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Abstract— Many robotic path planning problems are contin-
uous, stochastic, and high-dimensional. The ability of a mobile
manipulator to coordinate its base and manipulator in order to
control its whole-body online is particularly challenging when
self and environment collision avoidance is required. Reinforce-
ment Learning techniques have the potential to solve such
problems through their ability to generalise over environments.
We study joint penalties and joint limits of a state-of-the-art
mobile manipulator whole-body controller that uses LIDAR
sensing for obstacle collision avoidance. We propose directions
to improve the reinforcement learning method. Our agent
achieves significantly higher success rates than the baseline in a
goal-reaching environment and it can solve environments that
require coordinated whole-body control which the baseline fails.

I. INTRODUCTION

Mobile robots have a plethora of applications ranging from
warehouse services, through oil rig inspections, to emergency
interventions [1], [2], [3]. Modern robots require both high
mobility and accurate manipulation to traverse collision-free
paths while performing their tasks, which can be achieved
via mobile manipulators. By applying Whole-Body Control
(WBC), the base and manipulator movements of mobile
robots coordinate to improve the efficiency of the system.

Classical WBC methods include the use of kinematic,
velocity, and impedance controllers, model predictive con-
trollers, and combinations thereof in advanced adaptive
control strategies [4], [5], [6]. They have been shown to
work well in many environments while also providing sta-
bility guarantees. Reinforcement Learning (RL) methods
have shown great promise in their ability to compete with
and potentially overcome classical methods in many robotic
problems as they can work with complex inputs [7] and learn
complex task solutions [8]. Once trained, RL agents can
execute policies online, bringing down total mission times.

The recent state-of-the-art works on RL for mobile manip-
ulator WBC have focused on goal reaching scenarios. While
they show that their solutions are quicker than traditional
methods they still underperform them in terms of success
rate and impose big limitations on the robots and their envi-
ronments, such as limited DoF [9] and simplistic tasks [10].

In this paper, we examine the trained WBC behaviour of a
state-of-the-art baseline agent trained with a shaped reward.
The robot agent is comprised of an omnidirectional base and
a 7 DoF manipulator simulated in PyBullet (see Fig. 1). We
determine potential causes of sub-optimality in the baseline
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Fig. 1. The simulated mobile manipulator, composed by an omnidirectional
mobile base and a 7DoF arm.

- frequent early episode termination due to reaching joint
limits and consistently folded arm. We show that clamping
the joint instead of a joint-limit penalty in the the reward
improves the model’s performance significantly and allows
it to reach the goal much closer.

The summarised contributions of this paper are: (i) Identi-
fying issues and potential improvements of a state-of-the-art
method; (ii) Showing our method leads to higher success
rates than the baseline and solves an environment requiring
whole-body control, which the baseline fails; (iii) Evince our
method’s ability to generalise in an unseen environment.

II. RELATED WORK

In this section, we present traditional and reinforcement
learning approaches to whole-body control, justifying its use.

Traditional Approaches: Traditional approaches to im-
plementing WBC include the use of kinematic and dynamic
controllers [11], [12], [13]. Their advantage is that the
current understanding of physical systems is refined and
works well on fully actuated robots. Most methods focus
on WBC for quadrupeds [14], [15], [16], humanoids [17],
[18], [19], [20], [21], animaloids [22], [23], [24], or mobile
manipulators [17], [25]. Model Predictive Control methods
are popular with works such as Minniti et al. [26] showing
success in WBC pose-tracking and interaction tasks. Recent
works focus on non-linear strategies, such as Hierarchical
Quadratic Programming [6], and non-linear model predic-
tive control [5]. While some methods such as Operational
Space Control can solve tasks with optimality and continuity
in real-time, most traditional methods require large offline
computation. Moreover, the methods for mobile manipulators
are often based on simplified models of the robot which
sometimes results in control solutions that are limiting the
its agility.

Reinforcement Learning Approaches: Reinforcement
learning approaches offer a framework that is transferable to
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different tasks and robots, able to work online with scaling
complexity, in a trade off with the limited prior information
that it can use and long training that is often required
for good performance. However, current methods still use
application-specific architectures and rarely generalize to
multi-task scenarios [27]. RL methods have successfully
taught robots dexterous vision-based manipulation tasks [28],
[29], [30], [31] and navigation tasks [32], [33].

Most research is also focused on legged robots [34], [35],
[36], [37]. Wang et al. [10] integrate the state-of-the-art RL
algorithms with visual perception for WBC and propose an
efficient framework for decoupling of visual perception from
control, which enables easier sim-to-real transfer. However,
the used environment is simple, consisting of a table in
front of a robot. Kindle et al. [9] use a Proximal Policy
Optimization (PPO) based agent to train end-to-end whole-
body control policies for obstacle avoidance and tested on
a real mobile manipulator achieving state-of-the-art results.
Their model makes use of Automatic Domain Randomization
and Continuous Learning to guide the agent toward a solution
in a custom reach-and-grasp environment. A hand-crafted
reward function is defined with components for collision,
joint limits, safety distance, optimal path following and time.
These recent works show sub-optimal performance, worse
than comparable traditional methods.

III. BACKGROUND
We consider a standard RL framework, which includes

an agent interacting with an environment via actions and
observations. Environment rewards are fed into an RL learn-
ing algorithm, which optimises the agent’s policy and thus
creates a feedback loop. The problem focuses on goal-
reaching environments in which a success is defined as the
uninterrupted holding of the robot agent’s end-effector within
a given tolerance distance from the goal. The environments’
state space consists of front and rear LIDAR scans, arm joint
positions, arm joint and base velocities, and the goal location
in the end-effector frame, while action space consists of joint
and base accelerations. Both LIDAR observations and joint
actions are limited to 2D planes. In this section, we discuss
he state-of-the-art baseline [9] used for our experiments.

1) Reward: The baseline’s reward function is handcrafted,
encouraging the agent to learn to imitate a traditional path
planning method and complete the task quicker, while dis-
couraging it for moving close to objects. The reward has
three termination cases: collision, timeout, and reaching joint
limits. Finally, it also introduces an accumulation term that
prevents the agent’s exploitation of the reward.

2) Agent: The architecture of the agent is based on PPO
with modified layers as depicted in Fig. 2. The two LIDAR
scans are compressed via a separate scan block before being
processed with the rest of the inputs in a network of fully
connected layers. The agent produces a discretized policy for
each action and its respective value.

IV. METHOD
To understand the low success rate of the baseline in com-

parison with traditional methods, we analysed the behaviour

Fig. 2. Agent’s network architecture.

Fig. 3. The robot controlled with the baseline agent at start (left) and end
(right) of reaching task. Note the folded arm in the second image.

and performance of the agent after training. It was observed
that the majority of episodes terminate due to the robot arm
reaching its joint limits. We further noticed that this is a
behaviour that can be limited explicitly instead of penalising
and terminating the reinforcement learning agent.

While it was expected that the optimal solution would be
for the robot to move toward the goal with a folded arm
and unfold it while it is reaching the goal position, it was
observed that the robot folds the arm in the beginning and
does not change it throughout the whole run, as shown in
Fig. 3 as well as the real robot experiments [38]. The cause of
this could be partially explained by the custom environment
itself, which does not explicitly require WBC in order to be
solved. Additionally, the used reward function itself places
more weight on optimal path following penalties than on
timing penalties - following the optimal end-effector path is
simpler when the manipulator is folded, because the end-
effector is close to the base point of rotation. We attempt to
address some of these drawbacks in this section.

Improved Environments: Two environments are used in
our validations: a narrow corridor environment for compari-
son with state-of-the art and a new environment that cannot
be solved without WBC.

The first environment, adapted from [9], consists of a nar-
row corridor of variable length, containing random avoidable
obstacles and a randomly placed goal location (See Fig. 4).
It requires the agent to plan its path and navigate around the
obstacles toward the goal. We refer to this environment as
Corridor-env.

However, its goal can be directly reached by folding



Fig. 4. The Corridor-env (left two) requires optimal path planning to be solved, but allows for the base and manipulator to move independently. The
local Gap-env (right two) cannot be solved without coordinated control with the robot inserting its manipulator in the tunnel to approach the goal.

the arm and performing only mobile base collision-free
navigation, thus does not require WBC.

We introduce a new environment (referred as Gap-env)
which consists of narrow passages with the goal end-effector
pose being reachable only with coordination between the
base and manipulator (See Fig. 4). The width of the gap is
very narrow and a small deviation of the arm or base during
insertion would cause a collision, thus the task is difficult
to solve without coordinated control. Two variants are used:
In Gap-env-train, random uniform noise is added to initial
joint angles, and orientation and position of the goal relative
to the robot spawn location; In Gap-env-test, the tunnel gap
width and length, as well as the goal placement relative to the
tunnel is also randomly initialized to ensure that the testing
scenarios are unseen by the agent.

In all the environments, a success is defined as the
uninterrupted holding of the robot agent’s end-effector within
a given tolerance distance from the goal. Automatic Do-
main Randomization (ADR) is used to gradually adapt the
complexity of the environment and guide the agent toward
a solution. This is done by increasing or decreasing the
acceptable tolerance distance to the goal depending on the
agent’s recent success rate. Via ADR, the tolerance distance
to the goal is dynamically changed. The state space consists
of 2D front and rear LIDAR scans, arm joint positions, arm
joint and base velocities, and the goal location in end-effector
frame. The action space is comprised of mobile base and arm
joint accelerations. Given the complexity of the problem, its
dimensionality is reduced to planar movements of the arm.

Joint Clamping Method: When training the baseline
agent in the corridor environment, it was noticed that most
of the episodes end due to joint limit termination. However,
joint limits can easily be enforced by setting a manual
limit (clamping) to the joint positions based on the robot’s
hardware limits with appropriate tolerance to protect the
robot. Likewise, when training the baseline in the gap en-
vironment, it doesnt approach the goal, rather stays near the
gap and oscillates. This is believed to be due to the baseline’s
safety margin penalty, which encourages the robot to keep
its distance from all objects. We believe that a collision
termination penalty is sufficient in teaching that behaviour.
Thus, our modified reward function is as follows:

rt = wt .
τ

Tt
+wpd∆dpd +wpt

∆dpt

dpt,init
+wht

τ

Th

+whd(1−min(1,dg/dh))
τ

Th
− Ih +Dc +Dh

(1)

where wt is the time penalty parameter, τ is the step time,
and Tt is the total time before episode timeout. This timeout
reward encourages quicker task completion. An optimal path
towards the goal is computed via Harmonic Potential Field
(HPT). The goal distance reward penalises for deviation from
the HPT ∆dpd by wpd and rewards movement along the path
∆dpt normalized by the total path dpt,init by wpt . Furthermore,
wht is the reward for each time-step that the end-effector is
within tolerance distance dh of the goal point and whd is
the reward for minimizing the distance to the goal position
applied only when the distance to the goal dg is smaller
than the tolerance distance dh. Both of these rewards are
normalized for the holding time threshold Th after which the
task is done. Ih is the accumulated holding reward which is
subtracted if the end-effector leaves the tolerance sphere in
order to prevent exploitation of the reward. Finally, Dc is a
collision penalty, and Dh is the reward for sustained holding
time Th. The last two rewards end the current episode.

This reward function allows the agent to actuate the robot
safely without hindering its learning and addresses the two
issues encountered when running the baseline. The joint
clamping is enforced programmatically, based on the robot’s
joint limits. The baseline agent is trained in with these
modifications and compared with the standard baseline for
several values of goal tolerance distance in Sec. V-A.

Validation Setup We use a mobile manipulator robot
comprised of a omnidirectional base and a 7 DoF arm ma-
nipulator. All simulations are done using PyBullet 2.8 [39],
while a high performance computing cluster is used for
training. Agent parameters are shown in the appendix.

Our method and its compared baseline are trained in
Corridor-env on 32 parallel workers for a total of 60M
training steps. The final success rate, counted as number
of successes over 100 episodes, is compared in Sec. V-A.
We train the agents in Gap-env-train for 30M steps with
16 parallel workers. The agent is then evaluated in Gap-
env-test and the results are reported in Sec. V-B. In both
environments, the ADR is gradually adapting the tolerance
distance in the range [0.5;0.05].

V. RESULTS

We explore the following questions: (i) How does our
method compare to the baseline? (ii) Is the new agent able
to perform well on a task requiring Whole-Body Control?
(iii) Is the agent generalizable to new environments?



Fig. 5. Our agent at start (left) and end (right) of reaching task.

Tolerance Dist (m) 0.5 0.2 0.1 0.07
Baseline 72% 65% 40% 0%

Joint-Clamping Method (ours) 73% 73% 63% 24%

TABLE I
SUCCESS RATES IN Corridor-env AGAINST TOLERANCE DISTANCES

Environment Gap-env-train Gap-env-test
Baseline fail fail

Joint Clamping Method (ours) 81% 76%

TABLE II
SUCCESS RATES IN Gap-env WITH 0.05m TOLERANCE DISTANCE.

Fig. 6. (left) Adaptation of tolerance distance per step for both reward
settings. (right) Total returns per episode plotted against the episode
termination step. Running mean smoothing of 0.95 is used. Note that due
to the use of ADR, the training rewards are fairly similar

A. Validation on Corridor Environment

The original baseline agent with a joint limit penalty and
our modified agent with clamped joint limits (Eq. 1) are ran
with 32 workers for 60M steps. This process took 48 hours to
finish. The trained models were tested in Corridor-env with
fixed goal tolerance distances in the range of 0.5 to 0.07.

Running the baseline, we managed to achieve 72% for
the highest tolerance distance (0.5m), while the success
rate was significantly decreasing with the tolerance distance

dropping. The minimum successful tolerance distance was
0.1m. The resulting success rates of our agent, shown in
the lower row of Table I, are noticeably higher than the
baseline performance with standard reward, especially when
the tolerance distance is decreasing.

This difference in performance can be further explained
by the difference of ADR tolerances shown in Fig. 6. For
the baseline, the ADR tolerance distance reached at 60M
steps is 0.1, not reaching the lowest distance of 0.05. In
comparison, our agent successfully adapted to the lowest
tolerance distance 20M steps before the training ended. This
indicates that with the modified reward, the agent learns
quicker and better. The training returns of the original and
modified baselines are shown in Fig. 6. For the modified
agent in the environment with tolerance distance fixed to
0.07m, it is found that 52% of the unsuccessful episodes
terminate due to collision, while 48% terminate due to
timeout. The distance from the end-effector to the goal at the
end of unsuccessful episodes is on average 0.11m. While the
joint limit modification shows an increase in success rate, the
folded manipulator behaviour is still observed (see Fig. 5).

B. Whole-Body Control Task

Training the agent locally in Gap-env, which includes
narrow tunnels where only the arm can fit, forces the
simultaneous coordination between the arm and the mobile
base as a WBC. With a 0.05m tolerance distance to the goal,
the success rate of the training is 81%, shown in Table II.
As can be observed from the success rates in the table,
our agent successfully generalises to unseen variants of the
training environment, with a drop of only 5% in success rate.
In a typical episode, the robot is observed moving towards
the goal, while adjusting its manipulator for tunnel-entry, as
expected from a WBC solution. In failed episodes, it is seen
that the robot often reaches the goal within less than 0.05m,
however it backs off and re-approaches several times until
the episode terminates due to timeout. Note that the original
baseline method was not able to solve such environments
based on its handcrafted reward function.

VI. CONCLUSIONS AND FUTURE WORK

This work presents an RL method for Whole-body Control
of a mobile manipulator that improves on the state of the
art. Our shaped reward function combined with joint limit
clamping shows a significant improvement of 24% over
the baseline for small tolerance distances. Moreover, the
proposed agent is able to solve whole-body control tasks
which the baseline fails. We show that training the agent
with our reward in one environment, transfers its learned
skills well to a similar, but different, testing environment.

The current method is limited to using 2D LIDAR data and
planar manipulator actions. Future work will focus on ex-
panding these limitations via more informative observations,
such as 3D LIDAR or RGB-D images. More importantly,
the “folding arm” behaviour should be further examined.
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APPENDIX: HYPERPARAMETERS

Parameter Value Parameter Value Parameter Value
wt -15 dh 0.3 m clip range 0.2

whd 40 Dh 10 clip range vf -1
wht 20 D jl

∗ -20 noptepochs 30
wpd -10 Dc -60 gamma 0.999
wpt 50 τ 0.04 s n steps 2048

wsm
∗ -1 Th 1 s nminibatches 8

TABLE III
REWARD PARAMETERS USED FOR THE REWARD AND PPO AGENT.

PARAMETERS MARKED WITH ∗ ARE ONLY USED FOR THE BASELINE

https://hal.archives-ouvertes.fr/hal-01377831
https://www.youtube.com/watch?v=3qobNCMUMV4
https://www.youtube.com/watch?v=3qobNCMUMV4
http://pybullet.org
http://pybullet.org
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