Entropy – stagnation enthalpy interpolation tables for calculation of the critical flow properties of compressible fluids

Sergey Martynov¹, Haroun Mahgerefteh¹, Ilias K. Nikolaidis² and Ioannis G. Economou³

¹Department of Chemical Engineering, University College London, UK;
²Institute of Nanoscience and Nanotechnology, NSCR “Demokritos”, Aghia Paraskevi, Greece;
³Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar.
E-mail: s.martynov@ucl.ac.uk
Scope

• Motivation and objectives
• Methodology
• Results
• Conclusions and next steps

• Motivation and objectives
 • Methodology
 • Results
 • Conclusions and next steps

Motivation and objectives

• Pipeline transportation of industrial gases is mature technology.
• Due to hazardous nature of transported fluids and high operating pressures, safety of pipeline transportation is of serious concern.
• Mathematical models predicting pipeline decompression and the fluid discharge flow are in the heart of Qualitative Risk Assessment (QRA) predicting consequences of pipeline failure:

✓ Significant cooling and dry ice formation during venting and accidental failure of CO₂ transport pipelines
✓ Low-temperature induced brittle fracture upon accidental failure of ethylene and CO₂ transport pipeline
✓ Safety assessment of hydrogen transport pipelines and facilities – with increasing demand for H₂ transport
Motivation and objectives

• Models have been developed in the past:
 - Homogeneous Equilibrium Mixture (HEM) and multi-fluid/multiphase models for transient flow of compressible fluids in pipelines
 - Fluid properties calculation methods (EoS, interpolation tables) for single and multi-phase flows

• The accuracy and computational efficiency of the physical properties models is critical for the pipeline decompression flow simulations
Physical properties involved

Governing equations for transient flow in a pipeline:

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} &= -S_o \\
\frac{\partial \rho u}{\partial t} + \frac{\partial \rho u^2}{\partial x} &= -\frac{\partial p}{\partial x} - 2f_w \frac{\rho u^2}{D} - uS_o \\
\frac{\partial \rho e_{tot}}{\partial t} + \frac{\partial u(\rho e_{tot} + p)}{\partial x} &= -2f_w \frac{\rho u^3}{D} + \frac{4q_w}{D} - h_{tot,o}S_o
\end{align*}
\]

where \(\rho \), \(u \), \(e_{tot} \) and \(p \) are respectively the mixture density, velocity, total energy and pressure, \(u_o \), \(h_{tot,o} \) and \(S_o \) are respectively the velocity, stagnation enthalpy and the mass flux source term associated with the local discharge flow.
Physical properties involved

Discharge flow model – choked (critical) flow:

\[S_0 = \frac{C_d \rho_0 u_0 A_0}{A \cdot \Delta x} \]

\[s_o = s_{up} \]

\[h_o + \frac{u_o^2}{2} = h_{tot,up} \]

\[u_o = c_{s,o} \]

where \(C_d \) is the local discharge coefficient for the rupture, \(\Delta x \) is the cell width, \(A \) is the pipe cross-sectional area, \(s \) is the entropy and the index "up" refers to stagnation conditions in the flow.
Density-energy flash calculations are performed as part of solution of the conservation equations describing the flow inside the pipe:
\[p, T, x = f(\rho, e) \]

Stagnation enthalpy – entropy flash calculations to obtain properties of choked (critical) flow:
\[c_s, \rho = f(s, H) \]

Physical Properties:
- Density
- Heat Capacity
- Speed of sound
- Joule-Thomson effect
- Phase equilibrium
- Viscosity
- Diffusivity
- Thermal conductivity

Mathematical model of pipeline flow:
- Mass conservation
- Momentum conservation
- Energy conservation
- Viscous friction
- Heat transfer
- Interphase H&M transfer
- Fluid/structure interaction
Equation of state models

- **Peng – Robinson (PR) EoS:**
 \[P = \frac{RT}{v - b} - \frac{a(T)}{v(v + b) + b(v - b)} \]

 Easy to implement, computationally efficient

- **Perturbed Chain – Statistical Association Fluid Theory (PC-SAFT) EoS:**

 \[a(T, \rho) = a^{\text{ideal}}(T, \rho) + a^{\text{hard-sphere}}(T, \rho) + a^{\text{dispersion}}(T, \rho) + a^{\text{chain}}(T, \rho) + a^{\text{association}}(T, \rho) \]

Highly-accurate, but can be computationally demanding
Equation of state models

• To speed-up the properties calculations, **interpolation tables** can be used instead of EoS, provided that the interpolation method is:
 - accurate and robust, and
 - suits the *pipe flow* and *discharge flow models*
Objectives

- To develop the physical properties interpolation method for use in the pipeline decompression flow simulations
- To apply the method for calculation of physical properties of real fluids
- To evaluate the accuracy and computational efficiency of the interpolation method
• Motivation and objectives
• **Methodology**
• Results
• Conclusions and next steps

Physical properties inverse interpolation

Pipe flow model equations:

\[
\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = -S_o
\]

\[
\frac{\partial \rho u}{\partial t} + \frac{\partial \rho u^2}{\partial x} = -\frac{\partial p}{\partial x} - 2f_w \frac{\rho u^2}{D} - uS_o
\]

\[
\frac{\partial \rho e_{tot}}{\partial t} + \frac{\partial u(\rho e_{tot} + p)}{\partial x} = -2f_w \frac{\rho u^3}{D} + \frac{4q_w}{D} - h_{tot,o}S_o
\]

Step 1: Construct the interpolant data using EoS (direct mapping) with \(\{T, p\}\) as independent variables

Step 2: Interpolation (inverse mapping)

\[p, T, x, \ldots = f(\rho, e)\]
Physical properties inverse interpolation

Critical discharge flow model:

\[s_o = s_{up} \]
\[h_o + \frac{c_{s,o}^2}{2} = h_{tot,up} \]

\[h_{tot,o} \]

In this work the inverse interpolation method is applied for the entropy-stagnation enthalpy flash calculations.

Step 1: Construct the interpolant data using EoS (direct mapping) with \(\{T, p\} \) as independent variables.

Step 2: Interpolation (inverse mapping)

\[p, T, \rho, x, ... = f(s, h_{tot}) \]
Physical properties of homogeneous vapour-liquid mixture

\[e = e_v x + e_l (1 - x) \]
\[s = s_v x + s_l (1 - x) \]
\[\rho = \rho_v \alpha + \rho_l (1 - \alpha) \]

The speed of sound in a two-phase homogeneous frozen mixture (Wood, 1930):

\[c_s = \left[\frac{\rho \alpha}{\rho_v c_{s,v}^2} + \frac{\rho (1 - \alpha)}{\rho_l c_{s,l}^2} \right]^{-1/2} \]

Where \(x \) is the vapour mass fraction, \(\alpha \) is the vapour volume fraction.

The speed of sound in saturated VLE mixture of ethylene, predicted using the homogeneous frozen mixture model.
Step 0: Construct the \(\{T, p\} \) grid by seeding non-uniformly points along isotherms in the \(T - p \) domain.

Step 1: Direct mapping: Use EoS to obtain the interpolant data on \(\{T, p\} \):
- internal energy \((e) \),
- density \((\rho) \),
- mass fraction \((x) \),
- entropy \((s) \), and
- the total sonic enthalpy \(h_{tot}^* \):

\[
h_{tot}^* = h + \frac{c_s^2}{2}
\]

Step 2: Use the interpolant data to fit Akima splines for the inverse interpolation, e.g.: \(p(\rho, e) \) and \(T(\rho, e) \).
• Motivation and objectives
• Methodology
• Results
• Conclusions and next steps

Density-energy ($\rho - e$) interpolant data – Ethylene
\[(h_{\text{tot}} - s)\] interpolant data – Ethylene

![Graph showing the interpolation of \(h_{\text{tot}} - s\) data for Ethylene.]
Density-energy ($\rho-e$) phase diagram – CO$_2$

![Graph showing the phase diagram of CO$_2$ with different states and phases: solid, liquid, and gaseous.](image)
(h_{tot} - s) phase diagram – CO_2
The accuracy of the inverse interpolation method is assessed by comparing the original input data \((\rho^o, e^o)\) used for the inverse mapping with the \((\rho, e)\) data returned by EoS based on the interpolation results \((T, p)\):

\[
\Delta \rho = |\rho^o - \rho_{EoS}[T_{interp}(\rho^o, e^o); \ p_{interp}(\rho^o, e^o)]|
\]
The accuracy of the interpolation method (ethylene)

\[
\%AARD = \frac{100}{n} \sum_{i=1}^{n} \left| \frac{\phi_i - \phi_i^o}{\phi_i^o} \right|
\]

where \(\phi_i^o\) and \(\phi_i\) are respectively the reference value and the interpolated property at a point \(i\), and \(n\) is the number of points in the thermodynamic phase region.

The accuracy of the PC-SAFT EoS (Nikolaidis et al, 2018):
- the saturated vapour: 2.37%,
- the saturated liquid: 0.42%,
- the supercritical fluid: 1.24%.

The interpolation method’ errors are the order of magnitude smaller than the accuracy of EoS.

Relative errors of density predictions by the PC-SAFT based on the interpolated \(p-T\) data, and with the accuracy of PC-SAFT EoS [Nikolaidis et al, 2018].
The computational runtime (ethylene)

\[\tau_{CPU} = \frac{1}{N_{ref}} \sum_{i=1}^{N_{ref}} \tau_i \]

where \(\tau_i \) is the CPU time spent on interpolation at a point \(i \)

The proposed interpolation method can speed up the property calculations, compared to using directly the PC-SAFT EoS, when using less than 80,000 interpolant points

Average computational runtimes (\(\tau_{CPU} \)) spent on the interpolation of density and using directly the PC-SAFT EoS.
• Motivation and objectives
• Methodology
• Results

• Conclusions and next steps

Conclusions and next steps

✓ Constructed $h_{tot}^* - s$ phase diagrams for the inverse interpolation flash calculations of critical (choked) flow

✓ Developed methodology for assessment of accuracy & computational efficiency of interpolation tables

✓ Demonstrated the methods for ethylene

✓ Ongoing work: validation against pipeline decompression data for ethylene and applying the method to carbon dioxide
H2020 project: C⁴U - Advanced Carbon Capture for Steel Industries Integrated in CCUS Clusters

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 884418

https://c4u-project.eu/
https://twitter.com/C4Uproject
https://www.linkedin.com/company/c4u-project/

Successful demonstration of CO₂ capture from industrial sources
Economic & safe demonstration of integrated CCUS value chain
Viable pathways to rollout CCUS in areas with high concentrations of CO₂ emitting industries

WP1: DISPLACE process for reheating ovens
WP2: CASOH process for blast furnace gas
WP3: Integration of CO₂ capture technologies in steel plant
WP4: Integration of CO₂ capture in industrial clusters
WP5: Societal readiness and public policy
WP6: Long term business models
WP7: Dissemination, communication and public engagement
WP8: Project management

WP1

WP2

WP3

WP4

WP5

WP6

WP7

WP8

Testing and demonstration of capture technologies at TRL7

Integrating CO₂ capture in industrial installations and clusters

Societal readiness, public policy and the business case

WP8: Project management

Impacts

https://c4u-project.eu/
References

Acknowledgements and disclaimer

• This research has received funding from the European Union’s Horizon 2020 Research & Innovation Programme under the Grant Agreement No 884418, and Qatar National Research Fund (a member of the Qatar Foundation) NPRP award 8-1339-2-569.

• The statements made herein are solely the responsibility of the authors.