling construction projects using agent-based modelling and system dynamics: an application to model construction workers' safety behavior. International Journal of Construction Management, 18(2), pp.132-143. <u>https://doi.org/10.1080/15623599.2017.1285485</u> .
738	Neal, A. and Griffin, M.A., 1997. Perceptions of Safety at Work: Developing a Model to Link
739	Organizational Safety Climate and Individual Behavior. Paper presented to the 12th
740	Annual Conference of the Society for Industrial and Organizational Psychology, St.
741	Louis, MO. USA.
742	Neal, A., Griffin, M.A. and Hart, P.M., 2000. The impact of organizational climate on safety
743	climate and individual behavior. Safety science, 34(1), pp.99-109.
744	<u>https://doi.org/10.1016/S0925-7535(00)00008-4</u> .
745	Nelkin, D., Brown, M. and Brown, M.S., 1984. Workers at risk: Voices from the workplace.
746	University of Chicago Press. Illinois, USA.
747 748	NSC (National Safety Council). 1969. Award-winning programs. In, Accident prevention manual for industrial operations (6th ed.). Chicago: Author, 1969.
749 750 751	Opdenakker, R., 2006, September. Advantages and disadvantages of four interview techniques in qualitative research. In Forum Qualitative Sozialforschung/Forum: Qualitative Social Research (Vol. 7, No. 4). <u>http://dx.doi.org/10.17169/fqs-7.4.175</u> .
752 753	Organ, D.W., 1997. Organizational citizenship behavior: It's construct clean-up time. Human performance, 10(2), pp.85-97. <u>https://doi.org/10.1207/s15327043hup1002_2</u> .
754	Parker, D., Lawrie, M. and Hudson, P., 2006. A framework for understanding the development
755	of organisational safety culture. Safety science, 44(6), pp.551-562.
756	<u>https://doi.org/10.1016/j.ssci.2005.10.004</u> .
757	Pousette, A., Larsson, S. and Törner, M., 2008. Safety climate cross-validation, strength and
758	prediction of safety behaviour. Safety Science, 46(3), pp.398-404.
759	<u>https://doi.org/10.1016/j.ssci.2007.06.016</u> .
760 761	Reason, J., 1997. Managing the Risks of Organizational Accidents. Ashgate Publishing Limited, Aldershot. UK.

762	Roth, P., BeVier, C., 1998. Response rates in HRM/OB survey research: norms and correlates,
763	1990–1994. Journal of Management 24, 97–117.
764	<u>https://doi.org/10.1177%2F014920639802400107</u> .
765	Seo, D.C., Torabi, M.R., Blair, E.H., Ellis, N.T. (2004), A cross-validation of safety climate
766	scale using confirmatory factor analytic approach. Journal of Safety Research 35 (4),
767	427-445. <u>https://doi.org/10.1016/j.jsr.2004.04.006</u> .
768	Shafai-Sahrai, Y. An inquiry into factors that might explain differences in occupational accident
769	experience of similar size firms in the same industry (Tech. rep.). East Lansing, Mich.:
770	Division of Research, Graduate School of Business Administration, Michigan State
771	University Press, Michigan, USA. 1971.
772	Siew, R.Y., 2015. Health and safety communication strategy in a Malaysian construction
773	company: a case study. International Journal of Construction Management, 15(4),
774	pp.310-320. <u>https://doi.org/10.1080/15623599.2015.1084469</u> .
775 776 777 778	Statista, 2017. Construction industry spending worldwide from 2014 to 2025 (in trillion U.S. dollars). Statista, Inc. New York, USA. See: https://www.statista.com/statistics/788128/construction-spending-worldwide/ (accessed 24/04/2018).
779	Umar T and Wamuziri S (2016) A review of construction safety, challenges and opportunities –
780	Oman perspective. In Proceedings of 5th World Construction Symposium, Colombo, Sri
781	Lanka (Sandanayake YG, Karunasena GI and Ramachandra T (eds)). University of
782	Moratuwa, Colombo, Sri Lanka, pp. 14–22.
783	Umar, T. and Egbu, C., 2018. Perceptions on safety climate: a case study in the Omani
784	construction industry. Proceedings of the Institution of Civil Engineers-Management,
785	Procurement and Law. 171(6): pp. 251 - 263. <u>https://doi.org/10.1680/jmapl.18.00001</u> .
786 787	Umar, T. and Egbu, C., 2018-a. Causes of construction accidents in Oman. Middle East Journal of Management, 5(1), pp.21-33. <u>https://doi.org/10.1504/MEJM.2018.088725</u> .
788	Umar, T. and Egbu, C., 2018-b. Heat Stress, a Hidden Cause of Accidents in Construction.
789	Proceedings of the Institution of Civil Engineers–Municipal Engineer (pp. 1-30). Thomas
790	Telford Ltd. <u>https://doi.org/10.1680/jmuen.18.00004</u> .
791	Umar, T. and Wamuziri, S., 2017. Using 'safety climate factors' to improve construction safety.
792	Proceedings of the Institution of Civil Engineers: Municipal Engineer (Vol. 170, No. 2,
793	pp. 65-67). Thomas Telford Ltd. https://doi.org/10.1680/jmuen.16.00020.
794	Umar, T., 2016. Cost of accidents in the construction industry of Oman. Proceedings of the
795	Institution of Civil Engineers-Municipal Engineer (Vol. 170, No. 2, pp. 68-73). Thomas
796	Telford Ltd. https://doi.org/10.1680/jmuen.16.00032.
797 798	Umar, T., 2018. Causes of delay in construction projects in Oman. Middle East Journal of Management, 5(2), pp.121-136. https://doi.org/10.1504/MEJM.2018.091132.
799	Umar, T., Egbu, C., Honnurvali, M.S., Saidani, M. and Al-Bayati, A.J., 2019. Status of
800	occupational safety and health in GCC construction. Proceedings of the Institution of
801	Civil Engineers-Management, Procurement and Law, 172(4), pp. 137–141.
802	<u>https://doi.org/10.1680/jmapl.18.00053</u> .

803	Umar, T., Egbu, C., Wamuzir, S. and Honnurvali, M.S., 2018. Occupational Safety and Health
804	Regulations in Oman. Proceedings of the Institution of Civil Engineers: Management,
805	Procurement and Law. 171(3), pp.93-99. <u>https://doi.org/10.1680/jmapl.18.00007</u> .
806	Ventures, 2018. US\$ 29.4 Bn worth of contracts awarded in GCC in Q1, 2018. Ventures Onsite,
807	Ventures Middle East DMCC; Dubai, United Arab Emirates. See:
808	http://venturesmiddleeast71550.activehosted.com/index.php?action=social&chash=1c383
809	cd30b7c298ab50293adfecb7b18.70 (accessed 25/04/2018).
810	Walter, V., & Haines, T. (1988). Workers' perceptions, knowledge and responses regarding
811	occupational health and safety: A report on a Canadian study. Social Science and
812	Medicine, 27 (II), 1189-1196. <u>https://doi.org/10.1016/0277-9536(88)90348-6</u> .
813	Weiner, B.J., Hobgood, C. and Lewis, M.A., 2008. The meaning of justice in safety incident
814	reporting. Social science & medicine, 66(2), pp.403-413.
815	<u>https://doi.org/10.1016/j.socscimed.2007.08.013</u> .
816	Zahoor, H., Chan, A.P., Masood, R., Choudhry, R.M., Javed, A.A. and Utama, W.P., 2016.
817	Occupational safety and health performance in the Pakistani construction industry:
818	stakeholders' perspective. International Journal of Construction Management, 16(3),
819	pp.209-219. <u>https://doi.org/10.1080/15623599.2015.1138027</u> .
820	Zohar, D. and Luria, G., 2005. A multilevel model of safety climate: cross-level relationships
821	between organization and group-level climates. Journal of applied psychology, 90(4),
822	p.616. <u>http://psycnet.apa.org/doi/10.1037/0021-9010.90.4.616</u> .
823 824 825	Zohar, D., 1980. Safety climate in industrial organizations: theoretical and applied implications. Journal of applied psychology, 65(1), p.96. <u>http://psycnet.apa.org/doi/10.1037/0021-9010.65.1.96</u> .

Appendix I: Parameters of the Review Protocol for Safety Climate Factors 827

Keywords	Period	Inclusion Criteria	Exclusion Criteria	Database	Total Downloaded Articles/ Reports	Total Articles/ Reports/ Tools After Criteria	Derived Safety Climate Factors
	January,	Publications/	Publications/	Web Of	68	18	1. Commitment from
Safety	1980 –	Reports / Tools on	Reports / tools	Science			Management to
Climate	April,	Safety climate in	articles where the			Zohar, (1980);	Enhance Safety
Factors,	2019	Construction	keywords	Pro Quest		Dedobbeleer and	2. Alignment and
			are not in the title,			Beland, (1991);	Integration of Safety
Safety			abstract or in the	Scopus		HSE (UK), (1997);	as Value
Climate			keywords	-		Neal et al.,(2000);	3. Enforcing
Assessment		Publications /		Science		Seo et al., (2004);	Accountability At All
Tool,		reports that resulted	Publications /	Direct		Zohar and Luria,	Level
		into a new safety	reports that do not			(2005);	4. Enhancing
Safety		climate assessment	resulted in to a new	Google		Parker et al., (2006);	Workplace Safety
Climate		tool	safety climate	Chrome		Pousette et al., (2008);	Leadership
Dimension			assessment tool (this			CISCIS, (2008);	5. Empowerment and
		Publications /	condition is not			Gittleman et al., (2010);	Involvement of
		reports on safety	applicable on the			Institute of Work and	Workers
		climate focusing	study related to			Health, (2011);	6. Enhancing
		GCC region	GCC region)			DeArmond et al.,	Communication
						(2011);	7. Ensuring Training
			Articles/ Reports in			Kines, et al., (2011);	for all staff
			non-English			Umar and Wamuziri,	8. Encouragement of
			language			2016; Umar et al.,	Owner and Client
						2017; Umar and	Participation
						Wamuziri, 2017;	
						CPWR, (2017); Umar	
						and Egbu, (2018)	

Figures

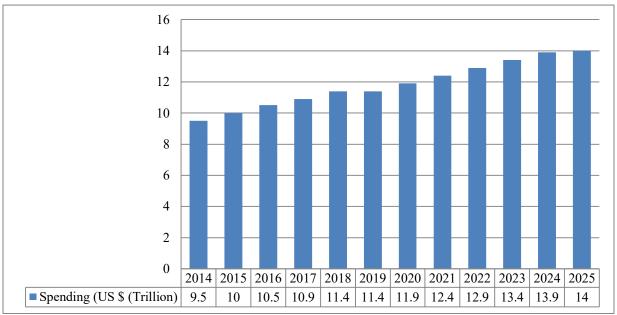


Figure 1: Global Construction Industry Growth (Statista, 2017).

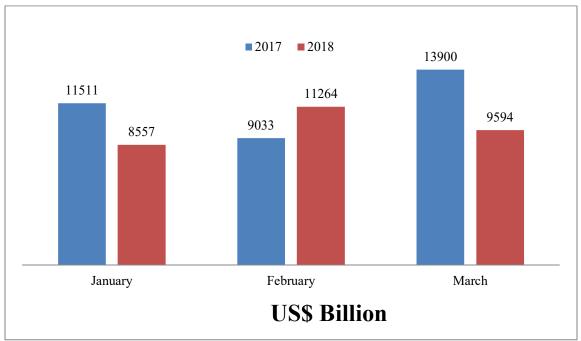


Figure 2: Comparison of Awarded Construction Contracts In GCC (Ventures, 2018).

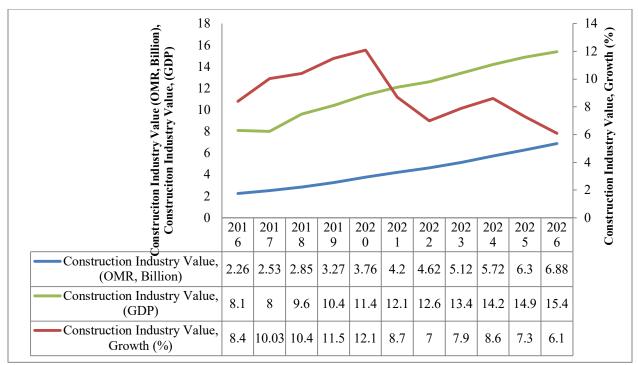


Figure 3: Oman Infrastructure and Construction Industry Forecasts (2016-2026).

Figure 4. Process of Using Safety Climate to Improve Safety Performance (Umar and Wamuziri, 2017).

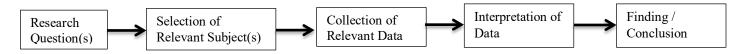


Figure 5. Process of Qualitative Research

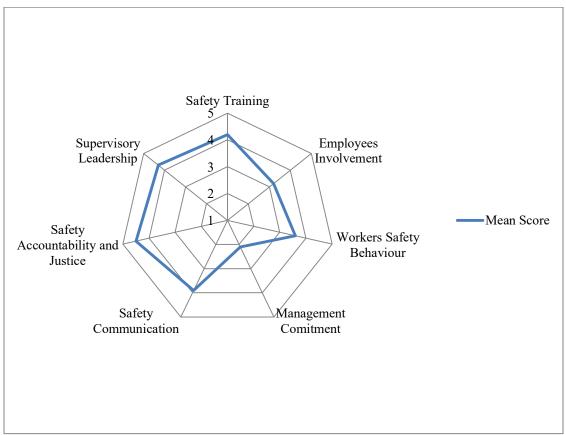


Figure 6: Results of Safety Climate Assessment (Example)

<u>Tables</u>

Year	Property / Equipment Damage	Alternate Work Injury (AWI)	First Aid Injury (FAI)	Loss Time Injury (LTI)	Medical Treatment Injury (MTI)	Total
2011	0	0	0	0	0	0
2012	7	1	1	0	2	11
2013	155	0	3	3	4	165
2014	164	2	0	5	5	176
2015	179	2	7	1	4	193
2016	75	0	3	0	0	78
Total:	580	5	14	9	15	623

 Table 1: Different Types of Accidents in a Construction Project in Oman

Safety Climate Assessment Tool	Safety Climate Factors / Dimensions	Top ranked Factors
Zohar (1980)	 (i) Management attitude toward safety; (ii) Work pace and safety; (iii) Effects of safe conduct on promotion; (iv) Effect of safe conduct on social status; (v) Perceived risks; (vi) Perceived importance of safety training; (vii) Perceived status of safety officer; (viii) Perceived status of safety committee 	
Dedobbeleer and Beland (1991)	(i) Management commitment; (ii)Worker involvement	
HSE (UK) (1997)	 (i) Organizational commitment; (ii) Health and Safety oriented behavior; (iii) Health and Safety Trust; (vi) Usability of Procedures; (v) Engagement in health and safety; (vi) Peer group attitude; (vii) Resources of health and safety (viii) Accidents and near miss reporting 	a) Management or Organizational Commitment towards Safety b) Safety Training
Neal et al. (2000)	 (i) Management values; (ii) Communication; (iii) Training; (iv) Physical Work Environment; (v) Safety Systems; (vi) Knowledge; (vii) Motivation; (viii)Behavior 	 c) Employees Involvement in Safety d) Workers Safety Behavior e) Safety Communication
Seo et al. (2004)	(i) Management commitment to safety; (ii) Supervisor safety support; (iii) Coworker safety support; (iv) Employee participation in safety-related decision making and activities; (v) Competence level of employees with regard to safety	f) Safety Accountability and Justice g) Supervisory Leadership
Zohar and Luria (2005)	 (i) Active practices (monitoring, enforcing); (ii) Proactive practices (promoting learning, development); (iii) Declarative practices (declaring, informing); (iv) Active practices (Monitoring, controlling); (v) Proactive practices (Instructing, Guiding); (vi) Declarative practices (Declaring, Informing) 	
Parker et al. (2006)	(i) Concrete organizational aspects; (ii) Abstract organizational concepts	
Pousette et al. (2008)	 (i) Management safety priority; (ii) Safety management; (iii) Safety communication; (iv) Workgroup safety involvement 	
CISCIS (2008)	(i) Commitment and concern for Occupational Safety and Health by organization and management; (ii) Resources for safety and its effectiveness; (iii) Risk taking behavior and perception of work risk; (iv) Perception of safety rules and procedures; (v) Personal involvement in safety and health; (vi) Safe working attitude and workmates' influence; (vii) Safety promotion and communication	
Gittleman et al. (2010)	The tool is not divided in to factors or dimensions	
Institute of Work and Health (2011)	The tool is not divided in to factors or dimensions	
DeArmond et al.	(i) Safety compliance; (ii) Safety participation	

(2011)	
	(i) Management sofety priority commitment and
Kines, et al. (2011)	 (i) Management safety priority, commitment, and competence; (ii) Management safety empowerment; (iii) Management safety justice; (iv) Workers' safety commitment; (v) Workers' safety priority and risk non- acceptance; (vi) Safety communication, learning, and trust in co-workers safety competence; (vii) Trust in the efficacy of safety systems
Umar and Wamuziri (2016)	 (i) Management commitment; (ii) Safety empowerment; (iii) Safety justice; (iv) workers' safety commitment; (v) Safety priority and risk non-acceptance; (vi) Communication, learning and competence; and (vii) Trust in the efficacy of safety systems
Umar et al. (2017)	(i) Management Commitment; (ii) Safety as a Value; (iii) Accountability; (iv) Leadership; (v) Empowering and Involving Workers; (vi) Communication; (vii) Training
Umar and Wamuziri (2017)	 (i) Improved management commitment; (ii) Integrating safety as a value; (iii) Accountability system; (iv) Improved leadership; (v) Empowered workers; (vi) Improved communication; (vii) Safety training; (viii) owner/client involvement.
CPWR (2017)	 (i) Demonstrating management Commitment; (ii) Aligning and integrating safety as a value; (iii) Ensuring accountability at all levels; (iv) Improving supervisory leadership; (v) Empowering and involving Employees; (vi) Improving communication; (vii) Training at all levels; (viii) Encouraging owner/client involvement
Umar and Egbu (2018)	 (i) Management commitment; (ii) Alignment and integration of safety as a value; (iii) Accountability across the board; (iv) Supervisory management; (v) Empowerment and involvement of workers; (vi) Improvement of communication; (vi) Training and education

 Table 2: Details of Safety Climate Assessment Tools Factors