Joseph, MD;
Tomas Bort, ET;
Grose, RP;
McCormick, PJ;
Simoncelli, S;
(2021)
Quantitative Super-Resolution Imaging for the Analysis of GPCR Oligomerization.
Biomolecules
, 11
(10)
, Article 1503. 10.3390/biom11101503.
Preview |
Text
biomolecules-11-01503-v2.pdf - Published Version Download (4MB) | Preview |
Abstract
G-protein coupled receptors (GPCRs) are known to form homo- and hetero- oligomers which are considered critical to modulate their function. However, studying the existence and functional implication of these complexes is not straightforward as controversial results are obtained depending on the method of analysis employed. Here, we use a quantitative single molecule super-resolution imaging technique named qPAINT to quantify complex formation within an example GPCR. qPAINT, based upon DNA-PAINT, takes advantage of the binding kinetics between fluorescently labelled DNA imager strands to complementary DNA docking strands coupled to protein targeting antibodies to quantify the protein copy number in nanoscale dimensions. We demonstrate qPAINT analysis via a novel pipeline to study the oligomerization of the purinergic receptor Y2 (P2Y_{2}), a rhodopsin-like GPCR, highly expressed in the pancreatic cancer cell line AsPC-1, under control, agonistic and antagonistic conditions. Results reveal that whilst the density of P2Y_{2} receptors remained unchanged, antagonistic conditions displayed reduced percentage of oligomers, and smaller numbers of receptors in complexes. Yet, the oligomeric state of the receptors was not affected by agonist treatment, in line with previous reports. Understanding P2Y_{2} oligomerization under agonistic and antagonistic conditions will contribute to unravelling P2Y_{2} mechanistic action and therapeutic targeting.
Type: | Article |
---|---|
Title: | Quantitative Super-Resolution Imaging for the Analysis of GPCR Oligomerization |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.3390/biom11101503 |
Publisher version: | https://doi.org/10.3390/biom11101503 |
Language: | English |
Additional information: | © 2021 MDPI. This is an open access article distributed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). |
Keywords: | super-resolution; DNA-PAINT microscopy; qPAINT; G-protein coupled receptors; purinergic receptor Y2 (P2Y_{2}); oligomerization |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > London Centre for Nanotechnology |
URI: | https://discovery.ucl.ac.uk/id/eprint/10136508 |
Archive Staff Only
View Item |