Glycine receptors in GtoPdb v.2021.3

Joseph. W. Lynch¹, Lucia G. Sivilotti² and Trevor G. Smart²

1. University of Queensland, Australia
2. University College London, UK

Abstract

The inhibitory glycine receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on Glycine Receptors) is a member of the Cys-loop superfamily of transmitter-gated ion channels that includes the zinc activated channels, GABA_A, nicotinic acetylcholine and 5-HT_3 receptors and Zn²⁺-activated channels. The receptor is expressed either as a homo-pentamer of α subunits, or a complex now thought to harbour 2α and 3ß subunits [33, 7], that contain an intrinsic anion channel. Four differentially expressed isoforms of the α-subunit (α1-α4) and one variant of the β-subunit (β1, GLRB, P48167) have been identified by genomic and cDNA cloning. Further diversity originates from alternative splicing of the primary gene transcripts for α1 (α1INS and α1del), α2 (α2A and α2B), α3 (α3S and α3L) and β (βΔ7) subunits and by mRNA editing of the α2 and α3 subunit [83, 93, 21]. Both α2 splicing and α3 mRNA editing can produce subunits (i.e., α2B and α3P185L) with enhanced agonist sensitivity. Predominantly, the adult form of the receptor contains α1 (or α3) and β subunits whereas the immature form is mostly composed of only α2 subunits. The α4 subunit is a pseudogene in humans. High resolution molecular structures are available for the a1 and a3 homomeric receptors [50, 20]. As in other Cys-loop receptors, the orthosteric binding site for agonists and the competitive antagonist strychnine is formed at the interfaces between the subunits’ extracellular domains. Inclusion of the β-subunit in the pentameric glycine receptor contributes to agonist binding, reduces single channel conductance and alters pharmacology. The β-subunit also anchors the receptor, via an amphipathic sequence within the large intracellular loop region, to gephyrin. This a cytoskeletal attachment protein that binds to a number of subsynaptic proteins involved in cytoskeletal structure and thus clusters and anchors hetero-oligomeric receptors to the synapse [56, 54, 88]. G protein βγ subunits enhance the open state probability of native and recombinant glycine receptors by association with domains within the large intracellular loop [124, 123]. Intracellular chloride concentration modulates the kinetics of native and recombinant glycine receptors [96]. Intracellular Ca²⁺ appears to increase native and recombinant glycine receptor affinity, prolonging channel open events, by a mechanism that does not involve phosphorylation [27]. Extracellular Zn²⁺ potentiates GlyR function at nanomolar concentrations [86], and causes inhibition at higher micromolar concentrations (17).

Contents

This is a citation summary for Glycine receptors in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts. For further details see [12].

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.
Database links

Glycine receptors
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=73
Introduction to Glycine receptors
https://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=73
Channels and Subunits

Complexes
Glycine Receptor (All subtypes)
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=428

Subunits

glycine receptor α1 subunit
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=423
glycine receptor α2 subunit
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=424
glycine receptor α3 subunit
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=425
glycine receptor α4 subunit (pseudogene in humans)
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=426
glycine receptor β subunit
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=427

References

containing the alpha4 subunit in the embryonic sympathetic nervous system, spinal cord and male genital ridge. *Eur J Neurosci* **12**: 994-1001 [PMID:10762330]

81. Mascia MP, Trudell JR and Harris RA. (2000) Specific binding sites for alcohols and anesthetics on ligand-gated ion channels. Proc Natl Acad Sci USA 97: 9305-10 [PMID:10908659]

in potentiation of glycine responses by ICS-205,930. Mol Pharmacol 58: 763-70 [PMID:10999946]

