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Abstract
There is a tension between robustness and efficiency
when designing Markov chain Monte Carlo (MCMC)
sampling algorithms. Here we focus on robustness with
respect to tuning parameters, showing that more sophis-
ticated algorithms tend to be more sensitive to the
choice of step-size parameter and less robust to hetero-
geneity of the distribution of interest. We characterise
this phenomenon by studying the behaviour of spec-
tral gaps as an increasingly poor step-size is chosen
for the algorithm. Motivated by these considerations,
we propose a novel and simple gradient-based MCMC
algorithm, inspired by the classical Barker accept-reject
rule, with improved robustness properties. Extensive
theoretical results, dealing with robustness to tuning,
geometric ergodicity and scaling with dimension, sug-
gest that the novel scheme combines the robustness of
simple schemes with the efficiency of gradient-based
ones. We show numerically that this type of robust-
ness is particularly beneficial in the context of adaptive
MCMC, giving examples where our proposed scheme
significantly outperforms state-of-the-art alternatives.
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1 INTRODUCTION

The need to compute high-dimensional integrals is ubiquitous in modern statistical inference
and beyond (e.g. Brooks et al., 2011; Krauth, 2006; Stuart, 2010). Markov chain Monte Carlo
(MCMC) is a popular solution, in which the central idea is to construct a Markov chain with a
certain limiting distribution and use ergodic averages to approximate expectations of interest. In
the celebrated Metropolis–Hastings algorithm, the Markov chain transition is constructed using
a combination of a ‘candidate’ kernel, to suggest a possible move at each iteration, together with
an accept-reject mechanism (Hastings, 1970; Metropolis et al., 1953). Many different flavours
of Metropolis–Hastings exist, with the most common difference being in the construction of
the candidate kernel. In the Random walk Metropolis (RWM), proposed moves are generated
using a symmetric distribution centred at the current point. Two more sophisticated methods are
the Metropolis-adjusted Langevin algorithm (Roberts & Tweedie, 1996) and Hamiltonian/hybrid
Monte Carlo (Duane et al., 1987; Neal, 2011). Both use gradient information about the distribu-
tion of interest (the target) to inform proposals. Gradient-based methods are widely considered
to be state-of-the-art in MCMC, and much current work has been dedicated to their study and
implementation (e.g. Beskos et al., 2013; Dalalyan, 2017; Durmus & Moulines, 2017).

Several measures of performance have been developed to help choose a suitable candidate
kernel for a given task. One of these is high-dimensional scaling arguments, which compare how
the efficiency of the method decays with d, the dimension of the state space. For the random walk
algorithm this decay is of the order d−1 (Roberts et al., 1997), while for the Langevin algorithm
the same figure is d−1∕3 (Roberts & Rosenthal, 1998) and for Hamiltonian Monte Carlo (HMC) it
is d−1∕4 (Beskos et al., 2013). Another measure is to find general conditions under which a kernel
will produce a geometrically ergodic Markov chain. For the random walk algorithm, this essen-
tially occurs when the tails of the posterior decay at a faster than exponential rate and are suitably
regular (more precise conditions are given in Jarner & Hansen, 2000). The same is broadly true of
the Langevin and Hamiltonian schemes (Durmus et al., 2017a; Livingstone et al., 2019; Roberts &
Tweedie, 1996), but here there is an additional restriction that the tails should not decay too
quickly. This limitation is caused by the way in which gradients are used to construct the candi-
date kernel, which can result in the algorithm generating unreasonable proposals that are nearly
always rejected in certain regions (Livingstone et al., 2019; Roberts & Tweedie, 1996).

There is clearly some tension between the different results presented above. According to the
scaling arguments, gradient information is preferable. The ergodicity results, however, imply that
gradient-based schemes are typically less robust than others, in the sense that there is a smaller
class of limiting distributions for which the output will be a geometrically ergodic Markov chain.
It is natural to wonder whether it is possible to incorporate gradient information in such a way that
this measure of robustness is not compromised. Simple approaches to modifying the Langevin
algorithm for this purpose have been suggested (based on the idea of truncating gradients, for
example Atchade, 2006; Roberts & Tweedie, 1996), but these typically compromise the favourable
scaling of the original method. In addition to this, it is often remarked that gradient-based meth-
ods can be difficult to tune. Algorithm performance is often highly sensitive to the choice of scale
within the proposal (Neal, 2003, Figure 15), and if this is chosen to be too large in certain direc-
tions then performance can degrade rapidly. Because of this, practitioners must spend a long time
adjusting the tuning parameters to ensure that the algorithm is running well, or develop sophisti-
cated adaptation schemes for this purpose (e.g. Hoffman & Gelman, 2014), which can nonetheless
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still require a large number of iterations to find good tuning parameters (see Sections 5 and 6).
We will refer to this issue as robustness to tuning.

In this article, we present a new gradient-based MCMC scheme, the Barker proposal, which
combines favourable high-dimensional scaling properties with favourable ergodicity and robust-
ness to tuning properties. To motivate the new scheme, in Section 2, we present a direct argument
showing how the spectral gaps for the random walk, Langevin and Hamiltonian algorithms
behave as the tuning parameters are chosen to be increasingly unsuitable for the problem at hand.
In particular, we show that the spectral gaps for commonly used gradient-based algorithms decay
to zero exponentially fast in the degree of mismatch between the scales of the proposal and tar-
get distributions, while for the random walk Metropolis the decay is polynomial. In Section 3, we
derive the Barker proposal scheme beginning from a family of 𝜋-invariant continuous-time jump
processes, and discuss its connections to the concept of ‘locally balanced’ proposals, introduced
in (Zanella, 2020) for discrete state spaces. The name Barker comes from the particular choice
of ‘balancing function’ used to uncover the scheme, which is inspired by the classical Barker
accept-reject rule (Barker, 1965). In Section 4, we conduct a detailed analysis of the ergodicity,
scaling and robustness properties of this new method, establishing that it shares the favourable
robustness to tuning of the random walk algorithm, can be geometrically ergodic in the pres-
ence of very light tails, and enjoys the d−1∕3 scaling with dimension of the Langevin scheme. The
theory is then supported by an extensive simulation study in Sections 5 and 6, including com-
parisons with state-of-the-art alternative sampling schemes, which highlights that this kind of
robustness is particularly advantageous in the context of adaptive MCMC. The code to reproduce
the experiments is available from the online repository at the link https://github.com/gzanella/
barker. Proofs and further numerical simulations are provided in the supplement.

1.1 Basic set-up and notation

Throughout we work on the Borel space (Rd, ), with d ≥ 1 indicating the dimension. For
𝜆 ∈ R, we write 𝜆 ↑ ∞ and 𝜆 ↓ 0 to emphasize the direction of convergence when this is impor-
tant. For two functions f , g ∶ R → R, we use the Bachmann–Landau notation f (t) = (g(t)) if
lim supt→∞ f (t)∕g(t) < ∞ and f (t) = 𝛩(g(t)) if both lim inft→∞ f (t)∕g(t) > 0 and f (t) = (g(t)).

The Markov chains we consider will be of the Metropolis–Hastings type, meaning that the
𝜋-invariant kernel P is constructed as P(x, dy) ∶= 𝛼(x, y)Q(x, dy) + r(x)𝛿x(dy), where Q ∶ Rd ×
 → [0, 1] is a candidate kernel,

𝛼(x, y) ∶= min
(

1,
𝜋(dy)Q(y, dx)
𝜋(dx)Q(x, dy)

)
(1)

is the acceptance rate for a proposal y given the current point x (provided that the expression
is well-defined, see Tierney, 1998 for details here), and r(x) := 1−∫𝛼(x,y)Q(x,dy) is the average
probability of rejection given that the current point is x.

2 ROBUSTNESS TO TUNING

In this section, we seek to quantify the robustness of the random walk, Langevin and Hamilto-
nian schemes with respect to the mismatch between the scales of 𝜋(⋅) and Q in a given direction.

https://github.com/gzanella/barker
https://github.com/gzanella/barker
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Unlike other analyses in the MCMC literature (e.g. Beskos et al., 2018; Roberts & Rosenthal,
2001), we are interested in studying how MCMC algorithms perform when they are not optimally
tuned, in order to understand how crucially performance depends on such design choices (e.g.
the choice of proposal step-size or pre-conditioning matrix). The rationale for performing such an
analysis is that achieving optimal or even close to optimal tuning can be extremely challenging in
practice, especially when 𝜋(⋅) exhibits substantial heterogeneity. This is typically done using past
samples in the chain to compute online estimates of the average acceptance rate and the covari-
ance of 𝜋 (or simply its diagonal terms for computational convenience), and then using those
estimates to tune the proposal step-sizes in different directions (Andrieu & Thoms, 2008). If the
degree of heterogeneity is large, it can take a long time for certain directions to be well-explored,
and hence for the estimated covariance to be representative and the tuning parameters to
converge.

In such settings, algorithms that are more robust to tuning are not only easier to use when
such tuning is done manually by the user, but can also greatly facilitate the process of learn-
ing the tuning parameters adaptively within the algorithm. We show in Sections 5 and 6 that if
an algorithm is robust to tuning then this adaptation process can be orders of magnitude faster
than in the alternative case, drastically reducing the overall computational cost for challenging
targets. The intuition for this is that more robust algorithms will start performing well (i.e. sam-
pling efficiently) earlier in the adaptation process (when tuning parameters are not yet optimally
tuned), which in turn will speed up the exploration of the target and the learning of the tuning
parameters.

2.1 Analytical framework

The most general scenario we consider is a family of target densities 𝜋(𝜆,k) indexed by 𝜆 > 0 and
k ∈ {1, … , d} defined as

𝜋(𝜆,k)(x) ∶= 𝜆−k𝜋(x1∕𝜆, … , xk∕𝜆, xk+1, … , xd), x = (x1, … , xd) ∈ R
d, (2)

where 𝜋 is a density defined on Rd for which 𝜋(x) > 0 for all x ∈ Rd and log 𝜋 ∈ C1(Rd). The
set-up allows modification of the scale of the first k components of 𝜋(𝜆,k) through the parameter
𝜆. Our main results are presented for the case k = 1, and we write 𝜋(𝜆) ∶= 𝜋(𝜆,1) for simplicity,
before discussing extensions to the k > 1 setting in Section 2.5. We consider targeting 𝜋(𝜆) using a
Metropolis–Hastings algorithm with fixed tuning parameters, and study performance as 𝜆 varies.
Intuitively, we can think of 𝜆 as a parameter quantifying the level of heterogeneity in the problem.
As a concrete example, consider a RWM algorithm in which given the current state x(t) the can-
didate move is y = x(t) + 𝜎𝜉, with 𝜎 > 0 a fixed tuning parameter and 𝜉 ∼ N(0, Id), where Id is
the d × d identity matrix. It is instructive to take 𝜎 as the optimal choice of global scale for 𝜋,
meaning when 𝜆 is far from one then 𝜎 is no longer a suitable choice for the first coordinate
of 𝜋(𝜆).

In the context of the above, the 𝜆 ↓ 0 regime is representative of distributions in which one
component (in this case the first) has a very small scale compared to all others. Conversely, the
𝜆 ↑ ∞ regime reflects the case in which one component has a much larger scale than its coun-
terparts. Studying robustness to tuning in the context of heterogeneity is particularly relevant, as
highlighted above, as this is exactly the context in which tuning is more challenging. The 𝜆 ↓ 0
regime is particularly interesting and has been recently considered in Beskos et al. (2018), where
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the authors study the behaviour of the RWM for ‘ridged’ densities for different values of k using
a diffusion limit approach. The focus in that work, however, was on the finding optimal tuning
parameters for the algorithm as a function of 𝜆, whereas the present paper is concerned with the
regime in which the tuning parameters are fixed (as discussed above).

The above framework could be equivalently formulated by keeping the target distribu-
tion 𝜋 fixed and instead rescaling the first component of the candidate kernel by a factor
1/𝜆. This is indeed the formulation we mostly use in the proofs of our theoretical results.
A proof of the mathematical equivalence between the two formulations can be found in the
supplement.

2.2 Measure of performance

Our measure of performance for the various algorithms will be the spectral gap of the resulting
Markov chains. Consider the space of functions

L2
0,1(𝜋) = {f ∶ R

d → R|E𝜋[f ] = 0, Var𝜋[f ] = 1}.

Note that any function g with E𝜋g2 < ∞ can be associated with an f ∈ L2
0,1(𝜋) through the map f =

(g − E𝜋g)∕
√

Var𝜋g, and that if X (t) ∼ 𝜋(⋅) and X (t+1)|X (t) ∼ P(X (t), ⋅) then Corr{g(X (t)), g(X (t+1))} =
Corr{f (X (t)), f (X (t+1))}. The (right) spectral gap of a 𝜋-reversible Markov chain with transition
kernel P is

Gap(P) = inf
f∈L2

0,1(𝜋)

1
2 ∫ (f (y) − f (x))2𝜋(dx)P(x, dy). (3)

The expression inside the infimum is called a Dirichlet form, and can be thought of as the ‘expected
squared jump distance’ for the function f provided the chain is stationary. This can in turn be
re-written as 1 − Corr{f (X (t)), f (X (t+1))}. Maximising the spectral gap of a reversible Markov chain
can therefore be understood as minimising the worst-case first-order autocorrelation among all
possible square-integrable test functions.

The spectral gap allows to bound the variances of ergodic averages (see Proposition 1 of Rosen-
thal, 2003). Also, a direct connection between the spectral gap and mixing properties of the chain
can be made if the operator Pf (x) := ∫ f (y)P(x,dy) is positive on L2(𝜋). This will always be the case
if the chain is made lazy, which is the approach taken in Woodard et al. (2009), and the same
adjustment can be made here if desired.

2.3 The small 𝝀 regime

In this section, we assess the robustness to tuning of the random walk, Langevin and
Hamiltonian schemes as 𝜆 ↓ 0. This corresponds to the case in which the proposal scale
is chosen to be too large in the first component of 𝜋(𝜆). The results in this section
will support the idea that classical gradient-based schemes pay a very high price for any
direction in which this tuning parameter is chosen to be too large, as already noted in
the literature (e.g. Neal, 2003, p. 738), while the RWM is less severely affected by such
issues.



6 LIVINGSTONE and ZANELLA

2.3.1 Random walk Metropolis

In the RWM, given a current point x ∈ Rd, a proposal y is calculated using the equation

y = x + 𝜎𝜉, (4)

with 𝜎 > 0 and 𝜉 ∼ 𝜇(⋅) for some centred symmetric distribution 𝜇. The resulting candidate ker-
nel QR is given by QR(x, dy) = qR(x, y)dy with qR(x, y) = 𝜎−d𝜇((y − x)∕𝜎), where 𝜇(𝜉) for 𝜉 ∈ Rd

denotes the density of 𝜇. Following Section 2.1, we consider Metropolis–Hastings algorithms
with proposal QR and target distribution 𝜋(𝜆) defined in Equation (2), and denote the resulting
transition kernels as PR

𝜆
.

We impose the following mild regularity conditions on the density 𝜇(𝜉). These are satisfied
for most popular choices of 𝜇, as shown in the subsequent proposition.

Condition 1 There exists 𝜆0 > 0 such that for any x, y ∈ Rd and 𝜆 < 𝜆0 we have 𝜇(𝛿𝜆) ≥ 𝜇(𝛿),
where 𝛿 = y − x and

𝛿𝜆 ∶= (𝜆(y1 − x1), y2 − x2, … , yd − xd). (5)

In addition, sup𝜉1∈R
𝜇1(𝜉1) < ∞, where 𝜇1(𝜉1) = ∫

Rd−1 𝜇(𝜉1, 𝜉2, … , 𝜉d)d𝜉2 … d𝜉d is the
marginal distribution of 𝜉1 under 𝜉 ∼ 𝜇.

Proposition 1 Denoting the usual p-norm as ||x||p =
(∑d

i=1xp
i

)1∕p
, Condition 1 holds in each of the

below cases:

(i) qR(x, y) = (2𝜋𝜎2)−d∕2 exp(−||x − y||22∕(2𝜎2)) (Gaussian)
(ii) qR(x, y) = 2−d exp(−||x − y||1) (Laplace)

(iii) qR(x, y) ∝ (1 + ||y − x||22∕𝜈)−(𝜈+d)∕2 for 𝜈 ∈ {1, 2, … } (Student’s t)

We conclude the section with a characterization of the rate of convergence to zero of the
spectral gap for the RWM as 𝜆 ↓ 0.

Theorem 1 Assume Condition 1 and Gap(PR
1 ) > 0. Then it holds that

Gap(PR
𝜆
) = Θ(𝜆), as 𝜆 ↓ 0.

Note that Theorem 1 requires very few assumptions on the target 𝜋 other than Gap(PR
1 ) > 0.

Note also that the lower bound is of the form Gap(PR
𝜆
) ≥ 𝜆Gap(PR

1 ), see proof of Theorem 1 for
details. No dependence on the dimension of the problem other than that intrinsic to Gap(PR

1 ) is
therefore introduced.

2.3.2 The Langevin algorithm

In the Langevin algorithm (or more specifically the Metropolis-adjusted Langevin algorithm,
MALA), given the current point x ∈ Rd, a proposal y is generated by setting

y = x + 𝜎2

2
∇ log 𝜋(𝜆)(x) + 𝜎𝜉, (6)
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for some 𝜎 > 0 and 𝜉 ∼ N(0, Id). In this case the proposal is no longer symmetric and so the full
Hastings ratio (1) must be used. The proposal mechanism is based on the overdamped Langevin
stochastic differential equation dXt = ∇ log 𝜋(𝜆)(Xt)dt +

√
2dBt. We write QM

𝜆
for the correspond-

ing candidate distribution and PM
𝜆

for the Metropolis–Hastings kernel with proposal QM
𝜆

and target
𝜋(𝜆).

We present results for the Langevin algorithm in two settings. Initially, we consider more
restrictive conditions under which our upper bound on the spectral gap depends on the tail
behaviour of 𝜋 in a particularly explicit manner, and then give a broader result.

Condition 2 Assume the following:

(i) 𝜋 has a density of the form 𝜋(x) = 𝜋1(x1)𝜋2∶n(x2, … , xd), for some densities 𝜋1 and 𝜋2∶n
on R and Rd−1, respectively.

(ii) For some q ∈ [0, 1), it holds that

|||| d
dx1

log 𝜋1(x1)
|||| = Θ(|x1|q) as |x1| ↑ ∞. (7)

Theorem 2 If Condition 2 holds, then there is a 𝛾 > 0 such that

Gap(PM
𝜆
) = (e−𝛾𝜆−(1+q) + q log(𝜆)) as 𝜆 ↓ 0.

When compared with the random walk algorithm, Theorem 2 shows that the Langevin
scheme is much less robust to heterogeneity. Indeed, the spectral gap decays exponentially fast
in 𝜆−(1+q), meaning that even small errors in the choice of step-size can have a large impact on
algorithm efficiency, and so practitioners must invest considerable effort tuning the algorithm
for good performance, as shown through simulations in Sections 5 and 6. Theorem 2 also illus-
trates that the Langevin algorithm is more sensitive to 𝜆 when the tails of 𝜋(⋅) are lighter. This
is intuitive, as in this setting gradient terms can become very large in certain regions of the state
space.

Remark 1 Theorem 2 (and Theorem 4 below) could be extended to the case q ≥ 1 in Equation (7);
however, in these cases, samplers typically fail to be geometrically ergodic when 𝜆 is small
(Livingstone et al., 2019; Roberts & Tweedie, 1996) meaning the spectral gap is typically 0
and the theorem becomes trivial.

Remark 2 Condition 2(ii) could be replaced with the simpler requirement that |∇ log 𝜋1(x1)| ↑ ∞,
with the corresponding bound Gap(PM

𝜆
) = (e−1∕𝜆).

A different set of conditions, which hold much more generally, and corresponding upper
bound are presented below.

Condition 3 Assume the following:

(i) There is a 𝛾 > 0 such that

lim inf|x1|→∞

(
inf

(x2,… ,xd)∈Rd−1

||||𝜕 log 𝜋(x)
𝜕x1

|||| ||x||𝛾2
)

> 0, (8)

(ii) Given X ∼ 𝜋 there is a 𝛽 > 0 such that

P(||X||2 > t) = (e−t𝛽 ) as t → ∞. (9)
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Theorem 3 If Condition 3 holds, then

Gap(PM
𝜆
) = (e−𝜆−𝛼 ) as 𝜆 ↓ 0,

for some 𝛼 > 0, which can be taken as 𝛼 = min{𝛽/2,𝛽/𝛾 ,2/3}.

We expect Condition 3 to be satisfied in many commonly encountered scenarios, with
the exception of particularly heavy-tailed models. In the exponential family class 𝜋(x) ∝
exp{−𝛼||x||𝛽2}, for example, Condition 3 holds for any 𝛼 and 𝛽 > 0 (see proof in the supplement).

2.3.3 Hamiltonian Monte Carlo

In Hamiltonian Monte Carlo, we write the current point x ∈ Rd as x(0), and construct the proposal
y := x(L) for some prescribed integer L using the update

x(L) = x(0) + 𝜎2

(
L
2
∇ log 𝜋(𝜆)(x(0)) +

L−1∑
j=1

(L − j)∇ log 𝜋(𝜆)(x(j))

)
+ L𝜎𝜉(0), (10)

where each x(j) is defined recursively in the same manner, and 𝜉(0) ∼ N(0, Id). The transition
is based on numerically solving Hamilton’s equations for the Hamiltonian system H(x, 𝜉) =
− log 𝜋(𝜆)(x) + 𝜉T𝜉∕2 for L𝜎 units of time. The decision of whether or not the proposal is accepted
is taken using the acceptance probability min(1, 𝜋(𝜆)(y)∕𝜋(𝜆)(x) × e−𝜉(L)T𝜉(L)∕2+𝜉(0)T𝜉(0)∕2), where

𝜉(L) = 𝜉(0) + 𝜎

2
(
∇ log 𝜋(𝜆)(x(0)) + ∇ log 𝜋(𝜆)(x(L))

)
+ 𝜎

L−1∑
j=1

∇ log 𝜋(𝜆)(x(j)).

A more detailed description is given in Neal (2011). We write PH
𝜆

for the corresponding
Metropolis–Hastings kernel with proposal mechanism as above and target 𝜋(𝜆). Here we present
a heterogeneity result under Condition 2 of the previous subsection.

Theorem 4 If Condition 2 holds, then there is a 𝛾 > 0 such that

Gap(PH
𝜆
) = (

e−𝛾𝜆−(1+q)+q log(𝜆)
)

as 𝜆 ↓ 0.

It is no surprise that Theorem 4 is comparable to Theorem 2, since setting L = 1 equates the
Langevin and Hamiltonian methods.

2.4 The large 𝝀 regime

In this section, we briefly discuss the 𝜆 ↑∞ regime, where 𝜎 is chosen to be too small for the first
component of 𝜋(𝜆), arguing that all samplers under consideration behave similarly in this regime
and pay a similar price for too small tuning parameters in a given direction. The intuition for this is
that as 𝜆 ↑∞ the gradient-based proposal mechanisms discussed here all tend towards that of the
random walk sampler in the first coordinate. For example, if we consider one-dimensional mod-
els, for any x ∈ R we can write ∇ log 𝜋(𝜆)(x) = 𝜆−1∇ log 𝜋(x∕𝜆), meaning as 𝜆 ↑∞ the amount of
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gradient information in the proposal is reduced provided𝜋 is suitably regular. The following result
makes this intuition precise. To avoid repetitions, we state here the result for both the Langevin
and the Barker proposal that we will introduce in the next section.

Proposition 2 Fix x ∈ R and let the density 𝜋 be such that ∇ log 𝜋 is bounded in some neigh-
bourhood of zero. Then the Langevin and Barker candidate kernels QM

𝜆
and QB

𝜆
, defined in

Equations (6) and (16) respectively, both satisfy

||QM∕B
𝜆

(x, ⋅) − QR(x, ⋅)||TV = (1∕𝜆),
where QR is the (Gaussian) random walk candidate kernel.

The same intuition applies to the Hamiltonian case provided L is fixed, since each gradi-
ent term in the proposal is also 𝛩(1/𝜆). While there are many well-known measures of distance
between two distributions, we argue that total variation is an appropriate choice here, since
it has an explicit focus on how much the two kernels overlap and is invariant under bijective
transformations of the state space (including re-scaling coordinates).

While the above statements provide useful heuristic arguments, in order to obtain more rigor-
ous results one should prove that the spectral gaps decay to 0 at the same rate as 𝜆 ↑∞, which we
leave to future work. We note, however, that the conjecture that the algorithms behave similarly
for large values of 𝜆 is supported by the simulations of Section 5.1.

2.5 Extensions

The lower bound of Theorem 1 extends naturally to the k > 1 setting, becoming instead Θ(𝜆k), and
so the rate of decay remains polynomial in 𝜆 for any k. Analogously, we expect the corresponding
upper bound for gradient-based schemes to remain exponential and become (e−k(𝛾𝜆−(1+q)+q log(𝜆))),
although the details of this are left for future work. We explore examples of this nature through
simulations in Section 5 and find empirically that the single component case is informative also
of more general cases. Further extensions in which a different 𝜆i is chosen in each of the k direc-
tions can also be considered, with each 𝜆i ↓ 0 at a different rate. We conjecture that in this setting
the 𝜆i that decays most rapidly will dictate the behaviour of spectral gaps, though such an analysis
is beyond the scope of the present work. One could consider using a mixture of the MALA/HMC
and random walk kernels in an attempt to achieve both robustness to tuning and favourable scal-
ing properties. While this may seem promising in theory, in practice we believe that it would
be difficult to achieve both robustness to tuning and favourable high-dimensional performance
from such an approach. In the next section, we consider a scheme for which the two goals can be
achieved simultaneously.

3 COMBINING ROBUSTNESS AND EFFICIENCY

The results of Section 2 show that the two gradient-based samplers considered there are much
less robust to heterogeneity than the random walk algorithm. In this section, we introduce a novel
and simple to implement gradient-based scheme that shares the superior scaling properties of the
Langevin and Hamiltonian schemes, but also retains the robustness of the random walk sampler,
both in terms of geometric ergodicity and robustness to tuning.
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3.1 Locally balanced Metropolis–Hastings

Consider a continuous-time Markov jump process on Rd with associated generator

f (x) = ∫ [f (y) − f (x)]g
(
𝜋(y)q(y, x)
𝜋(x)q(x, y)

)
Q(x, dy), (11)

for some suitable function f ∶ Rd → R, where 𝜋(x) is a probability density, Q(x, dy) := q(x, y)dy is
a transition kernel and the balancing function g : (0, ∞) → (0,∞) satisfies

g(t) = tg(1∕t). (12)

A discrete state-space version of this process with symmetric Q was introduced in Power and
Goldman (2019). The dynamics of the process are such that if the current state Xt = x, the next
jump will be determined by a Poisson process with intensity

Z(x) ∶= ∫ g
(
𝜋(y)q(y, x)
𝜋(x)q(x, y)

)
Q(x, dy), (13)

and the next state is drawn from the kernel

Q(g)(x, dy) ∶= Z(x)−1g
(
𝜋(y)q(y, x)
𝜋(x)q(x, y)

)
Q(x, dy).

It is straightforward to show that  is a self-adjoint operator on the Hilbert space L2(𝜋) using
Equation (12), implying that the process is 𝜋-reversible and can therefore serve as a starting point
for designing MCMC algorithms.

In the ‘locally balanced’ framework for discrete state-space Metropolis–Hastings introduced
in Zanella (2020), candidate kernels are of the form

Q̃(x, dy) = Z̃(x)−1g
(
𝜋(y)
𝜋(x)

)
𝜇𝜎(y − x)dy, (14)

meaning the embedded Markov chain of Equation (11) with the choice Q(x, dy) ∶= 𝜇𝜎(y − x)dy,
where 𝜇𝜎(y − x) ∶= 𝜎−d𝜇((y − x)∕𝜎) for some symmetric density 𝜇. It is well-known that the
invariant density of the embedded chain does not coincide with that of the process when jumps
are not of constant intensity, in this case becoming proportional to Z(x)𝜋(x), as shown in Zanella
(2020). As a result a Metropolis–Hastings step is employed to correct for the discrepancy. In Power
and Goldman (2019) it is suggested that as an alternative the jump process can be simulated
exactly.

The challenge with employing either of these strategies on a continuous state space is that
the integral (13) will typically be intractable. To overcome this issue we take two steps, and for
simplicity, we first describe these on R (there are two options on Rd for d > 1, which are discussed
in Section 3.3). The first step is to consider a first-order Taylor series expansion of log 𝜋 within g
(again with a symmetric choice of Q), leading to the family of processes with generator

Lf (x) = ∫ [f (y) − f (x)]g(e∇ log 𝜋(x)(y−x))𝜇𝜎(y − x)dy.
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We refer to candidate kernels in Metropolis–Hastings algorithms that are constructed using the
embedded Markov chain of this new process as first-order locally balanced proposals, taking the
form

Q(g)(x, dy) = Z(x)−1g(e∇ log 𝜋(x)(y−x))𝜇𝜎(y − x)dy, (15)

where Z(x) ∶= ∫ g(e∇ log 𝜋(x)(y−x))𝜇𝜎(y − x)dy.

Remark 3 One can also think at Equation (12) as a requirement to ensure that the proposals in
Equation (15) are exact (i.e. 𝜋-reversible) at the first order. In particular, in the supplement,
it is shown that a proposal Q(g) defined as in Equation (15) is 𝜋-reversible for 𝜋 log-linear if
and only if Equation (12) holds.

The second step is to note that, if particular choices of g are made, then Z(x) becomes tractable.
In fact, if the balancing function g(t) =

√
t and a Gaussian kernel 𝜇𝜎 are chosen, then the result

is the Langevin proposal

QM(x, dy) ∝ e∇ log 𝜋(x)(y−x)∕2𝜇𝜎(y − x)dy.

Thus, MALA can be viewed as a particular instance of this class. Other choices of g are, however,
also possible, and give rise to different gradient-based algorithms. In the next section we explore
what a sensible choice of g might look like.

3.2 The Barker proposal on R

The requirement for the balancing function g to satisfy g(t) = tg(1/t) is in fact also imposed
on the acceptance rate of a Metropolis–Hastings algorithm to produce a 𝜋-reversible Markov
chain. Indeed, setting t := 𝜋(y)q(y, x)/(𝜋(x)q(x, y)) and assuming 𝛼(x, y) := 𝛼(t), then the detailed
balance equations can be written 𝛼(t) = t𝛼(1/t). Possible choices of g can therefore be found by
considering suggestions for 𝛼 in the literature. One choice proposed in Barker (1965) is

g(t) = t
1 + t

.

The work of Peskun (1973) and Tierney (1998) showed that this choice of 𝛼 is inferior to the
more familiar Metropolis–Hasting rule 𝛼(t) = min(1, t) in terms of asymptotic variance. The same
conclusion cannot, however, be drawn when considering the choice of balancing function g.

In fact, the choice g(t)= t/(1+t) was shown to minimize asymptotic variances of Markov chain
estimators in some discrete settings in Zanella (2020). In addition, as shown below, this particular
choice of g leads to a fully tractable candidate kernel that can be easily sampled from. For this
reason, we focus on this choice of g here, and leave the question of optimality in general for future
work.

Proposition 3 If g(t) = t ∕ (1+ t), then the normalising constant Z(x) in Equation (15) is 1∕2.

The resulting proposal distribution is

QB(x, dy) = 2
𝜇𝜎(y − x)

1 + e−∇ log 𝜋(x)(y−x) dy. (16)
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F I G U R E 1 Left: density of the Barker proposal in one dimension. Current location is x = 0 and the four
lines with increasing red intensity correspond to ∇ log 𝜋(x) equal to 1, 3, 10 and 50. Right: density of the Barker
proposal in two dimensions. Solid lines display the proposal density contours, heat colours refer to the target
density, and the current location is x = (−2, 0)

We refer to QB as the the Barker proposal. A simple sampling strategy to generate y ∼ QB(x, ⋅) is
given in Algorithm 1.

Proposition 4 Algorithm 1 produces a sample from QB on R.

Algorithm 1 shows that the magnitude |y−x| = |z| of the proposed move does not depend on
the gradient ∇ log 𝜋(x) here, it is instead dictated only by the choice of symmetric kernel 𝜇𝜎 . The
direction of the proposed move is, however, informed by both the magnitude and direction of the
gradient. Examining the form of p(x, z), it becomes clear that if the signs of z and ∇ log 𝜋(x) are in
agreement, then p(x, z) > 1/2, and indeed as z∇ log 𝜋(x) ↑∞ then e−z∇ log 𝜋(x) ↓ 0 and so p(x, z) ↑ 1.
Hence, if the indications from ∇ log 𝜋(x) are that 𝜋(x + z) ≫ 𝜋(x), then it is highly likely that
b(x, z) will be set to 1 and y = x + z will be the proposed move. Conversely, if z∇ log 𝜋(x) < 0, then
there is a larger than 50% chance that the proposal will instead be y = x − z. As ∇ log 𝜋(x) ↑∞ the
Barker proposal converges to 𝜇𝜎 truncated on the right, and similarly to 𝜇𝜎 truncated on the left
as ∇ log 𝜋(x) ↓ −∞. See Figure 1 for an illustration.

The multiplicative term 1∕(1 + e−∇ log 𝜋(x)(y−x)) in Equation (16), which incorporates the gradi-
ent information, injects skewness into the base kernel 𝜇𝜎 (as can be clearly seen in the left-hand
plot of Figure 1). Indeed, the resulting distribution QB is an example of a skew-symmetric distribu-
tion (Azzalini, 2013, Eq. (1.3)). Skew-symmetric distributions are a tractable family of (skewed)
probability density functions that are obtained by multiplying a symmetric base density function
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with the cumulative distribution function (cdf) of a symmetric random variable. We refer to
(Azzalini 2013 Ch. 1) for more details, including a more general version of Propositions 3 and 4.
In the context of skewed distributions, the Gaussian cdf is often used, leading to the skew-normal
distribution introduced in Azzalini (1985). In our context, however, the Barker proposal (which
leads to the logistic cdf p(x, z) in Algorithm 1) is the only skew-symmetric distribution that can
be obtained from Equation (15) using a balancing function g satisfying g(t) = tg(1/t). See the
supplement for more detail.

3.3 The Barker proposal on R
d

There are two natural ways to extend the Barker proposal to Rd, for d > 1. The first is to treat
each coordinate separately, and generate the proposal y = (y1, … , yd) by applying Algorithm
1 independently to each coordinate. This corresponds to generating a zi and bi(x, zi) for each
i ∈ {1, … , d}, and choosing the sign of each bi using

pi(x, zi) =
1

1 + e−zi𝜕i log 𝜋(x) ,

where 𝜕i log 𝜋(x) denotes the partial derivative of log 𝜋(x) with respect to xi. Writing QB
i (x, dyi) to

denote the resulting Barker proposal candidate kernel for the ith coordinate, the full candidate
kernel QB can then be written

QB(x, dy) =
d∏

i=1
QB

i (x, dyi). (17)

The full Metropolis–Hastings scheme using the Barker proposal mechanism for a target distribu-
tion is given in Algorithm 2 (see the supplement for more details and variations of the algorithm,
such as a pre-conditioned version). Note that the computational cost of each iteration of the
algorithm is essentially equivalent to that of MALA and will be typically dominated by the cost
of computing the gradient and density of the target.

The second approach to deriving a multivariate Barker proposal consists of sampling z ∈ Rd

from a d-dimensional symmetric distribution, and then choosing whether or not to flip the sign



14 LIVINGSTONE and ZANELLA

of every coordinate at the same time, using a single global b̌(x, z) ∈ {−1, 1}, to produce the global
proposal y = x + b̌(x, z) × z. In this case, the probability that b̌(x, z) = 1 will be

p̌(x, z) = 1
1 + e−zT∇ log 𝜋(x)

. (19)

This second approach does not allow gradient information to feed into the proposal as effec-
tively as in the first case. Specifically, only the global inner product zT∇ log 𝜋(x) is considered,
and the decision to alter the sign of every component of z is taken based solely on this value.
In other words, once z ∼ 𝜇𝜎 has been sampled, gradient information is only used to make
a single binary decision of choosing between the two possible proposals x + z and x − z,
while in the first strategy gradient information is used to choose between 2d possible pro-
posals {x + b ⋅ z ∶ b ∈ {−1, 1}d} (where b ⋅ z ∶= (b1z1, … , bdzd)). Indeed, the following propo-
sition shows that the second strategy cannot improve over the RWM by more than a factor
of two.

Proposition 5 Let P̌B denote the modified Barker proposal on Rd using Equation (19). Then
Gap(PR) ≥ Gap(P̌B)∕2.

One can also make a stronger statement than the above proposition, namely that if this strat-
egy is employed, only a constant factor improvement over the RWM can be achieved in terms
of asymptotic variance, for any L2(𝜋) function of interest. Given Proposition 5 we choose to
use the first strategy described to produce Barker proposals on Rd, and the multi-dimensional
candidate kernel given in Equation (17). In the following sections, we will show both theoret-
ically and empirically that this choice does indeed have favourable robustness and efficiency
properties.

4 ROBUSTNESS, SCALING AND ERGODICITY RESULTS
FOR THE BARKER PROPOSAL

In this section, we establish results concerning robustness to tuning, scaling with dimension and
geometric ergodicity for the Barker proposal scheme. As we will see, the method not only enjoys
the superior efficiency of gradient-based algorithms in terms of scaling with dimension, but also
shares the favourable robustness properties of the RWM when considering both robustness to
tuning and geometric ergodicity.

4.1 Robustness to tuning

We now examine the robustness to tuning of the Barker proposal using the framework introduced
in Section 2. We write QB

𝜆
and PB

𝜆
to denote the candidate and Metropolis–Hastings kernels for

the Barker proposal targeting the distribution 𝜋(𝜆) defined therein, and PB for the case 𝜆 = 1. The
following result characterizes the behaviour of the spectral gap of PB

𝜆
as 𝜆 ↓ 0.

Theorem 5 Assume Condition 1 and Gap(PB) > 0. Then it holds that

Gap(PB
𝜆
) = Θ(𝜆), as 𝜆 ↓ 0.
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Comparing Theorem 5 with Theorems 1–4 from Section 2.3, we see that the Barker proposal
inherits the robustness to tuning of random walk schemes and is significantly more robust than
the Langevin and Hamiltonian algorithms. In the next section, we establish general conditions
under which Gap(PB) > 0.

4.2 Geometric ergodicity

In this section, we study the class of target distributions for which the Barker proposal produces
a geometrically ergodic Markov chain. We show that geometric ergodicity can be obtained even
when the gradient term in the proposal grows faster than linearly, which is typically not the case
for MALA and HMC.

Recall that a Markov chain is called geometrically ergodic if

||Pt(x, ⋅) − 𝜋(⋅)||TV ≤ CV(x)𝜌t, t ≥ 1, (20)

for some C < ∞, Lyapunov function V ∶ Rd → [1,∞), and 𝜌 < 1, where ||𝜇(⋅) − 𝜈(⋅)||TV ∶=
supA∈ |𝜇(A) − 𝜈(A)| for probability measures 𝜇 and 𝜈. When such a condition can be estab-
lished for a reversible Markov chain, then a central limit theorem exists for any square-integrable
function (Roberts & Rosenthal, 2004).

We prove geometric ergodicity results for generic proposals as in Equation (15), assum-
ing g to be bounded and monotone, and 𝜇𝜎 to have lighter than exponential tails. Following
the discussion in Section 3.3, we consider proposals that are independent across components,
leading to

Q(g)(x, dy) =
d∏

i=1
Q(g)

i (x, dyi) =
d∏

i=1

g(e𝜕i log 𝜋(x)(yi−xi))𝜇𝜎(yi − xi)dyi

Zi(x)
, (21)

where Zi(x) ∶= ∫
R

g(e𝜕i log 𝜋(x)(yi−xi))𝜇𝜎(yi − xi)dyi. With a slight abuse of notation, we use 𝜇𝜎 to rep-
resent one and d-dimensional densities. The Barker proposal in Equation (17) is the special case
obtained by taking g(t) = t/(1+t).

For the results of this section, we make the simplifying assumption that 𝜋 is spherically
symmetric outside a ball of radius R <∞.

Condition 4 There exists R < ∞ and a differentiable function f : (0,∞) → (0,∞) with
limr→∞ f ′(r) = −∞ and f ′(r) non-increasing for r > R such that log 𝜋(x) = f (||x||) for r > R.

Theorem 6 Let g : (0, ∞)→(0, ∞) be a bounded and non-decreasing function, ∫
R

exp(sw)𝜇𝜎(w)
dw < ∞ for every s > 0, and infw∈(−𝛿,𝛿)𝜇𝜎(w) > 0 for some 𝛿 > 0. If the target density 𝜋 satisfies
Condition 4, then the Metropolis–Hastings chain with proposal Q(g) is 𝜋-a.e. geometrically
ergodic.

We note that tail regularity assumptions such as Condition 4 are common in this type of anal-
ysis (e.g. Durmus et al., 2017a; Jarner & Hansen, 2000). As an intuitive example, the condition is
satisfied in the exponential family 𝜋(x) ∝ exp(−𝛼||x||𝛽) for all 𝛽 > 1. As a contrast, for MALA and
HMC it is known that for 𝛽 > 2 the sampler fails to be geometrically ergodic (Livingstone et al.,
2019; Roberts & Tweedie, 1996). We expect the Barker proposal to be geometrically ergodic also
for the case 𝛽 = 1, although we do not prove it in this work. It is worth noting that for the MALA
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choice g(t) =
√

t is unbounded above, which is a central reason for the lack of stability compared
to bounded choices such as g(t) = t/(1 + t) employed in the Barker scheme.

4.3 Scaling with dimensionality

In this section, we provide preliminary results suggesting that the Barker proposal enjoys scaling
behaviour analogous to that of MALA in high-dimensional settings, meaning that under appro-
priate assumptions it requires the number of iterations per effective sample to grow as Θ(d1∕3)
with the number of dimensions d as d →∞. Similarly to Section 4.2, we prove results for general
proposals Q(g) as in Equation (21) with balancing functions g satisfying g(t) = t g(1/t). The Barker
proposal is a special case of the latter family.

We perform an asymptotic analysis for d→∞using the framework introduced in Roberts et al.
(1997). The main idea is to study the rate at which the proposal step size 𝜎 needs to decrease as
d →∞ to obtain well-behaved limiting behaviour for the MCMC algorithm under consideration
(such as a 𝛩(1) acceptance rate and convergence to a non-trivial diffusion process after appropri-
ate time re-scaling). Based on the rate of decrease of 𝜎, one can infer how the number of MCMC
iterations required for each effective sample increases as d → ∞. For example, in the case of the
RWM, 𝜎2 must be scaled as Θ(d−1) as d → ∞ to have a well-behaved limit (Roberts et al., 1997),
which leads to RWM requiring 𝛩(d) iterations for each effective sample. By contrast, for MALA it
is sufficient to take𝜎2 = Θ(d−1∕3) as d→∞, which leads to onlyΘ(d1∕3) iterations for each effective
sample (Roberts & Rosenthal, 1998). While these analyses are typically performed under simpli-
fying assumptions, such as having a target distribution with i.i.d. components, the results have
been extended in many ways (e.g. removing the product-form assumption, see Mattingly et al.,
2012) obtaining analogous conclusions. See also Beskos et al. (2013) for optimal scaling analy-
sis of HMC and Roberts and Rosenthal (2016) for rigorous connections between optimal scaling
results and computational complexity statements.

In this section, we focus on the scaling behaviour of Metropolis–Hastings algorithms with pro-
posal Q(g) as in Equation (21), when targeting distributions of the form 𝜋(x) =

∏d
i=1f (xi), where f

is a one-dimensional smooth density function. Given the structure of Q(g) and 𝜋(⋅), the acceptance
rate takes the form 𝛼(x, y) = min{1,

∏d
i=1𝛼i(xi, yi)}, where

𝛼i(xi, yi) =
f (yi)
f (xi)

g(e𝜙′(yi)(xi−yi))
g(e𝜙′(xi)(yi−xi))

Zi(xi)
Zi(yi)

, (22)

and 𝜙= log f . In such a context, the scaling properties of the MCMC algorithms under considera-
tion are typically governed by the behaviour of log(𝛼i(xi, yi)) as yi gets close to xi, or more precisely
by degree of the leading term in the Taylor series expansion of log(𝛼i(xi, xi + 𝜎ui)) in powers of 𝜎 as
𝜎→ 0 for fixed xi and ui. For example, in the case of the RWM one has log(𝛼i(xi, xi + 𝜎ui)) = Θ(𝜎) as
𝜎 → 0, which in fact implies the proposal variance 𝜎2 must decrease at a rate Θ(d−1) to
obtain a non-trivial limit. By contrast, when the MALA proposal is used, one has log(𝛼i(xi, xi +
𝜎ui)) = Θ(𝜎3) as 𝜎→0, which in turn leads to 𝜎2 = Θ(d−1∕3). See Sections 2.1–2.2 of Durmus
et al. (2017b) for a more detailed and rigorous discussion on the connection between the
Taylor series expansion of log(𝛼i(xi, yi)) and MCMC scaling results. The following proposition
shows that the condition g(t) = t g(1/t), when combined with some smoothness assump-
tions, is sufficient to ensure that the proposals Q(g) lead to log(𝛼i(xi, xi + 𝜎ui)) = (𝜎3) as
𝜎 → 0.
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Proposition 6 Let g : (0, ∞) → (0, ∞) and g(t) = t g(1∕t) for all t. If g is three times continuously
differentiable and ∫

R
g(j)(esw)𝜇(w)dw < ∞ for all s> 0 and j∈ {0, 1, 2, 3}, where g(j) ∶ (0,∞) →

(0,∞) is the jth derivative of g, then

log(𝛼i(xi, xi + 𝜎ui)) = (𝜎3) as 𝜎 → 0, (23)

for any xi and ui in R.

Proposition 6 suggests that Metropolis–Hastings algorithms with proposals Q(g) such that
g(t) = t g(1/t) have scaling behaviour analogous to MALA, meaning that 𝜎2 = Θ(d−1∕3) is suf-
ficient to ensure a non-trivial limit and thus Θ(d1∕3) iterations are required for each effective
sample. To make these arguments rigorous, one should prove weak convergence results for
d → ∞, as in Roberts and Rosenthal (1998). Proving such a result for a general g would require
a significant amount of technical work, thus going beyond the scope of this section. In this
paper we rather support the conjecture of Θ(d1∕3) scaling for Q(g) by means of simulations (see
Section 5.2). While Proposition 6 only shows log(𝛼i(xi, xi + 𝜎ui)) = (𝜎3), it is possible to show
that log(𝛼i(xi, xi + 𝜎ui)) = Θ(𝜎3) with some extra assumptions on 𝜙 to exclude exceptional cases
(see the supplement for more detail).

5 SIMULATIONS WITH FIXED TUNING PARAMETERS

Throughout Sections 5 and 6, we choose the symmetric density 𝜇𝜎 within the random walk and
Barker proposals to be N(0, 𝜎2Id) for simplicity. Note, however, that any symmetric density 𝜇𝜎

could in principle be used. It would be interesting to explore the impact of different choices of 𝜇𝜎

to the performances of the Barker algorithm, and we leave such a comparison to future work.

5.1 Illustrations of robustness to tuning

We first provide an illustration of the robustness to tuning of the random walk, Langevin
and Barker algorithms in three simple one-dimensional settings. In each case we approxi-
mate the expected squared jump distance (ESJD) using 104 Monte Carlo samples and standard
Rao–Blackwellisation techniques, across of range of different proposal step-sizes between 0.01
and 100. As is clearly shown in Figure 2, all algorithms perform similarly when the step-size is
smaller than optimal, as suggested in Section 2.4. As the step-size increases beyond this optimum,
however, behaviours begin to differ. In particular, the ESJD for MALA rapidly decays to zero,
whereas in the random walk and Barker cases the reduction is much less pronounced. In fact,
the rate of decay is similar for the two schemes, which is to be expected following the results of
Sections 4.1 and 2.3. See the supplement for a similar illustration on a 20-dimensional example.

5.2 Comparison of efficiency on isotropic targets

Next we compare the expected squared jump distance of the random walk, Langevin and Barker
schemes when sampling from isotropic distributions of increasing dimension, with optimised
proposal scale (chosen to maximise expected squared jumping distance). This set-up is favourable
to MALA, which is the least robust scheme among the three, as the target distribution is
homogeneous and the proposal step-size optimally chosen. We consider target distributions with
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F I G U R E 2 Expected squared jump distance against proposal step-size for random walk Metropolis,
Metropolis-adjusted Langevin algorithm and Barker on different one-dimensional targets

F I G U R E 3 Expected squared jump distance against dimensionality for random walk Metropolis,
Metropolis-adjusted Langevin algorithm and Barker schemes with optimally-tuned step size. The target
distribution has i.i.d. coordinates following either a Gaussian distribution (left plot) or a hyperbolic one (right plot)

independent and identically distributed (i.i.d.) components, corresponding to the scenario stud-
ied theoretically in Section 4.3. We set the distribution of each coordinate to be either a standard
normal distribution or a hyperbolic distribution, corresponding to log 𝜋(x) = −

∑d
i=1x2

i ∕2 + const
and log 𝜋(x) = −

∑d
i=1(0.1 + x2

i )
1∕2 + const, respectively. Figure 3 shows how the ESJD per coor-

dinate decays as dimension increases for the three algorithms. For MALA and Barker, the ESJD
appears to decrease at the same rate as d increases, which is in accordance with the preliminary
results in Section 4.3. In the Gaussian case, MALA outperforms Barker roughly by a factor of 2
regardless of dimension (more precisely, the ESJD ratio lies between 1.7 and 2.5 for all values of
d in Figure 3), while in the hyperbolic case the same factor is around 1.2, again independently of
dimension (ESJD ratio between 1.1 and 1.25 for all values of d in Figure 3). The rate of decay for
the RWM is faster, as predicted by the theory.

6 SIMULATIONS WITH ADAPTIVE MARKOV CHAIN
MONTE CARLO

In this section, we illustrate how robustness to tuning affects the performance of adaptive MCMC
methods.
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6.1 Adaptation strategy and algorithmic set-up

We use Algorithm 4 in Section 5 of Andrieu and Thoms (2008) to adapt the tuning parameters
within each scheme. Specifically, in each case, a Markov chain is initialised using a chosen global
proposal scale 𝜎0 and an identity pre-conditioning matrix Σ0 = Id, and at each iteration the global
scale and pre-conditioning matrix are updated using the equations

log(𝜎t) = log(𝜎t−1) + 𝛾t × (𝛼(X (t),Y (t)) − 𝛼∗) (24)

𝜇t = 𝜇t−1 + 𝛾t × (X (t) − 𝜇t−1) (25)

Σt = Σt−1 + 𝛾t × ((X (t) − 𝜇t)(X (t) − 𝜇t)T − Σt−1). (26)

Here X (t) denotes the current point in the Markov chain, Y (t) is the proposed move, 𝜇0 = 0, 𝛼∗
denotes some ideal acceptance rate for the algorithm and the parameter 𝛾t is known as the learn-
ing rate. We set 𝛼∗ to be 0.23 for RWM, 0.57 for MALA and 0.40 for Barker. We tried changing
the value of 𝛼∗ for Barker in the range [0.2, 0.6] without observing major differences. In our sim-
ulations, we constrain Σt to be diagonal (i.e., all off-diagonal terms in Equation (26) are set to 0).
This is often done in practice to avoid having to learn a dense pre-conditioning matrix, which has
both a high computational cost and would require a large number of MCMC samples. See the
supplement for full details on the pre-conditioned Barker schemes obtained with both diagonal
and dense matrix Σt, including pseudo-code of the resulting algorithms.

We set the learning rate to 𝛾t ∶= t−𝜅 with 𝜅 ∈ (0.5, 1), as for example suggested in (Shaby
& Wells, 2010). Small values of 𝜅 correspond to more aggressive adaptation, and for example
Shaby and Wells (2010) suggest using 𝜅 = 0.8. In the simulations of Section 6.2, we use 𝜅 = 0.6
as this turned out to be a good balance between fast adaptation and stability for MALA (𝜅 = 0.8
resulted in too slow adaptation, while values of 𝜅 lower than 0.6 led to instability). The adap-
tation of RWM and Barker was not very sensitive to the value of 𝜅. Unless specified otherwise,
all algorithms are randomly initialized with each coordinate sampled independently from a
normal distribution with standard deviation 10. Following the results from the optimal scal-
ing theory (Roberts & Rosenthal, 2001), we set the starting value for the global scale as 𝜎2

0 =
2.42∕d for RWM and 𝜎2

0 = 2.42∕d1∕3 for MALA. For Barker we initialize 𝜎0 to the same values
as MALA.

6.2 Performance on target distributions with heterogeneous scales

In this section, we compare the adaptive algorithms described above when sampling from tar-
get distributions with significant heterogeneity of scales across their components. We consider
100-dimensional target distributions with different types of heterogeneity, tail behaviour and
degree of skewness according to the following four scenarios:

1. (One coordinate with small scale; Gaussian target) In the first scenario, we consider a Gaussian
target with zero mean and diagonal covariance matrix. We set the standard deviation of the first
coordinate to 0.01 and that of the other coordinates to 1. This scenario mirrors the theoretical
framework of Sections 2 and 4.1 in which a single coordinate is the source of heterogeneity.
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2. (Coordinates with random scales; Gaussian target) Here we modify scenario 1 by gener-
ating the standard deviations of each coordinate randomly, sampling them independently
from a log-normal distribution. More precisely, we sample log(𝜂i) ∼ N(0, 1) independently for
i= 1,… , 100, where 𝜂i is the standard deviation of the ith component.

3. (Coordinates with random scales; Hyperbolic target) In the third scenario, we change the tail
behaviour of the target distribution, replacing the Gaussian with a hyperbolic distribution (a
smoothed version of the Laplace distribution to ensure log 𝜋 ∈ C1(Rd)). In particular, we set
log 𝜋(x) = −

∑d
i=1(𝜀 + (xi∕𝜂i)2)1∕2 + c, with 𝜀 = 0.1 and c being a normalizing constant. The

scale parameters (𝜂i)i are generated randomly as in scenario 2.
4. (Coordinates with random scales; Skew-normal target) Finally, we consider a non-symmetric

target distribution, which represents a more challenging and realistic situation. We assume
that the ith coordinate follows a skew-normal distribution with scale 𝜂i and skewness
parameter 𝛼, meaning that log 𝜋(x) = − 1

2

∑d
i=1(xi∕𝜂i)2 +

∑d
i=1 log Φ(𝛼xi∕𝜂i) + c, with c being a

normalizing constant. We set 𝛼 = 4 and generate the 𝜂i’s randomly as in scenario 2.

First we provide an illustration of the behaviour of the three algorithms by plotting the
trace plots of tuning parameters and MCMC trajectories—see Figure 4 for the results in sce-
nario 1. The adaptation of tuning parameters for the Barker scheme stabilises within a few
hundred iterations, after which the algorithm performance appears to be stable and efficient.
On the contrary both RWM and MALA struggle to learn the heterogeneous scales and the adap-
tation process has either just stabilized or not yet stabilized after 104 iterations. Looking at the
behaviour of MALA in Figure 4 we see that, in order for the algorithm to achieve a non-zero
acceptance rate, the global scale parameter 𝜎t must first be reduced considerably to accom-
modate the smallest scale of 𝜋(⋅). At this point the algorithm can slowly begin to learn the
components of the pre-conditioning matrix Σt, but this learning occurs very slowly because the
comparatively small value for 𝜎t results in poor mixing across all other dimensions than the first.
Analogous plots for scenarios 2, 3 and 4 are given in the supplement and display comparable
behaviour.

We then compare algorithms in a more quantitative way, by looking at the average mean
squared error (MSE) of MCMC estimators of the first moment of each coordinate, which is a stan-
dard metric in MCMC. For any h ∶ Rd → R, define the corresponding MSE as E[(ĥ

(t)
− E𝜋[h])2]

where ĥ
(t)

= (t − tburn)−1∑t
i=tburn+1h(X (i)) is the MCMC estimator of E𝜋[h] after t iterations of the

algorithm. Here tburn is a burn-in period, which we set to tburn = ⌊t∕2⌋, where ⌊⋅⌋ denotes the floor
function. Below, we report the average MSE for the collection of test functions given by h(x) =
xi∕𝜂i for i = 1, … , d after t MCMC iterations (rescaling by 𝜂i is done to give equal importance to
each coordinate).

In addition, we also monitor the rate at which the pre-conditioning matrix Σt converges to
the covariance of 𝜋, denoted as Σ, in order to measure how quickly the adaptation mechanism
learns suitable local tuning parameters. We consider the l2-distance between the diagonal ele-
ments of Σt and Σ on the log scale. This leads to the following measure of convergence of the
tuning parameters after t MCMC iterations:

dt = E

⎡⎢⎢⎣ 1√
d

( d∑
i=1

(log(Σt,ii) − log(Σii))2

)1∕2⎤⎥⎥⎦ , (27)
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F I G U R E 4 Random walk Metropolis, Metropolis-adjusted Langevin algorithm and Barker schemes with
adaptive tuning as in Equations (24)–(26) and learning rate set to 𝛾t = t−𝜅 with 𝜅 = 0.6. The target distribution is
a 100-dimensional Gaussian in which the first component has standard deviation 0.01 and all others have unit
scale. First row: adaptation of the global scale 𝜎t; second row: adaptation of the local scales diag(Σt) = (Σt,ii)100

i=1;
third row: trace plot of first coordinate; fourth row: trace plots of coordinates from 2 to 100 (superposed)

where the expectation is with respect the Markov chain (X (t))t≥1. We use the log scale as it is
arguably more appropriate than the natural one when comparing step-size parameters, and we
focus on diagonal terms as both Σt and Σ are diagonal here. Monitoring the convergence of dt to
0 we can compare the speed at which good tuning parameters are found during the adaptation
process for different schemes.

Figure 5 displays the evolution of dt and the MSE defined above over 4 × 104 iterations of
each algorithms, where dt and the MSE are estimated by averaging over 100 independent runs of
each algorithm. The results are in accordance with the illustration in Figure 4, and suggest that
the Barker scheme is robust to different types of targets and heterogeneity and results in very fast
adaptation, while both MALA and RWM require significantly more iterations to find good tuning
parameters. The tuning parameters of MALA appear to exhibit more unstable behaviour than
RWM in the first few thousands iterations (larger dt), while after that they converge more quickly,
which again is in accordance with the behaviour observed in Figure 5 and with the theoretical
considerations of Sections 2 and 4.1. To further quantify the tuning period, we define the time to
reach a stable level of tuning as 𝜏adapt(𝜀) = inf{t ≥ 1 ∶ dt ≤ 𝜀} for some 𝜀 > 0. We take 𝜀=1 and
report the resulting values in Table 1, denoting 𝜏adapt(1) simply as 𝜏adapt. The results show that
in these examples Barker always has the smallest adaptation time, with a speed-up compared to
RWM of at least 34x in all four scenarios, and a speed-up compared to MALA ranging between 3x
(scenario 3) and 30x (scenario 2). The adaptation times 𝜏adapt tend to increase from scenarios 1 to
4, suggesting that the target distribution becomes more challenging as we move from scenarios
1 to 4. The hardest case for Barker seems to be the hyperbolic target, although even there the
tuning stabilized in roughly 3000 iterations, while the hardest case for MALA is the skew-normal,
in which tuning stabilized in roughly 30,000 iterations.
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F I G U R E 5 Comparison of random walk Metropolis, Metropolis-adjusted Langevin algorithm and Barker
on the four target distributions (scenarios 1 to 4) described in Section 6.2, averaging over ten repetitions of each
algorithm. First row: convergence of tuning parameters, measured by dt defined in Equation (27). Second row:
Mean Square Error of Markov chain Monte Carlo estimators of first moments averaged over all coordinates

T A B L E 1 Adaptation times (𝜏adapt) and mean squared errors (MSE) from 10 k, 20 k and 40 k iterations of
the random walk Metropolis (RWM), Metropolis-adjusted Langevin algorithm (MALA) and Barker algorithms
under each of the four heterogeneous scenarios described in Section 6.2

Method 𝝉adapt MSE10k MSE20k MSE40k

1 RWM 18,757 0.200 0.036 0.013

MALA 10,785 0.348 0.016 0.002

Barker 524 0.007 0.005 0.003

2 RWM 19,163 0.228 0.045 0.013

MALA 17,298 0.644 0.147 0.004

Barker 542 0.007 0.005 0.003

3 RWM >40 k 0.409 0.080 0.016

MALA 10,630 0.248 0.019 0.006

Barker 3294 0.012 0.009 0.007

4 RWM >40 k 0.315 0.092 0.016

MALA 34,340 0.813 0.488 0.112

Barker 1427 0.008 0.006 0.004

The differences in the adaptation times have a direct implication on the resulting MSE of
MCMC estimators, which is intuitive because the Markov chain will typically start sampling effi-
ciently from 𝜋 only once good tuning parameters are found. As we see from the second row of
Figure 5 and the second part of Table 1, the MSE of Barker is already quite low (between 0.007
and 0.012) after 104 iterations in all scenarios, while RWM and MALA need significantly more
iterations to achieve the same MSE. After finding good tuning parameters and having sampled
enough, MALA is slightly more efficient than Barker for the Gaussian target in scenario 1 and
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equally efficient in the hyperbolic target of scenario 3, which is consistent with the simulations
of Section 5.2 under optimal tuning.

6.3 Comparison on a Poisson random effects model

In this section, we consider a Poisson hierarchical model of the form

yij|𝜂i
ind∼ Poisson(exp(𝜂i)) j = 1, … ,ni,

𝜂i|𝜇 ind∼ N(𝜇, 𝜎2
𝜂 ) i = 1, … , I,

𝜇 ∼ N(0, 102), (28)

and test the algorithms on the task of sampling from the resulting posterior distribution
p(𝜇, 𝜂1, … , 𝜂I|y), where y = (yij)ij denotes the observed data. In our simulations, we set I = 50
and ni = 5 for all i, leading to 51 unknown parameters and 250 observations.

The model in Equation (28) is an example of a generalized linear model that induces a poste-
rior distribution with light tails and potentially large gradients of log 𝜋, which creates a challenge
for gradient-based algorithms. In particular, the task of sampling from the posterior becomes
harder when either the observations (yij)ij contain large values or they are heterogeneous across
values of i ∈ {1, … , I}. The former case results in a more peaked posterior distribution with
larger gradients, while the latter induces heterogeneity across the posterior distributions of the
parameters 𝜂i.

In our simulations, we consider three scenarios, corresponding to increasingly challenging
target distributions:

1. In the first scenario, we take 𝜎𝜂 = 1 and generate the data y from the model in Equation (28)
assuming the data-generating value of 𝜇 to be 𝜇∗ = 5 and sampling the data-generating values
of 𝜂1, … , 𝜂I from their prior distribution.

2. In the second scenario, we increase the value of 𝜎𝜂 to 3, which induces more heterogeneity
across the parameters 𝜂1, … , 𝜂I .

3. In the third scenario, we keep 𝜎𝜂 = 3 and increase the values of 𝜇∗ to 10, thus inducing larger
gradients.

In each scenario, we run the algorithm directly on the joint parameter space (𝜇, 𝜂1, … , 𝜂I).
Similarly to Section 6.2, we first provide an illustration of the behaviour of the tuning parameters
and MCMC trace plots for RWM, MALA and Barker in Figure 6. Here all algorithms are run for
5 × 104 iterations, with the target defined in the first scenario. We use the adaptation strategy of
Section 6.2 for tuning, following Equations (24)–(26) with 𝜅 = 0.6 and Σt constrained to be diag-
onal, and initialize the chains from a random configuration sampled from the prior distribution
of the model. In this example, the random walk converges to stationarity in roughly 10,000 iter-
ations while the Barker scheme takes a few hundreds. By contrast MALA struggles to converge
and exhibits unstable behaviour even after 5 × 104 iterations. Note that the first 3 × 104 itera-
tions of MALA, in which the parameter 𝜇 appears to be constant, do not correspond to rejections
but rather to moves with very small increments in the 𝜇 component.

We then provide a more systematic comparison between the algorithms under considera-
tion in Table 2. In addition to RWM, MALA and Barker, we also consider a state-of-the-art
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F I G U R E 6 Behaviour of random walk Metropolis, Metropolis-adjusted Langevin algorithm and Barker on
the posterior distribution from the Poisson hierarchical model in Equation (28). Data are generated as in the first
scenario of Section 6.3. First row: adaptation of the global scale 𝜎t; second row: adaptation of the local scales
diag(Σt) = (Σt,ii)100

i=1; third row: trace plot of the parameter 𝜇; fourth row: trace plots of the parameter 𝜂1

implementation of adaptive HMC, namely the Stan (Stan Development Team, 2020) imple-
mentation of the No-U-Turn Sampler (NUTS) (Hoffman & Gelman, 2014) as well as of stan-
dard HMC (referred to as ‘static HMC’ in the Stan package). The NUTS algorithm is a vari-
ant of standard HMC in which the number of leapfrog iterations, that is, the parameter L
in Equation (10), is allowed to depend on the current state (using a ‘No-U-Turn’ criterion).
The resulting number of leapfrog steps (and thus log-posterior gradient evaluations) per iter-
ation is not fixed in advance but rather tuned adaptively depending on the hardness of the
problem. This is also the case for the static HMC algorithm implementation in Stan, as in
that case the total integration time in Equation (10) is fixed and the step-size and mass
matrix are adapted. For both algorithms, we use the default Stan version that learns a diag-
onal covariance/mass matrix during the adaptation process. This is analogous to constraining
the preconditioning matrix Σt for RWM, MALA and Barker to be diagonal, as we are doing
here.

Table 2 reports the results of the simulations for the five algorithms in each of the three sce-
narios. For each algorithm, we report the number of log-posterior gradient evaluations and the
minimum and median effective sample size (ESS) across the 51 unknown parameters. The ESS
values are computed with the effectiveSize function from the coda R package (Plummer
et al., 2006), discarding the first half of the samples as burn-in. The RWM, MALA and Barker
schemes are run for 5 × 104 iterations, and the HMC and NUTS schemes for 2 × 103 iterations.
The latter is the default value in the Stan package and in this example corresponds to a number
of gradient evaluations between 1.7 × 104 and 1.6 × 107. All numbers in Table 2 are averaged
over ten independent replications of each algorithm. We use the minimum ESS per gradient
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T A B L E 2 Comparison of sampling schemes on the posterior distribution arising from the Poisson
hierarchical model in Equation (28)

Method
Iterations

(n)
Leapfrog
steps∕n

Gradient
calls (g) ESS ESS∕g × 100

1 RWM 5 × 104 – – (49, 66) –

MALA 5 × 104 – 5 × 104 (648, 727) 1.30 ± 2.73

Barker 5 × 104 – 5 × 104 (1445, 1587) 2.89 ± 0.07

HMC 2 × 103 89.5 1.8 × 105 (285, 1954) 0.25 ± 0.78

NUTS 2 × 103 8.5 1.7 × 104 (1175, 1822) 6.95 ± 1.68

2 RWM 5 × 104 – – (0.4, 10.6) –

MALA 5 × 104 – 5 × 104 (0.0, 8.0) < 0.01

Barker 5 × 104 – 5 × 104 (1365, 1563) 2.73 ± 0.13

HMC 2 × 103 797 1.6 × 106 (25, 1949) < 0.01

NUTS 2 × 103 57.7 1.2 × 105 (942, 1826) 1.19 ± 1.14

3 RWM 5 × 104 – – (0.0, 5.3) –

MALA 5 × 104 – 5 × 104 (0.0, 0.2) < 0.01

Barker 5 × 104 – 5 × 104 (1301, 1594) 2.60 ± 0.92

HMC 2 × 103 8103 1.6 × 107 (3.3, 899) < 0.01

NUTS 2 × 103 179 3.5 × 105 (137, 348) 0.012 ± 0.14

Blocks of rows from 1 to 3 refer to the three data-generating scenarios described in Section 6.3. All numbers are averaged across
ten repetitions of each algorithm. For each algorithm we report: number of iterations; number of leapfrog steps per iteration
and total number of gradient evaluations (when applicable); estimated effective sample size (ESS) (minimum and median
across parameters); minimum ESS per hundred gradient evaluations (with standard deviation across the ten repetitions).

evaluation as an efficiency metric, of which we report the mean and standard deviation across
the 10 replicates (multiplied by 100 to facilitate readability).

According to Table 2, NUTS is the most efficient scheme in scenario 1, while Barker is the
most efficient one in scenarios 2 and 3. This is in accordance with the intuition of Barker being
a more robust scheme, as the target distribution becomes more challenging as we move from
scenarios 1 to 3. MALA struggles to converge to stationarity in scenarios 2 and 3 (with an esti-
mated ESS around zero), while it performs better in scenario 1, although with a high variability
across different runs (shown by the large standard deviation in the last column). The RWM dis-
plays low ESS values for all three scenarios, although with a less dramatic deterioration going
from scenarios 1 to 3. Interestingly, the performances of Barker are remarkably stable across sce-
narios (with an ESS of around 1400), as well as across parameters for which ESS is computed (in
all cases the minimum and median ESS are close to each other) and across repetitions (shown
by the relatively small standard deviation in the last column). We note that NUTS is also remark-
ably effective taking into consideration that it is not an algorithm designed with a major emphasis
on robustness, but that performance does degrade when moving from scenarios 1 to 3. As in the
MALA case, static HMC struggles to converge in scenarios 2 and 3 and is not very efficient in sce-
nario 1. Note that NUTS, and in particular HMC, compensate for the increasing difficulty of the
target by increasing the number of leapfrog steps per iteration. For example, the drop in efficiency
of NUTS between scenarios 1 and 2 is mostly due to the increase in average number of leapfrog
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iterations from 8.5 to 57.7 rather than in a decrease in ESS. Somewhat surprisingly, in static HMC
the number of leapfrog steps per iteration is increased significantly more than NUTS, which could
either be due to genuine algorithmic differences or to variations in the details of the adaptation
strategy implemented in Stan. Overall, Barker and NUTS are the two most efficient algorithms
in these simulation, with a relative efficiency that depends on the scenario under consideration:
NUTS being roughly 2.4 times more efficient in scenario 1, Barker 2.3 times more efficient in
scenario 2 and Barker 40 times more efficient in scenario 3.

6.4 Additional simulations reported in the supplement

In the supplement, we report additional simulations for some of the above experiments. As a
sensitivity check, we also performed simulations using the tamed Metropolis-adjusted Langevin
algorithm (Brosse et al., 2018) and the truncated Metropolis-adjusted Langevin algorithm
(Atchade, 2006; Roberts & Tweedie, 1996), two more robust modifications to MALA in which
large gradients are controlled by monitoring the size of ||∇ log 𝜋(x)||. The schemes do offer some
added stability compared to MALA in terms of controlling large gradients, but ultimately are
still very sensitive to heterogeneity of the target distribution and to the choice of the truncation
level, and do not exhibit the same robustness observed in the case of the Barker scheme. See the
supplement for implementation details, results and further discussion.

7 DISCUSSION

We have introduced a new gradient-based MCMC method, the Barker proposal, and have demon-
strated both analytically and numerically that it shares the favourable scaling properties of other
gradient-based approaches, along with an increased level of robustness, both in terms of geomet-
ric ergodicity and robustness to tuning (as defined in the present paper). The most striking benefit
of the method appears to be in the context of adaptive MCMC. Evidence suggests that combining
the efficiency of a gradient-based proposal mechanism with a method that exhibits robustness to
tuning gives a combination of stability and speed that is very desirable in this setting, and can
lead to efficient sampling that requires minimal practitioner input.

The theoretical results in this paper could be extended by studying in greater depth the large
𝜆 regime (Section 2.4) and the high-dimensional scaling of the Barker proposal (Section 4.3). Of
course, there are many other algorithms that could be considered under the robustness to tuning
framework, and it is worthwhile future work to explore which features of a scheme result in either
robustness to tuning or a lack of it. Extensions to the Barker proposal that incorporate momentum
and exhibit the d−1∕4 decay in efficiency with dimension enjoyed by HMC may be possible, as well
as the development of other methods within the first-order locally balanced proposal framework
introduced in Section 3, or indeed schemes that are exact at higher orders.
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